Systems and Methods Related to Electrical Stimulation of Mammalian Meridians

Information

  • Patent Application
  • 20230145174
  • Publication Number
    20230145174
  • Date Filed
    November 10, 2022
    2 years ago
  • Date Published
    May 11, 2023
    a year ago
Abstract
A current sensor may take measurements of electrical currents that flow between two limbs of a mammal through at least a portion of the mammal's torso and/or an electrical stimulator may apply an electrical current dose thereto. Current measurements may be taken during a single diagnostic session while a ground electrode contacts the body at a preferably distal location on a limb and a probe electrode is sequentially placed at different locations on distal portions of other limbs. Each of the current delivery locations may be an acupuncture point. An electrical current state for the diagnostic session may be calculated. A lookup table may be used to determine one or more associated possible medical conditions and electrical current dosage may be used in an attempt to alter bodily electrical conductivity.
Description
SUMMARY OF THE INVENTION

In illustrative implementations, a diagnostic system employs a current sensor to screen for and to detect a wide variety of medical conditions. The current sensor may take measurements of small applied electrical currents that flow between a probe electrode and a ground electrode, while an animal (e.g. human or mammal) holds the ground electrode in one hand (or the ground electrode electrically contacts the animal body at a distal portion of a limb) and the probe electrode is sequentially placed at different locations on the patient's two feet and on the patient's other forearm. These cross-body currents may flow through at least a portion of the patient's torso. The ground electrode may be switched from one hand to another, to enable current measurements to be taken for both forearms.


The measurements of electrical current may be taken during a single diagnostic session. Each of the measurement locations may be an acupuncture point.


Based on the measurements, an electrical current state for the diagnostic session may be calculated. This state may consist of: (a) a current range for an electrical current that is measured during the session; or (b) current ranges for respective currents that are measured during the session. A lookup table may be employed to determine one or more medical conditions that are indicated by the current state. Alternatively, a trained machine learning model may predict, based on the measured currents, one or more medical conditions.


In some cases, the diagnostic system determines whether or not a patient has a viral infection and whether or not a patient has a bacterial infection, based on electrical current measurements that take only a few minutes. This ability to quickly and accurately detect and differentiate between viral and bacterial infections enables the diagnostic system to be used as a mass-scale, rapid screening tool in a viral or bacterial epidemic. For instance, during the COVID-19 pandemic, the diagnostic tool may be used to quickly determine whether a patient has a viral or bacterial infection or both, and if a viral infection is indicated, to refer the patient for a panel of respiratory virus tests, including a COVID-19 assay.


In some cases, the ground electrode and probe electrode are attached to flexible wires and are free to move relative to each other.


Alternatively, in some cases, the ground electrode and probe electrode are rigid parts of a single rigid structure and thus are in a fixed position relative to each other. The rigid structure may be configured to also serve as a case for a smartphone. The rigid structure may enable a patient to hold both the probe electrode and ground electrode in one hand. For instance, the patient may hold the rigid structure in such a way that the ground electrode of the rigid structure is pressed against the palm of one hand, while the patient sequentially presses the probe electrode at different points on the patient's left foot, right foot and other forearm.


In some cases, one or more pressure sensors measure how much pressure is being applied to the probe and/or ground electrodes. These pressure readings, as well as current readings by the current sensor, may be employed to determine whether the electrodes are being pressed properly against the patient's skin to achieve sufficient conductance for accurate measurements. In some cases, the ground electrode and probe electrode are rigid parts of a single rigid structure and thus are in a fixed position relative to each other, except for any movement that is due solely to displacements that occur within one or more pressure sensors.


A user interface (UI) may present to a user: (a) information about the measurements; (b) a diagnosis or tentative diagnosis; and/or (c) a recommendation for further medical testing. In addition, the UI may provide real-time audiovisual feedback to a user regarding whether the electrodes are being used properly.


The Summary and Abstract sections and the title of this document: (a) do not limit this invention; (b) are intended only to give a general introduction to some illustrative implementations of this invention; (c) do not describe all of the details of this invention; and (d) merely describe non-limiting examples of this invention. This invention may be implemented in many other ways. Likewise, the Field of Technology section is not limiting; instead it identifies, in a general, non-exclusive manner, a field of technology to which some implementations of this invention generally relate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a current sensor which has ground and probe electrodes that are free to move relative to each other.



FIG. 2 shows electrodes of a current sensor being employed to measure cross-body electrical currents.



FIGS. 3, 4 and 5 show rigid structures that each include both ground and probe electrodes.



FIG. 6 shows a spring-loaded electrode.



FIGS. 7, 8, 9, 10A and 10B show measurement points.



FIG. 11 illustrates cross-body currents.



FIG. 12 is a flowchart for a diagnostic method.



FIG. 13 is a diagram that illustrates a relational database.



FIGS. 14A-D shows measurement points located on representative non-human animals.





The above Figures are not necessarily drawn to scale. The above Figures show illustrative implementations of this invention, or provide information that relates to those implementations. The examples shown in the above Figures do not limit this invention. This invention may be implemented in many other ways.


DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention.


Current Sensor

In illustrative implementations of this invention, a current sensor measures what we sometimes call “cross-body” electrical currents. In some cases, the cross-body currents are electrical currents that flow between distal regions of two limbs of a patient, passing through at least a portion of the patient's torso. In some use scenarios, the current sensor measures a cross-body electrical current that flows between: (a) skin on a patient's hand; and (b) skin on a foot or ankle of the patient. In other use scenarios, the current sensor measures a cross-body electrical current that flows between: (a) skin of a hand of a patient's forearm; and (b) skin of a hand or wrist of the patient's other forearm. In each of the preceding examples, the cross-body electrical current may flow through at least a portion of the patient's torso. In some use scenarios, the current sensor measures cross-body electrical currents that pass through the sagittal plane and/or transpyloric plane of the patient's body.


In some use scenarios, the cross-body electrical currents are very small in magnitude. For instance, in some cases, these electrical currents are in a range from 0.1 microamperes to 500 microamperes, or in a range from 0.1 microamperes to 300 microamperes. Preferably, where used, a DC current does not exceed 400 microamperes. Alternatively or additionally, AC currents may be employed that preferably range from 0.1 milliamperes to 400-500 milliamperes and up to about 100 hertz frequency.


In some implementations, the current sensor measures cross-body currents while: (a) a patient holds a ground electrode; and (b) a probe electrode is positioned at different locations on the patient's skin to apply a diagnostic electric current (preferably about 200 to about 500 microamperes) to such locations for a predetermined amount of time, such as about three to about five seconds. For instance, cross-body currents may be measured while the probe electrode is located at 24 different locations on the patient's limbs, one location at a time. The 24 probe locations may consist of: (a) six locations on the right foot and six corresponding locations on the left foot; and (b) six locations on the right hand (or right wrist) and six corresponding locations on the left hand (or left wrist).


In some cases, the current sensor has ground and probe electrodes that are not in a fixed position relative to each other. Put differently, in some cases, the ground and probe electrodes are free to move relative to each other.



