The present disclosure relates to methods and systems for enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite.
Hydrocarbon exploration and energy industries employ various systems and operations to accomplish activities including drilling, formation evaluation, stimulation and production. Hydraulic fracturing may be utilized to produce oil and gas economically from low permeability reservoir rocks or other formations, for example, shale, at a wellsite. During a hydraulic fracturing stage, slurry may be pumped, via hydraulic fracturing pumps, under high pressure to perforations, fractures, pores, faults, or other spaces in the reservoir rocks or formations. The slurry may be pumped at a rate faster than the reservoir rocks or formation may accept. As the pressure of the slurry builds, the reservoir rocks or formation may fail and begin to fracture further. As the pumping of the slurry continues, the fractures may expand and extend in different directions away from a well bore. Once the reservoir rocks or formations are fractured, the hydraulic fracturing pumps may remove the slurry. As the slurry is removed, proppants in the slurry may be left behind and may prop or keep open the newly formed fractures, thus preventing the newly formed fractures from closing or, at least, reducing contracture of the newly formed fractures. Further, after the slurry is removed and the proppants left behind, production streams of hydrocarbons may be obtained from the reservoir rocks or formation.
For a wellsite, a plurality of hydraulic fracturing stages may be performed. Further, each hydraulic fracturing stage may require configuration of many and various hydraulic fracturing equipment. For example, prior to a next hydraulic fracturing stage, an operator or user may enter multiple data points for that next hydraulic fracturing stage for each piece of equipment, such as, for hydraulic fracturing pumps, a blender, a chemical additive unit, a hydration unit, a conveyor, and/or other hydraulic fracturing equipment located at the wellsite. As each hydraulic fracturing stage arises, hydraulic fracturing units may be utilized. After hydraulic fracturing stages, hydraulic fracturing units may require or may soon after require maintenance, based on several factors, such as prior use or fluid/consumable levels. Each hydraulic fracturing unit may require a user to physically inspect the units to determine a maintenance schedule. Such tasks may be inaccurately interpreted and time consuming.
Accordingly, Applicant has recognized a need for methods and system to enhance operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The present disclosure may address one or more of the above-reference drawbacks, as well as other potential drawbacks.
As referenced above, due to a large number of hydraulic fracturing stages and the large number of hydraulic fracturing equipment associated with the hydraulic fracturing stages, monitoring hydraulic fracturing equipment health and determining potential maintenance periods may be difficult, complex, and time-consuming, and may introduce error, for example, utilizing equipment requiring maintenance. Further, missing maintenance may result in equipment life being reduced, thus resulting in a potential breakdown of the equipment.
The present disclosure generally is directed to methods and systems for operating hydraulic fracturing equipment at a hydraulic fracturing wellsite. In some embodiments, the methods and systems may provide for efficient and enhanced operation of the hydraulic fracturing equipment, for example, during setup, maintenance, or as through hydraulic fracturing equipment stages or operations.
According to an embodiment of the disclosure, a wellsite hydraulic fracturing system may include one or more hydraulic fracturing units. The one or more hydraulic fracturing units, when positioned at a hydraulic fracturing wellsite, may be configured to provide a slurry to a wellhead in hydraulic fracturing pumping stages. Each of the one or more hydraulic fracturing units may include an internal combustion engine, a local controller for the internal combustion engine, and engine sensors disposed on the internal combustion engine. Each of the one or more hydraulic fracturing units may include a transmission connected to the internal combustion engine, transmission sensors disposed on the transmission, and a local controller for the transmission. The hydraulic fracturing unit may include a pump connected to the transmission. The pump may be powered by the internal combustion engine via the transmission. The hydraulic fracturing unit may include a local controller for the pump and pump sensors disposed on the pump.
The wellsite hydraulic fracturing system may include a supervisory controller to control the hydraulic fracturing units, the supervisory controller being positioned in signal communication with a terminal and, for each of the one or more hydraulic fracturing units, the engine sensors, the transmission sensors, the pump sensors, the local controller for the internal combustion engine, and the local controller for the pump. The supervisory controller may include a processor and memory storing instructions. The processor may be configured to execute instructions stored in memory. The instructions, when executed by the processor, may be configured to, for each of the one or more hydraulic fracturing units, obtain hydraulic fracturing unit parameters from the local controller of the internal combustion engine, the local controller of the pump, the engine sensors, the transmission sensors, and the pump sensors. The hydraulic fracturing unit parameters may include one or more of hydraulic fracturing unit data, a hydraulic fracturing unit configuration, a hydraulic fracturing health rating, and a hydraulic fracturing unit alarm history. The supervisory controller may include instructions, when executed by the processor, to determine a hydraulic fracturing unit health assessment for each of the one or more hydraulic fracturing units based on, at least in part, the hydraulic fracturing unit data, the hydraulic fracturing unit configuration, the hydraulic fracturing health rating, and the hydraulic fracturing unit alarm history. The supervisory controller may include instructions, when executed by the processor, to build a hydraulic unit profile for each of the one or more with the hydraulic fracturing units to include the hydraulic fracturing unit health assessment and hydraulic fracturing unit parameters. The supervisory controller may, based on a hydraulic fracturing unit's hydraulic fracturing health assessment, determine the hydraulic fracturing unit's capability to be operated at a maximum power output.
According to another embodiment of the disclosure, a supervisory controller for a hydraulic fracturing system may include a first control output in signal communication with one or more pump controllers, each pump controller being included on a pump and each pump being included on a hydraulic fracturing unit. The supervisory controller may be configured to, for each of the one or more pump controllers, obtain a set of pump information. The pump information may include one or more of the number of hours of use of the pump, the pump's plunger size, the pump's stroke size, the pump's maximum speed, the pump's health efficiency, and/or an age of the pump. The supervisory controller may include a second control output in signal communication with one or more hydraulic fracturing unit controllers, each hydraulic fracturing unit controller being included on a hydraulic fracturing unit. The supervisory controller may be configured to, for each of the one or more hydraulic fracturing unit controllers, obtain a set of maintenance data. The set of maintenance data may include one or more of the number of hours to next engine maintenance, the number of hours to next transmission maintenance, an oil change log, pump valve and seat (V&S) hours, packing hours, total pump strokes, average V&S hours, and average packing hours. As will be understood by those skilled in the art, each of the one or more hydraulic fracturing unit controllers may include one or more alarm conditions to be communicated to the supervisory controller. The supervisory controller may be configured to, for each of the one or more hydraulic fracturing unit controllers, obtain a set of operation data. The operation data may include one or more of the maximum hydraulic power produced during a previous hydraulic fracturing stage, a maximum hydraulic power utilized, a minimum hydraulic power utilized, an average hydraulic power, a maximum pressure produced, a maximum flow produced, a maximum pump speed, and/or a user override register. The supervisory controller may be configured, for each of the one or more hydraulic fracturing unit controllers, to obtain a set of equipment health ratings. The equipment health ratings may include one or more of the engine health, engine power rating based on engine health, transmission health, transmission deration based on health, pump health, and/or pump deration based on health. The supervisory controller may be configured to, for each of the one or more hydraulic fracturing unit controllers, obtain a set of equipment configurations. The set of equipment configurations may include one or more of engine model, engine serial number, transmission model, transmission serial number, pump model, pump serial number, fluid end model, and/or fluid end serial number. The supervisory controller may be configured to, for each of the one or more hydraulic fracturing unit controllers, obtain a set of equipment alarm history. The set of equipment alarm history may include one or more of life reduction event counter total, life reduction event for current week, pump cavitation event counter total, pump cavitation event counter for current week, pump pulsation event counter total, pump pulsation event counter for current week, emergency shutdown counter total, and/or emergency shutdown counter for current week. The supervisory controller may include a third control output in signal communication with one or more engine controllers, each engine controller being included on an engine and each engine being included on the hydraulic fracturing unit. The supervisory controller may be configured to, for each of the one or more engine controllers, obtain a set of engine information. The set of engine information may include one or more of the number of hours of use of the engine, the engine's available power, the engine's installation age, and/or the engine's efficiency health. The supervisory controller may include a fourth control output in signal communication with one or more transmission controllers, each transmission controller being included on a transmission and each transmission being included on the hydraulic fracturing unit. The supervisory controller may be configured to, for each of the one or more transmission controllers, obtain a set of transmission information. The set of transmission information may include the number of hours of use of the transmission, the transmission's installation age, and/or the transmission's efficiency health. The supervisory controller may include a terminal input/output socket in signal communication with a terminal. In response to a determination that pump information, maintenance data, operation data, equipment health ratings, equipment configuration, equipment health ratings, equipment alarm history, and engine information for each of the hydraulic fracturing units is received, the supervisory controller may be configured to build a pump profile for each of the hydraulic fracturing units. Each pump profile may include the pump information, maintenance data, operation data, equipment health ratings, equipment configuration, equipment alarm history, and engine information. Further, the supervisory controller may be configured to determine a health assessment for each of the hydraulic fracturing units, based on, at least in part, the equipment health ratings and the pump profile for each of the hydraulic fracturing units. Further still, the supervisory controller may be configured to add the health assessment to the pump profile. The supervisory controller may be configured to determine which of the one or more hydraulic fracturing units to utilize in a hydraulic fracturing operation based on the pump profile.
According to another embodiment of the disclosure, a method of utilizing a pump profile to operate hydraulic fracturing pumps for a hydraulic fracturing system may include determining if one or more pump controllers are available. Each of the one or more pump controllers may be associated with a pump of a hydraulic fracturing unit. The method may also include, in response to an availability of one or more pump controllers and for each pump associated with the one or more pump controllers, obtaining pump assembly data, pump maintenance data, and pump event and alarm history data. The method may further include determining a pump maintenance cycle based on the pump maintenance data and pump event and alarm history data. The method also may include determining maximum pump flow, maximum pump pressure, and maximum pump speed, indicated by, for example, rotations per minute (RPM), based on pump assembly data, pump maintenance data, and pump event and alarm history data.
The method may further include determining if one or more engine controllers are available. Each of the one or more engine controllers may be associated with an engine of the hydraulic fracturing unit. The method still further may include, in response to an availability of one or more engine controllers and for each engine associated with the one or more engine controllers, obtaining engine assembly data, engine maintenance data, and engine event and alarm history data. The method also may include determining life expectancy of consumables associated with the engine based on the engine maintenance data and engine event and alarm history data. The method may further include determining engine maintenance cycles based on the pump maintenance data and pump even and alarm history data. The method also may include determining maximum power output based on engine assembly data, engine maintenance data, and pump event and alarm history data. The method may include determining which of the hydraulic fracturing units to utilize for a hydraulic fracturing operation based on each hydraulic fracturing unit profile.
The method further may include building a hydraulic fracturing unit profile for each of the hydraulic fracturing units, including pump and engine data and determined characteristics. The pump and engine data and determined characteristics may include one or more of (a) pump assembly data, (b) pump maintenance data, (c) pump event and alarm history data, (d) the pump maintenance cycle, (e) the maximum pump flow, (f) the maximum pump pressure, (g) the maximum pump speed, (h) engine assembly data, (i) engine maintenance data, (j) engine event and alarm history data, (k) the engine maintenance cycle, and/or (1) the maximum power output.
Still other aspects and advantages of these embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than may be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they may be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate embodiments of the disclosure.
The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Features from one embodiment or aspect may be combined with features from any other embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, product, or component aspects or embodiments and vice versa. The disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms “a,” “an,” “the,” and the like include plural referents unless the context clearly dictates otherwise. In addition, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to manufacturing or engineering tolerances or the like.
The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.
Embodiments of the present disclosure are directed to methods and systems for enhancing operation of hydraulic fracturing equipment at a hydraulic fracturing wellsite. The methods and systems detailed herein may be executed on a controller which controls all equipment at the hydraulic fracturing wellsite and may provide various determinations, prompts, and/or requests in relation to hydraulic fracturing pumps and/or engines to provide power to the hydraulic fracturing pumps.
In another example, the GTEs may be dual-fuel or bi-fuel. In other words, the GTE may be operable using two or more different types of fuel, such as natural gas and diesel fuel, or other types of fuel. A dual-fuel or bi-fuel GTE may be operable using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as, compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels. The gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated. The one or more internal combustion engines 103 may be operated to provide power or horse power to drive the transmission 136 connected to the electrical generators to provide electrical power to the hydraulic fracturing equipment at the wellsite hydraulic fracturing system 100.
The wellsite hydraulic fracturing system 100 may also include one or more hydraulic fracturing units 160. The hydraulic fracturing units 160 may include a plurality of mobile power units 106 to drive hydraulic fracturing pumps 108. The mobile power units 106 may include an internal combustion engine 107 (e.g., a GTE or reciprocating-piston engine), other engine, or power source. The hydraulic fracturing pumps 108 may be directly-driven turbine (DDT) hydraulic fracturing pumps. In such examples, the internal combustion engine 107 may connect to a DDT hydraulic fracturing pump via transmission 138 connected to a drive shaft, the drive shaft connected to an input flange of the DDT hydraulic fracturing pump. Other engine-to-pump connections may be utilized. In another embodiment, the mobile power units 106 may include auxiliary internal combustion engines, auxiliary electric generators, backup power sources, and/or some combination thereof.
In another example, the hydraulic fracturing pumps 108 may be positioned around a wellhead 110 and may discharge, at a high pressure, slurry to a manifold 144 such that the slurry may be provided to the wellhead 110 for a hydraulic fracturing stage, as will be understood by those skilled in the art. In such examples, each of the hydraulic fracturing pumps 108 may discharge the slurry through high-pressure discharge lines 109 to flow lines 111 on manifold 144. The flow lines 111 may connect to or combine at the manifold 144. The manifold 144 may provide the slurry to a manifold assembly 113. The manifold assembly 113 may provide the slurry to the one or more wellheads 110. After a hydraulic fracturing stage is complete, some portion of the slurry may return to a flowback manifold (not shown). From the flowback manifold, the slurry may flow to a flowback tank (not shown).
In an embodiment, the slurry may refer to a mixture of fluid (such as water), proppants, and chemical additives. The proppants may be small granules, for example, sand, ceramics, gravel, other particulates, and/or some combination thereof. Further, the granules may be coated in resin. As noted above, once fractures are introduced in reservoir rocks or formations and the slurry is drained or pumped back, the proppants may remain and “prop,” or keep open, the newly formed fractures, thus preventing the newly formed fractures from closing or, at least, reducing contracture of the newly formed fractures. Further, chemicals may be added to the slurry. For example, the chemicals may be thickening agents, gels, dilute acids, biocides, breakers, corrosion inhibitors, friction reducers, potassium chloride, oxygen scavengers, pH adjusting agents, scale inhibitors, and/or surfactants. Other chemical additives may be utilized.
The wellsite hydraulic fracturing system 100 may also include a blender unit 112, a hydration unit 114, a chemical additive unit 116, and a conveyor 118, one or more of which may referred to as backside equipment 120. In an embodiment, for a hydraulic fracturing stage, the blender unit 112 may provide an amount of slurry at a specified flow rate to the hydraulic fracturing pumps 108, the slurry to be discharged by the hydraulic fracturing pumps 108 to the wellhead 110 (as described above). The flow rate for slurry from the blender unit 112 may be determined by a sensor such as a flow meter (e.g., a blender flow rate meter 161). Further, the conveyor 118 may provide proppant to a mixer 122 of the blender unit 112. The conveyor 118 may include a conveyor belt, an auger, a chute (e.g., including a mechanism to allow passage of a specified amount of proppant), and/or other equipment to move or transfer proppant to the blender unit 112, as will be understood by those skilled in the art. Further still, the hydration unit 114 may provide a specified amount of fluid, from water tanks 115, and chemicals, from the chemical additive unit 116, to the mixer 122 of the blender unit 112. The chemical additive unit 116 may provide a specified amount and type of chemicals to hydration unit 114. The mixer 122 of the blender unit 112 may mix the fluid, proppant, and chemicals to create the slurry to be utilized by the hydraulic fracturing pumps 108. As noted above, the blender unit 112 may then pressurize and discharge the slurry from hose 142 to flow line 140 to the hydraulic fracturing pumps 108.
In another example, the wellsite hydraulic fracturing system 100 or a portion of the wellsite hydraulic fracturing system 100 may be mobile or portable. Such mobility may allow for the wellsite hydraulic fracturing system 100 to be assembled or disassembled quickly. For example, a majority of the hydraulic fracturing equipment may be included on trailers attached to vehicles or on the vehicles. When a wellsite starts hydraulic fracturing stages (e.g., hydraulic fracturing operations and/or jobs), the hydraulic fracturing equipment may be brought to the wellsite, assembled, and utilized and when the hydraulic fracturing stages are completed, the hydraulic fracturing equipment may be disassembled and transported to another wellsite. In such examples, data or hydraulic fracturing stage parameters may be retained by a supervisory controller 124 or another computing device.
The wellsite hydraulic fracturing system 100 may also include a control unit, a control center, a data van, a data center, a computing device, a controller, and/or a supervisory controller 124 to monitor and/or control operations of hydraulic fracturing equipment at the wellsite. In other words, the supervisory controller 124 or any of the other devices or systems noted above may be in signal communication with the hydraulic fracturing equipment. For example, the supervisory controller 124 may be in signal communication, to transmit and receive signals, with components, other controllers, and/or sensors included on or with the mobile power units 102 driving the electrical generators 104, the electrical generators 104, the internal combustion engines 103, the hydraulic fracturing units 160, the mobile power units 106 driving the hydraulic fracturing pumps 108, the hydraulic fracturing pumps 108, the internal combustion engines 107, the manifold 144, the wellhead 110, the flow line 111, the hose 142, the backside equipment 120, or some combination thereof. Further, other equipment may be included in the same location as the supervisory controller 124, such as a display or terminal, an input device, other computing devices, and/or other electronic devices.
As used herein, “signal communication” refers to electric communication such as hard wiring two components together or wireless communication, as will be understood by those skilled in the art. For example, wireless communication may be Wi-Fi®, Bluetooth®, ZigBee®, or forms of near field communications. In addition, signal communication may include one or more intermediate controllers or relays disposed between elements that are in signal communication with one another.
