The specification relates generally to systems and methods for providing dies, and more specifically to systems and methods for providing dies within a defined tolerance.
Cutting dies are typically made from edge-sharpened strip metal such as but not limited to steel and may be manufactured to have complex shapes created by a series of two-dimensional bends of, for example, steel rule stock. Each bend within the cutting die is at a precise angle and at a precise location along the length of the rule stock.
Steel rule cutting dies offer advantages over other technologies, such as but not limited to laser cutting, to those looking to cut materials and/or fabrics. For instance, because of the strength of steel, cutting dies made from steel rule stock can be used hundreds or thousands of times to cut materials and/or fabrics into consistent and predicable shapes.
Unfortunately, because of the strength of steel rule stock, the manufacture of steel rule stock cutting dies can be a complex process. When designing a desired cutting die, designers typically require that the shape of the manufactured cutting die be within a pre-determined tolerance. Ensuring that the shape of the manufactured cutting die falls within the pre-determined tolerance can be difficult
Accordingly, new and improved methods of providing a cutting die, and specifically, new and improved methods of providing a cutting die within a pre-determined tolerance are desired.
The following summary is intended to introduce the reader to various aspects of the applicant's teaching, but not to define any invention.
According to a broad aspect, a system for generating an image of a modified desired cutting die is described herein. The system includes at least one data storage device storing a set of cutting edge specifications; and at least one processor communicatively coupled to the at least one data storage device. The at least one processor is operable to: receive at least one image of a desired cutting die; identify an entire cutting edge of the desired cutting die as shown in the least one image of the desired cutting die, the cutting edge being positioned around a perimeter of the cutting die; identify at least one feature of the cutting edge of the desired cutting die as shown in the least one image of the desired cutting die; retrieve a set of cutting edge specifications from the data storage device, the set of cutting edge specifications including a desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die; based the on the desired tolerance, calculate an offset distance between the cutting edge of the desired cutting die and a cutting edge of the provided cutting die; and generate an image of a modified desired cutting die based on the offset distance.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, apply the offset distance to the cutting edge of the desired cutting die such that the shape of the modified desired cutting die is smaller than the shape of the desired cutting die.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, modify a position of the one or more features of the cutting edge of the desired cutting die based on the desired tolerance.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, modify a position of the one or more features of the cutting edge of the desired cutting die based on the offset distance.
In at least one embodiment, the processor is operable to, when generating the image of a modified desired cutting die, modify a feature of the cutting edge of the desired cutting die based on one or more of the offset distance and the desired tolerance.
In at least one embodiment, the offset distance is less than the desired tolerance.
In at least one embodiment, the offset distance is less than about 75% of the desired tolerance, or less than about 60% of the desired tolerance, or about 50% of the desired tolerance.
In at least one embodiment, the offset distance is greater than the desired tolerance.
According to another broad aspect, a system for providing a cutting die is described herein. The system includes at least one data storage device storing a set of cutting edge specifications; and at least one processor communicatively coupled to the at least one data storage device, the at least one processor operable to: receive at least one image of a desired cutting die; identify an entire cutting edge of the desired cutting die as shown in the least one image of the desired cutting die, the cutting edge being positioned around a perimeter of the cutting die; identify at least one feature of the cutting edge of the desired cutting die as shown in the least one image of the desired cutting die; retrieve a set of cutting edge specifications from the data storage device, the set of cutting edge specifications including a desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die; based the on the desired tolerance, calculate an offset distance between the cutting edge of the desired cutting die and a cutting edge of the provided cutting die; and generate an image of a modified desired cutting die based on the offset distance; and at least one bending machine operable to provide the provided cutting die based on the generated image of the modified desired cutting die.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, apply the offset distance to the cutting edge of the desired cutting die such that the shape of the modified desired cutting die is smaller than the shape of the desired cutting die.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, modify a position of the one or more features of the cutting edge of the desired cutting die based on the desired tolerance.
In at least one embodiment, the processor is operable to, when generating the image of the modified desired cutting die, modify a position of the one or more features of the cutting edge of the desired cutting die based on the offset distance.