FIG. 1 shows a current sensor which has ground and probe electrodes that are not in a fixed position relative to each other. In FIG. 1, a current sensing system includes a ground electrode 103, a probe electrode 101, and module 104. The ground and probe electrodes are each connected to flexible wires and may move relative to each other. Ground electrode 103 is configured to be held by a patient directly against the skin of the patient's hand, while the current sensor measures cross-body currents that flow through the patient. Probe electrode 101 has a conductive tip 102 that is configured to be pressed directly against the patient's skin at each of multiple measurement points, one measurement location at a time. The main body of probe electrode 101 (other than conductive tip 101) may be covered by a thin insulative sheath.


In FIG. 1, wires may electrically connect the ground and probe electrodes with module 104. Module 104 may house (among other things) power circuitry 123, ammeter 122 and a microprocessor 121. The power circuitry 123 may include a power source, a (non-ideal) current source or a (non-ideal) voltage source or may otherwise generate or modulate a cross-body electrical current. Power circuitry 123 may in turn receive power from computer 105.


The cross-body electrical currents (which are generated by the power circuitry 123 and that flow between the ground and probe electrodes through a patient's body) may be either DC currents (direct currents) or AC currents (alternating currents). In some cases, microprocessor 121 includes a signal generator. This signal generator: (a) may comprise an oscillator, function generator, waveform generator, or digital pattern generator; and (b) may be employed to control timing and duration of a DC or AC cross-body current.


In FIG. 1, ammeter 122 may comprise any type of current sensor or ammeter, including any type of digital ammeter. For instance, ammeter 122 may employ a shunt resistor to produce an analog voltage that is proportional to current and this voltage may in turn be measured by a digital voltmeter, which employs an ADC (analog-to-digital converter) to convert analog voltage to digital data. In some cases, ammeter 122 includes a current sense amplifier, which comprises a differential amplifier with a matched resistive gain network that monitors current flow by measuring current drop across a sense element, such as a shunt resistor. The current sense amplifier may include an integrated current-sense resistor. In some other cases, ammeter 122 comprises a Hall effect current sensor, transformer current sensor, current clamp sensor, fluxgate transformer current sensor, moving coil ammeter, moving magnet ammeter, or electrodynamic ammeter. Ammeter 122 may produce an analog voltage that is calibrated to be proportional to current, and an ADC may convert this analog voltage to digital data.


In FIG. 1, ammeter 122 may output digital data that represents measurements of cross-body electrical currents that are taken at different points on the patient's limbs. Microprocessor 121 may analyze this digital data.


In FIG. 1, computer 105 controls and interfaces with microprocessor 122, and may further analyze data. Computer 105 may store data in, and access data from, a memory device 124. Computer 105 may interface with a set of input/output (I/O) devices, including a microphone 131, speaker 132, electronic display screen 133 (e.g., a touch screen, computer monitor, or laptop screen), keyboard 134 and mouse 135.


In some use scenarios, a health-care worker holds probe electrode 101 and presses it against different points in the patient's skin, while the patient holds ground electrode 103. At each of the measurement locations, a cross-body electrical current may be measured. For instance, while the patient holds the ground electrode 103 in the palm of one hand with fingers curling around the ground electrode, the health-care worker may hold probe electrode 101 and press it against a sequence of 24 locations on the patient's body, one location at a time. As a non-limiting example, the health-care worker may first press probe electrode 101 against six locations on the patient's right foot, then against six locations on the patient's left foot, then against six locations on the user's right hand or wrist, and then against six locations on the user's left hand or wrist. The current sensor may measure cross-body currents that flow when the probe electrode is at each of these different measurement locations.


In the example shown in FIG. 2, a health care worker may administer the diagnostic test to a patient. Specifically, in FIG. 2: (a) a patient may hold ground electrode 103 in the palm of a hand 112 with fingers gripping and wrapped around the ground electrode; while (b) a health care worker (not shown) presses the conductive tip 102 of probe electrode 101 against the skin of the patient's other forearm 111.


In some use scenarios, a patient may self-administer at least a portion of the diagnostic test. For instance, while the patient holds the ground electrode 103 in one hand, the patient may hold probe electrode 101 in the other hand and may press it against six locations in the patient's right foot and six locations in the patient's left foot.


However, the apparatus shown in FIG. 1 is not well-suited for a patient himself or herself to take measurements of cross-body currents that occur at hand or wrist measurement points. This is because it can be difficult for the patient to hold the ground electrode and probe electrode in the same hand while pressing the probe electrode against the hand or wrist of the patient's other forearm. When the patient grips the ground electrode in the palm of a hand (with fingers wrapped around the ground electrode), it may be difficult for the patient to also hold the probe electrode in the fingers of the same hand.


In some implementations of this invention, this problem is solved by employing a current sensor in which the ground electrode and probe electrode are parts of a single rigid structure and thus are in a fixed position relative to each other. The patient may hold the rigid structure in one hand, with the ground electrode portion of the rigid structure pressed against the palm of that hand, while pressing the probe electrode portion of the rigid structure against the skin of another extremity. For instance, a user may hold the rigid structure in the right hand with the ground electrode pressed against the skin of the right hand, while pressing the probe electrode first against six locations on the right foot, then against six locations on the left foot, and then against six locations on the left hand. Then the user may hold the rigid structure in the left hand, while pressing the probe electrode portion of the rigid structure against six locations on the right hand. At each of the different measurement locations, the current sensor may measure a cross-body electrical current.



FIGS. 3, 4 and 5 show rigid structures that each: (a) are part of a current sensor; and (b) include both ground and probe electrodes.


In the example shown in FIG. 3, rigid structure 300 is configured to fit tightly around, and to hold in place, a smartphone. Put differently, rigid structure 300 may function in part as a rigid case that partially surrounds, and holds in place, a smartphone. Rigid structure 300 has a back 330 and walls 301. A smartphone may be inserted into a recessed region 340 of structure 300, in such a way that: (a) the smartphone presses against back 330 of structure 300; and (b) lateral movement of the smartphone is constrained by walls 301. Walls 301 may snap-fit around or press tightly against the smartphone, causing the smartphone to remain in recessed region 340 unless a user pulls on the smartphone to remove it from the recessed region. Back 330 has holes 332, 333, in order to reduce the weight of structure 300.


In FIG. 3, rigid structure 300 also includes a probe electrode 320 and a ground electrode 390. In FIG. 3, probe electrode 320 and a ground electrode 390 are rigid parts of a single rigid structure and thus are in a fixed position relative to each other. Probe electrode 320 includes a conductive tip 323. Ground electrode 390 (hidden from view in FIG. 3) and recessed region 340 are on opposite sides of back 330.


A patient: (a) may hold rigid structure 300 in one hand, in such a way that ground electrode is pressed against skin of the palm of that hand, and (b) may press the conductive tip 323 of probe electrode 322 against locations on the skin of other extremities. For instance, the patient may hold rigid structure 300 in the patient's left hand, while pressing tip 323 against a sequence of locations, such as six locations on the patient's right foot, then six locations on the patient's left foot, and then six locations on the patient's right forearm. The patient may then hold the rigid structure in the right hand, and press tip 323 against a sequence of six locations on the patient's left forearm. The current sensor may measure cross-body currents when the probe electrode is at each of these different locations.