In another embodiment, the supervisory controller 124 may be in signal communication with a display, terminal and/or a computing device, as well as associated input devices. Further, the display may be included with a computing device. The computing device may include a user interface, the user interface to be displayed on the display. In such examples, the user interface may be a graphical user interface (GUI). In another example, the user interface may be an operating system. In such examples, the operating system may include various firmware, software, and/or drivers that allow a user to communicate or interface with, via input devices, the hardware of the computing device and, thus, with the supervisory controller 124. The supervisory controller 124 may provide data, a user interface, a GUI, and/or a window with various data points and interactive selections based on a pump profile, an engine profile, and/or a hydraulic fracturing unit profile. Such data may be provided via instructions stored in memory of the supervisory controller 124, the instructions to be executed by a processor of the supervisory controller 124. The computing device may include other peripherals or input devices, such as a mouse, a pointer device, a keyboard, a touchscreen, and/or other input devices. The supervisory controller 124 may communicate, send, or transmit prompts, requests, dashboards, or notifications to the display (e.g., through the computing device to the display). As used herein, “user” may refer to an operator, a single operator, a person, or any personnel at, or remote from, the wellsite hydraulic fracturing system 100. In another embodiment, a user may send data, for example, through data entry, via an input device, into a computing device associated with the display for a hydraulic fracturing stage profile, from the display to the supervisory controller 124. The user may send responses, for example, through user selection of a prompt, via the input device, or on the display, from the display to the supervisory controller 124.
In an embodiment, the supervisory controller 124 may be in signal communication with the backside equipment 120 to control the hydraulic fracturing stage parameters for a hydraulic fracturing stage. In other words, the supervisory controller 124 may communicate the hydraulic fracturing stage parameters to and/or control the backside equipment 120 for a current hydraulic fracturing stage. Further, the supervisory controller 124 may communicate with controllers of the backside equipment 120. For example, the supervisory controller 124 may transmit, to controller 150 the chemical additive unit 116, the amount and type of chemicals to be sent to the hydration unit 114 for the current hydraulic fracturing stage. The supervisory controller 124 may also transmit, through the signal communication, the amount of fluid, to the controller 148 of the hydration unit 114, to provide to the mixer 122 of the blender unit 112 for the current hydraulic fracturing stage. Further, the supervisory controller 124 may also transmit, through the signal communication, the amount and type of proppant, to the controller 152 of the conveyor 118, to provide to the mixer 122 of the blender unit 112 for the current hydraulic fracturing stage. Further still, the supervisory controller 124 may transmit, through the signal communication, to a controller 154 of the blender unit 112 the flow rate of the slurry from the blender unit 112 to a set of the hydraulic fracturing pumps 108 for the current hydraulic fracturing stage. The supervisory controller 124 may also be in signal communication with the hydraulic fracturing pumps 108 and/or a controller 146 of the hydraulic fracturing pumps 108 to control or transmit the flow rate (minimum and/or maximum flow rate) of the discharge of the slurry from the set of the hydraulic fracturing pumps 108, the maximum pressure of the slurry, and/or the pressure rating (e.g., a minimum and/or maximum pressure rate) of the slurry for the current hydraulic fracturing stage. Each of the one or more hydraulic fracturing unit controllers may include one or more alarms, alarm conditions, events, and/or event conditions to be communicated to the supervisory controller 124. For example, a controller 146 of a hydraulic fracturing pump may store conditions for when to generate an alarm and/or event and/or a history of prior generated alarms and/or events.
The supervisory controller 124 may also be in signal communication with various sensors, equipment, controllers and/or other components disposed around and on the hydraulic fracturing equipment at the wellsite hydraulic fracturing system 100. For example, the supervisory controller 124 may receive a measurement of pressure and flow rate of the slurry being delivered to the wellhead 110 from a wellhead pressure transducer 128, the pressure and flow rate of the slurry at a manifold pressure transducer 130, the pressure of the slurry at a hydraulic fracturing pump output pressure transducer 132, and/or data related to each of the hydraulic fracturing pumps 108 from a hydraulic fracturing pump profiler. The wellhead pressure transducer 128 may be disposed at the wellhead 110 to measure a pressure of the fluid at the wellhead 110. While the manifold pressure transducer 130 may be disposed at the end of the manifold 144 (as shown in
One or more of the hydraulic fracturing units 160 may include a hydraulic fracturing pump profiler. The hydraulic fracturing pump profiler may be instructions stored in a memory, executable by a processor, in a controller 146. The hydraulic fracturing pump profiler may be a computing device or controller disposed on or connected to each of the hydraulic fracturing units 160. In another example, one controller or more may connect to more than one of the one or more hydraulic fracturing units 160. The hydraulic fracturing pump profiler may provide various data points related to each of the one or more hydraulic fracturing pumps 108 to the supervisory controller 124, for example, the hydraulic fracturing pump profiler may provide data including hydraulic fracturing pump characteristics (e.g., minimum flow rate, maximum flow rate, harmonization rate, and/or hydraulic fracturing pump condition). The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, maintenance data associated with the one or more hydraulic fracturing pumps 108 and/or mobile power units 106 (e.g., health, maintenance schedules and/or histories associated with the hydraulic fracturing pumps 108, the internal combustion engine 107, and/or the transmission 138). The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, operation data associated with the one or more hydraulic fracturing pumps 108 and/or mobile power units 106, for example, historical data associated with power or horse power, fluid pressures, fluid flow rates, etc., such examples being associated with operation of the hydraulic fracturing pumps 108 and mobile power units 106. The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, data related to the transmissions 138, for example, hours of operation, health, efficiency, and/or installation age. The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, data related to the internal combustion engines 107, for example, hours of operation, health, available power, and/or installation age. The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, information related to the one or more hydraulic fracturing pumps 108, for example, hours of operation, plunger and/or stroke size, maximum speed, efficiency, health, and/or installation age. The hydraulic fracturing pump profiler may provide, to the supervisory controller 124, one or more of numerous alarm conditions and/or equipment alarm history, for example, life reduction events, pump cavitation events, pump pulsation events, and/or emergency shutdown events. The supervisory controller 124 may generate or obtain this data from a local controller for the internal combustion engines 107, engine sensors disposed on the internal combustion engines 107, a local controller for the transmissions 138, transmission sensors disposed on the transmissions 138, a local controller for the hydraulic fracturing pump 108, and/or pump sensors disposed on the hydraulic fracturing pumps 108.
In an embodiment, data, configuration, health ratings, and/or consumable data associated with any of the components or equipment included on the hydraulic fracturing unit 160 may be considered hydraulic fracturing unit parameters. The components or equipment may refer to the hydraulic fracturing pumps 108, the internal combustion engine 107, the transmission 138, a fluid end, and/or any other equipment included on or with or disposed on the hydraulic fracturing unit 160.
As noted, the supervisory controller 124 may be in signal communication with the backside equipment and the hydraulic fracturing units 160. The hydraulic fracturing units 160 may include large sets of data (e.g., operation data, maintenance data, and equipment data) related to the hydraulic fracturing units 160. The hydraulic fracturing units 160 may include various sensors, controllers, and/or other devices. The supervisory controller 124 may connect to each of the sensors, controllers, and/or other devices (for example, via a serial, RS422, REST, RESTful, Web Socket®, wirelessly, and/or wired interface) and include instructions, when executed by the processor, to obtain data from various sensors, controllers, and/or other devices. The hydraulic fracturing units 160 may include a controller 146 and/or sensors 162. Further, the supervisory controller 124 may obtain data from the one or more hydraulic fracturing unit 160 controller 146 and/or sensor 162 or from other components, devices, or equipment included on or with the one or more hydraulic fracturing units 160, such as, a set of maintenance data, a set of operation data, a set of equipment health ratings, a set of equipment configurations, and a set of equipment event and alarm histories. The maintenance data may include the number of hours until next required or suggested engine maintenance, the number of hours until the next required or suggested transmission maintenance, an oil change log, pump valve and seat (V&S) hours, packing hours, total pump strokes, average V&S hours, and average packing hours. The operation data may include the maximum hydraulic power produced and/or utilized during a previous hydraulic fracturing stage, a minimum hydraulic power utilized, an average hydraulic power, a maximum pressure produced, a maximum flow produced, a maximum pump speed, and/or a user override register. The pump speed may be represented or indicated by the rotations per minute (RPM) of the pump. The hydraulic power may be represented or indicated by hydraulic horse power (HHP). The equipment health ratings may include the engine health, engine power rating based on engine health, transmission health, transmission deration based on health, pump health, and/or pump deration based on health. The engine power may be represented or indicated by horse power (HP). The equipment configurations may include an engine model, engine serial number, transmission model, transmission serial number, pump model, pump serial number, fluid end model, and/or fluid end serial number. The equipment event and alarm histories may include life reduction event counter total, life reduction event for current week, pump cavitation event counter total, pump cavitation event counter for current week, pump pulsation event counter total, pump pulsation event counter for current week, emergency shutdown counter total, and/or emergency shutdown counter for current week. In another example, the supervisory controller 124 may obtain the locations and/or positions of the hydraulic fracturing units 160, for example, the location or position of a particular hydraulic fracturing unit in relation to the other hydraulic fracturing units, which may be denoted by a number, a letter, coordinates, and/or other information indicating a position and/or location of equipment. Other data related to the hydraulic fracturing units 160 may be included and/or may be obtained by the supervisory controller 124.
As noted, the hydraulic fracturing pumps 108 may include a controller 164 and/or sensors 166. The supervisory controller 124 may obtain data from a hydraulic fracturing pump 108 controller 164 and/or sensors 166 or from other components, devices, and/or equipment included on or with the hydraulic fracturing unit's 160, such as pump information, including the number of hours of use of the pump, the pump's plunger size, the pump's stroke size, the pump's maximum speed, the pump's health efficiency, consumables age (e.g., V&S hours and/or age), and an age of the pump. Further, the supervisory controller 124 may continuously or periodically obtain, retrieve, or request data from the hydraulic fracturing pump's 108 controller 164 and/or sensors 166. Further still, the supervisory controller 124 may continuously, substantially continuously, or periodically obtain, retrieve, or request specific data from the hydraulic fracturing pump's 108 controller 164 and/or sensors 166 (e.g., hours per use, health efficiency, pressure at the hydraulic fracturing pump's 108 output, flow rate, speed, or other information that may change periodically or frequently).
In another embodiment, the supervisory controller 124 and/or the hydraulic fracturing pump's 108 controller 164 may include instructions to generate and transmit events and/or alarms of varying severity (e.g., low severity, allowing for continued operation, to critical severity, which may cause immediate shutdown of equipment). For example, a threshold may be set for various factors associated with the hydraulic fracturing pump 108, for example, pressure at the hydraulic fracturing pump's 108 output, flow rate, speed, consumables age, and/or other operating factors. The supervisory controller 124 may monitor the data associated with a threshold from the hydraulic fracturing pump's 108 controller 164 and/or sensors 166. If the threshold is met or exceeded, then the supervisory controller 124 and/or controller 164 may prevent use of, prevent further use of, stop, or send a stop signal to the hydraulic fracturing pump 108. In another embodiment, the supervisory controller 124 and/or controller 164 may record the event and prevent the use of the pump in a next hydraulic fracturing stage until maintenance is performed on hydraulic fracturing pump 108. In such embodiments, the threshold may be a value that operating parameters are not to be greater than, greater than or equal to, less than, or less than or equal to.
The hydraulic fracturing unit's 160 transmission 138 may include a controller 168 and/or sensors 170. The supervisory controller 124 may obtain data from the transmission's 138 controller 168 and/or sensors 170 or from other components, devices, or equipment included on or with the hydraulic fracturing unit's 160, such as transmission information, number of hours of use of the transmission, the transmission's installation age, the transmission's efficiency health, transmission fluid level, transmission fluid age, transmission fluid grade or health, and/or other data related to the transmission 138. The supervisory controller 124 or controller 168 may include a threshold or conditions and/or may include an option to set a threshold or conditions to trigger events and/or alarms of varying severity (e.g., low severity, allowing for continued operation, to critical severity, which may cause immediate shutdown of equipment). For example, the supervisory controller 124 or controller 168 may include a threshold for transmission fluid level. If the transmission fluid falls below or is at a certain level, either specified or preset, then the supervisory controller 124 or controller 168 may generate an alarm. Further, the supervisory controller 124 or controller 168 may inhibit upshift out of neutral, thus preventing damage to the transmission 138. The supervisory controller 124 or controller 168 may prevent upshift out of neutral until manual intervention or maintenance is performed. The threshold may be preset or set in the supervisory controller 124. In another example, the supervisory controller 124 may determine the threshold based on transmission data.
As noted, the internal combustion engine 107 may include a controller 172 and/or sensors 174. The supervisory controller 124 may obtain data from the internal combustion engine's 107 controller 172 and/or sensors 174 or from other components, devices, or equipment included on or with the hydraulic fracturing unit's 160, such as engine information, including the number of hours of use of the engine, the engine's available power, the engine's installation age, the engine's efficiency health, consumables levels, consumables age, and/or other information related to the engine. The supervisory controller 124 or controller 172 may include a threshold or conditions and/or may include an option to set a threshold or conditions to trigger events and/or alarms of varying severity (e.g., low severity, allowing for continued operation, to critical severity, which may cause immediate shutdown of equipment). For example, the supervisory controller 124 or controller 172 may include a threshold for consumable level, consumable age, hours of use, and/or other factors. If a measurement falls below, exceeds, or is at a certain level, either specified, preset, or determined by the supervisory controller 124 based on engine data, then the supervisory controller 124 or controller 172 may generate an alarm. Further, the supervisory controller 124 or controller 172 may prevent further use of the internal combustion engine 107 to ensure that no damage occurs to the internal combustion engine 107. The supervisory controller 124 or controller 172 may prevent start-up of the internal combustion engine 107 until manual intervention or maintenance is performed.
As noted above, the supervisory controller 124 may be in signal communication with the backside equipment 120. In such examples, the connection between the controller 124 and backside equipment 120 may be a representational state transfer (REST or RESTful) interface, a WebSocket® interface, or some other transmission control protocol (TCP) or QUIC based interface. In such examples, the current hydraulic fracturing stage parameters may be sent from the controller 124 to the backside equipment 120 over hypertext transfer protocol (HTTP), hypertext transfer protocol secure (HTTPS), or other protocol. The supervisory controller 124 may also obtain data and build profiles relating to associated backside equipment 120.
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to build, determine, or create a hydraulic fracturing unit profile or pump profile. The supervisory controller 124 may obtain the data noted above and create and/or format the data into a format suitable for the display 206. In such examples, in response to reception of the data described above, the processor 204 of the supervisory controller 124 may execute instructions to build, determine, and/or create a health assessment. The health assessment may be based on the equipment health ratings. The health assessment may also be based on all the data obtained by the supervisory controller 124, for example, hours used, age of equipment, consumable levels, consumable age, and/or other factors as described herein. The health assessment may be stored as a value or indicator. The value or indicator may correspond to a color to transmit or send to the display 206. For example, a poor health assessment of a hydraulic fracturing unit may be determined and stored in the memory 202 of the supervisory controller 124 as, for example, a “1”. Other values and indicators may be utilized, as will be understood by those skilled in the art. The supervisory controller 124 may package or transmit the health assessment with the hydraulic fracturing profile or pump profile. The health assessment may then be presented to a user, via the display 206, as a color, for example, red for the poor health assessment. Green may represent a good health assessment, and yellow may represent a state in between good and poor. For example, the supervisory controller 124 may recommend or automatically set a maintenance date between a week and two weeks for a hydraulic fracturing unit with a yellow health assessment may.
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to present a GUI or dashboard to the display 206, a terminal, a smartphone, and/or a tablet. The GUI or dashboard may include a selectable list of the hydraulic fracturing units 160 or selectable tabs, each tab associated with a hydraulic fracturing unit 160. In another embodiment, the GUI or dashboard may include a representation of the equipment at the wellsite (e.g., boxes or drawings for equipment, such as for the hydraulic fracturing units 160). In such an embodiment, each representation may be selectable. The user may select one of the hydraulic fracturing units 160. In response to a selection of one of the one or more hydraulic fracturing units 160, the GUI or dashboard may present the hydraulic fracturing unit profile or the pump profile. The hydraulic fracturing unit profile or pump profile may be presented on the display 206 as a series of tabs. When a user selects a tab, the GUI or dashboard may present the relevant data. For example, one tab may be an internal combustion engine tab (indicated by text, such as “Engine”). When a user clicks the internal combustion engine tab, the internal combustion engine data may be presented. The GUI or dashboard may include a main tab, home tab, or home page for each hydraulic fracturing unit profiles or pump profiles. The main tab, home tab, or home page may include the health assessment. When the health assessment is poor or includes an indication that user intervention may be needed and the user hovers over or selects the health assessment, a list of the issues causing or potentially causing the state of the health assessment may be listed. Such a list may include potential corrective actions that may be performed. At such a point, the user may take corrective action. After a corrective action is taken, the supervisory controller 124 may determine what time the corrective action was taken and what type of corrective action occurred. The supervisory controller 124 may update the GUI or dashboard for the respective hydraulic fracturing unit 160. The supervisory controller 124 may store the taken corrective action, with a timestamp, and present the corrective action in the GUI or dashboard in a section related to an associated hydraulic fracturing unit.
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to prompt or notify a user in response to an event. In an embodiment, an event may be a life reduction event, pump cavitation event, pump pulsation event, and/or emergency shutdown. While such events, as well as other events, may include an associated corrective action, the events may not require a corrective action. The supervisory controller 124 may, for example, derate a pump based one or more such events or data obtained or determined, e.g., health ratings, health assessment, pump information/data, and/or other data or information described herein. In another embodiment, the supervisory controller 124 may determine a level to derate the pump to. In such cases, the supervisory controller may send a prompt to a user to accept such an action or may automatically derate the pump. In another embodiment, the supervisory controller 124 may adjust factors associated the hydraulic fracturing units 160 based on such events. For example, when an event occurs (e.g., pump cavitation, pump pulsation, etc.), the supervisory controller 124 may adjust factors associated with the respective hydraulic fracturing unit 160 (e.g., lowering a pumps maximum speed, pressure, or flow rate, or lowering max power output by an engine, etc.).
