The present disclosure relates to pumps and pump-heads capable of accommodating a volume expansion of the liquid in the pump-head, such as by a freezing event, a pressure fluctuation, or the like.
Rotary displacement pumps, such as gear pumps, are especially useful for pumping liquids and other fluids in applications requiring accurate delivery of fluid to a point of use and a high degree of reliability. Certain applications also require that the pumps be capable of operating in a wide temperature range, including at the operating temperature of machinery such as internal combustion engines, and at temperatures below the freezing point of water or other dilute aqueous liquids, such as temperatures experienced in freezing winter climates or at high altitudes. Water and other aqueous liquids undergo a volumetric expansion when changing between the liquid and solid phases. This volumetric expansion can severely damage a pump housing primed with the liquid and other components in contact with the liquid. Thus, it can be advantageous for the pumps to be able to withstand or accommodate the volumetric expansion attendant to the freezing of the aqueous liquid being pumped. Accordingly, improvements to freeze protection for pumps are desirable.
Certain embodiments of the disclosure are directed to pumps capable of accommodating increased pressure events. In a representative embodiment, a pump comprises a pump-head portion including a pump body and a magnet cup. The pump body defines at least one inlet and at least one outlet, and the pump body and the magnet cup together define a pump cavity that is in contact with the liquid being pumped whenever the pump cavity is primed with the liquid. The pump further comprises a suction shoe situated on the pump body. The suction shoe includes an engaging portion. The pump further comprises a movable pumping member situated in the pump cavity and at least partially received within the suction shoe, the pumping member, when driven to move, urging flow of the liquid from the inlet through the pump cavity and the magnet cup to the outlet. The pump further comprises a permanent magnet situated in the magnet cup. The magnet is rotatable in the magnet cup and is coupled to the movable pumping member in the pump cavity. The pump further comprises a pump-driver portion including a magnet driver located outside the magnet cup. The magnet driver is magnetically coupled through the magnet cup to the magnet to rotate the magnet in the magnet cup and, thus, move the pumping member in the pump cavity. The pump further comprises a pressure-absorbing member situated in the pump cavity. The pressure-absorbing member is configured to engage the engaging portion of the suction shoe such that the suction shoe is urged radially inwardly with respect to an outer edge portion of the surface of the pump body.
In another representative embodiment, a gear pump-head comprises a pump body and a magnet cup together defining a pump cavity, at least one inlet in fluid communication with the pump cavity, and at least one outlet in fluid communication with the pump cavity. The gear pump-head further comprises at least one driving gear and a driven gear enmeshed with each other in the pump cavity, and a suction shoe situated about the driving gear and the driven gear on the pump body. The suction shoe includes an engaging portion. The gear pump-head further comprises a permanent magnet situated in the magnet cup and being coupled to the driving gear, and a pressure-absorbing member situated in the pump cavity. The pressure-absorbing member is configured to engage the engaging portion of the suction shoe such that the suction shoe is urged radially inwardly with respect to an outer edge portion of the surface of the pump body.
In another representative embodiment, a gear pump-head comprises a pump body and a magnet cup together defining a pump cavity, at least one inlet in fluid communication with the pump cavity, and at least one outlet in fluid communication with the pump cavity. The gear pump-head further comprises at least one driving gear and a driven gear enmeshed with each other in the pump cavity, and a suction shoe situated about the driving gear and the driven gear on the pump body. The suction shoe includes an engaging portion. The gear pump-head further comprises a permanent magnet situated in the magnet cup and coupled to the driving gear, and a pressure-absorbing member situated in the pump cavity. At least a portion of the pressure-absorbing member extends along a longitudinal axis of the pump between a surface of the pump body and an interior surface of the magnet cup when the pressure-absorbing member is in a non-deflected state. The interior surface of the magnet cup is configured to contact an upper surface of the pressure-absorbing member such that the pressure-absorbing member is captured between the surface of the pump body and the interior surface of the magnet cup to limit axial movement of the pressure-absorbing member in the pump cavity. The pressure-absorbing member is configured to engage the engaging portion of the suction shoe such that the suction shoe is urged radially inwardly with respect to an outer edge portion of the surface of the pump body.