FIGS. 4 and 5 show a front view and back view, respectively, of a rigid structure 400. Rigid structure 400 functions in part as a case for a smartphone. Walls 401 and back 490 form a recessed region into which a smartphone 450 may be inserted. Smartphone 450 may include touch screen 451.


In the example shown in FIGS. 4 and 5, rigid structure 400 includes a probe electrode 420 with a conductive tip 423, and also includes a ground electrode. This ground electrode has six conductive pads 452, 453, 454, 480, 481, 470. Again, a patient may hold rigid structure 400 in one hand, with ground electrode pressed against the skin of the palm of that hand, while pressing the probe electrode 420 against the skin at different locations on other extremities of the patient's body. The current sensor may measure cross-body currents at each of these measurement locations. An electronics module 460 may include an ADC, other signal processing circuitry and a microcontroller. Electronics module 460 may include an ammeter. The hardware and functionality of the ammeter in electronics module 460 may be the same as described above with respect to ammeter 122. An interface module 461 may include electronic components and other circuitry for interfacing with the smartphone. In some cases, interface module 461 is self-cleaning or self-polishing. For instance, interface module 461 may include pliant layers that tend to scrape debris off of conducting electrodes when the smartphone (or other mobile computing device) is being inserted into the recessed region of the rigid structure 400. These pliant layers may comprise Teflon®.


In some use scenarios, it is desirable to measure how forcefully the ground electrode and/or probe electrode are being pressed against skin of the patient. This is because the amount of pressure exerted by an electrode against the patient's skin may significantly affect the current measurements. For example, if a patient presses against the ground electrode much harder when the probe electrode is in a first position than when the probe electrode is in a second position, the extra pressure in the first position may, unless corrective measures are taken, cause current measurements at the two positions to be incomparable.


In some implementations, this problem (different amounts of pressure exerted by the user affects magnitude of current measurements) is mitigated by employing a pressure sensor that measures the amount of force or pressure exerted against a ground electrode or probe electrode. For instance, the ground electrode or probe electrode may include or be attached to a pressure sensor. For instance, each of the six conductive pads 452, 453, 454, 480, 481, 470 of the ground electrode in FIGS. 4 and 5 may include or be attached to a pressure sensor. Any type of pressure sensor may be employed. For example, the pressure sensor may comprise: (a) a piezoresistive strain gauge; (b) a capacitive strain gauge (e.g., a variable capacitor in which capacitance decreases as a diaphragm deforms due to increasing pressure); (c) an electromagnetic pressure sensor (e.g., that measures displacement of a diaphragm by changes in inductance, or by Hall Effect, or by eddy current); (d) an optical strain gauge (e.g., that employs fiber Bragg gratings); or (e) a potentiometric strain gauge (e.g., in which change of position of a conductive element causes a change in resistance). Each time that a cross-body current is measured, the pressure sensor may measure pressure (or force) exerted against the probe electrode or the ground electrode.


In some cases, the ground electrode and probe electrode are rigid parts that are part of a rigid single structure and that thus are in a fixed position relative to each other, except for any movement that occurs due to varying displacement within a pressure sensor due to varying pressure or force exerted against the pressure sensor.


Alternatively: (a) smartphone 450 may be replaced by any other mobile computing device; and (b) rigid structure 400 may be a case that surrounds, and holds in place, the mobile computing device. For instance, the mobile computing device may be a tablet computer, notebook computer, mobile internet device, personal digital assistant, handheld PC, or ultra-mobile PC.



FIG. 6 shows a closeup view of the spring-mounted pad 491, which is part of a ground electrode. This spring-mounted pad includes a conductive tip 492, a spring 495, a rod 493, and a pressure sensor 494. For instance, pressure sensor 494 may comprise a piezoelectric, inductive, potentiometric or optical pressure sensor. Rod 493 is physically attached to conductive tip 492. Pressure exerted against conductive tip 492 causes the tip 492 and rod 493 to be displaced. Specifically, tip 492 and rod 493 are constrained to move along a single axis in a limited range of motion. Varying displacement of rod 493 is measured, as a proxy for the pressure (or force) exerted against tip 492.


Each of six conductive pads 452, 453, 454, 480, 481, 470 of the ground electrode in FIGS. 4 and 5 may be spring-mounted, in the manner shown in FIG. 6.


In FIGS. 1, 2, 3, 4 and 5, one or both of the ground electrode and tip of the probe electrode may comprise a metallic alloy (e.g., copper/silver) that has antibacterial and antiviral properties. Alternatively, one or both of the ground electrode and tip of the probe electrode may comprise conductive rubber.


In some implementations, the ground electrode is temporarily attached to a patient's skin, rather than being held by a patient. For instance, the ground electrode may have an adhesive, conductive surface that adheres to the patient's skin. In some cases: (a) the ground electrode has multiple pads, and (b) each of the pads has a sticky, conductive surface that clings to the patient's skin.


In some alternative implementations, skin conductivity (or resistance) is measured instead of measuring current that flows through a patient's body between two electrodes. For instance, in some implementations, skin conductivity (or resistance) is measured by an infrared or optical sensor. In some cases, the sensor that measures skin conductivity (or resistance) does not contact the patient's skin. For example, a contact-less infrared or optical sensor may be employed to measure skin conductivity.


Measurement Locations

Before discussing measurement locations, let us first define “forearm” and “leg”. As used herein, “forearm” means the portion of an upper limb of a human that is distal to the elbow. Thus, a forearm includes: (a) a hand; (b) a wrist; and (c) a region between elbow and wrist. As used herein, “leg” means the portion of a lower limb of a human that is distal to the knee. Thus, a leg includes a crus, an ankle and a foot.


As noted above, the current sensor may measure the cross-body electrical currents while the probe electrode is positioned at 24 locations on the skin of the patient's extremities, one location at a time. The measurement locations may consist of: (a) six locations on the right foot and six corresponding locations on the left foot; and (b) six locations on the right hand (or right wrist) and six corresponding locations on the left hand (or left wrist).



FIGS. 7, 8, and 9 show six locations 701, 702, 703, 704, 705, 706 on the right foot, at which the probe electrode may be placed (one location at a time) while the current sensor measures cross-body currents. These six locations on the right foot are positioned on acupuncture meridians. Specifically, locations 701, 702, 703, 704, 705, 706 are positioned on the Spleen, Liver, Kidney, Bladder, Gall Bladder, and Stomach acupuncture meridians, respectively. In acupuncture terminology: (a) location 701 is sometimes called SP3 or Spleen 3; (b) location 702 is sometimes called LR3 or Liver 3; (c) location 703 is sometimes called KI4 or Kidney 4; (d) location 704 is sometimes called BL65 or Bladder 65; (e) location 705 is sometimes called GB40 or Gall Bladder 40; and (f) location 706 is sometimes called ST42 or Stomach 42.