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to determine a hydraulic fracturing pumps 108 flow or maximum flow based on the hydraulic fracturing unit's profile or pump profile. The supervisory controller 124 may utilize the stroke length (SL), the plunger size or diameter (PD), number of cylinders (NC), and maximum speed to accurately calculate maximum flow rate of a hydraulic fracturing pump 108. The following formula may be utilized to determine the displacement per revolution (GPR) of the hydraulic fracturing pump 108:
Once the GPR is determined, the supervisory controller 124 may convert GPR to gallons per minute (GPM) by multiplying GPR by pump speed. The pump speed may be represented or indicated by a pump's RPM. The supervisory controller 124 may further convert GPM to barrels per minute (BPM). Further, the supervisory controller 124 may determine the maximum pressure of the hydraulic fracturing pump 108 using the maximum rod load (RL) and PD. The following equation may be utilized to determine the maximum pressure of the hydraulic fracturing pump 108:
Other aspects of or factors associated with the hydraulic fracturing pumps 108 or the hydraulic fracturing unit 160 may be determined based on data in the hydraulic fracturing unit's profile or pump profile, such as, power utilization, power output, or other aspects.
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to obtain or determine a life of the consumables in the one or more hydraulic fracturing units 160. The supervisory controller 124 may determine or calculate an expected or average life of a consumable based on the hydraulic fracturing unit profile or pump profile. Further the supervisory controller 124 may check the consumables continuously, substantially continuously, periodically, or at regular intervals. If the consumables are lower than an expected or average level and/or older than an expected or average age, the supervisory controller 124 may prompt the user. Further, if the consumables are lower than an expected or average level at a time period less than the expected or average life of the consumables, then the prompt may include a warning that the hydraulic fracturing unit 160 may be experiencing an issue or wear. The prompt may include a notice that a hydraulic fracturing unit 160 may not be utilized until maintenance is performed and the supervisory controller 124 may prevent such use until the maintenance is performed. For example, such a prompt may indicate hydraulic fracturing pump 108 operation issues, internal combustion engine 107 issues, transmission 138 issues, suction line issues, and/or fluid end wear. Consumables may refer to any fluid or solid consumed by the hydraulic fracturing units 160 during the hydraulic fracturing stage or process. A consumable may also be diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, other fuels, fluids, water, chemicals, or other substances as will be understood by those skilled in the art. Consumables may also refer to any components that are periodically replaced or wear out, e.g., V&S.
The supervisory controller 124 may include instructions stored in the memory 202, when executed by the processor 204, to determine which hydraulic fracturing units 160 to utilize in or for a hydraulic fracturing stage or operation. The supervisory controller 124 may determine which hydraulic fracturing units 160 to use based on the hydraulic unit profile and/or the pump profile. The supervisory controller 124 may determine that a specific hydraulic fracturing unit 160 may not be utilized for a particular hydraulic fracturing stage or operation based on the maximum power of the specific hydraulic fracturing unit being less than required for the hydraulic fracturing stage or operation, the maximum flow rate of the specific hydraulic fracturing unit being less than required for the hydraulic fracturing stage or operation, the level and/or age of consumables within the specific hydraulic fracturing unit, upcoming maintenance for the specific hydraulic fracturing unit, health ratings and/or assessments, other data and/or determinations associated with the hydraulic fracturing unit as described herein, and/or some combination thereof. For example, a specific hydraulic fracturing unit with an insufficient amount of a consumable (e.g., diesel) for a desired length of time of a hydraulic fracturing stage or operation may not be selected for such a hydraulic fracturing stage or operation. In another example, a specific hydraulic fracturing unit with a low or poor health rating or assessment may be taken offline for maintenance, rather than to be utilized in the hydraulic fracturing stage or operation. Other factors may be considered in various other examples.
At block 302, the supervisory controller 124 may determine if a hydraulic fracturing pump's 108 controller 164 is available. The hydraulic fracturing pump's 108 controller 164 may be considered available when a hydraulic fracturing unit 160 is brought, driven, delivered, started, and/or initiated at a wellsite hydraulic fracturing system 100. In another embodiment, the hydraulic fracturing pump's 108 controller 164 may be considered available when a hydraulic fracturing unit 160 is brought online and the hydraulic fracturing pump's 108 controller 164 connected to the supervisory controller 124, either via a hard wired connection or wireless connection. The supervisory controller 124 may wait until at least one hydraulic fracturing pump's 108 controller 164 is available prior to initiating building or determining a hydraulic fracturing unit profile or pump profile.
At block 304, once the supervisory controller 124 has connected to one or more hydraulic fracturing pumps' 108 controllers 164, the supervisory controller 124 may obtain data from the controller 164. The supervisory controller 124 may obtain pump assembly data for each hydraulic fracturing pump 108 at the wellsite hydraulic fracturing system 100. The pump assembly data may include a pump's plunger size, a pump's stroke size, and/or a pump's maximum speed. Other information, such as pump curves, pump models, pump serial numbers, pump placement, and/or other pump assembly characteristics may be obtained by the supervisory controller 124.
At block 306, the supervisory controller 124 may, after, before, or during the obtaining of pump assembly data, obtain pump maintenance data. The pump maintenance data may include the total number of hours a hydraulic fracturing pump 108 has been in use or the age of the hydraulic fracturing pump, a number of hours the hydraulic fracturing pump 108 has been in use since the last maintenance operation, the type of the last maintenance operation, and/or the time until the next scheduled, expected, and/or typical maintenance operation. In another embodiment, the supervisory controller 124 may obtain or receive, rather than the time until the next scheduled, expected, and/or typical maintenance operation, a pump manufacturers recommended time frame or period for maintenance.
At block 308, the supervisory controller 124 may obtain pump event and/or alarm history. The pump event and/or alarm history may include life reduction event counter total, life reduction event for the current week, month, and/or year, pump cavitation event counter total, pump cavitation event counter for the current week, month, and/or year, pump pulsation event counter total, pump pulsation event counter for the current week, month, and/or year, emergency shutdown counter total, and/or emergency shutdown counter for the current week, month, and/or year. In another embodiment, the supervisory controller 124 may determine and/or generate events and/or alarms based on data obtained from the hydraulic fracturing pump's 108 controller 164.
At block 310, the supervisory controller 124 may determine a hydraulic fracturing pump's 108 maintenance cycle. The supervisory controller 124 may determine such a cycle based on the pump maintenance data, the pump event and/or alarm history, and/or the pump assembly data. For example, the supervisory controller 124 may schedule a sooner-than-typical maintenance operation for a hydraulic fracturing pump 108 that experiences a high amount of cavitation or pulsation events, but has been in operation for a short period of time since a last maintenance operation. Based on various other conditions and hydraulic fracturing pump 108 characteristics, events, and alarms, the supervisory controller 124 may set a maintenance date.
At block 312, the supervisory controller 124 may determine various characteristics of the hydraulic fracturing pump 108 based on pump assembly data. For example, the supervisory controller 124 may determine a maximum flow rate of the hydraulic fracturing pump 108 based on the pump assembly data and/or other data or information described herein. In another embodiment the supervisory controller 124 may determine the maximum pressure and the maximum speed of the hydraulic fracturing pump 108 based on the pump assembly data. The determinations may further be based on pump maintenance data and/or pump event and/or alarm history. For example, the supervisory controller 124 may determine whether to derate a hydraulic fracturing pump 108 based on the pump assembly data, the pump maintenance data, and/or the pump event and/or alarm history. Such an operation (e.g., derating a pump) may alter the maximum speed, maximum pressure, and/or maximum flow rate of the hydraulic fracturing pump 108.
At block 314, the supervisory controller 124 may determine if an internal combustion engine's 107 controller 172 is available. The internal combustion engine's 107 controller 172 may be considered available when a hydraulic fracturing unit 160 is brought, driven, delivered, started, and/or initiated at a wellsite hydraulic fracturing system 100. In another embodiment, the internal combustion engine's 107 controller 172 may be considered available when a hydraulic fracturing unit 160 is brought online and the internal combustion engine's 107 controller 172 connected to the supervisory controller 124, either via a hard wired connection or wireless connection. The supervisory controller 124 may wait until at least one internal combustion engine's 107 controller 172 is available prior to initiating building or determining a hydraulic fracturing unit profile or pump profile.
At block 316, once the supervisory controller 124 has connected to one or more internal combustion engines' 107 controllers 172, the supervisory controller 124 may obtain data from the controller 172. The supervisory controller 124 may obtain engine assembly data for each internal combustion engine 108 at the wellsite hydraulic fracturing system 100. The engine assembly data may include a type of engine (e.g., internal combustion engine), power output and/or fuel type. Other information, such as engine model, engine serial numbers, engine placement, and/or other engine assembly characteristics may be obtained by the supervisory controller 124.
At block 318, the supervisory controller 124 may, after, before, or during the obtaining of engine assembly data, obtain engine maintenance data. The engine maintenance data may include the total number of hours an internal combustion engine 107 has been in use or the age of the internal combustion engine 107, a number of hours the internal combustion engine 107 has been in use since the last maintenance operation, the type of the last maintenance operation, the time until the next scheduled, expected, and/or typical maintenance operation, the level of fluids utilized in the internal combustion engine 107, the typical and/or optimal amount of the fluids to be used in the internal combustion engine 107, and/or the typical and/or optimal type of fluid to be used in the internal combustion engine 107. In another embodiment, the supervisory controller 124 may obtain or receive, rather than the time until the next scheduled, expected, and/or typical maintenance operation, an engine manufacturers recommended time frame or period for maintenance.
At block 320, the supervisory controller 124 may obtain pump event and/or alarm history. The pump event and/or alarm history may include life reduction event counter total, life reduction event for the current week, month, and/or year, emergency shutdown counter total, emergency shutdown counter for the current week, month, and/or year, missed scheduled maintenance, low or critically low consumables, and/or other events related to or associated with the internal combustion engine 107. In another embodiment, the supervisory controller 124 may determine and/or generate events and/or alarms based on data obtained from the internal combustion engine's 108 controller 172.
At block 322, the supervisory controller 124 may determine an average or expected life of consumables utilized in the internal combustion engine 107. The supervisory controller 124 may determine the average or expected life of a particular consumable based on engine assembly data and/or engine maintenance data. For example, for a particular liquid, the supervisory controller may determine the average or expected life based on the amount or level of the consumable in the internal combustion engine 107, the amount or level indicated by the manufacturer (which may be included in the engine assembly data), and/or the amount or level of the consumable in the engine following maintenance associated with the consumable.
In another embodiment, the supervisory controller 124 may determine an average or expected life of consumables utilized by the hydraulic fracturing pumps 108. The supervisory controller 124 may determine the average or expected life of a particular consumable based on pump assembly data and/or pump maintenance data. For example, for a component of the hydraulic fracturing pumps 108, the supervisory controller may determine the average or expected life based on prior maintenance time periods for the component and/or the average or expected life indicated by the manufacturer (which may be included in pump assembly data).
At block 324, the supervisory controller 124 may determine an internal combustion engine's 107 maintenance cycle. The supervisory controller 124 may determine such a cycle based on the engine maintenance data, the engine event and/or alarm history, and/or the engine assembly data. For example, the supervisory controller 124 may schedule a sooner than typical maintenance operation for an internal combustion engine's 107 that experiences a high amount of emergency shutdowns, but has been in operation for a short period of time since a last maintenance operation. Based on various other conditions and internal combustion engine 107 characteristics, events, and alarms, the supervisory controller 124 may set a maintenance date
At block 326, the supervisory controller 124 may determine various characteristics of the internal combustion engine 107 based on engine assembly data and/or engine maintenance data. For example, the supervisory controller 124 may determine a maximum power output of the internal combustion engine 107 based on the engine assembly data, engine maintenance data, health assessment, health rating, and/or other data.
In another embodiment, the data from the internal combustion engine's 107 controller 172 may be obtained at the same time or substantially the same time data is obtained from the hydraulic fracturing pump's controller 164. Data may be obtained sequentially, for example, from the hydraulic fracturing pumps 108 and then the internal combustion engine 107, or vice versa. Further, data from a transmission and/or fluid end may be obtained. Various factors and characteristics of the other equipment may be determined, as described herein. For example, transmission fluid level and maintenance may be monitored and determined.
After the average or expected life of the consumables utilized in the internal combustion engine 107 are determined, at block 328, the supervisory controller 124 may continue to monitor the consumables over time. For example, the supervisory controller 124 may continuously or periodically obtain or gather data associated with the consumables (e.g., current level, health, and/or time since last maintenance).
After an update to consumable related data, at block 330, the supervisory controller 124 may determine whether the consumables are low. For example, is the amount of consumables in the internal combustion engine 107 at a level that may cause damage or that may be insufficient to operate the internal combustion engine 107 for a period of time, for example, the time to finish a hydraulic fracturing stage.
If the consumables are not low, the supervisory controller 124 may continue to monitor the consumables. If the consumables are low, at block 332, the supervisory controller 124 may determine whether the consumable is low or has failed sooner than expected. For example, the supervisory controller 124 may determine whether the consumable has failed at a time less than the average or expected life. If the consumables are failing within the average or expected life, then the supervisory controller 124 may determine whether to perform maintenance. If the consumable has filed or is low at a time less the average or expected, at block 334, the supervisory controller 124 may determine the number of times that the consumables have failed in a time less than the average. In an embodiment, a threshold may be set to determine whether the consumable failure may indicate equipment failure. For example, if a consumable is utilized in a shorter than the average or expected life, then such repeated failure may indicate equipment failures, such as a leak. At block 338, if the number is greater than the threshold, the supervisory controller 124 may transmit a prompt, notification, and/or alarm.
At block 340, the supervisory controller 124 may determine whether maintenance is to be performed. For example, the consumable may be low, but not low enough to necessitate maintenance. If maintenance is not to be performed, the supervisory controller 124, at block 342, may determine whether to derate the pump. For example, if the consumables are at a specific level, the power output or maximum power output may be altered. In such an example, the supervisory controller may derate the hydraulic fracturing pump 108, at least until more consumable is added or maintained (e.g., removing old consumable and adding new consumable). If the supervisory controller 124 determines that the hydraulic fracturing pump 108 should be derated, the supervisory controller 124 may, at block 344, derate the pump or lower the capability (e.g., maximum pressure, maximum flow, and/or maximum speed of the hydraulic fracturing pump 108.
After the various characteristics and/or data related to the internal combustion engine 107 and/or hydraulic fracturing pump 108 are obtained and/or determined, at block 346, the supervisory controller 124 may determine whether the internal combustion engine 107 and/or hydraulic fracturing pump 108 require maintenance, based on the data gathered and determined. If the internal combustion engine 107 and/or hydraulic fracturing pump 108 are to receive maintenance, at block 348, the supervisory controller 124 may take the internal combustion engine 107 and/or hydraulic fracturing pump 108 offline, as in not available for use, or shut-off. Once the internal combustion engine 107 and/or hydraulic fracturing pump 108 are taken offline, at block 350, the supervisory controller 124 may transmit a prompt, notification, and/or alarm for maintenance to be performed. At block 352, the supervisory controller 124 may determine whether maintenance has been performed. The supervisory controller 124 may prevent the use of equipment until the maintenance has been performed. The supervisory controller 124 may obtain data from the internal combustion engine 107 and/or hydraulic fracturing pump 108 to determine whether the maintenance has been performed. In another embodiment, a user may indicate when the maintenance has been performed. After the maintenance has been performed, at block 354, the internal combustion engine 107 and/or hydraulic fracturing pump 108 may be brought back online, as in made available for use, or restarted.
At block 356, after all data in relation to the internal combustion engine 107 and/or hydraulic fracturing pump 108 has be obtained and/or determined, the supervisory controller may determine a rating or health rating for internal combustion engine 107 and/or hydraulic fracturing pump 108. A rating or health rating for other equipment included on the hydraulic fracturing unit 160 or elsewhere at the wellsite hydraulic fracturing system may be determined. Once the rating or health rating has been determined, the supervisory controller 358 may build a health profile, pump profile, and/or hydraulic fracturing unit profile for the internal combustion engine 107, hydraulic fracturing pump 108, and/or other equipment as described herein. The health profile, pump profile, and/or hydraulic fracturing unit profile may include the various data points, static and/or real-time, associated with the internal combustion engine 107 and/or hydraulic fracturing pump 108. The supervisory controller 124 may, at block 359, then determine which hydraulic fracturing units 160 to utilize in a hydraulic fracturing stage or operation based on the health profile, pump profile, and/or hydraulic fracturing unit profile.
At block 360, the supervisory controller 124 may determine whether to derate the hydraulic fracturing pump 108 based on the health profile. If the supervisory controller 124 determines that the hydraulic fracturing pump 108 should be derated, at block 362, the supervisory controller 124 may derate the hydraulic fracturing pump 108. The supervisory controller 124, at block 364, may then continuously or periodically check for data updates related to the internal combustion engine 107 and/or hydraulic fracturing pump 108. If an update is available, the supervisory controller 124 may determine an updated rating and update the health profile.
As noted, the data van 434 may include a business network 436 or business unit. The business network 436 may include a computing device 426 to store the hydraulic fracturing unit profile or pump profile, as well as other wellsite data and analytics. The computing device 426 may be in signal communication with the controller. The computing device 426 may be a server. In another example, the computing device 426 may be an edge server. In a further example, the computing device 426 may connect to a switch 428 to send, through an internet connection 430, data and/or analytics of the wellsite to a data center 432 for further analysis. Further, the hydraulic fracturing units 406 and backside equipment 404 may connect, through the internet connection 430, to the data center 432, thus providing real time data to the data center 432.