In another representative embodiment, a pump comprises a pump-head portion including a pump body and a magnet cup. The pump body defines at least one inlet and at least one outlet, and the pump body and the magnet cup together define a pump cavity that is in contact with the liquid being pumped whenever the pump cavity is substantially primed with the liquid. The pump further comprises a movable pumping member situated in the pump cavity. The pumping member, when driven to move, urges flow of the liquid from the inlet through the pump cavity and the magnet cup to the outlet. The pump further comprises a permanent magnet situated in the magnet cup that is rotatable in the magnet cup and coupled to the movable pumping member in the pump cavity. The pump further comprises a pump-driver portion including a magnet driver located outside the magnet cup. The magnet driver is magnetically coupled through the magnet cup to the magnet to rotate the magnet in the magnet cup and, thus, move the pumping member in the pump cavity. The pump further comprises a pressure-absorbing member situated in the pump cavity. At least a portion of the pressure-absorbing member extends between the pump body and the magnet cup when the pressure-absorbing member is in a non-deflected state such that the pressure-absorbing member is captured between the pump body and the magnet cup to limit axial movement of the pressure-absorbing member.
In another representative embodiment, a gear pump-head comprises a pump body and a magnet cup together defining a gear cavity. The gear pump-head further comprises at least one inlet in fluid communication with the gear cavity, and at least one outlet in fluid communication with the gear cavity. The magnet cup is in fluid communication with the gear cavity. The gear pump-head further comprises at least one driving gear and a driven gear enmeshed with each other in the gear cavity, and a permanent magnet situated in the magnet cup and being coupled to the driving gear in the gear cavity. The gear pump-head further comprises a magnet driver located outside the magnet cup and being magnetically coupled through the magnet cup to the magnet to rotate the magnet in the magnet cup and thus rotate the gears in the gear cavity. The gear pump-head further comprises a pressure-absorbing member situated in the gear cavity. The pressure-absorbing member includes a main body portion extending between the pump body and the magnet cup when the pressure-absorbing member is in a non-deflected state such that the pressure-absorbing member is captured between the pump body and the magnet cup to limit axial movement of the pressure-absorbing member in the gear cavity.
In another representative embodiment, a hydraulic circuit comprises a pump, a source of aqueous liquid upstream of and in fluid communication with the pump, and an injector downstream of and in fluid communication with the pump. The pump further comprises a pump-head portion including a pump body and a magnet cup. The pump body defines at least one inlet and at least one outlet. The pump body and the magnet cup together define a pump cavity that is in contact with the liquid being pumped whenever the pump cavity is substantially primed with the liquid. The pump further comprises a movable pumping member situated in the pump cavity. The pumping member, when driven to move, urges flow of the liquid from the inlet through the pump cavity and the magnet cup to the outlet. The pump further comprises a permanent magnet situated in the magnet cup, the magnet being rotatable in the magnet cup and being coupled to the movable pumping member in the pump cavity. The pump further comprises a pump-driver portion including a magnet driver located outside the magnet cup. The magnet driver is magnetically coupled through the magnet cup to the magnet to rotate the magnet in the magnet cup and, thus, move the pumping member in the pump cavity. The pump further comprises a pressure-absorbing member situated in the pump cavity. The pressure-absorbing member includes a main body portion extending between the pump body and the magnet cup when the pressure-absorbing member is in a non-deflected state such that the pressure-absorbing member is captured between the pump body and the magnet cup to limit axial movement of the pressure-absorbing member.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
The pump-head portion 104 includes a pump body 136 (also referred to has a “fitting block”), which is symmetrical about the axis 105, and which defines an inlet 106 and an outlet 108. The pump-head portion 104 also includes a pumping element configured as a pump gear 110 mounted on a shaft 112 (see
In the illustrated configuration, the pump is configured as a suction shoe-style pump, and the pump gears 110, 114 can be situated to run on a surface 138 of the pump body 136, as best shown in
The pump body 136 defines passageways leading to and from the pump cavity 120 and connecting the pump cavity to the inlet and outlet ports 106, 108. In certain embodiments, the pump body 136 also includes a pressure transducer 109 (that can be in fluid communication with the outlet port 108, for example). The pressure transducer 109 includes an electrical connector 111, permitting electrical connection of the pressure transducer in a manner that establishes, for example, feedback control of the electrical components of the pump-driver portion 102 further described below.