In at least one embodiment, the processor is operable to, when generating the image of a modified desired cutting die, modify a feature of the cutting edge of the desired cutting die based on one or more of the offset distance and the desired tolerance.
In at least one embodiment, the offset distance is less than the desired tolerance.
In at least one embodiment, the offset distance is less than about 75% of the desired tolerance, or less than about 60% of the desired tolerance, or about 50% of the desired tolerance.
In at least one embodiment, the offset distance is greater than the desired tolerance.
According to another broad aspect, a method of providing a cutting die is described herein. The method includes receiving at least one image of a desired cutting die; identifying an entire cutting edge of the desired cutting die as shown in the least one image of the desired cutting die, the cutting edge being positioned around a perimeter of the cutting die; identifying at least one feature of the cutting edge of the desired cutting die as shown in the least one image of the desired cutting die; retrieving a set of cutting edge specifications from the data storage device, the set of cutting edge specifications including a desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die; based the on the desired tolerance, calculating an offset distance between the cutting edge of the desired cutting die and a cutting edge of the provided cutting die; generating an image of a modified desired cutting die based on the offset distance; and providing the provided cutting die based on the generated image of the modified desired cutting die.
In at least one embodiment, generating the image of the modified desired cutting die includes applying the offset distance to the cutting edge of the desired cutting die such that the shape of the modified desired cutting die is smaller than the shape of the desired cutting die.
In at least one embodiment, generating the image of the modified desired cutting die includes modifying a position of the one or more features of the cutting edge of the desired cutting die based on the desired tolerance.
In at least one embodiment, generating the image of the modified desired cutting die includes modifying a position of the one or more features of the cutting edge of the desired cutting die based on the offset distance.
In at least one embodiment, generating the image of a modified desired cutting die includes modifying a feature of the cutting edge of the desired cutting die based on one or more of the offset distance and the desired tolerance.
In at least one embodiment, the offset distance is less than the desired tolerance.
In at least one embodiment, the offset distance is less than about 75% of the desired tolerance, or less than about 60% of the desired tolerance, or about 50% of the desired tolerance.
In at least one embodiment, the offset distance is greater than the desired tolerance.
According to another broad aspect, a method of providing an image of a modified desired cutting die is described herein. The method includes receiving at least one image of a desired cutting die; identifying an entire cutting edge of the desired cutting die as shown in the least one image of the desired cutting die, the cutting edge being positioned around a perimeter of the cutting die; identifying at least one feature of the cutting edge of the desired cutting die as shown in the least one image of the desired cutting die; retrieving a set of cutting edge specifications from the data storage device, the set of cutting edge specifications including a desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die; based the on the desired tolerance, calculating an offset distance between the cutting edge of the desired cutting die and a cutting edge of the provided cutting die; and generating an image of a modified desired cutting die based on the offset distance.
In at least one embodiment, generating the image of the modified desired cutting die includes applying the offset distance to the cutting edge of the desired cutting die such that the shape of the modified desired cutting die is smaller than the shape of the desired cutting die.
In at least one embodiment, generating the image of the modified desired cutting die includes modifying a position of the one or more features of the cutting edge of the desired cutting die based on the desired tolerance.
In at least one embodiment, generating the image of the modified desired cutting die includes modifying a position of the one or more features of the cutting edge of the desired cutting die based on the offset distance.
In at least one embodiment, generating the image of a modified desired cutting die includes modifying a feature of the cutting edge of the desired cutting die based on one or more of the offset distance and the desired tolerance.
In at least one embodiment, the offset distance is less than the desired tolerance.
In at least one embodiment, the offset distance is less than about 75% of the desired tolerance, or less than about 60% of the desired tolerance, or about 50% of the desired tolerance.
In at least one embodiment, the offset distance is greater than the desired tolerance.
According to another broad aspect, a method of reducing spacing between cutting dies arranged on a die board is described herein. The method includes receiving a plurality of images of desired cutting dies; generating an image of a modified desired cutting die for each of the images of desired cutting dies, each modified desired cutting die having a cutting edge being offset inwardly relative to a cutting edge of the desired cutting die by a calculated offset distance, the calculated offset distance based on a desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die; providing, using a bending machine, the modified desired cutting dies based on the generated images of the modified desired cutting dies; and arranging the modified desired cutting dies on the die board such that a spacing between each of the modified desired cutting dies is less than or equal to the desired tolerance for differences between a shape of the desired cutting die and a shape of a provided cutting die.