A processor executing instructions stored in memory of a supervisory controller or other computing device may build, determine, or create a hydraulic fracturing unit profile or pump profile. The supervisory controller may, for each pump profile, include, generate, or determine one or more corresponding or associated displays, pages, or GUIs. The pump profile may include a first GUI 500, as illustrated in
Real-time data associated with a particular hydraulic fracturing pump may be updated continuously or periodically. The first GUI 500 may include an actual BPM and/or set point BPM section 504. The supervisory controller and/or a user may set the BPM or determine a set point or limit for the BPM of a pump, for example, based on events and other characteristics of a pump. The supervisory controller may limit the BPM of a pump, preventing the pump from operating past such a limit. The first GUI 500 may also include other real-time operating data, with or without set limits, for example, the discharge pressure 506, suction pressure 508, vibration 511 (e.g., inches per second). The first GUI 500 may include various sections displaying different values for different characteristics (real-time operating data or static data) of the hydraulic fracturing pump, for example, turbine and/or engine data 514, 516, pump component data 510, and/or gearbox data 512. Such sections may illustrate current life of consumables associated with the hydraulic fracturing pump. If a consumable reaches a limit indicating a time for maintenance or replacement, the supervisory controller may generate an event and derate the hydraulic fracturing pump or prevent use of the hydraulic fracturing pump. The first GUI 500 may include such events and other events or actions taken or to be taken. For example, if a hydraulic fracturing pump experiences a certain event, for example, cavitation, the supervisory controller may determine that the hydraulic fracturing pump is to be derated (see 518, 522) and may automatically perform such an action. The supervisory controller may further prompt a user to take action or intervene 520 based on an event, e.g., high vibration and/or oil temperature above a limit. The first GUI 500 may also display real-time pump vibrations 524 and/or pump RPM 526 over time. The first GUI 500 may additionally include an idle button 528 and/or a stop button 530. Selecting the idle button 528 during non-operation may cause the associated hydraulic fracturing pump to enter an idle state. Selecting the stop button 530 during operation or idle may cause the associated hydraulic fracturing pump to enter a stop state or cease operation.
The supervisory controller may, for each pump profile, include, generate, or determine one or more corresponding or associated displays, pages, or GUIs. The pump profile may include a second GUI 600, as illustrated in
The second GUI 600 may include operational data 614. Operational data 614 may include operating data of a particular hydraulic fracturing pump, for example, hours in operation, hours on a type of fuel, engine cycles, among other aspects of hydraulic fracturing pump operation. The second GUI 600 may include maintenance data 616. The maintenance data 616 may include maintenance time for varying aspects of a hydraulic fracturing pump. The supervisory controller may determine when to perform maintenance on a hydraulic fracturing pump based on different aspects of the hydraulic fracturing pump as described above. When the supervisory controller determines a time for maintenance, the supervisory controller may include a prompt in the second GUI 600 indicating maintenance is required. Depending on the type of maintenance and/or other factors, the supervisory controller may prevent further use of the hydraulic fracturing pump, until maintenance is performed. The performance of maintenance may be indicated based on selecting a reset or other button under maintenance data. The performance of maintenance may also be determined automatically by components, e.g., a controller, of a hydraulic fracturing pump, and such determinations may be communicated to the supervisory controller.
The second GUI 600 may additionally include an idle button 620 and/or a stop button 618. Selecting the idle button 620 during non-operation may cause the associated hydraulic fracturing pump to enter an idle state. Selecting the stop button 618 during operation or idle may cause the associated hydraulic fracturing pump to enter a stop state or cease operation.
The supervisory controller may include, generate, or determine one or more corresponding or associated displays, pages, or GUIs for the overall wellsite. As noted, a pump profile may include a position or location of a hydraulic fracturing pump. The supervisory controller may generate a third GUI 700 to indicate the position, location, coordinates, and/or other aspects of hydraulic fracturing pumps at the wellsite. The third GUI 700 may include a block or representation 704 of each of the hydraulic fracturing pumps. Each block or representation 704 may indicate the location of each hydraulic fracturing pump. The block or representation 704 may include a pump identification number 702 to indicate such a location. In another embodiment, letters or other indicators may be utilized to indicate position or location. Each block or representation 704 may include other data relating to a hydraulic fracturing pump, such as BPM, discharge pressure, and/or suction pressure. The third GUI 700 may further include a total pump rate sum 706 flowing to a wellhead and total a blender discharge 708 flowing from a blender unit. The third GUI 700 may additionally include an idle all button 712 and/or a stop all button 710. Selecting the idle all button 712 during non-operation may cause all the hydraulic fracturing pumps to enter an idle state. Selecting the stop all button 712 during operation or idle may cause all the hydraulic fracturing pumps to enter a stop state or cease operation.
References are made to block diagrams of systems, methods, apparatuses, and computer program products according to example embodiments. It will be understood that at least some of the blocks of the block diagrams, and combinations of blocks in the block diagrams, may be implemented at least partially by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, special purpose hardware-based computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functionality of at least some of the blocks of the block diagrams, or combinations of blocks in the block diagrams discussed.
These computer program instructions may also be stored in a non-transitory machine-readable memory that may direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the machine-readable memory produce an article of manufacture including instruction means that implement the function specified in the block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide task, acts, actions, or operations for implementing the functions specified in the block or blocks.
One or more components of the systems and one or more elements of the methods described herein may be implemented through an application program running on an operating system of a computer. They may also be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, mini-computers, mainframe computers, and the like.
Application programs that are components of the systems and methods described herein may include routines, programs, components, data structures, etc. that may implement certain abstract data types and perform certain tasks or actions. In a distributed computing environment, the application program (in whole or in part) may be located in local memory or in other storage. In addition, or alternatively, the application program (in whole or in part) may be located in remote memory or in storage to allow for circumstances where tasks may be performed by remote processing devices linked through a communications network.
Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims.
This is a continuation of U.S. Non-Provisional application Ser. No. 17/301,475, filed Apr. 5, 2021, titled “SYSTEMS AND METHODS OF UTILIZATION OF A HYDRAULIC FRACTURING UNIT PROFILE TO OPERATE HYDRAULIC FRACTURING UNITS,” which claims priority to and the benefit of, U.S. Provisional Application No. 62/705,628, filed Jul. 8, 2020, titled “USE OF A PUMP PROFILER AND HEALTH MONITORING FUNCTION TO OPERATE HYDRAULIC FRACTURING PUMPS AND ASSOCIATED METHODS,” and U.S. Provisional Application No. 62/705,357, filed Jun. 23, 2020, titled “THE USE OF A PUMP PROFILER AND HEALTH MONITORING FUNCTION TO OPERATE HYDRAULIC FRACTURING PUMPS AND ASSOCIATED METHODS,” the disclosures of which are incorporated herein by reference in their entireties.
In the drawings and specification, several embodiments of systems and methods to operate hydraulic fracturing pumps for a hydraulic fracturing system or wellsite hydraulic fracturing system have been disclosed, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. Embodiments of systems and methods have been described in considerable detail with specific reference to the illustrated embodiments. However, it will be apparent that various modifications and changes may be made within the spirit and scope of the embodiments of systems and methods as described in the foregoing specification, and such modifications and changes are to be considered equivalents and part of this disclosure.
This is a continuation of U.S. Non-Provisional application Ser. No. 17/301,475, filed Apr. 5, 2021, titled “SYSTEMS AND METHODS OF UTILIZATION OF A HYDRAULIC FRACTURING UNIT PROFILE TO OPERATE HYDRAULIC FRACTURING UNITS,” which claims priority to and the benefit of, U.S. Provisional Application No. 62/705,628, filed Jul. 8, 2020, titled “USE OF A PUMP PROFILER AND HEALTH MONITORING FUNCTION TO OPERATE HYDRAULIC FRACTURING PUMPS AND ASSOCIATED METHODS,” and U.S. Provisional Application No. 62/705,357, filed Jun. 23, 2020, titled “THE USE OF A PUMP PROFILER AND HEALTH MONITORING FUNCTION TO OPERATE HYDRAULIC FRACTURING PUMPS AND ASSOCIATED METHODS,” the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1716049 | Greve | Jun 1929 | A |
1726633 | Smith | Sep 1929 | A |
2178662 | Lars | Nov 1939 | A |
2427638 | Vilter | Sep 1947 | A |
2498229 | Adler | Feb 1950 | A |
2535703 | Smith et al. | Dec 1950 | A |
2572711 | Fischer | Oct 1951 | A |
2820341 | Amann | Jan 1958 | A |
2868004 | Runde | Jan 1959 | A |
2940377 | Darnell et al. | Jun 1960 | A |
2947141 | Russ | Aug 1960 | A |
2956738 | Rosenschold | Oct 1960 | A |
3068796 | Pfluger et al. | Dec 1962 | A |
3191517 | Solzman | Jun 1965 | A |
3257031 | Dietz | Jun 1966 | A |
3274768 | Klein | Sep 1966 | A |
3378074 | Kiel | Apr 1968 | A |
3382671 | Ehni, III | May 1968 | A |
3401873 | Privon | Sep 1968 | A |
3463612 | Whitsel | Aug 1969 | A |
3496880 | Wolff | Feb 1970 | A |
3550696 | Kenneday | Dec 1970 | A |
3586459 | Zerlauth | Jun 1971 | A |
3632222 | Cronstedt | Jan 1972 | A |
3656582 | Alcock | Apr 1972 | A |
3667868 | Brunner | Jun 1972 | A |
3692434 | Schnear | Sep 1972 | A |
3739872 | McNair | Jun 1973 | A |
3757581 | Mankin | Sep 1973 | A |
3759063 | Bendall | Sep 1973 | A |
3765173 | Harris | Oct 1973 | A |
3771916 | Flanigan et al. | Nov 1973 | A |
3773438 | Hall et al. | Nov 1973 | A |
3786835 | Finger | Jan 1974 | A |
3791682 | Mitchell | Feb 1974 | A |
3796045 | Foster | Mar 1974 | A |
3814549 | Cronstedt | Jun 1974 | A |
3820922 | Buse et al. | Jun 1974 | A |
3847511 | Cole | Nov 1974 | A |
3866108 | Yannone | Feb 1975 | A |
3875380 | Rankin | Apr 1975 | A |
3963372 | McLain et al. | Jun 1976 | A |
4010613 | McInerney | Mar 1977 | A |
4019477 | Overton | Apr 1977 | A |
4031407 | Reed | Jun 1977 | A |
4050862 | Buse | Sep 1977 | A |
4059045 | McClain | Nov 1977 | A |
4086976 | Holm et al. | May 1978 | A |
4117342 | Melley, Jr. | Sep 1978 | A |
4173121 | Yu | Nov 1979 | A |
4204808 | Reese et al. | May 1980 | A |
4209079 | Marchal et al. | Jun 1980 | A |
4209979 | Woodhouse et al. | Jul 1980 | A |
4222229 | Uram | Sep 1980 | A |
4269569 | Hoover | May 1981 | A |
4311395 | Douthitt et al. | Jan 1982 | A |
4330237 | Battah | May 1982 | A |
4341508 | Rambin, Jr. | Jul 1982 | A |
4357027 | Zeitlow | Nov 1982 | A |
4383478 | Jones | May 1983 | A |
4402504 | Christian | Sep 1983 | A |
4430047 | Ilg | Feb 1984 | A |
4442665 | Fick | Apr 1984 | A |
4457325 | Green | Jul 1984 | A |
4470771 | Hall et al. | Sep 1984 | A |
4483684 | Black | Nov 1984 | A |
4505650 | Hannett et al. | Mar 1985 | A |
4574880 | Handke | Mar 1986 | A |
4584654 | Crane | Apr 1986 | A |
4620330 | Izzi, Sr. | Nov 1986 | A |
4672813 | David | Jun 1987 | A |
4754607 | Mackay | Jul 1988 | A |
4782244 | Wakimoto | Nov 1988 | A |
4796777 | Keller | Jan 1989 | A |
4869209 | Young | Sep 1989 | A |
4913625 | Gerlowski | Apr 1990 | A |
4983259 | Duncan | Jan 1991 | A |
4990058 | Eslinger | Feb 1991 | A |
5032065 | Yamamuro | Jul 1991 | A |
5135361 | Dion | Aug 1992 | A |
5167493 | Kobari | Dec 1992 | A |
5245970 | Iwaszkiewicz et al. | Sep 1993 | A |
5291842 | Sallstrom et al. | Mar 1994 | A |
5326231 | Pandeya | Jul 1994 | A |
5362219 | Paul et al. | Nov 1994 | A |
5511956 | Hasegawa | Apr 1996 | A |
5537813 | Davis et al. | Jul 1996 | A |
5553514 | Walkowc | Sep 1996 | A |
5560195 | Anderson et al. | Oct 1996 | A |
5586444 | Fung | Dec 1996 | A |
5622245 | Reik | Apr 1997 | A |
5626103 | Haws et al. | May 1997 | A |
5634777 | Albertin | Jun 1997 | A |
5651400 | Corts et al. | Jul 1997 | A |
5678460 | Walkowc | Oct 1997 | A |
5717172 | Griffin, Jr. et al. | Feb 1998 | A |
5720598 | de Chizzelle | Feb 1998 | A |
5761084 | Edwards | Jun 1998 | A |
5811676 | Spalding et al. | Sep 1998 | A |
5839888 | Harrison | Nov 1998 | A |
5846062 | Yanagisawa et al. | Dec 1998 | A |
5875744 | Vallejos | Mar 1999 | A |
5983962 | Gerardot | Nov 1999 | A |
5992944 | Hara | Nov 1999 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6050080 | Horner | Apr 2000 | A |
6067962 | Bartley et al. | May 2000 | A |
6071188 | O'Neill et al. | Jun 2000 | A |
6074170 | Bert et al. | Jun 2000 | A |
6123751 | Nelson et al. | Sep 2000 | A |
6129335 | Yokogi | Oct 2000 | A |
6145318 | Kaplan et al. | Nov 2000 | A |
6230481 | Jahr | May 2001 | B1 |
6279309 | Lawlor, II et al. | Aug 2001 | B1 |
6321860 | Reddoch | Nov 2001 | B1 |
6334746 | Nguyen et al. | Jan 2002 | B1 |
6388317 | Reese | May 2002 | B1 |
6401472 | Pollrich | Jun 2002 | B2 |
6530224 | Conchier | Mar 2003 | B1 |
6543395 | Green | Apr 2003 | B2 |
6655922 | Flek | Dec 2003 | B1 |
6669453 | Breeden | Dec 2003 | B1 |
6765304 | Baten et al. | Jul 2004 | B2 |
6786051 | Kristich et al. | Sep 2004 | B2 |
6832900 | Leu | Dec 2004 | B2 |
6851514 | Han et al. | Feb 2005 | B2 |
6859740 | Stephenson et al. | Feb 2005 | B2 |
6901735 | Lohn | Jun 2005 | B2 |
6962057 | Kurokawa et al. | Nov 2005 | B2 |
7007966 | Campion | Mar 2006 | B2 |