Likewise, the probe electrode may be placed (one location at a time) at six locations on the left foot, while the current sensor measures cross-body currents. These first, second, third, fourth, fifth and sixth locations on the left foot may be bilaterally symmetric with locations 701, 702, 703, 704, 705, and 706, respectively, on the right foot. Put differently, these first, second, third, fourth, fifth and sixth locations on the left foot of a patient may have reflectional symmetry (about the patient's sagittal plane) with locations 701, 702, 703, 704, 705, and 706, respectively, on the right foot of the patient. These six locations on the left foot may be positioned on the same acupuncture meridians—and have the same acupuncture meridian point numbers—as the respective corresponding locations on the right foot. For instance, the location on the left foot that is bilaterally symmetric with location 701 may be on the Spleen acupuncture meridian and may also be called SP3 or Spleen 3.



FIGS. 10A and 10B show six locations 801, 802, 803, 804, 805, 806 on the right forearm, at which the probe electrode may be placed (one location at a time) while the current sensor measures cross-body currents. These six locations on the right forearm are positioned on acupuncture meridians. Specifically, locations 801, 802, 803, 804, 805, 806 are positioned on the Lung, Pericardium, Heart, Small Intestine, Triple Heater and Large Intestine acupuncture meridians, respectively. In acupuncture terminology: (a) location 801 is sometimes called LU9 or Lung 9; (b) location 802 is sometimes called PC7 or Pericardium 7; (c) location 803 is sometimes called HT7 or Heart 7; (d) location 804 is sometimes called SI5 or Small Intestine 5; (e) location 805 is sometimes called TH4 or Triple Heater 4; and (f) location 806 is sometimes called LI5 or Large Intestine 5.


Likewise, the probe electrode may be placed (one location at a time) at six locations on the left forearm, while the current sensor measures cross-body currents.


These first, second, third, fourth, fifth and sixth locations on the left forearm may be bilaterally symmetric with locations 801, 802, 803, 804, 805, and 806, respectively, on the right forearm. Put differently, these first, second, third, fourth, fifth and sixth locations on the left forearm of a patient may have reflectional symmetry (about the patient's sagittal plane) with locations 801, 802, 803, 804, 805, and 806, respectively, on the right forearm of the patient. These six locations on the left forearm may be positioned on the same acupuncture meridians—and have the same acupuncture point numbers—as the respective corresponding locations on the right forearm. For instance, the location on the left forearm that is bilaterally symmetric with location 801 may be on the Lung acupuncture meridian and may also be called LU or Lung 3.


As used herein, “Prototype Measurement Locations” means the 24 locations that are mentioned in the preceding four paragraphs (i.e., twelve locations 701, 702, 703, 704, 705, 706, 801, 802, 803, 804, 805, and 806 on the right side of a patient and twelve bilaterally symmetric locations on the left side of a patient).


Alternatively, the probe electrode may be placed at other acupuncture points. For each Prototype Measurement Location, another acupuncture point on the same meridian may be used instead. Put differently, rather than place the probe electrode at a Prototype Measurement Point on a given meridian, the probe electrode may instead be placed on another acupuncture point on the same meridian. For example, rather than place the probe electrode at a Prototype Measurement Point that is on a forearm and on a given meridian, the probe electrode may instead be placed on another acupuncture point that is on the same forearm and on the same meridian. Likewise, rather than place the probe electrode at a Prototype Measurement Point that is on a given meridian and is distal to a knee, the probe electrode may instead be placed on another acupuncture point that is on the same meridian and is distal to the same knee.


For instance: (a) to measure a cross-body electrical current for a Spleen meridian, the probe electrode may be placed at an acupuncture point that is on the Spleen meridian and is distal to a knee (e.g., at any of Spleen meridian points SP1 to SP8, inclusive); (b) to measure a cross-body electrical current for a Liver meridian, the probe electrode may be placed at an acupuncture point that is on the Liver meridian and is distal to a knee (e.g., at any of Liver meridian points LR1 to LR6, inclusive); (c) to measure a cross-body electrical current for a Kidney meridian, the probe electrode may be placed at an acupuncture point that is on the Kidney meridian and is distal to a knee (e.g., at any of Kidney meridian points KI 1 to KI 9, inclusive); (d) to measure a cross-body electrical current for a Bladder meridian, the probe electrode may be placed at an acupuncture point that is on the Bladder meridian and is distal to a knee (e.g., at any of Bladder meridian points BL55 to BL67, inclusive); (e) to measure a cross-body electrical current for a Gall Bladder meridian, the probe electrode may be placed at an acupuncture point that is on the Gall Bladder meridian and is distal to a knee (e.g., at any of Gall Bladder meridian points GB35 to GB44, inclusive); (f) to measure a cross-body electrical current for a Stomach meridian, the probe electrode may be placed at an acupuncture point that is on the Stomach meridian and is distal to a knee (e.g., at any of Stomach meridian points ST36 to ST45, inclusive); (g) to measure a cross-body electrical current for a Lung meridian, the probe electrode may be placed at an acupuncture point that is on the Lung meridian and is distal to an elbow (e.g., at any of Lung meridian points LU6 to Lull, inclusive); (h) to measure a cross-body electrical current for a Pericardium meridian, the probe electrode may be placed at an acupuncture point that is on the Pericardium meridian and is distal to an elbow (e.g., at any of Pericardium meridian points PC4 to PC9, inclusive); (i) to measure a cross-body electrical current for a Heart meridian, the probe electrode may be placed at an acupuncture point that is on the Heart meridian and is distal to an elbow (e.g., at any of Heart meridian points HT4 to HT9, inclusive); (j) to measure a cross-body electrical current for a Small Intestine meridian, the probe electrode may be placed at an acupuncture point that is on the Small Intestine meridian and is distal to an elbow (e.g., at any of Small Intestine meridian points SI 1 to SI 7, inclusive); (k) to measure a cross-body electrical current for a Triple Heater meridian, the probe electrode may be placed at an acupuncture point that is on the Triple Heater meridian and is distal to an elbow (e.g., at any of Triple Heater meridian points TH1 to TH9, inclusive); and (1) to measure a cross-body electrical current for a Large Intestine meridian, the probe electrode may be placed at an acupuncture point that is on the Large Intestine meridian and is distal to an elbow (e.g., at any of Large Intestine meridian points LI 1 to LI 9, inclusive).


Alternatively, in some implementations, less than 24 measurement locations are employed in a single diagnostic session. For instance, in some cases, the probe electrode is positioned (at different times during a single diagnostic session) at a total of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 locations, while the current sensor measures cross-body electrical currents. In some cases: (a) the probe electrode is placed at 12 or less measurement locations during a single diagnostic session; and (b) half of the locations are on a right limb and half are on a left limb in bilaterally symmetric locations. In some cases, during a single diagnostic session, the probe electrode is placed at 12 or less measurement locations that are all on one or two forearms of the patient. For instance, in some cases, during a single diagnostic session, the probe electrode is placed at only 12 or less locations, all of which are on one or two wrists of the patient.


