The present invention relates generally to systems and methods of tracking smart luggage. More particularly, the present invention relates to systems and methods of causing a tracking sensor system in smart luggage to exit a low power sleep state.
Smart luggage is known in the art and is advantageously used to prevent lost luggage during travel. For example, known smart luggage includes one or more tracking sensor systems that can be used to identify the real-time GPS location of the luggage and communicate the identified location to a user's mobile device, such as a cellular phone or personal digital assistant.
When smart luggage is placed on an airplane or other aircraft, the tracking sensor system must be shut down or placed in a low power sleep state before the aircraft takes off so that the GPS capabilities of the tracking sensor system do not interfere with operation and communication of the aircraft. Then, when the aircraft lands, the tracking sensor system must be manually turned on or removed from the low power sleep state.
When the tracking sensor system is turned off or in the low power sleep state, the tracking sensor system cannot be used to identify the location of the luggage. Accordingly, even after the aircraft lands, there is a time interval during which it is impossible to track the luggage because the tracking sensor system has not yet been manually turned on or removed from the low power sleep state.
In view of the above, there is a continuing, ongoing need for improved systems and methods.
While this invention is susceptible of an embodiment in many different forms, there are shown in the drawings and will be described herein in detail specific embodiments thereof with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention. It is not intended to limit the invention to the specific illustrated embodiments.
Embodiments disclosed herein can include systems and methods of tracking smart luggage. For example, some embodiments disclosed herein can include systems and methods of causing a tracking sensor system in smart luggage to exit a low power sleep state.
In accordance with disclosed embodiments, systems and methods disclosed herein can include an accelerator sensor system, for example, a 6-axis accelerator sensor system, that can remain on even when a tracking sensor system is off or in a low power sleep state. Indeed, the accelerator sensor system can remain out of a low power sleep state even when located on an aircraft in flight because the accelerator sensor system does not transmit or receive signals, such as GPS signals, that could interfere with the operation and communication of the aircraft.
In accordance with disclosed embodiments, the accelerator sensor system can identify when an associated piece of smart luggage has exited an aircraft and responsive thereto, can transmit a signal to the tracking sensor system to cause the tracking sensor system to turn on or exit a low power sleep state. In some embodiments, the accelerator sensor system can identify that the associated piece of smart luggage has exited an aircraft when the accelerated sensor system identifies that the luggage is moving along a baggage conveyer belt at an airport. Indeed, the curved shape of a baggage conveyer belt can be known, for example, a U-shaped curve or some other known curved shape. The accelerator sensor system can identify when it is traveling along a path with the known curved shape and responsive thereto, can send the signal to the tracking sensor system to cause the tracking sensor system to turn on or exit the low power sleep state.
The tracking sensor system 30 can include a transceiver device 32, a sensing device 34, control circuitry 36, one or more programmable processors 36a, and executable control software 36b as would be understood by one of ordinary skill in the art. The executable control software 36b can be stored on a transitory or non-transitory computer readable medium, including, but not limited to, local computer memory, RAM, optical storage media, magnetic storage media, flash memory, and the like. In some embodiments, the control circuitry 36, programmable processor 36a, and executable control software 36b can execute and control some of the methods described above and herein.
The accelerator sensor system 40 can include a transceiver device 42, an accelerometer 44, for example, a 6-axis accelerometer, control circuitry 46, one or more programmable processors 46a, and executable control software 46b as would be understood by one of ordinary skill in the art. The executable control software 46b can also be stored on a transitory or non-transitory computer readable medium, including, but not limited to, local computer memory, RAM, optical storage media, magnetic storage media, flash memory, and the like. In some embodiments, the control circuitry 46, programmable processor 46a, and executable control software 46b can execute and control some of the methods described above and herein.
The mobile device 50 can include a scanning device 52, a transceiver device 54, a user interface device 56, control circuitry 58, one or more programmable processors 58a, and executable control software 58b as would be understood by one of ordinary skill in the art. The executable control software 58b can be stored on a transitory or non-transitory computer readable medium, including, but not limited to, local computer memory, RAM, optical storage media, magnetic storage media, flash memory, and the like. In some embodiments, the control circuitry 58, programmable processor 58a, and executable control software 58b can execute and control some of the methods described above and herein.
It is to be understood that the transceiver device 54 of the mobile device 50 can communicate with the transceiver device 32 of the tracking sensor system 30 via any system and method as would be known and desired by one of ordinary skill in the art, including, but not limited to, cellular, GPS, Bluetooth, BLE, 3G, LTE, or GPRS based networks. It is also to be understood that the transceiver device 32 of the tracking sensor system 30 can communicate with other transceiver devices and systems as would be known and desired by one of ordinary skill in the art.