7047747 | Tanaka | May 2006 | B2 |
7065953 | Kopko | Jun 2006 | B1 |
7143016 | Discenzo et al. | Nov 2006 | B1 |
7222015 | Davis et al. | May 2007 | B2 |
7281519 | Schroeder | Oct 2007 | B2 |
7388303 | Seiver | Jun 2008 | B2 |
7404294 | Sundin | Jul 2008 | B2 |
7442239 | Armstrong et al. | Oct 2008 | B2 |
7524173 | Cummins | Apr 2009 | B2 |
7545130 | Latham | Jun 2009 | B2 |
7552903 | Dunn et al. | Jun 2009 | B2 |
7563076 | Brunet et al. | Jul 2009 | B2 |
7563413 | Naets et al. | Jul 2009 | B2 |
7574325 | Dykstra | Aug 2009 | B2 |
7594424 | Fazekas | Sep 2009 | B2 |
7614239 | Herzog et al. | Nov 2009 | B2 |
7627416 | Batenburg et al. | Dec 2009 | B2 |
7677316 | Butler et al. | Mar 2010 | B2 |
7721521 | Kunkle et al. | May 2010 | B2 |
7730711 | Kunkle et al. | Jun 2010 | B2 |
7779961 | Matte | Aug 2010 | B2 |
7789452 | Dempsey et al. | Sep 2010 | B2 |
7836949 | Dykstra | Nov 2010 | B2 |
7841394 | McNeel et al. | Nov 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
7861679 | Lemke et al. | Jan 2011 | B2 |
7886702 | Jerrell et al. | Feb 2011 | B2 |
7900724 | Promersberger et al. | Mar 2011 | B2 |
7921914 | Bruins et al. | Apr 2011 | B2 |
7938151 | Höckner | May 2011 | B2 |
7955056 | Pettersson | Jun 2011 | B2 |
7980357 | Edwards | Jul 2011 | B2 |
8056635 | Shampine et al. | Nov 2011 | B2 |
8083504 | Williams et al. | Dec 2011 | B2 |
8099942 | Alexander | Jan 2012 | B2 |
8186334 | Ooyama | May 2012 | B2 |
8196555 | Ikeda et al. | Jun 2012 | B2 |
8202354 | Iijima | Jun 2012 | B2 |
8316936 | Roddy et al. | Nov 2012 | B2 |
8336631 | Shampine et al. | Dec 2012 | B2 |
8414673 | Raje et al. | Apr 2013 | B2 |
8469826 | Brosowske | Jun 2013 | B2 |
8500215 | Gastauer | Aug 2013 | B2 |
8506267 | Gambier et al. | Aug 2013 | B2 |
8575873 | Peterson et al. | Nov 2013 | B2 |
8616005 | Cousino, Sr. et al. | Dec 2013 | B1 |
8621873 | Robertson et al. | Jan 2014 | B2 |
8641399 | Mucibabic | Feb 2014 | B2 |
8656990 | Kajaria et al. | Feb 2014 | B2 |
8672606 | Glynn et al. | Mar 2014 | B2 |
8707853 | Dille et al. | Apr 2014 | B1 |
8708667 | Collingborn | Apr 2014 | B2 |
8714253 | Sherwood et al. | May 2014 | B2 |
8757918 | Ramnarain et al. | Jun 2014 | B2 |
8763583 | Hofbauer et al. | Jul 2014 | B2 |
8770329 | Spitler | Jul 2014 | B2 |
8784081 | Blume | Jul 2014 | B1 |
8789601 | Broussard et al. | Jul 2014 | B2 |
8794307 | Coquilleau et al. | Aug 2014 | B2 |
8801394 | Anderson | Aug 2014 | B2 |
8851186 | Shampine et al. | Oct 2014 | B2 |
8851441 | Acuna et al. | Oct 2014 | B2 |
8894356 | Lafontaine et al. | Nov 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8951019 | Hains et al. | Feb 2015 | B2 |
8973560 | Krug | Mar 2015 | B2 |
8997904 | Cryer et al. | Apr 2015 | B2 |
9011111 | Lesko | Apr 2015 | B2 |
9016383 | Shampine et al. | Apr 2015 | B2 |
9032620 | Frassinelli et al. | May 2015 | B2 |
9057247 | Kumar et al. | Jun 2015 | B2 |
9097249 | Petersen | Aug 2015 | B2 |
9103193 | Coli et al. | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9175810 | Hains | Nov 2015 | B2 |
9187982 | Dehring et al. | Nov 2015 | B2 |
9206667 | Khvoshchev et al. | Dec 2015 | B2 |
9212643 | Deliyski | Dec 2015 | B2 |
9222346 | Walls | Dec 2015 | B1 |
9324049 | Thomeer et al. | Apr 2016 | B2 |
9341055 | Weightman et al. | May 2016 | B2 |
9346662 | Van Vliet et al. | May 2016 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9376786 | Numasawa | Jun 2016 | B2 |
9394829 | Cabeen et al. | Jul 2016 | B2 |
9395049 | Vicknair et al. | Jul 2016 | B2 |
9401670 | Minato et al. | Jul 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9410546 | Jaeger et al. | Aug 2016 | B2 |
9429078 | Crowe et al. | Aug 2016 | B1 |
9435333 | McCoy et al. | Sep 2016 | B2 |
9488169 | Cochran et al. | Nov 2016 | B2 |
9493997 | Liu et al. | Nov 2016 | B2 |
9512783 | Veilleux et al. | Dec 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9546652 | Yin | Jan 2017 | B2 |
9550501 | Ledbetter | Jan 2017 | B2 |
9556721 | Jang et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9570945 | Fischer | Feb 2017 | B2 |
9579980 | Cryer et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9593710 | Laimboeck et al. | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9617808 | Liu et al. | Apr 2017 | B2 |
9638101 | Crowe et al. | May 2017 | B1 |
9638194 | Wiegman et al. | May 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9656762 | Kamath et al. | May 2017 | B2 |
9689316 | Crom | Jun 2017 | B1 |
9695808 | Giessbach et al. | Jul 2017 | B2 |
9739130 | Young | Aug 2017 | B2 |
9764266 | Carter | Sep 2017 | B1 |
9777748 | Lu et al. | Oct 2017 | B2 |
9803467 | Tang et al. | Oct 2017 | B2 |
9803793 | Davi et al. | Oct 2017 | B2 |
9809308 | Aguilar et al. | Nov 2017 | B2 |
9829002 | Crom | Nov 2017 | B2 |
9840897 | Larson | Dec 2017 | B2 |
9840901 | Oering et al. | Dec 2017 | B2 |
9845730 | Betti et al. | Dec 2017 | B2 |
9850422 | Lestz et al. | Dec 2017 | B2 |
9856131 | Moffitt | Jan 2018 | B1 |
9863279 | Laing et al. | Jan 2018 | B2 |
9869305 | Crowe et al. | Jan 2018 | B1 |
9871406 | Churnock et al. | Jan 2018 | B1 |
9879609 | Crowe et al. | Jan 2018 | B1 |
RE46725 | Case et al. | Feb 2018 | E |
9893500 | Oehring et al. | Feb 2018 | B2 |
9893660 | Peterson et al. | Feb 2018 | B2 |
9897003 | Motakef et al. | Feb 2018 | B2 |
9920615 | Zhang et al. | Mar 2018 | B2 |
9945365 | Hernandez et al. | Apr 2018 | B2 |
9964052 | Millican et al. | May 2018 | B2 |
9970278 | Broussard et al. | May 2018 | B2 |
9981840 | Shock | May 2018 | B2 |
9995102 | Dillie et al. | Jun 2018 | B2 |
9995218 | Oehring et al. | Jun 2018 | B2 |
10008880 | Vicknair et al. | Jun 2018 | B2 |
10008912 | Davey et al. | Jun 2018 | B2 |
10018096 | Wallimann et al. | Jul 2018 | B2 |
10020711 | Oehring et al. | Jul 2018 | B2 |
10024123 | Steflenhagen et al. | Jul 2018 | B2 |
10029289 | Wendorski et al. | Jul 2018 | B2 |
10030579 | Austin et al. | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10040541 | Wilson et al. | Aug 2018 | B2 |
10060293 | Del Bono | Aug 2018 | B2 |
10060349 | Álvarez et al. | Aug 2018 | B2 |
10077933 | Nelson et al. | Sep 2018 | B2 |
10082137 | Graham et al. | Sep 2018 | B2 |
10094366 | Marica | Oct 2018 | B2 |
10100827 | Devan et al. | Oct 2018 | B2 |
10107084 | Coli et al. | Oct 2018 | B2 |
10107085 | Coli et al. | Oct 2018 | B2 |
10114061 | Frampton et al. | Oct 2018 | B2 |
10119381 | Oehring et al. | Nov 2018 | B2 |
10125750 | Pfaff | Nov 2018 | B2 |
10134257 | Zhang et al. | Nov 2018 | B2 |
10138098 | Sorensen et al. | Nov 2018 | B2 |
10151244 | Giancotti et al. | Dec 2018 | B2 |
10161423 | Rampen | Dec 2018 | B2 |
10174599 | Shampine et al. | Jan 2019 | B2 |
10184397 | Austin et al. | Jan 2019 | B2 |
10196258 | Kalala et al. | Feb 2019 | B2 |
10221856 | Hernandez et al. | Mar 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10227855 | Coli et al. | Mar 2019 | B2 |
10246984 | Payne et al. | Apr 2019 | B2 |
10247182 | Zhang et al. | Apr 2019 | B2 |
10254732 | Oehring et al. | Apr 2019 | B2 |
10267439 | Pryce et al. | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287943 | Schiltz | May 2019 | B1 |
10288519 | De La Cruz | May 2019 | B2 |
10303190 | Shock | May 2019 | B2 |
10305350 | Johnson et al. | May 2019 | B2 |
10316832 | Byrne | Jun 2019 | B2 |
10317875 | Pandurangan | Jun 2019 | B2 |
10337402 | Austin et al. | Jul 2019 | B2 |
10358035 | Cryer | Jul 2019 | B2 |
10371012 | Davis et al. | Aug 2019 | B2 |
10374485 | Morris et al. | Aug 2019 | B2 |
10378326 | Morris et al. | Aug 2019 | B2 |
10393108 | Chong et al. | Aug 2019 | B2 |
10407990 | Oehring et al. | Sep 2019 | B2 |
10408031 | Oehring et al. | Sep 2019 | B2 |
10415348 | Zhang et al. | Sep 2019 | B2 |
10415557 | Crowe et al. | Sep 2019 | B1 |
10415562 | Kajita et al. | Sep 2019 | B2 |
RE47695 | Case et al. | Nov 2019 | E |
10465689 | Crom | Nov 2019 | B2 |
10478753 | Elms et al. | Nov 2019 | B1 |
10526882 | Oehring et al. | Jan 2020 | B2 |
10563649 | Zhang et al. | Feb 2020 | B2 |
10577910 | Stephenson | Mar 2020 | B2 |
10584645 | Nakagawa et al. | Mar 2020 | B2 |
10590867 | Thomassin et al. | Mar 2020 | B2 |
10598258 | Oehring et al. | Mar 2020 | B2 |
10610842 | Chong | Apr 2020 | B2 |
10662749 | Hill et al. | May 2020 | B1 |
10711787 | Darley | Jul 2020 | B1 |
10738580 | Fischer et al. | Aug 2020 | B1 |
10753153 | Fischer et al. | Aug 2020 | B1 |
10753165 | Fischer et al. | Aug 2020 | B1 |
10760556 | Crom et al. | Sep 2020 | B1 |
10794165 | Fischer et al. | Oct 2020 | B2 |
10794166 | Reckels et al. | Oct 2020 | B2 |
10801311 | Cui et al. | Oct 2020 | B1 |
10815764 | Yeung et al. | Oct 2020 | B1 |
10815978 | Glass | Oct 2020 | B2 |
10830032 | Zhang et al. | Nov 2020 | B1 |
10830225 | Repaci | Nov 2020 | B2 |
10859203 | Cui et al. | Dec 2020 | B1 |
10864487 | Han et al. | Dec 2020 | B1 |
10865624 | Cui et al. | Dec 2020 | B1 |
10865631 | Zhang et al. | Dec 2020 | B1 |
10870093 | Zhong et al. | Dec 2020 | B1 |
10871045 | Fischer et al. | Dec 2020 | B2 |
10900475 | Weightman et al. | Jan 2021 | B2 |
10907459 | Yeung et al. | Feb 2021 | B1 |
10927774 | Cai et al. | Feb 2021 | B2 |
10927802 | Oehring | Feb 2021 | B2 |
10954770 | Yeung et al. | Mar 2021 | B1 |
10954855 | Ji et al. | Mar 2021 | B1 |
10961614 | Yeung et al. | Mar 2021 | B1 |
10961908 | Yeung et al. | Mar 2021 | B1 |
10961912 | Yeung et al. | Mar 2021 | B1 |
10961914 | Yeung et al. | Mar 2021 | B1 |
10961993 | Ji et al. | Mar 2021 | B1 |
10961995 | Mayorca | Mar 2021 | B2 |
10892596 | Yeung et al. | Apr 2021 | B2 |
10968837 | Yeung et al. | Apr 2021 | B1 |
10982523 | Hill et al. | Apr 2021 | B1 |
10989019 | Cai et al. | Apr 2021 | B2 |
10989180 | Yeung et al. | Apr 2021 | B2 |
10995564 | Miller et al. | May 2021 | B2 |
11002189 | Yeung et al. | May 2021 | B2 |
11008950 | Ethier et al. | May 2021 | B2 |
11015423 | Yeung et al. | May 2021 | B1 |
11015536 | Yeung et al. | May 2021 | B2 |
11015594 | Yeung et al. | May 2021 | B2 |
11022526 | Yeung et al. | Jun 2021 | B1 |
11028677 | Yeung et al. | Jun 2021 | B1 |
11035213 | Dusterhoft et al. | Jun 2021 | B2 |
11035214 | Cui et al. | Jun 2021 | B2 |
11047379 | Li et al. | Jun 2021 | B1 |
10895202 | Yeung et al. | Jul 2021 | B1 |
11053853 | Li et al. | Jul 2021 | B2 |
11060455 | Yeung et al. | Jul 2021 | B1 |
11068455 | Shabi et al. | Jul 2021 | B2 |
11085281 | Yeung et al. | Aug 2021 | B1 |
11085282 | Mazrooee et al. | Aug 2021 | B2 |
11092152 | Yeung et al. | Aug 2021 | B2 |
11098651 | Yeung et al. | Aug 2021 | B1 |
11105250 | Zhang et al. | Aug 2021 | B1 |
11105266 | Zhou et al. | Aug 2021 | B2 |
11109508 | Yeung et al. | Aug 2021 | B1 |
11111768 | Yeung et al. | Sep 2021 | B1 |
11125066 | Yeung et al. | Sep 2021 | B1 |
11125156 | Zhang et al. | Sep 2021 | B2 |
11129295 | Yeung et al. | Sep 2021 | B1 |
11143000 | Li et al. | Oct 2021 | B2 |
11143005 | Dusterhoft et al. | Oct 2021 | B2 |
11143006 | Zhang et al. | Oct 2021 | B1 |
11149533 | Yeung et al. | Oct 2021 | B1 |
11149726 | Yeung et al. | Oct 2021 | B1 |
11156159 | Yeung et al. | Oct 2021 | B1 |
11168681 | Boguski | Nov 2021 | B2 |
11174716 | Yeung et al. | Nov 2021 | B1 |
11193360 | Yeung et al. | Dec 2021 | B1 |
11193361 | Yeung et al. | Dec 2021 | B1 |
11205880 | Yeung et al. | Dec 2021 | B1 |
11205881 | Yeung et al. | Dec 2021 | B2 |
11208879 | Yeung et al. | Dec 2021 | B1 |
11208953 | Yeung et al. | Dec 2021 | B1 |
11220895 | Yeung et al. | Jan 2022 | B1 |
11236739 | Yeung et al. | Feb 2022 | B2 |
11242737 | Zhang et al. | Feb 2022 | B2 |
11243509 | Cai et al. | Feb 2022 | B2 |
11251650 | Liu et al. | Feb 2022 | B1 |
11261717 | Yeung et al. | Mar 2022 | B2 |
11268346 | Yeung et al. | Mar 2022 | B2 |
11280266 | Yeung et al. | Mar 2022 | B2 |
RE49083 | Case et al. | May 2022 | E |
11339638 | Yeung et al. | May 2022 | B1 |
11346200 | Cai et al. | May 2022 | B2 |
11373058 | Jaaskelainen et al. | Jun 2022 | B2 |
RE49140 | Case et al. | Jul 2022 | E |
11377943 | Kriebel et al. | Jul 2022 | B2 |
RE49155 | Case et al. | Aug 2022 | E |
RE49156 | Case et al. | Aug 2022 | E |
11401927 | Li et al. | Aug 2022 | B2 |
11428165 | Yeung et al. | Aug 2022 | B2 |
11441483 | Li et al. | Sep 2022 | B2 |
11448122 | Feng et al. | Sep 2022 | B2 |
11466680 | Yeung | Oct 2022 | B2 |
11480040 | Han et al. | Oct 2022 | B2 |
11492887 | Cui et al. | Nov 2022 | B2 |
11499405 | Zhang et al. | Nov 2022 | B2 |
11506039 | Zhang et al. | Nov 2022 | B2 |
11512570 | Yeung | Nov 2022 | B2 |
11519395 | Zhang et al. | Dec 2022 | B2 |
11519405 | Deng et al. | Dec 2022 | B2 |
11530602 | Yeung et al. | Dec 2022 | B2 |
11549349 | Wang et al. | Jan 2023 | B2 |
11555390 | Cui et al. | Jan 2023 | B2 |
11555756 | Yeung et al. | Jan 2023 | B2 |
11557887 | Ji et al. | Jan 2023 | B2 |
11560779 | Mao et al. | Jan 2023 | B2 |
11560845 | Yeung et al. | Jan 2023 | B2 |
11572775 | Mao et al. | Feb 2023 | B2 |
11575249 | Ji et al. | Feb 2023 | B2 |
11592020 | Chang et al. | Feb 2023 | B2 |
11596047 | Liu et al. | Feb 2023 | B2 |
11598263 | Yeung et al. | Mar 2023 | B2 |
11603797 | Zhang et al. | Mar 2023 | B2 |
11607982 | Tian et al. | Mar 2023 | B2 |
11608726 | Zhang et al. | Mar 2023 | B2 |
20020126922 | Cheng et al. | Sep 2002 | A1 |
20020197176 | Kondo | Dec 2002 | A1 |
20030031568 | Stiefel | Feb 2003 | A1 |
20030061819 | Kuroki et al. | Apr 2003 | A1 |
20030161212 | Neal et al. | Aug 2003 | A1 |
20040016245 | Pierson | Jan 2004 | A1 |
20040074238 | Wantanabe et al. | Apr 2004 | A1 |
20040076526 | Fukano et al. | Apr 2004 | A1 |
20040187950 | Cohen et al. | Sep 2004 | A1 |
20040219040 | Kugelev et al. | Nov 2004 | A1 |
20050051322 | Speer | Mar 2005 | A1 |
20050056081 | Gocho | Mar 2005 | A1 |
20050139286 | Poulter | Jun 2005 | A1 |
20050196298 | Manning | Sep 2005 | A1 |
20050226754 | Orr et al. | Oct 2005 | A1 |
20050274134 | Ryu et al. | Dec 2005 | A1 |
20060061091 | Osterloh | Mar 2006 | A1 |
20060062914 | Garg et al. | Mar 2006 | A1 |
20060196251 | Richey | Sep 2006 | A1 |
20060211356 | Grassman | Sep 2006 | A1 |
20060228225 | Rogers | Oct 2006 | A1 |
20060260331 | Andreychuk | Nov 2006 | A1 |
20060272333 | Sundin | Dec 2006 | A1 |
20070029090 | Andreychuk et al. | Feb 2007 | A1 |
20070041848 | Wood et al. | Feb 2007 | A1 |
20070066406 | Keller et al. | Mar 2007 | A1 |
20070098580 | Petersen | May 2007 | A1 |
20070107981 | Sicotte | May 2007 | A1 |
20070125544 | Robinson et al. | Jun 2007 | A1 |
20070169543 | Fazekas | Jul 2007 | A1 |
20070181212 | Fell | Aug 2007 | A1 |
20070277982 | Shampine et al. | Dec 2007 | A1 |
20070295569 | Manzoor et al. | Dec 2007 | A1 |
20080006089 | Adnan et al. | Jan 2008 | A1 |
20080098891 | Feher | May 2008 | A1 |
20080161974 | Alston | Jul 2008 | A1 |
20080212275 | Waryck et al. | Sep 2008 | A1 |
20080229757 | Alexander et al. | Sep 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20080298982 | Pabst | Dec 2008 | A1 |
20090064685 | Busekros et al. | Mar 2009 | A1 |
20090068031 | Gambier et al. | Mar 2009 | A1 |
20090092510 | Williams et al. | Apr 2009 | A1 |
20090124191 | Van Becelaere et al. | May 2009 | A1 |
20090178412 | Spytek | Jul 2009 | A1 |