Coaxially surrounding the magnet cup 118 is a stator 122 that is a respective component of the pump-driver portion 102. The stator 122 is located outside the pump cavity 120 and is magnetically coupled to the magnet 116 across the walls of the magnet cup 118 such that a changing magnetic field of the stator 122 induces rotation of the magnet 116 and the shaft 112 and, hence, of the pump gears 110, 114, to produce a flow of liquid. The stator 122 comprises wire windings that are selectively energized by electronics 107 disposed in the housing 164 via the electrical connectors 176. In the illustrated embodiment, the magnet cup 118, the stator 122, and the associated electrical components 107 of the pump-driver portion 102 are disposed in the housing 164, which can be coupled to the pump body 136 to form the pump 100.
For absorbing pressure accompanying freeze-expansion of the liquid in the pump cavity, the pressure-absorbing member 124 can have sufficient compressible volume such that, if the liquid inside the primed cavity freezes and expands, the resulting increase in pressure inside the cavity causes the pressure-absorbing member to contract sufficiently to “absorb” the expansion and, thus, to relieve or prevent a buildup of pressure inside the pump that would otherwise damage the pump.
By way of example, water and dilute aqueous solutions exhibit a maximum expansion of about 11% by volume upon undergoing the phase transition from liquid to solid. By contracting in response to this volume increase, the pressure-absorbing member can prevent freeze damage to the pump, such as fracture of the magnet cup, damage to the magnet, damage of any sensors in contact with the liquid (e.g., pressure transducers), and/or damage to other parts of the pump.
The main body portion 126 can define a recess 132. In the illustrated configuration, the recess 132 is curved such that the main body portion 126 has a generally C-shaped profile, as best shown in
Referring again to
Thus, the magnet 116 can be located in the first portion 142 of the magnet cup 116, while the second portion 144 can be configured to receive the pressure-absorbing member 124. For example, in the illustrated embodiment, an interior surface 125 of the intermediate portion 146 of the magnet cup contacts an upper surface 127 of the pressure-absorbing member. The extension portion 140 of the main body portion 126 of the pressure-absorbing member 124 can also be received in a corresponding recess 156 defined in the surface 138 of the pump body 136. In this manner, the pressure-absorbing member 124 can be captured between the intermediate portion 146 of the magnet cup and the surface 138 of the pump body 136. The pressure-absorbing member can also be prevented from being displaced perpendicular to the longitudinal axis 105 of the pump by the extension portion 140. The extension portion 140 and/or the shaft 112 can also prevent rotation of the pressure-absorbing member 124 within the cavity.
In the illustrated configuration, the pressure-absorbing member 124 can also accommodate the pump gears 110, 114, and the suction shoe 162 in the recess 132. In this manner, the pressure-absorbing member 124 can prevent unwanted movement of the suction shoe 162 and, hence, of the pump gears 110, 114, within the pump cavity. The pressure-absorbing member 124 and the suction shoe 162 can also engage each other in a variety of ways. For example, in certain configurations, the pressure-absorbing member 124 and the suction shoe 162 can be configured to engage one another such that the pressure-absorbing member holds the suction shoe in place on the pump body 136.
For example,
The extension portion 180 can engage a corresponding engaging portion of the pressure-absorbing member 124. For example, in the illustrated embodiment, the extension portion 180 can extend into an engaging portion of the pressure-absorbing member 124 configured as a pocket or recess 182 defined in the pressure-absorbing member 124. In the illustrated embodiment, the recess 182 is located in the extension portion 128 of the pressure-absorbing member, although the recess can be located at any suitable location depending upon the particular configuration.