The drawings included herewith are for illustrating various examples of articles, methods, and apparatuses of the present specification and are not intended to limit the scope of what is taught in any way. In the drawings:
Various systems and/or methods will be described below to provide an example of an embodiment of each claimed invention. No embodiment described below limits any claimed invention and any claimed invention may cover systems and/or methods that differ from those described below. The claimed inventions are not limited to systems and/or methods having all of the features of any one system and/or method described below or to features common to multiple or all of the systems and/or methods described below. It is possible that a system and/or method described below is not an embodiment of any claimed invention. Any invention disclosed in systems and/or methods described below that is not claimed in this document may be the subject matter of another protective instrument, for example, a continuing patent application, and the applicants, inventors or owners do not intend to abandon, disclaim, or dedicate to the public any such invention by its disclosure in this document.
As used herein and in the claims, two or more parts are said to be “coupled”, “connected”, “attached”, “joined”, “affixed”, or “fastened” where the parts are joined or operate together either directly or indirectly (i.e., through one or more intermediate parts), so long as a link occurs. As used herein and in the claims, two or more parts are said to be “directly coupled”, “directly connected”, “directly attached”, “directly joined”, “directly affixed”, or “directly fastened” where the parts are connected in physical contact with each other. As used herein, two or more parts are said to be “rigidly coupled”, “rigidly connected”, “rigidly attached”, “rigidly joined”, “rigidly affixed”, or “rigidly fastened” where the parts are coupled so as to move as one while maintaining a constant orientation relative to each other. None of the terms “coupled”, “connected”, “attached”, “joined”, “affixed”, and “fastened” distinguish the manner in which two or more parts are joined together.
Further, although method steps may be described (in the disclosure and/or in the claims) in a sequential order, such methods may be configured to work in alternate orders. In other words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps be performed in that order. The steps of methods described herein may be performed in any order that is practical. Further, some steps may be performed simultaneously.
Furthermore, it will be appreciated that for simplicity and clarity of illustration, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the example embodiments described herein. However, it will be understood by those of ordinary skill in the art that the examples described herein may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the examples described herein.
As used herein, the wording “and/or” is intended to represent an inclusive-or. That is, “X and/or Y” is intended to mean X or Y or both, for example. As a further example, “X, Y, and/or Z” is intended to mean X or Y or Z or any combination thereof.
Leather and/or other fabric products may be made from pieces that have been cut according to one or more patterns. To cut the pieces of leather or fabric, dies may be made in the shapes of the patterns, placed on large pieces of the leather or fabric (e.g. a leather hide) and pushed through the leather or fabric in a press. Several different die shapes may be needed to cut all the distinct pieces that are sewn together to create the end product. And any given number of end products will require a certain number of pieces cut according to each pattern.
To minimize time and maximize efficiency, several dies are typically arranged on a hide or large piece of fabric to be cut simultaneously. The arrangement of the dies on the hide or fabric can be optimized to maximize the usage of acceptable leather or fabric and minimize unusable material of the hide between adjacent dies, also known as scrap. Typically, to minimize scrap while maintaining dimensional consistency of pieces of leather or fabric cut at the same time, designers define an acceptable tolerance for variations in size and shape of each individual cutting die. Acceptable tolerances may vary anywhere from 1 millimeter (mm) to 10 mm, depending on the fabric type, size of the end product, shape of the piece, etc. that the die is used to cut.
With the advent of improved systems and methods of manufacturing cutting dies to increasingly precise size and shape specifications, there is an opportunity to reduce the spacing between adjacent dies in a die press and cut pieces of leather or fabric to sizes and/or shapes that are within a smaller tolerance than requested by the manufacturer of the end product. Reducing the spacing between adjacent dies in a die press can reduce the amount of scrap fabric or scrap leather created during a cutting process, which can save money and increase efficiency. For example, in some examples, a manufacturer's requested tolerance may be in the range of about 5 mm or less, or 3 mm or less, or 2 mm, or less than 2 mm. Cutting a piece of leather or fabric to a shape that is within a tolerance that is 1-2 mm narrower than a manufacturer's requested tolerance, when considered over a length of a typical die board (e.g. about 6 meters), can save up to 20 or 30 mm of material.