20090212630 | Flegel et al. | Aug 2009 | A1 |
20090249794 | Wilkes et al. | Oct 2009 | A1 |
20090252616 | Brunet et al. | Oct 2009 | A1 |
20090308602 | Bruins et al. | Dec 2009 | A1 |
20100019626 | Stout et al. | Jan 2010 | A1 |
20100071899 | Coquilleau et al. | Mar 2010 | A1 |
20100218508 | Brown et al. | Sep 2010 | A1 |
20100300683 | Looper et al. | Dec 2010 | A1 |
20100310384 | Stephenson et al. | Dec 2010 | A1 |
20110041681 | Duerr | Feb 2011 | A1 |
20110052423 | Gambier | Mar 2011 | A1 |
20110054704 | Karpman et al. | Mar 2011 | A1 |
20110085924 | Shampine et al. | Apr 2011 | A1 |
20110146244 | Farman et al. | Jun 2011 | A1 |
20110146246 | Farman et al. | Jun 2011 | A1 |
20110173991 | Dean | Jul 2011 | A1 |
20110197988 | Van Vliet et al. | Aug 2011 | A1 |
20110241888 | Lu et al. | Oct 2011 | A1 |
20110265443 | Ansari | Nov 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120023973 | Mayorca | Feb 2012 | A1 |
20120048242 | Sumilla et al. | Mar 2012 | A1 |
20120085541 | Love et al. | Apr 2012 | A1 |
20120137699 | Montagne et al. | Jun 2012 | A1 |
20120179444 | Ganguly et al. | Jul 2012 | A1 |
20120192542 | Chillar et al. | Aug 2012 | A1 |
20120199001 | Chillar et al. | Aug 2012 | A1 |
20120204627 | Anderl et al. | Aug 2012 | A1 |
20120255734 | Coli et al. | Oct 2012 | A1 |
20120310509 | Pardo et al. | Dec 2012 | A1 |
20120324903 | Dewis et al. | Dec 2012 | A1 |
20130068307 | Hains et al. | Mar 2013 | A1 |
20130087045 | Sullivan et al. | Apr 2013 | A1 |
20130087945 | Kusters et al. | Apr 2013 | A1 |
20130134702 | Boraas et al. | May 2013 | A1 |
20130189915 | Hazard | Jul 2013 | A1 |
20130233165 | Matzner et al. | Sep 2013 | A1 |
20130255953 | Tudor | Oct 2013 | A1 |
20130259707 | Yin | Oct 2013 | A1 |
20130284455 | Kajaria et al. | Oct 2013 | A1 |
20130300341 | Gillette | Nov 2013 | A1 |
20130306322 | Sanborn | Nov 2013 | A1 |
20140010671 | Cryer et al. | Jan 2014 | A1 |
20140013768 | Laing et al. | Jan 2014 | A1 |
20140032082 | Gehrke et al. | Jan 2014 | A1 |
20140044517 | Saha et al. | Feb 2014 | A1 |
20140048253 | Andreychuk | Feb 2014 | A1 |
20140090729 | Coulter et al. | Apr 2014 | A1 |
20140090742 | Coskrey et al. | Apr 2014 | A1 |
20140094105 | Lundh et al. | Apr 2014 | A1 |
20140095114 | Thomeer et al. | Apr 2014 | A1 |
20140095554 | Thomeer et al. | Apr 2014 | A1 |
20140123621 | Driessens et al. | May 2014 | A1 |
20140130422 | Laing et al. | May 2014 | A1 |
20140138079 | Broussard et al. | May 2014 | A1 |
20140144641 | Chandler | May 2014 | A1 |
20140147291 | Burnette | May 2014 | A1 |
20140158345 | Jang et al. | Jun 2014 | A1 |
20140196459 | Futa et al. | Jul 2014 | A1 |
20140216736 | Leugemors et al. | Aug 2014 | A1 |
20140219824 | Burnette | Aug 2014 | A1 |
20140250845 | Jackson et al. | Sep 2014 | A1 |
20140251623 | Lestz et al. | Sep 2014 | A1 |
20140277772 | Lopez et al. | Sep 2014 | A1 |
20140290266 | Veilleux, Jr. et al. | Oct 2014 | A1 |
20140318638 | Harwood et al. | Oct 2014 | A1 |
20140322050 | Marette et al. | Oct 2014 | A1 |
20150027730 | Hall et al. | Jan 2015 | A1 |
20150078924 | Zhang et al. | Mar 2015 | A1 |
20150101344 | Jarrier et al. | Apr 2015 | A1 |
20150114652 | Lestz et al. | Apr 2015 | A1 |
20150129210 | Chong et al. | May 2015 | A1 |
20150135659 | Jarrier et al. | May 2015 | A1 |
20150159553 | Kippel et al. | Jun 2015 | A1 |
20150192117 | Bridges | Jul 2015 | A1 |
20150204148 | Liu et al. | Jul 2015 | A1 |
20150204322 | Iund et al. | Jul 2015 | A1 |
20150211512 | Wiegman et al. | Jul 2015 | A1 |
20150214816 | Raad | Jul 2015 | A1 |
20150217672 | Shampine et al. | Aug 2015 | A1 |
20150226140 | Zhang et al. | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150275891 | Chong et al. | Oct 2015 | A1 |
20150337730 | Kupiszewski et al. | Nov 2015 | A1 |
20150340864 | Compton | Nov 2015 | A1 |
20150345385 | Santini | Dec 2015 | A1 |
20150369351 | Hermann et al. | Dec 2015 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160032836 | Hawkinson et al. | Feb 2016 | A1 |
20160076447 | Merlo et al. | Mar 2016 | A1 |
20160102581 | Del Bono | Apr 2016 | A1 |
20160105022 | Oehring et al. | Apr 2016 | A1 |
20160108713 | Dunaeva et al. | Apr 2016 | A1 |
20160168979 | Zhang et al. | Jun 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160177945 | Byrne et al. | Jun 2016 | A1 |
20160186671 | Austin et al. | Jun 2016 | A1 |
20160195082 | Wiegman | Jul 2016 | A1 |
20160215774 | Oklejas et al. | Jul 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160244314 | Van Vliet et al. | Aug 2016 | A1 |
20160248230 | Tawy et al. | Aug 2016 | A1 |
20160253634 | Thomeer et al. | Sep 2016 | A1 |
20160258267 | Payne et al. | Sep 2016 | A1 |
20160273328 | Oehring | Sep 2016 | A1 |
20160273346 | Tang et al. | Sep 2016 | A1 |
20160290114 | Oehring et al. | Oct 2016 | A1 |
20160319650 | Oehring et al. | Nov 2016 | A1 |
20160326845 | Djikpesse et al. | Nov 2016 | A1 |
20160348479 | Oehring et al. | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170009905 | Arnold | Jan 2017 | A1 |
20170016433 | Chong et al. | Jan 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170038137 | Turney | Feb 2017 | A1 |
20170045055 | Hoefel et al. | Feb 2017 | A1 |
20170052087 | Faqihi et al. | Feb 2017 | A1 |
20170074074 | Joseph et al. | Mar 2017 | A1 |
20170074076 | Joseph et al. | Mar 2017 | A1 |
20170074089 | Agarwal et al. | Mar 2017 | A1 |
20170082110 | Lammers | Mar 2017 | A1 |
20170089189 | Norris et al. | Mar 2017 | A1 |
20170114613 | Lecerf et al. | Apr 2017 | A1 |
20170114625 | Norris et al. | Apr 2017 | A1 |
20170122310 | Ladron de Guevara | May 2017 | A1 |
20170131174 | Enev et al. | May 2017 | A1 |
20170145918 | Oehring et al. | May 2017 | A1 |
20170191350 | Johns et al. | Jul 2017 | A1 |
20170218727 | Oehring et al. | Aug 2017 | A1 |
20170226839 | Broussard et al. | Aug 2017 | A1 |
20170226842 | Omont et al. | Aug 2017 | A1 |
20170226998 | Zhang et al. | Aug 2017 | A1 |
20170227002 | Mikulski et al. | Aug 2017 | A1 |
20170233103 | Teicholz et al. | Aug 2017 | A1 |
20170234165 | Kersey et al. | Aug 2017 | A1 |
20170234308 | Buckley | Aug 2017 | A1 |
20170241336 | Jones et al. | Aug 2017 | A1 |
20170248034 | Dzieciol et al. | Aug 2017 | A1 |
20170248208 | Tamura | Aug 2017 | A1 |
20170248308 | Makarychev-Mikhailov et al. | Aug 2017 | A1 |
20170275149 | Schmidt | Sep 2017 | A1 |
20170288400 | Williams | Oct 2017 | A1 |
20170292409 | Aguilar et al. | Oct 2017 | A1 |
20170302135 | Cory | Oct 2017 | A1 |
20170305736 | Haile et al. | Oct 2017 | A1 |
20170306847 | Suciu et al. | Oct 2017 | A1 |
20170306936 | Dole | Oct 2017 | A1 |
20170322086 | Luharuka | Nov 2017 | A1 |
20170333086 | Jackson | Nov 2017 | A1 |
20170334448 | Schwunk | Nov 2017 | A1 |
20170335842 | Robinson et al. | Nov 2017 | A1 |
20170350471 | Steidl et al. | Dec 2017 | A1 |
20170370199 | Witkowski et al. | Dec 2017 | A1 |
20170370480 | Witkowski et al. | Dec 2017 | A1 |
20180034280 | Pedersen | Feb 2018 | A1 |
20180038328 | Louven et al. | Feb 2018 | A1 |
20180041093 | Miranda | Feb 2018 | A1 |
20180045202 | Crom | Feb 2018 | A1 |
20180038216 | Zhang et al. | Mar 2018 | A1 |
20180058171 | Roesner et al. | Mar 2018 | A1 |
20180087499 | Zhang et al. | Mar 2018 | A1 |
20180087996 | De La Cruz | Mar 2018 | A1 |
20180156210 | Oehring et al. | Jun 2018 | A1 |
20180172294 | Owen | Jun 2018 | A1 |
20180183219 | Oehring et al. | Jun 2018 | A1 |
20180186442 | Maier | Jul 2018 | A1 |
20180187662 | Hill et al. | Jul 2018 | A1 |
20180209415 | Zhang et al. | Jul 2018 | A1 |
20180223640 | Keihany et al. | Aug 2018 | A1 |
20180224044 | Penney | Aug 2018 | A1 |
20180229998 | Shock | Aug 2018 | A1 |
20180258746 | Broussard et al. | Sep 2018 | A1 |
20180266412 | Stokkevag et al. | Sep 2018 | A1 |
20180278124 | Oehring et al. | Sep 2018 | A1 |
20180283102 | Cook | Oct 2018 | A1 |
20180283618 | Cook | Oct 2018 | A1 |
20180284817 | Cook et al. | Oct 2018 | A1 |
20180290877 | Shock | Oct 2018 | A1 |
20180291781 | Pedrini | Oct 2018 | A1 |
20180298731 | Bishop | Oct 2018 | A1 |
20180298735 | Conrad | Oct 2018 | A1 |
20180307255 | Bishop | Oct 2018 | A1 |
20180313456 | Bayyouk et al. | Nov 2018 | A1 |
20180328157 | Bishop | Nov 2018 | A1 |
20180334893 | Oehring | Nov 2018 | A1 |
20180363435 | Coli et al. | Dec 2018 | A1 |
20180363436 | Coli et al. | Dec 2018 | A1 |
20180363437 | Coli et al. | Dec 2018 | A1 |
20180363438 | Coli et al. | Dec 2018 | A1 |
20190003272 | Morris et al. | Jan 2019 | A1 |
20190003329 | Morris et al. | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190011051 | Yeung | Jan 2019 | A1 |
20190048993 | Akiyama et al. | Feb 2019 | A1 |
20190063263 | Davis et al. | Feb 2019 | A1 |
20190063341 | Davis | Feb 2019 | A1 |
20190067991 | Davis et al. | Feb 2019 | A1 |
20190071992 | Feng | Mar 2019 | A1 |
20190072005 | Fisher et al. | Mar 2019 | A1 |
20190078471 | Braglia et al. | Mar 2019 | A1 |
20190091619 | Huang | Mar 2019 | A1 |
20190106316 | Van Vliet et al. | Apr 2019 | A1 |
20190106970 | Oehring | Apr 2019 | A1 |
20190112908 | Coli et al. | Apr 2019 | A1 |
20190112910 | Oehring et al. | Apr 2019 | A1 |
20190119096 | Haile et al. | Apr 2019 | A1 |
20190120024 | Oehring et al. | Apr 2019 | A1 |
20190120031 | Gilje | Apr 2019 | A1 |
20190120134 | Goleczka et al. | Apr 2019 | A1 |
20190128247 | Douglas, III | May 2019 | A1 |
20190128288 | Konada et al. | May 2019 | A1 |
20190131607 | Gillette | May 2019 | A1 |
20190136677 | Shampine et al. | May 2019 | A1 |
20190153843 | Headrick et al. | May 2019 | A1 |
20190153938 | Hammoud | May 2019 | A1 |
20190154020 | Glass | May 2019 | A1 |
20190155318 | Meunier | May 2019 | A1 |
20190264667 | Byrne | May 2019 | A1 |
20190178234 | Beisel | Jun 2019 | A1 |
20190178235 | Coskrey et al. | Jun 2019 | A1 |
20190185312 | Bush et al. | Jun 2019 | A1 |
20190203572 | Morris et al. | Jul 2019 | A1 |
20190204021 | Morris et al. | Jul 2019 | A1 |
20190211661 | Reckles et al. | Jul 2019 | A1 |
20190211814 | Weightman et al. | Jul 2019 | A1 |
20190217258 | Bishop | Jul 2019 | A1 |
20190226317 | Payne et al. | Jul 2019 | A1 |
20190245348 | Hinderliter et al. | Aug 2019 | A1 |
20190249652 | Stephenson et al. | Aug 2019 | A1 |
20190249754 | Oehring et al. | Aug 2019 | A1 |
20190257297 | Botting et al. | Aug 2019 | A1 |
20190277279 | Byrne et al. | Sep 2019 | A1 |
20190277295 | Clyburn et al. | Sep 2019 | A1 |
20190309585 | Miller et al. | Oct 2019 | A1 |
20190316447 | Oehring et al. | Oct 2019 | A1 |
20190316456 | Beisel et al. | Oct 2019 | A1 |
20190323337 | Glass et al. | Oct 2019 | A1 |
20190330923 | Gable et al. | Oct 2019 | A1 |
20190331117 | Gable et al. | Oct 2019 | A1 |
20190337392 | Joshi et al. | Nov 2019 | A1 |
20190338762 | Curry et al. | Nov 2019 | A1 |
20190345920 | Suijaatmadja et al. | Nov 2019 | A1 |
20190353103 | Roberge | Nov 2019 | A1 |
20190356199 | Morris et al. | Nov 2019 | A1 |
20190376449 | Carrell | Dec 2019 | A1 |
20190383123 | Hinderliter | Dec 2019 | A1 |
20200003205 | Stokkeväg et al. | Jan 2020 | A1 |
20200011165 | George et al. | Jan 2020 | A1 |
20200040878 | Morris | Feb 2020 | A1 |
20200049136 | Stephenson | Feb 2020 | A1 |
20200049153 | Headrick et al. | Feb 2020 | A1 |
20200071998 | Oehring et al. | Mar 2020 | A1 |
20200072201 | Marica | Mar 2020 | A1 |
20200088202 | Sigmar et al. | Mar 2020 | A1 |
20200095854 | Hinderliter | Mar 2020 | A1 |
20200109610 | Husoy et al. | Apr 2020 | A1 |
20200132058 | Mollatt | Apr 2020 | A1 |
20200141219 | Oehring et al. | May 2020 | A1 |
20200141326 | Redford et al. | May 2020 | A1 |
20200141907 | Meek et al. | May 2020 | A1 |
20200166026 | Marica | May 2020 | A1 |
20200206704 | Chong | Jul 2020 | A1 |
20200208733 | Kim | Jul 2020 | A1 |
20200223648 | Herman et al. | Jul 2020 | A1 |
20200224645 | Buckley | Jul 2020 | A1 |
20200232454 | Chretien et al. | Jul 2020 | A1 |
20200256333 | Suijaatmadja | Aug 2020 | A1 |
20200263498 | Fischer et al. | Aug 2020 | A1 |
20200263525 | Reid | Aug 2020 | A1 |
20200263526 | Fischer et al. | Aug 2020 | A1 |
20200263527 | Fischer et al. | Aug 2020 | A1 |
20200263528 | Fischer et al. | Aug 2020 | A1 |
20200267888 | Putz | Aug 2020 | A1 |
20200291731 | Haiderer et al. | Sep 2020 | A1 |
20200295574 | Batsch-Smith | Sep 2020 | A1 |
20200300050 | Oehring et al. | Sep 2020 | A1 |
20200309113 | Hunter et al. | Oct 2020 | A1 |
20200325752 | Clark et al. | Oct 2020 | A1 |
20200325760 | Markham | Oct 2020 | A1 |
20200325761 | Williams | Oct 2020 | A1 |
20200325893 | Kraige et al. | Oct 2020 | A1 |
20200332784 | Zhang et al. | Oct 2020 | A1 |
20200332788 | Cui et al. | Oct 2020 | A1 |
20200340313 | Fischer et al. | Oct 2020 | A1 |
20200340340 | Oehring et al. | Oct 2020 | A1 |
20200340344 | Reckels et al. | Oct 2020 | A1 |
20200340404 | Stockstill | Oct 2020 | A1 |
20200347725 | Morris et al. | Nov 2020 | A1 |
20200354928 | Wehler et al. | Nov 2020 | A1 |
20200362760 | Morenko et al. | Nov 2020 | A1 |
20200362764 | Saintignan et al. | Nov 2020 | A1 |
20200370394 | Cai et al. | Nov 2020 | A1 |
20200370408 | Cai et al. | Nov 2020 | A1 |
20200370429 | Cai et al. | Nov 2020 | A1 |
20200371490 | Cai et al. | Nov 2020 | A1 |
20200340322 | Sizemore et al. | Dec 2020 | A1 |
20200386222 | Pham et al. | Dec 2020 | A1 |
20200388140 | Gomez | Dec 2020 | A1 |
20200392826 | Cui et al. | Dec 2020 | A1 |
20200392827 | George et al. | Dec 2020 | A1 |
20200393088 | Sizemore et al. | Dec 2020 | A1 |
20200398238 | Zhong et al. | Dec 2020 | A1 |
20200400000 | Ghasripoor et al. | Dec 2020 | A1 |
20200400005 | Han et al. | Dec 2020 | A1 |
20200407625 | Stephenson | Dec 2020 | A1 |
20200408071 | Li et al. | Dec 2020 | A1 |
20200408144 | Feng et al. | Dec 2020 | A1 |
20200408147 | Zhang et al. | Dec 2020 | A1 |
20200408149 | Li et al. | Dec 2020 | A1 |
20210025324 | Morris et al. | Jan 2021 | A1 |
20210025383 | Bodishbaugh et al. | Jan 2021 | A1 |
20210032961 | Hinderliter et al. | Feb 2021 | A1 |
20210054727 | Floyd | Feb 2021 | A1 |
20210071503 | Ogg et al. | Mar 2021 | A1 |
20210071574 | Feng et al. | Mar 2021 | A1 |
20210071579 | Li et al. | Mar 2021 | A1 |
20210071654 | Brunson | Mar 2021 | A1 |
20210071752 | Cui et al. | Mar 2021 | A1 |
20210079758 | Yeung et al. | Mar 2021 | A1 |
20210079851 | Yeung et al. | Mar 2021 | A1 |
20210086851 | Zhang et al. | Mar 2021 | A1 |
20210087883 | Zhang et al. | Mar 2021 | A1 |
20210087916 | Zhang et al. | Mar 2021 | A1 |
20210087925 | Heidari et al. | Mar 2021 | A1 |
20210087943 | Cui et al. | Mar 2021 | A1 |
20210088042 | Zhang et al. | Mar 2021 | A1 |
20210123425 | Cui et al. | Apr 2021 | A1 |
20210123434 | Cui et al. | Apr 2021 | A1 |
20210123435 | Cui et al. | Apr 2021 | A1 |
20210131409 | Cui et al. | May 2021 | A1 |
20210140416 | Buckley | May 2021 | A1 |
20210148208 | Thomas et al. | May 2021 | A1 |
20210156240 | Cicci et al. | May 2021 | A1 |
20210156241 | Cook | May 2021 | A1 |
20210172282 | Wang et al. | Jun 2021 | A1 |
20210180517 | Zhou et al. | Jun 2021 | A1 |
20210199110 | Albert et al. | Jul 2021 | A1 |
20210222690 | Beisel | Jul 2021 | A1 |