The walls of the recess 182 can contact the extension portion 180 such that the pressure-absorbing member 124 urges or biases the suction shoe 162 toward the shaft 112, and centers the suction shoe about the gears 110, 114. In certain configurations, the recess 182 can be larger than the extension portion 180 such that the suction shoe can move or “float” relative to the pump body 136 and/or relative to the pressure-absorbing member 124 within a predetermined range of motion defined by the boundaries established by the walls of the recess 182. In certain configurations, the recess 182 can be configured such that the pressure-absorbing member 124 presses downwardly on the extension portion 180 to bias the suction shoe 162 downwardly and hold the suction shoe in place on the pump body 136. In other configurations, a spring or other biasing member can apply downward force to hold the suction shoe 162 in place, as desired.
As stated above, the pressure-absorbing member 124 can deform to accommodate freeze-expansion of liquid in the pump cavity.
Generally, when a liquid 147 in the pump cavity 120 begins to freeze, ice first forms in the regions of the pump cavity closest to the exterior of the pump housing and/or nearest portions of the pump that are exposed to the low-temperature environment (e.g., portions of a pump exposed to ambient air in a winter climate). Referring to
The ice 148 advancing from the inlet 106 and the outlet 108 can apply pressure to the pressure-absorbing member 124 radially inwardly with respect to the pump housing in the direction of arrows 154 and 158, as shown in
Meanwhile, the pressure-absorbing member 124 can also deform radially in response to the pressure applied by the ice surrounding the pressure absorbing member such that the pressure-absorbing member assumes a compressed diameter that is smaller than the non-compressed diameter D1. The extension portion 140 located in the recess 156 (see
When the ice 148 melts, the pressure-absorbing member 124 can return to its non-deformed state. Moreover, because the pressure-absorbing member 124 is captured between the flared lower portion 144 of the magnet cup 118 and the surface 138 of the pump body 136, which do not move during a freezing event, the pressure-absorbing member can return to substantially the same location in the pump cavity 120 as before the freeze event. In this manner, the pressure-absorbing member 124 can expand and contract through multiple freeze-thaw cycles and return to its initial size and position within the pump cavity upon thawing of the liquid. This can avoid the condition in which the pressure-absorbing member experiences “pre-compression” by, for example, a retaining member or other component of the pump assembly that becomes dislodged by the ice, compresses the pressure-absorbing member, and fails to return to its initial location upon thawing of the liquid. Thus, the embodiments described herein allow the full compressible volume of the pressure-absorbing member 124 to be available to accommodate freeze-expansion of the liquid being pumped through multiple sequential freezing events.
The pressure-absorbing member 124 can be made from any suitable compliant material, such as elastically compressible hydrophobic materials. As used herein, the term “hydrophobic material” refers to a material wherein a liquid droplet on a surface of the material forms a contact angle of greater than 90 degrees. In certain embodiments, the pressure-absorbing member can be made from any of various rubber compounds, such as silicone rubber, etc. The pres sure-absorbing member can also be made from any of various closed-cell foam materials, such as fluorinated silicone closed-cell foam. In certain embodiments, the pressure-absorbing member 124 can be non-porous to prevent the ingress of liquid into the body of the pressure-absorbing member, or can be porous, depending upon the particular requirements of the application.
In some embodiments, the compressibility or durometer of the pressure-absorbing member can be such that it is capable of attenuating pressure fluctuations in the liquid during normal pumping operation, in addition to accommodating freeze-expansion of the liquid in the pump cavity. In alternative embodiments, if the pressure-absorbing member 124 is intended only to attenuate pressure fluctuations, it can be smaller than a corresponding member intended to protect against freeze-expansion, depending upon the amplitude of the target pressure fluctuations. An additional advantage of the pressure-absorbing member is that by occupying space in the pump cavity, it can reduce the amount of liquid in the pump cavity and, therefore, the total volumetric expansion of that liquid upon freezing.