In some alternative implementations of this invention, the measurement locations are not on acupuncture points and are not located on acupuncture meridians. Put differently, when taking measurements of cross-body currents, the probe electrode may be pressed against the patient's skin at locations that are not acupuncture points and that are not on acupuncture meridians.


Currents

As used herein, a “Prototype Current” means an electrical current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of another limb of the patient at a Prototype Measurement Location.


As used herein, an “SP current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Spleen acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Spleen 3 acupuncture point (e.g., location 701 on the patient's right leg in FIG. 7 or a bilaterally symmetric location on the patient's left leg).


As used herein, an “LR current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Liver acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Liver 3 acupuncture point (e.g., location 702 on the patient's right leg in FIG. 8 or a bilaterally symmetric location on the patient's left leg).


As used herein, a “KI current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Kidney acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Kidney 4 acupuncture point (e.g., location 703 on the patient's right leg in FIG. 7 or a bilaterally symmetric location on the patient's left leg).


As used herein, a “BL current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Bladder acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Bladder 65 acupuncture point (e.g., location 704 on the patient's right leg in FIG. 9 or a bilaterally symmetric location on the patient's left leg).


As used herein, a “GB current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Gall Bladder acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Gall Bladder 40 acupuncture point (e.g., location 705 on the patient's right leg in FIG. 9 or a bilaterally symmetric location on the patient's left leg).


As used herein, an “ST current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a patient; and (b) the probe electrode is touching skin of a leg of the patient at a location on the Stomach acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Stomach 42 acupuncture point (e.g., location 706 on the patient's right leg in FIG. 8 or a bilaterally symmetric location on the patient's left leg).


As used herein, an “LU current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Lung acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Lung 9 acupuncture point (e.g., location 801 on the patient's right forearm in FIG. 10A or a bilaterally symmetric location on the patient's left forearm).


As used herein, a “PC current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Pericardium acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Pericardium 7 acupuncture point (e.g., location 802 on the patient's right forearm in FIG. 10A or a bilaterally symmetric location on the patient's left forearm).


As used herein, an “HT current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Heart acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Heart 7 acupuncture point (e.g., location 803 on the patient's right forearm in FIG. 10A or a bilaterally symmetric location on the patient's left forearm).


As used herein, an “SI current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Small Intestine acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Small Intestine 5 acupuncture point (e.g., location 804 on the patient's right forearm in FIG. 10B or a bilaterally symmetric location on the patient's left forearm).


As used herein, a “TH current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Triple Heater acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Triple Heater 4 acupuncture point (e.g., location 805 on the patient's right forearm in FIG. 10B or a bilaterally symmetric location on the patient's left forearm).


As used herein, an “LI current” means an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of the opposite forearm of the patient at a location on the Large Intestine acupuncture meridian. As a non-limiting example, the location mentioned in the preceding sentence may be a Large Intestine 5 acupuncture point (e.g., location 806 on the patient's right forearm in FIG. 10B or a bilaterally symmetric location on the patient's left forearm).


As used herein: (a) “right side” of a patient means the portion of the patient's body to the right of the patient's sagittal plane; (b) “left side” of a patient means the portion of the patient's body to the left of the patient's sagittal plane; (c) a current “on the right side” means a current that is measured while the probe electrode is placed at a measurement location on a patient's right side; and (d) a current “on the left side” means a current that is measured while the probe electrode is placed at a measurement location on a patient's right side. To say that a current is in a specific current range “on both sides” means that the current is in the specific current range when measured while the probe electrode is positioned at a measurement location on the right side and also in the same current range when measured while the probe electrode is positioned at a bilaterally symmetric location on the left side.



FIG. 11 shows cross-body currents, in an illustrative implementation of this invention. In FIG. 11, sagittal plane 1121 divides a patient's body into right and left sides. Transverse plane 1120 intersects the patient's navel and divides the patient's body into upper and lower halves.


In FIG. 11, a first cross-body electric current flows between: (a) a probe electrode that touches the patient's left foot at location 1102; and (b) a ground electrode that touches the patient's right palm at location 1101. This first current passes through both sagittal plane 1121 and transverse plane 1120.


In FIG. 11, a second cross-body electric current flows between: (a) a probe electrode that touches the patient's right foot at location 1103; and (b) a ground electrode that touches the patient's right palm at location 1101. This second current passes through transverse plane 1120.


In FIG. 11, a third cross-body electric current flows between: (a) a probe electrode that touches the patient's left forearm at location 1104; and (b) a ground electrode that touches the patient's right palm at location 1101. This third current passes through sagittal plane 1121 and, depending on the positions of the user's hands, may also pass through transverse plane 1120.


Current Ranges

In some implementations, during a single diagnostic session, the current sensor (e.g., 122) takes multiple measurements of electrical current at each measurement location. Put differently, the current sensor may take multiple measurements of electrical current at each point on the patient's skin where the probe electrode is placed.


Each of these current measurements may be calibrated. For instance, the current measurements may be calibrated based on simultaneous pressure measurement(s) that is/are indicative of pressure or force exerted against the probe electrode or ground electrode. The calibration may eliminate the impact of varying pressure or force on the magnitude of the current readings.


The calibrated measurements for a single measurement location may be filtered to eliminate outliers.


Thus, for each single measurement location, multiple calibrated, filtered current measurements may be taken.


The measurements for a single measurement location may (after any calibration and/or filtering) be averaged, to yield an average value for that measurement location. For instance, the current sensor may take 20 measurements of SP current while:


(a) the ground electrode is touching the same region of skin on a hand of a patient; and


(b) the probe electrode is touching the patient's skin at location 701 on the patient's right leg. These 20 measurements of SP current may (after any calibration and/or filtering) be averaged, resulting in an average SP current.


This process of calculating an average current for each measurement location may be repeated for multiple measurement locations on a single patient during a single diagnostic session. In some cases: (a) current measurements are taken at 24 different measurement locations on a single patient during a single diagnostic session; and (g) 24 average currents are calculated, one for each of the 24 measurement locations.


The average values for the respective measurement locations for the diagnostic session may then be averaged, resulting in an overall average current for the patient for the diagnostic session. For instance, in some cases: (a) there are 24 measurement locations; and (b) the overall average current is an average of the 24 average currents for the respective 24 measurement locations.


A set of current ranges for the patient for the diagnostic session may then be calculated. In some cases, we call these current ranges: (a) “way above average”; (b) “above average”; (c) “average”; (d) “below average” and (e) “way below average”. The amperage in the “way above average” range is greater than in the “above average” range, which in turn is greater than in the “average” range”, which in turn is greater than in the “below average” range, which in turn is greater than in the “way below average range.


In some implementations: (a) the “average range” is selected in such a way as to be centered on the overall average current; and (b) the magnitude of the difference (in amperes) between the lower bound of the “way above average” range and the upper bound of the “average” range is equal to the magnitude of the difference (in amperes) between the lower bound of the “average” range and the upper bound of the “way below average” range.


In some implementations, one or more computers calculate, based on the overall average current for a patient for a diagnostic session, what we call Prototype Current Ranges for the patient for the diagnostic session.