20210239112 | Buckley | Aug 2021 | A1 |
20210246774 | Cui et al. | Aug 2021 | A1 |
20210270261 | Zhang et al. | Sep 2021 | A1 |
20210270264 | Byrne | Sep 2021 | A1 |
20210285311 | Ji et al. | Sep 2021 | A1 |
20210285432 | Ji et al. | Sep 2021 | A1 |
20210301807 | Cui et al. | Sep 2021 | A1 |
20210306720 | Sandoval et al. | Sep 2021 | A1 |
20210308638 | Zhong et al. | Oct 2021 | A1 |
20210348475 | Yeung et al. | Nov 2021 | A1 |
20210348476 | Yeung et al. | Nov 2021 | A1 |
20210348477 | Yeung et al. | Nov 2021 | A1 |
20210355927 | Jian et al. | Nov 2021 | A1 |
20210372394 | Bagulayan et al. | Dec 2021 | A1 |
20210372395 | Li et al. | Dec 2021 | A1 |
20210388760 | Feng et al. | Dec 2021 | A1 |
20220082007 | Zhang et al. | Mar 2022 | A1 |
20220090476 | Zhang et al. | Mar 2022 | A1 |
20220090477 | Zhang et al. | Mar 2022 | A1 |
20220090478 | Zhang et al. | Mar 2022 | A1 |
20220112892 | Cui et al. | Apr 2022 | A1 |
20220120262 | Ji et al. | Apr 2022 | A1 |
20220145740 | Yuan et al. | May 2022 | A1 |
20220154775 | Liu et al. | May 2022 | A1 |
20220155373 | Liu et al. | May 2022 | A1 |
20220162931 | Zhong et al. | May 2022 | A1 |
20220162991 | Zhang et al. | May 2022 | A1 |
20220181859 | Ji et al. | Jun 2022 | A1 |
20220186724 | Chang et al. | Jun 2022 | A1 |
20220213777 | Cui et al. | Jul 2022 | A1 |
20220220836 | Zhang et al. | Jul 2022 | A1 |
20220224087 | Ji et al. | Jul 2022 | A1 |
20220228468 | Cui et al. | Jul 2022 | A1 |
20220228469 | Zhang et al. | Jul 2022 | A1 |
20220235639 | Zhang et al. | Jul 2022 | A1 |
20220235640 | Mao et al. | Jul 2022 | A1 |
20220235641 | Zhang et al. | Jul 2022 | A1 |
20220235642 | Zhang et al. | Jul 2022 | A1 |
20220235802 | Jiang et al. | Jul 2022 | A1 |
20220242297 | Tian et al. | Aug 2022 | A1 |
20220243613 | Ji et al. | Aug 2022 | A1 |
20220243724 | Li et al. | Aug 2022 | A1 |
20220250000 | Zhang et al. | Aug 2022 | A1 |
20220255319 | Liu et al. | Aug 2022 | A1 |
20220258659 | Cui et al. | Aug 2022 | A1 |
20220259947 | Li et al. | Aug 2022 | A1 |
20220259964 | Zhang et al. | Aug 2022 | A1 |
20220268201 | Feng et al. | Aug 2022 | A1 |
20220282606 | Zhong et al. | Sep 2022 | A1 |
20220282726 | Zhang et al. | Sep 2022 | A1 |
20220290549 | Zhang et al. | Sep 2022 | A1 |
20220294194 | Cao et al. | Sep 2022 | A1 |
20220298906 | Zhong et al. | Sep 2022 | A1 |
20220307359 | Liu et al. | Sep 2022 | A1 |
20220307424 | Wang et al. | Sep 2022 | A1 |
20220314248 | Ge et al. | Oct 2022 | A1 |
20220315347 | Liu et al. | Oct 2022 | A1 |
20220316306 | Liu et al. | Oct 2022 | A1 |
20220316362 | Zhang et al. | Oct 2022 | A1 |
20220316461 | Wang et al. | Oct 2022 | A1 |
20220325608 | Zhang et al. | Oct 2022 | A1 |
20220330411 | Liu et al. | Oct 2022 | A1 |
20220333471 | Zhong et al. | Oct 2022 | A1 |
20220339646 | Yu et al. | Oct 2022 | A1 |
20220341358 | Ji et al. | Oct 2022 | A1 |
20220341362 | Feng et al. | Oct 2022 | A1 |
20220341415 | Deng et al. | Oct 2022 | A1 |
20220345007 | Liu et al. | Oct 2022 | A1 |
20220349345 | Zhang et al. | Nov 2022 | A1 |
20220353980 | Liu et al. | Nov 2022 | A1 |
20220361309 | Liu et al. | Nov 2022 | A1 |
20220364452 | Wang et al. | Nov 2022 | A1 |
20220364453 | Chang et al. | Nov 2022 | A1 |
20220372865 | Lin et al. | Nov 2022 | A1 |
20220376280 | Shao et al. | Nov 2022 | A1 |
20220381126 | Cui et al. | Dec 2022 | A1 |
20220389799 | Mao | Dec 2022 | A1 |
20220389803 | Zhang et al. | Dec 2022 | A1 |
20220389804 | Cui et al. | Dec 2022 | A1 |
20220389865 | Feng et al. | Dec 2022 | A1 |
20220389867 | Li et al. | Dec 2022 | A1 |
20220412196 | Cui et al. | Dec 2022 | A1 |
20220412199 | Mao et al. | Dec 2022 | A1 |
20220412200 | Zhang et al. | Dec 2022 | A1 |
20220412258 | Li et al. | Dec 2022 | A1 |
20220412379 | Wang et al. | Dec 2022 | A1 |
20230001524 | Jiang et al. | Jan 2023 | A1 |
20230003238 | Du et al. | Jan 2023 | A1 |
20230015132 | Feng et al. | Jan 2023 | A1 |
20230015529 | Zhang et al. | Jan 2023 | A1 |
20230015581 | Ji et al. | Jan 2023 | A1 |
20230017968 | Deng et al. | Jan 2023 | A1 |
20230029574 | Zhang et al. | Feb 2023 | A1 |
20230029671 | Han et al. | Feb 2023 | A1 |
20230036118 | Xing et al. | Feb 2023 | A1 |
20230040970 | Liu et al. | Feb 2023 | A1 |
20230042379 | Zhang et al. | Feb 2023 | A1 |
20230047033 | Fu et al. | Feb 2023 | A1 |
20230048551 | Feng et al. | Feb 2023 | A1 |
20230049462 | Zhang et al. | Feb 2023 | A1 |
20230064964 | Wang et al. | Mar 2023 | A1 |
20230074794 | Liu et al. | Mar 2023 | A1 |
20230085124 | Zhong et al. | Mar 2023 | A1 |
20230092506 | Zhong et al. | Mar 2023 | A1 |
20230092705 | Liu et al. | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
9609498 | Jul 1999 | AU |
737970 | Sep 2001 | AU |
2043184 | Aug 1994 | CA |
2829762 | Sep 2012 | CA |
2737321 | Sep 2013 | CA |
2876687 | May 2014 | CA |
2693567 | Sep 2014 | CA |
2964597 | Oct 2017 | CA |
2876687 | Apr 2019 | CA |
3138533 | Nov 2020 | CA |
2919175 | Mar 2021 | CA |
2622404 | Jun 2004 | CN |
2779054 | May 2006 | CN |
2890325 | Apr 2007 | CN |
200964929 | Oct 2007 | CN |
101323151 | Dec 2008 | CN |
201190660 | Feb 2009 | CN |
201190892 | Feb 2009 | CN |
201190893 | Feb 2009 | CN |
101414171 | Apr 2009 | CN |
201215073 | Apr 2009 | CN |
201236650 | May 2009 | CN |
201275542 | Jul 2009 | CN |
201275801 | Jul 2009 | CN |
201333385 | Oct 2009 | CN |
201443300 | Apr 2010 | CN |
201496415 | Jun 2010 | CN |
201501365 | Jun 2010 | CN |
201507271 | Jun 2010 | CN |
101323151 | Jul 2010 | CN |
201560210 | Aug 2010 | CN |
201581862 | Sep 2010 | CN |
201610728 | Oct 2010 | CN |
201610751 | Oct 2010 | CN |
201618530 | Nov 2010 | CN |
201661255 | Dec 2010 | CN |
101949382 | Jan 2011 | CN |
201756927 | Mar 2011 | CN |
101414171 | May 2011 | CN |
102128011 | Jul 2011 | CN |
102140898 | Aug 2011 | CN |
102155172 | Aug 2011 | CN |
102182904 | Sep 2011 | CN |
202000930 | Oct 2011 | CN |
202055781 | Nov 2011 | CN |
202082265 | Dec 2011 | CN |
202100216 | Jan 2012 | CN |
202100217 | Jan 2012 | CN |
202100815 | Jan 2012 | CN |
202124340 | Jan 2012 | CN |
202140051 | Feb 2012 | CN |
202140080 | Feb 2012 | CN |
202144789 | Feb 2012 | CN |
202144943 | Feb 2012 | CN |
202149354 | Feb 2012 | CN |
102383748 | Mar 2012 | CN |
202156297 | Mar 2012 | CN |
202158355 | Mar 2012 | CN |
202163504 | Mar 2012 | CN |
202165236 | Mar 2012 | CN |
202180866 | Apr 2012 | CN |
202181875 | Apr 2012 | CN |
202187744 | Apr 2012 | CN |
202191854 | Apr 2012 | CN |
202250008 | May 2012 | CN |
101885307 | Jul 2012 | CN |
102562020 | Jul 2012 | CN |
202326156 | Jul 2012 | CN |
202370773 | Aug 2012 | CN |
202417397 | Sep 2012 | CN |
202417461 | Sep 2012 | CN |
102729335 | Oct 2012 | CN |
202463955 | Oct 2012 | CN |
202463957 | Oct 2012 | CN |
202467739 | Oct 2012 | CN |
202467801 | Oct 2012 | CN |
202531016 | Nov 2012 | CN |
202544794 | Nov 2012 | CN |
102825039 | Dec 2012 | CN |
202578592 | Dec 2012 | CN |
202579164 | Dec 2012 | CN |
202594808 | Dec 2012 | CN |
202594928 | Dec 2012 | CN |
202596615 | Dec 2012 | CN |
202596616 | Dec 2012 | CN |
102849880 | Jan 2013 | CN |
102889191 | Jan 2013 | CN |
202641535 | Jan 2013 | CN |
202645475 | Jan 2013 | CN |
202666716 | Jan 2013 | CN |
202669645 | Jan 2013 | CN |
202669944 | Jan 2013 | CN |
202671336 | Jan 2013 | CN |
202673269 | Jan 2013 | CN |
202751982 | Feb 2013 | CN |
102963629 | Mar 2013 | CN |
202767964 | Mar 2013 | CN |
202789791 | Mar 2013 | CN |
202789792 | Mar 2013 | CN |
202810717 | Mar 2013 | CN |
202827276 | Mar 2013 | CN |
202833093 | Mar 2013 | CN |
202833370 | Mar 2013 | CN |
102140898 | Apr 2013 | CN |
202895467 | Apr 2013 | CN |
202926404 | May 2013 | CN |
202935216 | May 2013 | CN |
202935798 | May 2013 | CN |
202935816 | May 2013 | CN |
202970631 | Jun 2013 | CN |
103223315 | Jul 2013 | CN |
203050598 | Jul 2013 | CN |
103233714 | Aug 2013 | CN |
103233715 | Aug 2013 | CN |
103245523 | Aug 2013 | CN |
103247220 | Aug 2013 | CN |
103253839 | Aug 2013 | CN |
103277290 | Sep 2013 | CN |
103321782 | Sep 2013 | CN |
203170270 | Sep 2013 | CN |
203172509 | Sep 2013 | CN |
203175778 | Sep 2013 | CN |
203175787 | Sep 2013 | CN |
102849880 | Oct 2013 | CN |
203241231 | Oct 2013 | CN |
203244941 | Oct 2013 | CN |
203244942 | Oct 2013 | CN |
203303798 | Nov 2013 | CN |
102155172 | Dec 2013 | CN |
102729335 | Dec 2013 | CN |
103420532 | Dec 2013 | CN |
203321792 | Dec 2013 | CN |
203412658 | Jan 2014 | CN |
203420697 | Feb 2014 | CN |
203480755 | Mar 2014 | CN |
103711437 | Apr 2014 | CN |
203531815 | Apr 2014 | CN |
203531871 | Apr 2014 | CN |
203531883 | Apr 2014 | CN |
203556164 | Apr 2014 | CN |
203558809 | Apr 2014 | CN |
203559861 | Apr 2014 | CN |
203559893 | Apr 2014 | CN |
203560189 | Apr 2014 | CN |
102704870 | May 2014 | CN |
203611843 | May 2014 | CN |
203612531 | May 2014 | CN |
203612843 | May 2014 | CN |
203614062 | May 2014 | CN |
203614388 | May 2014 | CN |
203621045 | Jun 2014 | CN |
203621046 | Jun 2014 | CN |
203621051 | Jun 2014 | CN |
203640993 | Jun 2014 | CN |
203655221 | Jun 2014 | CN |
103899280 | Jul 2014 | CN |
103923670 | Jul 2014 | CN |
203685052 | Jul 2014 | CN |
203716936 | Jul 2014 | CN |
103990410 | Aug 2014 | CN |
103993869 | Aug 2014 | CN |
203754009 | Aug 2014 | CN |
203754025 | Aug 2014 | CN |
203754341 | Aug 2014 | CN |
203756614 | Aug 2014 | CN |
203770264 | Aug 2014 | CN |
203784519 | Aug 2014 | CN |
203784520 | Aug 2014 | CN |
104057864 | Sep 2014 | CN |
203819819 | Sep 2014 | CN |
203823431 | Sep 2014 | CN |
203835337 | Sep 2014 | CN |
104074500 | Oct 2014 | CN |
203876633 | Oct 2014 | CN |
203876636 | Oct 2014 | CN |
203877364 | Oct 2014 | CN |
203877365 | Oct 2014 | CN |
203877375 | Oct 2014 | CN |
203877424 | Oct 2014 | CN |
203879476 | Oct 2014 | CN |
203879479 | Oct 2014 | CN |
203890292 | Oct 2014 | CN |
203899476 | Oct 2014 | CN |
203906206 | Oct 2014 | CN |
104150728 | Nov 2014 | CN |
104176522 | Dec 2014 | CN |
104196464 | Dec 2014 | CN |
104234651 | Dec 2014 | CN |
203971841 | Dec 2014 | CN |
203975450 | Dec 2014 | CN |
204020788 | Dec 2014 | CN |
204021980 | Dec 2014 | CN |
204024625 | Dec 2014 | CN |
204051401 | Dec 2014 | CN |
204060661 | Dec 2014 | CN |
104260672 | Jan 2015 | CN |
104314512 | Jan 2015 | CN |
204077478 | Jan 2015 | CN |
204077526 | Jan 2015 | CN |
204078307 | Jan 2015 | CN |
204083051 | Jan 2015 | CN |
204113168 | Jan 2015 | CN |
104340682 | Feb 2015 | CN |
104358536 | Feb 2015 | CN |
104369687 | Feb 2015 | CN |
104402178 | Mar 2015 | CN |
104402185 | Mar 2015 | CN |
104402186 | Mar 2015 | CN |
204209819 | Mar 2015 | CN |
204224560 | Mar 2015 | CN |
204225813 | Mar 2015 | CN |
204225839 | Mar 2015 | CN |
104533392 | Apr 2015 | CN |
104563938 | Apr 2015 | CN |
104563994 | Apr 2015 | CN |
104563995 | Apr 2015 | CN |
104563998 | Apr 2015 | CN |
104564033 | Apr 2015 | CN |
204257122 | Apr 2015 | CN |
204283610 | Apr 2015 | CN |
204283782 | Apr 2015 | CN |
204297682 | Apr 2015 | CN |
204299810 | Apr 2015 | CN |
103223315 | May 2015 | CN |
104594857 | May 2015 | CN |
104595493 | May 2015 | CN |
104612647 | May 2015 | CN |
104612928 | May 2015 | CN |
104632126 | May 2015 | CN |
204325094 | May 2015 | CN |
204325098 | May 2015 | CN |
204326983 | May 2015 | CN |
204326985 | May 2015 | CN |
204344040 | May 2015 | CN |
204344095 | May 2015 | CN |
104727797 | Jun 2015 | CN |
204402414 | Jun 2015 | CN |
204402423 | Jun 2015 | CN |
204402450 | Jun 2015 | CN |
103247220 | Jul 2015 | CN |
104803568 | Jul 2015 | CN |
204436360 | Jul 2015 | CN |
204457524 | Jul 2015 | CN |
204472485 | Jul 2015 | CN |
204473625 | Jul 2015 | CN |
204477303 | Jul 2015 | CN |
204493095 | Jul 2015 | CN |
204493309 | Jul 2015 | CN |
103253839 | Aug 2015 | CN |
104820372 | Aug 2015 | CN |
104832093 | Aug 2015 | CN |
104863523 | Aug 2015 | CN |
204552723 | Aug 2015 | CN |
204553866 | Aug 2015 | CN |
204571831 | Aug 2015 | CN |
204703814 | Oct 2015 | CN |
204703833 | Oct 2015 | CN |
204703834 | Oct 2015 | CN |
105092401 | Nov 2015 | CN |
103233715 | Dec 2015 | CN |
103790927 | Dec 2015 | CN |
105207097 | Dec 2015 | CN |
204831952 | Dec 2015 | CN |
204899777 | Dec 2015 | CN |
102602323 | Jan 2016 | CN |
105240064 | Jan 2016 | CN |
204944834 | Jan 2016 | CN |
205042127 | Feb 2016 | CN |
205172478 | Apr 2016 | CN |
103993869 | May 2016 | CN |
105536299 | May 2016 | CN |
105545207 | May 2016 | CN |
205260249 | May 2016 | CN |
103233714 | Jun 2016 | CN |
104340682 | Jun 2016 | CN |
205297518 | Jun 2016 | CN |
205298447 | Jun 2016 | CN |
205391821 | Jul 2016 | CN |
205400701 | Jul 2016 | CN |
103277290 | Aug 2016 | CN |
104260672 | Aug 2016 | CN |
205477370 | Aug 2016 | CN |
205479153 | Aug 2016 | CN |
205503058 | Aug 2016 | CN |
205503068 | Aug 2016 | CN |
205503089 | Aug 2016 | CN |
105958098 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
205599180 | Sep 2016 | CN |
106121577 | Nov 2016 | CN |
205709587 | Nov 2016 | CN |
104612928 | Dec 2016 | CN |
106246120 | Dec 2016 | CN |
205805471 | Dec 2016 | CN |
106321045 | Jan 2017 | CN |
205858306 | Jan 2017 | CN |
106438310 | Feb 2017 | CN |
205937833 | Feb 2017 | CN |
104563994 | Mar 2017 | CN |
206129196 | Apr 2017 | CN |
104369687 | May 2017 | CN |
106715165 | May 2017 | CN |
106761561 | May 2017 | CN |
105240064 | Jun 2017 | CN |
206237147 | Jun 2017 | CN |
206287832 | Jun 2017 | CN |
206346711 | Jul 2017 | CN |
104563995 | Sep 2017 | CN |
107120822 | Sep 2017 | CN |
107143298 | Sep 2017 | CN |
107159046 | Sep 2017 | CN |
107188018 | Sep 2017 | CN |
206496016 | Sep 2017 | CN |
104564033 | Oct 2017 | CN |
107234358 | Oct 2017 | CN |
107261975 | Oct 2017 | CN |
206581929 | Oct 2017 | CN |
104820372 | Dec 2017 | CN |
105092401 | Dec 2017 | CN |
107476769 | Dec 2017 | CN |
107520526 | Dec 2017 | CN |
206754664 | Dec 2017 | CN |
107605427 | Jan 2018 | CN |
106438310 | Feb 2018 | CN |
107654196 | Feb 2018 | CN |
107656499 | Feb 2018 | CN |
107728657 | Feb 2018 | CN |
206985503 | Feb 2018 | CN |
207017968 | Feb 2018 | CN |
107859053 | Mar 2018 | CN |
207057867 | Mar 2018 | CN |
207085817 | Mar 2018 | CN |
105545207 | Apr 2018 | CN |
107883091 | Apr 2018 | CN |
107902427 | Apr 2018 | CN |
107939290 | Apr 2018 | CN |
107956708 | Apr 2018 | CN |
207169595 | Apr 2018 | CN |
207194873 | Apr 2018 | CN |
207245674 | Apr 2018 | CN |
108034466 | May 2018 | CN |
108036071 | May 2018 | CN |
108087050 | May 2018 | CN |
207380566 | May 2018 | CN |
108103483 | Jun 2018 | CN |
108179046 | Jun 2018 | CN |
108254276 | Jul 2018 | CN |
108311535 | Jul 2018 | CN |
207583576 | Jul 2018 | CN |
207634064 | Jul 2018 | CN |
207648054 | Jul 2018 | CN |
207650621 | Jul 2018 | CN |
108371894 | Aug 2018 | CN |
207777153 | Aug 2018 | CN |
108547601 | Sep 2018 | CN |
108547766 | Sep 2018 | CN |
108555826 | Sep 2018 | CN |
108561098 | Sep 2018 | CN |
108561750 | Sep 2018 | CN |
108590617 | Sep 2018 | CN |
207813495 | Sep 2018 | CN |
207814698 | Sep 2018 | CN |
207862275 | Sep 2018 | CN |
108687954 | Oct 2018 | CN |
207935270 | Oct 2018 | CN |
207961582 | Oct 2018 | CN |
207964530 | Oct 2018 | CN |
108789848 | Nov 2018 | CN |
108799473 | Nov 2018 | CN |
108868675 | Nov 2018 | CN |