When desired, the method 300 can include the tracking sensor system 30 receiving user input, either directly or via a signal received from the transceiver device 54 of the mobile device 50, to turn the tracking sensor system 30 off or to place the tracking sensor system 30 in a low power sleep state as in 330. When the tracking sensor system 30 is off or in the low power sleep state, the sensing device 34, control circuitry 36, programmable processor 36a, and executable control software 36b of the tracking sensor system 30 can refrain from identifying the real-time location of the associated luggage 10 as in 310 and the transceiver device 32 of the tracking sensor system 30 can refrain from transmitting signals to the transceiver device 54 of the mobile device 50 indicative of the identified location as in 320.
The method 300 can also include the accelerometer 44, control circuitry 46, programmable processor 46a, and executable control software 46b of the accelerator sensor system 40 identifying a trajectory of the associated luggage 10 as in 340. For example, in some embodiments, the accelerometer 44 can transmit one or more signals to the control circuitry 46, programmable processor 46a, and executable control software 46a indicative of the movement of the accelerometer 44 in the positive and negative X, Y, and Z coordinate directions. When the accelerometer 44, control circuitry 46, programmable processor 46a, and executable control software 46b of the accelerator sensor system 40 determine that the trajectory of the associated luggage 10 is consistent with the luggage 10 traveling along a path with a predetermined known curved shave, for example, the known shape of a baggage conveyer belt, as in 350, the transceiver device 42 of the accelerator sensor system 40 can transmit a signal to the transceiver device 32 of the tracking sensor system 30 instructing the tracking sensor system 30 to turn on or exit the low power sleep state as in 360. Responsive thereto, the tracking sensor system 30 can turn on or exit the low power sleep state and begin identifying the real-time location of the associated luggage 10 as in 310.
In some embodiments, the accelerometer 44, control circuitry 46, programmable processor 46a, and executable control software 46b of the accelerator sensor system 40 can identify a trajectory of the associated luggage 10 as in 340 and determine that the trajectory of the associated luggage 10 is consistent with the luggage traveling along the path with the predetermined known curve shape as in 350 at predetermined intervals irrespective of the state of the tracking sensor system 30. However, in some embodiments, the accelerometer 44, control circuitry 46, programmable processor 46a, and executable control software 46b of the accelerator sensor system 40 can identify a trajectory of the associated luggage 10 as in 340 and determine that the trajectory of the associated luggage 10 is consistent with the luggage traveling along the path with the predetermined known curved shape as in 350 only when the accelerator sensor system 40 determines that the tracking sensor system 30 is off or in a low power sleep state.
It is to be understood that the transceiver device 42 of the accelerator sensor system 40 can communicate with the transceiver device 32 of the tracking sensor system 30 via any wired or wireless system and method as would be known and desired by one of ordinary skill in the art, including, but not limited to, Bluetooth or BLE based communication.
In some embodiments, the tracking sensor system 30, the accelerator sensor system 40, or another sensor system can identify the occurrence of an unexpected event associated with the luggage 10. For example, in some embodiments, a contact sensor and associated control circuitry can identify when the luggage 10 has been unexpectedly opened, for example, when the contact sensor on a closing edge of the luggage 10 fails to detect contact. Additionally or alternatively, in some embodiments, the accelerometer 44, control circuitry 46, programmable processor 46a, and executable control software 46b of the accelerator sensor system 40 can identify when the associated luggage 10 has been violently vibrated. Additionally or alternatively, in some embodiments, the sensing device 34, control circuitry 36, programmable processor 36a, and executable control software 36b of the tracking sensor system 30 can identify when the associated luggage is farther than a predetermined distance away from the mobile device 50.
When the tracking sensor system 30 or the accelerator sensor system 40 identifies the occurrence of an unexpected event, the transceiver device 32 of the tracking sensor system 30 can transmit one or more signals to the transceiver device 54 of the mobile device 50 indicative of the unexpected event. Responsive to the transceiver device 54 of the mobile device 50 receiving such a signal, the user interface device 56 of the mobile device 50 can display a textual or graphical representation of the unexpected event.
Although a few embodiments have been described in detail above, other modifications are possible. For example, the logic flows described above do not require the particular order described, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Other embodiments may be within the scope of the invention.
From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope of the invention. It is to be understood that no limitation with respect to the specific system or method described herein is intended or should be inferred. It is, of course, intended to cover all such modifications as fall within the spirit and scope of the invention.