As used herein, “Prototype Current Ranges” for a diagnostic session mean a set of current ranges in which: (a) the set consists of five current ranges, specifically, a “way above average” range, an “above average” range, an “average” range, a “below average” range, and a “way below average” range; (b) amperage in the way above average range is greater than amperage in the above average range, which in turn is greater than amperage in the average range, which in turn is greater than amperage in the below average range, which in turn is greater than amperage in the way below average range; (c) the upper bound of the average range is equal to the overall average current for the diagnostic session plus 25 microamps; (d) the lower bound of the average range is equal to the overall average current for the diagnostic session minus 25 microamps; (e) the upper bound of the above average range is equal to the overall average current for the diagnostic session plus 50 microamps; and (e) the lower bound of the below average range is equal to the overall average current minus 50 microamps. Notwithstanding the foregoing, a current range in the “Prototype Current Ranges” shall be truncated or eliminated to the extent needed to cause all values in the Prototype Current Ranges to be positive. For purposes of the definition of “Prototype Current Ranges” for a diagnostic session, the “overall average current” means an average of currents (after any calibration and/or filtering) for the respective measurement locations during the diagnostic session.


In illustrative implementations, a current for each measurement location is assigned to one of the calculated current ranges. For instance, in some cases: (a) current measurements are taken at 24 different measurement locations on a single patient during a single diagnostic session; (b) 24 currents are calculated, one for each of the 24 measurement locations; and (c) each of the 24 currents is assigned to one of the calculated current ranges. Each current that is assigned to a current range may itself be an average, calibrated and/or filtered current, as described above.


Alternatively, in some cases: (a) only a single current measurement is taken at each measurement location during a diagnostic session; (b) the overall average current is equal to the average of these single current measurement for the respective measurement locations; and (c) the single current measurements for the respective measurement locations are each assigned to a current range. In some cases, calibration and/or filtering are not performed, and the overall average current is calculated with uncalibrated and/or unfiltered data.


Lookup Table

In some implementations, after currents for the respective measurement locations are each assigned to a current range, a computer employs a look up table to determine one or more medical conditions that are indicated by one or more of these currents. For instance, the computer may determine whether one or more of these currents is or are in a specific state that is listed in the lookup table, and may further determine that this specific state is associated (by the look up table) with one or more specific medical conditions, and may thus conclude that the current readings in the diagnostic session indicate that these one or more specific medical conditions are present. Put differently, the computer may conclude that the specific state (of electrical currents) exists and is a biomarker for the one or more specific medical conditions.


For instance, a computer: (a) may determine that HT current and PC current are in a specific state, in which HT current is below average on the left, the right or both sides of a patient and the PC current is below average on the left, the right or both sides of the patient; (b) may access a lookup table and determine that this specific state is associated (by the lookup table) with coronary artery disease; and (b) may thus conclude that coronary artery disease is indicated by the current readings. Put differently, the computer may conclude that a specific current state (of HT and PC currents) exists and is a biomarker for coronary artery disease.


In some use scenarios, a single current state is associated (by the lookup table) with more than one medical conditions.


Each specific current state may consist of either: (a) a current range for a single current (e.g., SP current is below average on left and right sides); or (b) current ranges for multiple respective currents (e.g., GB current is way below average on left and right sides and LR current is average on left and right sides).


In some implementations, the lookup table is also employed to determine a confidence level or probability for a particular medical condition. For instance, the lookup table may associate a specific current state with both: (a) a medical condition; and (b) a confidence level or probability for that condition. The confidence level or probability may be explicit or implicit. For instance, the lookup table may indicate that a recommendation should be made for further medical testing, in order to evaluate whether or not a specific medical condition is actually present. We sometimes call this a “rule-out” recommendation.


In some implementations, the lookup table includes all or part of the information set forth in Table 1 below. For instance, the lookup table may include at least part of the information (about medical conditions, electric current states and associations between electrical current state and medical condition) which is set forth in Table 1 below.













TABLE 1








Medical




Class
Condition
Electrical Current State



















1.
B
anemia
(a)SP current is below average on left and right





sides; and





(b)KI current is average on left and right sides;





and





(c)BL current is average on left and right sides.


2.
A
anxiety
[(a) HT current is above average on left, right or





both sides; and





(b) LR current is average on left and right sides]





and/or





[(a) LU current is average on left, right or both





sides; and





(b) PC current is average on left, right or both





sides; and





(c) HT current is average on left, right or both





sides; and





(d) LR current is average on left and right





sides.] and/or





[(a) HT current is above average on left and right





sides; and





(b) SI current is above average on left, right or





both sides].


3.
D
back injury
BL current is above average on left, right or both





sides.


4.
D
back injury -
(a)BL current is below average on left, right or




with nerve
both sides; and




damage and
(b)SP current is below average on left, right or




no pain
both sides.


5.
D
back injury -
(a)BL current is above average on left, right or




with nerve
both sides; and




damage and
(b)SP current is below average on left, right or




pain
both sides.


6.
D
back injury -
BL current is above average on left, right or both




with pain
sides.


7.
B
bacterial
(a)SP current is way above average on left and




infection
right sides; and





(b)KI current is average on left and right sides;





and





(c)BL current is average on left and right sides.


8.
A
bipolar
(a)PC current is below average on left and right




disorder - in
sides; and




depressive
(b)HT current is below average on left and right




state
sides; and





(c)LR current is above average on left and right





sides.


9.
A
bipolar
(a) LU current is way above average on left and




disorder - in
right sides; and




manic state
(b) PC current is way above average on left and





right sides; and





(c) HT current is way above average on left and





right sides; and





(d) LR current is way above average on left and





right sides.


10.
G
bladder
(a)BL current is above average on left, right or




dysfunction
both sides; and/or





(b)BL current is below average on left, right or





both sides.


11.
B
bladder
(a)KI current is way above average on left and




infection
right sides; and





(b)BL current is way above average on left and





right sides; and





(c)SP current is way above average on left and





right sides.


12.
I
blood
(a)PC current is below average on left and right




pressure
sides; and




medication
(b)HT current is below average on left and right




overdose
sides.


13.
G
chronic
(a)HT current is below average on left, right or




fatigue and/or
both sides; and




chronic sleep
(b)PC current is below average on left, right or




deficit
both sides.


14.
B
chronic
(a)LU current is above average on left and right




obstructive
sides; xor




pulmonary
(b)LU current is below average on left and right




disease
sides.


15.
B
constipation
(a)LI current is below average on left, right or





both sides; and





(b)SI current is average on left, right or both





sides; and





(c)TH current is average on left, right or both





sides.


16.
M
coronary
(a)HT current is below average on left, right or




artery disease
both sides; and





(b)PC current is below average on left, right or





both sides.


17.
J
deficiency in
(a)SI current is way below average on left and




caloric food
right sides; and




intake
(b)TH current is way below average on left and





right sides; and





(c)LI current is way below average on left and





right sides; and





(d)ST current is way below average on left and





right sides; and





(e)GB current is way below average on left and





right sides.


18.
J
deficiency in
LR current is below average on left and right




protein intake
sides.