208086829 | Nov 2018 | CN |
208089263 | Nov 2018 | CN |
208169068 | Nov 2018 | CN |
108979569 | Dec 2018 | CN |
109027662 | Dec 2018 | CN |
109058092 | Dec 2018 | CN |
208179454 | Dec 2018 | CN |
208179502 | Dec 2018 | CN |
208253147 | Dec 2018 | CN |
208260574 | Dec 2018 | CN |
109114418 | Jan 2019 | CN |
109141990 | Jan 2019 | CN |
208313120 | Jan 2019 | CN |
208330319 | Jan 2019 | CN |
208342730 | Jan 2019 | CN |
208430982 | Jan 2019 | CN |
208430986 | Jan 2019 | CN |
109404274 | Mar 2019 | CN |
109429610 | Mar 2019 | CN |
109491318 | Mar 2019 | CN |
109515177 | Mar 2019 | CN |
109526523 | Mar 2019 | CN |
109534737 | Mar 2019 | CN |
208564504 | Mar 2019 | CN |
208564516 | Mar 2019 | CN |
208564525 | Mar 2019 | CN |
208564918 | Mar 2019 | CN |
208576026 | Mar 2019 | CN |
208576042 | Mar 2019 | CN |
208650818 | Mar 2019 | CN |
208669244 | Mar 2019 | CN |
109555484 | Apr 2019 | CN |
109682881 | Apr 2019 | CN |
208730959 | Apr 2019 | CN |
208735264 | Apr 2019 | CN |
208746733 | Apr 2019 | CN |
208749529 | Apr 2019 | CN |
208750405 | Apr 2019 | CN |
208764658 | Apr 2019 | CN |
109736740 | May 2019 | CN |
109751007 | May 2019 | CN |
208868428 | May 2019 | CN |
208870761 | May 2019 | CN |
109869294 | Jun 2019 | CN |
109882144 | Jun 2019 | CN |
109882372 | Jun 2019 | CN |
209012047 | Jun 2019 | CN |
209100025 | Jul 2019 | CN |
110080707 | Aug 2019 | CN |
110118127 | Aug 2019 | CN |
110124574 | Aug 2019 | CN |
110145277 | Aug 2019 | CN |
110145399 | Aug 2019 | CN |
110152552 | Aug 2019 | CN |
110155193 | Aug 2019 | CN |
110159225 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159432 | Aug 2019 | CN |
110159433 | Aug 2019 | CN |
110208100 | Sep 2019 | CN |
110252191 | Sep 2019 | CN |
110284854 | Sep 2019 | CN |
110284972 | Sep 2019 | CN |
209387358 | Sep 2019 | CN |
110374745 | Oct 2019 | CN |
209534736 | Oct 2019 | CN |
110425105 | Nov 2019 | CN |
110439779 | Nov 2019 | CN |
110454285 | Nov 2019 | CN |
110454352 | Nov 2019 | CN |
110467298 | Nov 2019 | CN |
110469312 | Nov 2019 | CN |
110469314 | Nov 2019 | CN |
110469405 | Nov 2019 | CN |
110469654 | Nov 2019 | CN |
110485982 | Nov 2019 | CN |
110485983 | Nov 2019 | CN |
110485984 | Nov 2019 | CN |
110486249 | Nov 2019 | CN |
110500255 | Nov 2019 | CN |
110510771 | Nov 2019 | CN |
110513097 | Nov 2019 | CN |
209650738 | Nov 2019 | CN |
209653968 | Nov 2019 | CN |
209654004 | Nov 2019 | CN |
209654022 | Nov 2019 | CN |
209654128 | Nov 2019 | CN |
209656622 | Nov 2019 | CN |
107849130 | Dec 2019 | CN |
108087050 | Dec 2019 | CN |
110566173 | Dec 2019 | CN |
110608030 | Dec 2019 | CN |
110617187 | Dec 2019 | CN |
110617188 | Dec 2019 | CN |
110617318 | Dec 2019 | CN |
209740823 | Dec 2019 | CN |
209780827 | Dec 2019 | CN |
209798631 | Dec 2019 | CN |
209799942 | Dec 2019 | CN |
209800178 | Dec 2019 | CN |
209855723 | Dec 2019 | CN |
209855742 | Dec 2019 | CN |
209875063 | Dec 2019 | CN |
110656919 | Jan 2020 | CN |
107520526 | Feb 2020 | CN |
110787667 | Feb 2020 | CN |
110821464 | Feb 2020 | CN |
110833665 | Feb 2020 | CN |
110848028 | Feb 2020 | CN |
210049880 | Feb 2020 | CN |
210049882 | Feb 2020 | CN |
210097596 | Feb 2020 | CN |
210105817 | Feb 2020 | CN |
210105818 | Feb 2020 | CN |
210105993 | Feb 2020 | CN |
110873093 | Mar 2020 | CN |
210139911 | Mar 2020 | CN |
110947681 | Apr 2020 | CN |
111058810 | Apr 2020 | CN |
111075391 | Apr 2020 | CN |
210289931 | Apr 2020 | CN |
210289932 | Apr 2020 | CN |
210289933 | Apr 2020 | CN |
210303516 | Apr 2020 | CN |
211412945 | Apr 2020 | CN |
111089003 | May 2020 | CN |
111151186 | May 2020 | CN |
111167769 | May 2020 | CN |
111169833 | May 2020 | CN |
111173476 | May 2020 | CN |
111185460 | May 2020 | CN |
111185461 | May 2020 | CN |
111188763 | May 2020 | CN |
111206901 | May 2020 | CN |
111206992 | May 2020 | CN |
111206994 | May 2020 | CN |
210449044 | May 2020 | CN |
210460875 | May 2020 | CN |
210522432 | May 2020 | CN |
210598943 | May 2020 | CN |
210598945 | May 2020 | CN |
210598946 | May 2020 | CN |
210599194 | May 2020 | CN |
210599303 | May 2020 | CN |
210600110 | May 2020 | CN |
111219326 | Jun 2020 | CN |
111350595 | Jun 2020 | CN |
210660319 | Jun 2020 | CN |
210714569 | Jun 2020 | CN |
210769168 | Jun 2020 | CN |
210769169 | Jun 2020 | CN |
210769170 | Jun 2020 | CN |
210770133 | Jun 2020 | CN |
210825844 | Jun 2020 | CN |
210888904 | Jun 2020 | CN |
210888905 | Jun 2020 | CN |
210889242 | Jun 2020 | CN |
111397474 | Jul 2020 | CN |
111412064 | Jul 2020 | CN |
111441923 | Jul 2020 | CN |
111441925 | Jul 2020 | CN |
111503517 | Aug 2020 | CN |
111515898 | Aug 2020 | CN |
111594059 | Aug 2020 | CN |
111594062 | Aug 2020 | CN |
111594144 | Aug 2020 | CN |
211201919 | Aug 2020 | CN |
211201920 | Aug 2020 | CN |
211202218 | Aug 2020 | CN |
111608965 | Sep 2020 | CN |
111664087 | Sep 2020 | CN |
111677476 | Sep 2020 | CN |
111677647 | Sep 2020 | CN |
111692064 | Sep 2020 | CN |
111692065 | Sep 2020 | CN |
211384571 | Sep 2020 | CN |
211397553 | Sep 2020 | CN |
211397677 | Sep 2020 | CN |
211500955 | Sep 2020 | CN |
211524765 | Sep 2020 | CN |
4004854 | Aug 1991 | DE |
4241614 | Jun 1994 | DE |
102009022859 | Dec 2010 | DE |
102012018825 | Mar 2014 | DE |
102013111655 | Dec 2014 | DE |
102015103872 | Oct 2015 | DE |
102013114335 | Dec 2020 | DE |
0835983 | Apr 1998 | EP |
1378683 | Jan 2004 | EP |
2143916 | Jan 2010 | EP |
2613023 | Jul 2013 | EP |
3095989 | Nov 2016 | EP |
3211766 | Aug 2017 | EP |
3049642 | Apr 2018 | EP |
3354866 | Aug 2018 | EP |
3075946 | May 2019 | EP |
2795774 | Jun 1999 | FR |
474072 | Oct 1937 | GB |
1438172 | Jun 1976 | GB |
S57135212 | Feb 1984 | JP |
20020026398 | Apr 2002 | KR |
13562 | Apr 2000 | RU |
1993020328 | Oct 1993 | WO |
2006025886 | Mar 2006 | WO |
2009023042 | Feb 2009 | WO |
20110133821 | Oct 2011 | WO |
2012139380 | Oct 2012 | WO |
2013158822 | Oct 2013 | WO |
PCTCN2012074945 | Nov 2013 | WO |
2013185399 | Dec 2013 | WO |
2015158020 | Oct 2015 | WO |
2016014476 | Jan 2016 | WO |
2016033983 | Mar 2016 | WO |
2016078181 | May 2016 | WO |
2016101374 | Jun 2016 | WO |
2016112590 | Jul 2016 | WO |
2017123656 | Jul 2017 | WO |
2017146279 | Aug 2017 | WO |
2017213848 | Dec 2017 | WO |
2018031029 | Feb 2018 | WO |
2018038710 | Mar 2018 | WO |
2018044293 | Mar 2018 | WO |
2018044307 | Mar 2018 | WO |
2018071738 | Apr 2018 | WO |
2018101909 | Jun 2018 | WO |
2018101912 | Jun 2018 | WO |
2018106210 | Jun 2018 | WO |
2018106225 | Jun 2018 | WO |
2018106252 | Jun 2018 | WO |
2018132106 | Jul 2018 | WO |
2018156131 | Aug 2018 | WO |
2018075034 | Oct 2018 | WO |
2018187346 | Oct 2018 | WO |
2018031031 | Feb 2019 | WO |
2019045691 | Mar 2019 | WO |
2019046680 | Mar 2019 | WO |
2019060922 | Mar 2019 | WO |
2019117862 | Jun 2019 | WO |
2019126742 | Jun 2019 | WO |
2019147601 | Aug 2019 | WO |
2019169366 | Sep 2019 | WO |
2019195651 | Oct 2019 | WO |
2019200510 | Oct 2019 | WO |
2019210417 | Nov 2019 | WO |
2020018068 | Jan 2020 | WO |
2020046866 | Mar 2020 | WO |
2020072076 | Apr 2020 | WO |
2020076569 | Apr 2020 | WO |
2020097060 | May 2020 | WO |
2020104088 | May 2020 | WO |
2020131085 | Jun 2020 | WO |
2020211083 | Oct 2020 | WO |
2020211086 | Oct 2020 | WO |
2021038604 | Mar 2021 | WO |
2021038604 | Mar 2021 | WO |
2021041783 | Mar 2021 | WO |
Entry |
---|
US 11,459,865 B2, 10/2022, Cui et al. (withdrawn) |
US 11,555,493 B2, 01/2023, Chang et al. (withdrawn) |
International Search Report and Written Opinion for PCT/US2022/030647, dated Oct. 7, 2022. |
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004. |
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010. |
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960. |
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950. |
Hci Jet Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ. |
Afd Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018. |
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference. |
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018. |
Frac Shack, Bi-Fuel FracFueller brochure, 2011. |
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS FRAC Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191. |
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443. |
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS. |
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963). |
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967). |
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967). |
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969). |
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.). |
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian). |
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010. |
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011. |
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008. |
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf. |
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf. |
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html. |
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020. |
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021. |
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf. |
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176. |
Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013. |
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012). |
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017. |
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking. |
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/. |
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/. |
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling. |
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx. |
Plos One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015. |
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009. |
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000. |
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762. |
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing. |
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018. |
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019. |
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014. |
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/. |
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016. |
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html. |
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp. |
Halliburton, Vessel-based Modular Solution (VMS), 2015. |
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999. |
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992. |
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006). |
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941. |
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996. |
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019). |
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019). |
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014). |
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015. |
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015. |
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020. |
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020. |
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018. |
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019. |
PowerShelter Kit II, nooutage.com, Sep. 6, 2019. |
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012. |
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G″oteborg, Sweden 2015. |
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429. |
ISM, What is Cracking Pressure, 2019. |
Swagelok, The right valve for controlling flow direction? Check, 2016. |
Technology.org, Check valves how do they work and what are the main type, 2018. |
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018. |
Spm® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”). |
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”). |
Dowell B908 “Turbo-Jet” Operator's Manual. |
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html. |
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html. |
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm. |
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”). |
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm. |
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html. |
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PlkDbU5dE0o. |
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015). |
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q. |
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012). |
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/. |
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012). |
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/. |
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-sp read-162113425. |
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/T urbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump. |
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/work/gfes-turbine-frac-units/. |
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html. |
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278. |
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624. |
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010). |
The Application of Flexible Couplings for Turbomachinery, Jon R Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989). |
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008. |
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011. |
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994). |
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012. |
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021. |
API's Global Industry Services, American Petroleum Institute, © Aug. 2020. |
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021. |
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 / http://api.org/aboutapi/, captured Apr. 22, 2011. |
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 / http://www.api.org:80/Publications/, captured Apr. 27, 2011. |
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006). |
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021. |
2011 Publications and Services, American Petroleum Institute (2011). |
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011. |
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD% 20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671 &input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021. |
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages. |
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf. |
Final written decision of PGR2021-00102 dated Feb. 6, 2023. |
Final written decision of PGR2021-00103 dated Feb. 6, 2023. |
Number | Date | Country | |
---|---|---|---|
20220403836 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62705628 | Jul 2020 | US | |
62705357 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17301475 | Apr 2021 | US |
Child | 17892479 | US |