Meanwhile, the pressure-absorbing member 204 can include an engaging portion extending from the pressure-absorbing member and configured as a ball-shaped member or spherically-shaped member 228. In the illustrated embodiment, the ball-shaped member 228 extends from the first end portion 230, and can be received in the cup-shaped portion 226 of the suction shoe 220. In this manner, the pressure-absorbing member 204 can engage the suction shoe 220. In certain embodiments, the ball-shaped member 228 can be configured to allow the suction shoe 220 to move relative to the pump body 210 and/or relative to the pressure-absorbing member 204 within a predetermined range of motion. For example, in embodiments in which the pressure-absorbing material 204 is made of a flexible material, the ball-shaped member 228 and/or the end portion 230 of the pressure-absorbing member may be configured to elastically deform to allow motion of the suction shoe. In other embodiments, the cup-shaped portion 226 may be larger than the ball-shaped member 228 such that the suction shoe 220 can move relative to the pressure-absorbing member 204 within the boundaries established by the cup-shaped portion 226. In yet further embodiments, the pressure-absorbing member 204 and the suction shoe 220 can move or float together with respect to the surface of the pump body 210 during pump operation, or between successive stops and starts of the pump.
Although the pump configurations shown herein are suction-shoe style pumps, it should be understood that the pressure-absorbing member configurations described herein can also be used in combination with cavity-style pumps, in which the pump gears run in a cavity (e.g., defined in the pump body) and a suction shoe is not required. For example, in alternative embodiments, the pump 100 can be configured as a cavity style pump, in which the pump gears 110, 114 are situated in a cavity plate sealed between the pump body 136 and a bearing plate. The pressure-absorbing member embodiments described herein can also be used in pumps including other types of rotary pumping elements, such as inter-digitating lobes which, when contra-rotated relative to each other, produce liquid flow. The pressure-absorbing member embodiments described herein can also be used in combination with other types of pumps, such as piston pumps.
In alternative embodiments, the pressure-absorbing members described herein can be inflatable balloons or bladders (containing, for example, a gas or a liquid with a freezing point lower than that of water) configured to be compressed in response to pressure in the pump beyond a selected threshold.
The pump 402 includes an inlet 404, an outlet 406, and can optionally include a pressure sensor such as pressure transducer 109 described above. The inlet 404 is situated downstream of a filter 408, which is situated downstream of a reservoir or tank 410 for liquid to be pumped by the pump. The outlet 406 is in fluid communication with a downstream injector 412 or other component from which pumped liquid is discharged from the circuit 400. In certain configurations, the circuit 400 can include an optional return line 414 for returning liquid to the tank 410 that is not actually discharged from the injector 412. Since the pump 402 includes the pressure-absorbing feature(s) as described above, freeze-expansion of the liquid inside the pump 402 is accommodated, and pump damage can be prevented.
In certain embodiments, the hydraulic circuit 400 can be a selective catalytic reduction (SCR) system to reduce the nitrogen oxides (NOx) emitted by an internal combustion engine of the vehicle 401 in which the hydraulic circuit 400 is incorporated. For example, in an SCR system, the liquid in the tank 410 can be an aqueous solution containing a reagent such as aqueous ammonia (NH3(aq)) or a urea solution (CO(NH2)2). In certain embodiments, the engine can be a compression-ignition engine, such as a diesel engine, or a spark-ignition engine, such as a gasoline engine. Injection of the aqueous reagent solution into the exhaust of the engine by the injector 412 can reduce the amount of nitrogen oxide compounds emitted by the engine.
General Considerations
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatuses, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatuses, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the disclosed technology are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The scope of the disclosure is not restricted to the details of any foregoing embodiments. The scope of the disclosure extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element.
In the following description, certain terms may be used such as “up,” “down,”, “upper,” “lower,” “horizontal,” “vertical,” “left,” “right,” and the like. These terms are used, where applicable, to provide some clarity of description when dealing with relative relationships. But, these terms are not intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” surface can become a “lower” surface simply by turning the object over. Nevertheless, it is still the same object.
In some examples, values, procedures, or apparatus' are referred to as “lowest,” “best,” “minimum,” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, or otherwise preferable to other selections.
As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B,”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.”
As used herein, the term “coupled” generally means physically coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
As used herein, a “pump-head” is an assembly including a pump body, a pump element disposed in or on the pump body, at least one inlet, and at least one outlet.
As used herein, a “pump” is a pump-head including the pump-driver portion or mover.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/421,116 filed on Nov. 11, 2016, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62421116 | Nov 2016 | US |