Ensuring that the shape of a manufactured cutting die, and the leather and/or fabric cut using the manufactured cutting die, falls within a tolerance that is narrower than a manufacturer's requested tolerance can be difficult. It requires modifying a manufacturer's requested size and shape of a cutting die to make it smaller while adjusting the position of one or more features of the die to maintain the geometric relationship between the features to ensure that pieces of leather and/or fabric cut using the adjusted die still fit within the pattern of pieces that are stitched together to form the desired end product.
The systems and methods herein provide for modifying a manufacturer's requested size and shape of a cutting die to reduce the size and shape while maintaining the geometric relationship between the features of the cutting die. The systems and methods described herein also provide for arranging a plurality of cutting dies on a die press to reduce an effective amount of material used when the plurality of cutting dies are nested together to cut a single piece of material into a plurality of shapes.
It should be noted that although the example embodiments described herein are described with regard to cutting dies, for example cutting dies for use in cutting fabric, automobile components, composites, plastics, or other materials, it should be understood that the methods and systems described herein may be applied to other industries and processes where the size of geometric shapes (e.g. a position of a boundary of the geometric shapes) needs to be modified or repositioned while maintaining a specific geometric relationship between aspects or features or portions of the geometric shape. In at least one embodiment, the methods and systems described herein may be useful in other industries and processes where a footprint (i.e. an area occupied by) of a geometric shape needs to be reduced while maintaining a specific positional relationship between aspects or features or portions of the geometric shape.
Turning to the figures, and referring to
System 100 includes at least one data storage device 102 communicatively coupled by a communication link 103 to at least one processor 104. The data storage device 102 stores at least an image 110 of a desired cutting die, a set of cutting edge specifications 112, and an image 114 of a modified desired cutting die.
The image 110 includes a digital representation (e.g. as a .DXF file, a CAD file, or the like, containing a single cavity or a plurality of cavities) of at least one desired cutting die 116 (i.e. a model of a cutting die that is to be manufactured).
The set of cutting edge specifications 112 include, for example, a tolerance for a difference between a shape of the desired cutting die and a shape of a provided cutting die. It should be noted that the term “tolerance” as used herein refers to a pre-selected distance between a maximum dimensional boundary and a minimum dimensional boundary of the provided cutting die relative to the desired cutting die. For instance, without limiting the foregoing, the tolerance may be about 5 mm, or about 3 mm, or about 2 mm, meaning that the shape of the provided cutting die must fall within a 5, or 3, or 2, or less mm spacing (e.g. 1 mm in a direction that increases the shape of the desired cutting die and 1 mm in a direction that decreases the shape of the desired cutting die) around the perimeter of the desired cutting die to be acceptable. In at least one embodiment, the set of cutting edge specifications 112 is a digital file or a portion of a digital file.
The image 114 includes a digital representation (e.g. as a .DXF file, a CAD file, or the like) of a modified desired cutting die 122. The modified desired cutting die 122 has undergone a modification, such as but not limited to a change in shape, relative to the desired cutting die 116 resulting from one or more of the methods described below. In at least one embodiment described herein, the modified desired cutting die 122 is smaller (i.e. has a smaller area) that the desired cutting die 116. In at least one embodiment, the modified desired cutting die 122 is larger (i.e. has a larger area) that the desired cutting die 116. In at least one embodiment, image 114 also includes a digital representation of the desired cutting die 116.
The system 100 also includes at least one processor 104. The processor 104 is communicatively coupled to the data storage device 102, e.g. such that the processor 104 may retrieve one or more of the image 110 of a desired cutting die, the set of cutting edge specifications 112, and the image 114 of a modified desired cutting die that are stored on the data storage device 102.
The processor 104 may be communicatively coupled to the data storage device 102 by a first communications link 103, which may be wired (as illustrated in
The processor 104 is operable to modify the image 110 of a desired cutting die 116, as described further below. The processor 104 is operable to generate the image 114 of the modified desired cutting die 122, optionally including the desired cutting die 116, as also described further below.