19.
I
mild (i.e.,
(a)HT current is above average or below average




non- clinical)
on left side; and




depression
(b)HT current is above average or below average





on right side; and





(c)PC current is above average or below average





on left side; and





(d)PC current is above average or below average





on right side; and





(e)LR current is above average on left and right





sides.


20.
A
clinical
(a)PC current is below average on left, right or




depression
both sides; and





(b)HT current is below average on left, right or





both sides; and





(c)LR current is above average on left, right or





both sides; and





(d)ST current is average or below average on





left, right or both sides.


21.
K
poor glycemic
SP current is below average on left and right




control (if
sides.




patient has




diabetes




mellitus)


22.
I
digestive
(a) LI current is average or below average on left




disorder
side; and





(b) LI current is average or below average on





right side; and





(c)ST current is way below average on left and





right sides; and





(d)GB current is average on left and right sides.


23.
F
duodenal
(a) SI current is above average on left, right or




irritation
both sides; and





(b) [(HT current is average on left and right





sides) xor (HT current is below average on left





and right sides)]; and





(c) [(LR current is average on left and right





sides) xor (LR current is below average on left





and right sides)]; and





(d) LI current is average on left and right sides.


24.
L
dysautonomia
(a)PC current is way below average on left and





right sides; and





(b)HT current is way below average on left and





right sides; and





(c)SP current is way below average on left and





right sides; and





(d)KI current is way below average on left and





right sides; and





(e)BL current is way below average on left and





right sides.


25.
L
dysphagia
(a) [(PC current is above average on left and





right sides) xor (PC current is way above





average on left and right sides)]; and





(b) GB current is above average on left and right





sides.


26.
J
excessive fat
(a)LR current is way above average on left and




intake
right sides; and





(b)GB current is above average or way above





average on left side; and





(c)GB current is above average or way above





average on right side; and





(d)ST current is above average or way above





average on left side; and





(e)ST current is above average or way above





average on right side.


27.
I
fatigue
(a)PC current is below average on left, right or





both sides; and





(b)HT current is below average on left, right or





both sides.


28.
I
food-related
(a)LU current is below average on left, right or




sinus allergy
both sides; and





(b)LR current is above average on left, right or





both sides.


29.
G
gallbladder
(a)GB current is way below average on left and




disorder
right sides; and





(b)LR current is average on left and right sides.


30.
M
gastroparesis
(a)ST current is way below average on left and





right sides; and





(b)GB current is average on left and right sides;





and





(c)SP current is way below average on left, right





or both sides; and





(d)KI current is way below average on left, right





or both sides; and





(e)BL current is way below average on left, right





or both sides.


31.
G
headaches
(a)PC current is below average on left, right or





both sides; and





(b)HT current is below average on left, right or





both sides; and





(c)[(KI current is above average on left, right or





both sides) and/or (SP current is above





average on left, right or both sides)].


32.
C
hyper-
(a)SI current is way above average on left and




metabolism
right sides; and





(b)TH current is way above average on left and





right sides; and





(c)LI current is way above average on left and





right sides.


33.
C
hypertension
(a)PC current is above average on left and right





sides; and





(b)[(HT current is above average on left





and right sides) xor (HT current is way





above average on left and right sides)].


34.
C
hyperthyroid
(a)TH current is above average on left and right





sides; and





(b)SI current is average on left and right sides;





and





(c)LI current is average on left and right sides.


35.
C
hypotension
(a)[(PC current is below average on left





and right sides) xor (PC current is way





below average on left and right sides)];





and





(b)[(HT current is below average on left





and right sides) xor (HT current is way





below average on left and right sides)].


36.
C
hypothyroid
(a)TH current is below average on left and right





sides; and





(b)SI current is average on left and right sides;





and





(c)LI current is average on left and right sides.


37.
K
incontinence
(BL current is below average on left, right or




(if patent is
both sides) and/or (BL current is above




female)
average on left, right or both sides).


38.
Q
inflammation
(a)LR current is way above average on left and





right sides; and





(b)GB current is average on left and right sides;





and





(c)ST current is average on left and right sides.


39.
F
irritation of
ST current is way above average on left, right or




stomach
both sides.




lining


40.
E
irritation of
(a)BL current is above average on left, right or




nerves in both
both sides; and




upper back
(b)KI current is above average on left, right or




and lower
both sides.




back


41.
E
irritation of
BL current is above average on left and right




nerves in
sides.




lower back


42.
E
irritation of
KI current is above average on left, right or both




nerves in neck
sides.


43.
M
kidney failure
(a)KI current is below average on left and right





sides; and





(b)BL current is below average on left and right





sides.


44.
I
large intestine
(a)LI current is below average on left, right or




disorder (with
both sides; and/or




symptoms
(b)LI current is above average on left, right or




other than or
both sides.




in addition to




large intestine




irritation)


45.
F
large intestine
(a)LI current is way above average on left, right




irritation
or both sides; and





(b)SI current is average on left and right sides.


46.
D
lower back
BL current is above average on left, right or both




injury
sides.


47.
D
lower back
BL current is above average on left, right or both




pain
sides.


48.
Q
lung cancer
LU current is way above average on left, right or





both sides.


49.
Q
lung disease
(a)LU current is above average on left, right or




(excluding
both sides; and/or




lung cancer)
(b)LU current is below average on left, right or





both sides.


50.
K
menstruating
(a)SP current is above average on left and right




(if patient is a
sides; and




woman)
(b)BL current is above average on left and right





sides; and





(c)KI current is above average on left and right





sides.


51.
Q
Micro-
PC current is below average on left, right or both




circulatory
sides.




disease


52.
N
Micro-
(a)PC current is below average on left and right




circulatory-
sides; and




orthostatic
(b)HT current is below average on left and right




hypotension
sides; and





(c)SP current is below average on left and right





sides; and





(d)KI current is below average on left and right





sides; and





(e)BL current is below average on left and right





sides.


53.
N
multiple
(a)KI current is below average on left and right




sclerosis
sides; and





(b)SP current is below average on left and right





sides; and





(c)BL current is below average on left and right





sides.


54.
H
nerve damage
BL current is below average on left, right or both




in lower back
sides.


55.
H
nerve damage
KI current is below average on left, right or both




in neck
sides.


56.
H
nerve damage
(a)BL current is below average on left and right




due to fall on
sides; and




tailbone (in
(b)KI current is average on left and right sides;




female patient)
and





(c)SP current is average on left and right sides.


57.
H
nerve damage
KI current is below average on left, right or both




in upper back
sides.


58.
N
benign
(a)BL current is below average on left, right or




prostatic
both sides; and




hyperplasia
(b)KI current is average on left, right or both





sides; and





(c)SP current is average on left, right or both





sides.


59.
Q
prostate
(a)BL current is above average on left, right or




cancer
both sides; and





(b)KI current is average on left and right sides;





and





(c)SP current is average on left and right sides.


60.
P
reflux
(a)GB current is above average on left, right or





both sides; and





(b)ST current is above average on left, right or





both sides.