In at least one embodiment, system 100 may also include an electronic screen 106 (e.g. a touchscreen), and the processor 104 may be operable to present information via the screen 106. The processor may be communicatively coupled to the screen 106 by an optional communications link 105, which may also be wired (as illustrated) and/or wireless.
In at least one embodiment, system 100 may also include a bending machine 108 (e.g. a touchscreen) operable to provide the cutting die. In at least one embodiment, the processor 104 may be operable to present the generated image 114 of the modified desired cutting die 122, and/or any technical details of the modified desired cutting die 122, including but not limited to any information contained within the set of cutting edge specifications 112, to the bending machine 108. The processor may be communicatively coupled to the bending machine 108 by an optional communications link 107, which may also be wired (as illustrated) and/or wireless.
Referring to
The processor 104 is configured to, at step 402, receive the at least one image 110 of the desired cutting die 116. The processor 104 may retrieve the at least one image from the data storage device 102, however in some examples, the processor 104 may optionally receive the at least one image 110 of the desired cutting die 116 directly from another optional component of the system 100, such as but not limited a different storage device or from a mail client.
In some examples, the at least one image 110 is a plurality of images. For example, the at least one image 110 may be a set of at least 4 images, at least 6 images, or at least 9 images.
At step 404, the processor 104 identifies the entire cutting edge 118 of the desired cutting die 116 shown in the at least one image 110. For example, the processor 104 may include software that may identify the perimeter of the cutting die 116 shown in the at least one image 110. In at least one embodiment, the software algorithm is configured to detect the perimeter of the cutting die 116 shown in the at least one image 110 when the perimeter is represented by a solid line. Where the at least one image 110 is a plurality of images, the processor 104 may find the edge lines for each cutting edge of each of the plurality of images and filter out outlier data (e.g. outlier data that affect the ability to find consistent edges).
In at least one embodiment, the at least one image 110 of the cutting edge die 116 is a CAD or CAM file and the data processed for identifying the cutting edge is vector data and the image shown is the vector data rasterized to create a visual representation to the user. In some cases, the CAD data does not form a closed shape. In these cases, the systems described herein include specifications and routines to locate the end point for a nearby entity, and if within a predefined amount, assume that is the next entity in the shape and continue to loop through the entire vector data until there is a closed entity.
At step 406, the processor identifies at least one feature 120 of the cutting edge 118 of the desired cutting die 116. For example, the processor 104 may include software that may identify features 120 based on the shape of indications (e.g. black markings) present on or adjacent to the perimeter of the cutting die 116.
The processor 104 is also configured to, at step 408, retrieve the set of cutting edge specifications 112, e.g. from the data storage device 102. As noted above, the set of cutting edge specifications 112 may include, for example, a tolerance for differences between a shape of the provided cutting die and a shape of the desired cutting die 116. The set of cutting edge specifications 112 may also include other information relevant to generating image 114 of a modified desired cutting die 122. The processor 104 may retrieve all these specifications or only the specifications for the cutting die 116 shown in the at least one image 110.
At step 410, the processor calculates an offset distance between the cutting edge 118 of the desired cutting die 116 and a cutting edge of a provided cutting die. The calculation of the offset distance between the cutting edge 118 of the desired cutting die 116 and the cutting edge of the provided cutting die is based on the tolerance for differences between a shape of the provided cutting die and the shape of the desired cutting die 116. In at least one embodiment, the offset distance is less than the tolerance for differences between a shape of the provided cutting die and a shape of the desired cutting die 116. In at least one embodiment, the offset distance is less than about 75% of the desired tolerance, or less than about 60% of the desired tolerance, or about 50% of the desired tolerance. For example, if the tolerance is 2 mm the offset distance may be 1 mm.
In at least one embodiment, the offset distance is greater than the desired tolerance.
At step 412 the processor is operable to generating the image of the modified desired cutting die 122. When generating the image of the modified desired cutting die 122, the modified desired cutting die is based on the offset distance calculated in step 410.
In at least one embodiment, when generating the image of the modified desired cutting die, the processor is operable to apply the offset distance to the cutting edge of the desired cutting die such that the shape of the modified desired cutting die is smaller than the shape of the desired cutting die.
In at least one embodiment, when generating the image of the modified desired cutting die, the processor is operable to modify a position of the one or more features 120 of the cutting edge 118 of the desired cutting die 116 based on the desired tolerance.
In at least one embodiment, when generating the image of the modified desired cutting die, the processor is operable to modify a position of the one or more features 120 of the cutting edge 118 of the desired cutting die 116 based on the offset distance.
In at least one embodiment, when generating the image of the modified desired cutting die, the processor is operable to modify one or more features 120 of the cutting edge 118 of the desired cutting die 116 based on one or more of the offset distance and the desired tolerance.
In addition to the perimeter of the die itself, other features that may require offset calculations include but are not limited to corners, slits, blades, and notches. In at least one embodiment, there may also be the need to adjust other features such as perforating punches and cutouts located internal to the perimeter of the cavity. This would need to be assessed based on the internal feature's proximity to the perimeter. Features located close to the perimeter are likely to need offsetting whereas features located further inward can likely stay in their original positions.
At
In at least one embodiment, as shown in box 502, the processor is operable to round a corner, or round a sharp corner, as is present in the image 110 of the desired cutting die 116 after generating the image 114 of the modified desired cutting die 122. In
In at least one embodiment, as shown in box 502, the processor is operable to round a corner when the distance between the original and the offset corner of the modified desired cutting die 122 is greater than a preselected distance (e.g. 0.63 mm, as shown in
In at least one embodiment, as shown in box 502, the processor is operable to not round a corner of the modified desired cutting die 122 after generating the image 114 of the modified desired cutting die 122. An example of this is shown in
At
In at least one embodiment, as shown in box 504 of
In at least one embodiment, as shown in box 504 of
In at least one embodiment, the processor is operable to modify a length of a slit present in feature 120 of desired cutting die 116 after generating the image 114 of the modified desired cutting die 122. For instance, the processor may be operable to modify the length of a slit present in the desired cutting die 116 to a user defined or a user selected length after generating the image 114 of the modified desired cutting die 122.
In at least one embodiment, as shown in box 504 of
At
Nicks and/or notches may be used as a visual sewing aid to keep two mating parts in alignment during the sewing operation. Nicks and/or notches may be placed equally around two mating parts and, during the sewing operation, the operator is required to keep these aligned, doing so ensures that at the end of the sewing operation the two ends meet.
Both nicks and/or notches and/or slits are used to relieve stresses in the finished part when folded during the sewing operation and to prevent wrinkles in the finished part. Typically, nicks are used to relieve concave sections relative to the finished part and slits are used to relieve stresses in convex sections relative to the finished part.
In at least one embodiment, as shown in box 506 of
For instance, in at least one embodiment, as shown in box 506 of
In at least one embodiment, the processor is operable to change the notch offset direction so that it is perpendicular from a perimeter of the cutting edge of the modified desired cutting die 122 after generating the image 114 of the modified desired cutting die 122.
In at least one embodiment, the processor is operable to change the notch offset direction so that it is towards the notch deepest point of the cutting edge of the modified desired cutting die 122 after generating the image 114 of the modified desired cutting die 122.
In at least one embodiment, as shown in box 506 of
In at least one embodiment, as shown in box 506 of
In at least one embodiment, as shown in box 506 of
Referring now to
Method 600 includes steps 602-612 corresponding to steps 402-412 in the method 400 of generating an image of a modified cutting die. Following step 612, method 600 includes a step 614 of providing a cutting die based on the generated image 122 of the modified desired cutting die. In this step, processor 104 is operable to transmit the generated image 122 of the modified desired cutting die to a bending machine 108 and the bending machine 108 is operable to provide the cutting die.
Referring now to
The present technologies has been described here by way of example only. Various modifications and variations may be made to these exemplary embodiments without departing from the scope of the technologies described herein, which is limited only by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 63/154,155, filed Feb. 26, 2021, and the entire content of U.S. Provisional Patent Application No. 63/154,155 is hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2022/050259 | 2/24/2022 | WO |
Number | Date | Country | |
---|---|---|---|
63154155 | Feb 2021 | US |