61.
P
sinus
(a)SP current is way above average on left and




infection
right sides;





(b)KI current is average on left and right sides;





and





(c)BL current is average on left and right sides;





and





(c) LU current is way below average on left and





right sides.


62.
L
sleep disorder
(a)HT current is below average on left, right or





both sides; and





(b)PC current is below average on left, right or





both sides.


63.
I
impaired
(a)ST current is way below average on left and




stomach
right sides; and




motility
(b)GB current is average on left and right sides.


64.
J
excessive
[(a) HT current is above average on left, right or




stress
both sides; and





(b) PC current is above average on left, right or





both sides; and





(c) SI current is below average on left,





right or both sides] and/or





[(a) HT current is average on left, right or both





sides; and





(b) PC current is average on left, right or both





sides; and





(c) ((SI current is above average on left,





right or both sides) and/or (SI current is way





above average on left, right or both sides))].


65.
P
viral infection
(a)SP current is way below average on left and





right sides; and





(b)KI current is average or way above





average on left, right or both sides; and





(c)BL current is average or way above





average on left, right or both sides.









Table 1 has 65 rows.


Table 1 lists 65 electrical current states, i.e., one electrical current state per row. As used herein, “Prototype Electrical Current State” means an electrical current state that is listed in a row of Table 1. For instance, the Prototype Electrical Current State listed in row 3 of Table 1 is “BL current is below average on left, right or both sides.” Also, for instance, the Prototype Electrical Current State listed in row 4 of Table 1 is “(a) BL current is below average on left, right or both sides; and (b) SP current is below average on left, right or both sides.”


Each current range listed in Table 1 is a Prototype Current Range. Specifically, each time that a current range “way above average”, “above average”, “average”, “below average” or “way below average” is listed in Table 1, that current range is a Prototype Current Range. For instance, in row 3 of Table 1, “above average” is a Prototype Current Range. Also, for instance, in row 28 of Table 1, “below average” and “above average” are each a Prototype Current Range.


Table 1 lists 65 medical conditions; i.e., one medical condition per row. As used herein, “Prototype Medical Condition” means a medical condition listed in a row of Table 1. For instance, the Prototype Medical Conditions listed in rows 1, 2 and 65 of Table 1 are anemia, anxiety and viral infection, respectively.


In each row in Table 1, the electrical current state listed in that row indicates that the patient has the medical condition listed in that row. Put differently, in each row in Table 1, the electrical current state listed in that row is a biomarker for the medical condition listed in that row. Likewise, in each row in Table 1, the electrical current state listed in that row is a factor that, in a differential diagnosis, points toward (or weighs in favor of) concluding that the patient has at least the medical condition listed in that row.


Table 1 associates Prototype Medical Conditions with respective Prototype Electrical Current States. Specifically, Table 1 associates the Prototype Medical Condition listed in each row of Table 1 with the Prototype Electrical Current State listed in that row. As a non-limiting example, Table 1 associates the Prototype Medical Condition listed in row 48 of Table 1 (i.e., lung cancer) with the Prototype Electrical Current State listed in row 48 of Table 1 (i.e., “LU current is way above average on left, right or both sides”.)


As used herein, when the first letter of the verb “Associate” is capitalized, then to “Associate” means to associate, by a lookup table, a Prototype Medical Condition listed in a row of Table 1 with the Prototype Electrical Current State listed in that row of Table 1. The term “Associate” does not require accessing Table 1 itself; instead “Associate” requires a lookup table to make the same association as is made in a row of Table 1. For instance, if a lookup table were to associate lung cancer with the Prototype Electrical Current State “LU current is way above average on left, right or both sides”, then the lookup table would be Associating lung cancer with that Prototype Electrical Current State. (This is because row 48 of Table 1 makes that association). The definition of “Associate” in this paragraph does not create any implication regarding the meaning of the word “associate” when the first letter of the word is not capitalized.


In each row in Table 1, if the electrical current state for that row does not explicitly mention a specific current, then that specific current may be in any Prototype Current Range. For instance: (a) in row 1 of Table 1, only SP current, KI current and BL current are explicitly mentioned; and (b) in the electrical current state listed in row 1, other currents (e.g., LR, GB, ST, LU, PC, HT, SI, TH and LI currents) may be in any Prototype Current Range.


Each current that is on a particular side of a patient and that is listed in Table 1 may have a value derived from: (a) a single measurement at a particular measurement location (after any calibration) or (b) multiple measurements at the particular measurement location (after any calibration and filtering). If a current listed in Table 1 has a value that is derived from multiple measurements at a particular measurement location, then that value is an average of the multiple measurements (after any calibration and filtering).


In some use scenarios, each current listed in Table 1 is a Prototype Current that is measured when a probe electrode is touching a Prototype Measurement Location. Likewise, in some use scenarios: (a) each current that is on a specific side of a patient and that is listed in Table 1 is an electric current between a probe electrode and a ground electrode, which current is measured while: (a) the ground electrode is touching skin of a hand of a forearm of a patient; and (b) the probe electrode is touching skin of another limb of the patient at a Prototype Measurement Location on that specific side of the patient.


This invention may be employed to accurately detect and diagnose medical conditions. For instance, in some implementations of this invention: (a) the Prototype Currents listed in Table 1 are measured while the probe electrode is placed at the Prototype Measurement Locations; (b) the measured currents are assigned to Prototype Current Ranges; and (c) accurate diagnoses of medical conditions are made based on the respective associations (between electrical current states and medical conditions) that are set forth in Table 1.


In Table 1, each medical condition is assigned a class. Specifically, each medical condition listed in a row of Table 1 is classified as being in a particular class, which particular class is listed in that row. For instance, in row 1 of Table 1, the medical condition of anemia is classified as being in Class B.


As used herein: (a) “Class A Condition” means a medical condition that is, in Table 1, classified as being in Class A; (b) “Class B Condition” means a medical condition that is, in Table 1, classified as being in Class B; (c) “Class C Condition” means a medical condition that is, in Table 1, classified as being in Class C; (d) “Class D Condition” means a medical condition that is, in Table 1, classified as being in Class D; (e) “Class E Condition” means a medical condition that is, in Table 1, classified as being in Class E; (f) “Class F Condition” means a medical condition that is, in Table 1, classified as being in Class F; (g) “Class G Condition” means a medical condition that is, in Table 1, classified as being in Class G; (h) “Class H Condition” means a medical condition that is, in Table 1, classified as being in Class H; (i) “Class I Condition” means a medical condition that is, in Table 1, classified as being in Class I; (j) “Class J Condition” means a medical condition that is, in Table 1, classified as being in Class J; (k) “Class K Condition” means a medical condition that is, in Table 1, classified as being in Class K; (l) “Class L Condition” means a medical condition that is, in Table 1, classified as being in Class L; (m) “Class M Condition” means a medical condition that is, in Table 1, classified as being in Class M; (n) “Class N Condition” means a medical condition that is, in Table 1, classified as being in Class N; (p) “Class P Condition” means a medical condition that is, in Table 1, classified as being in Class P; and (q) “Class Q Condition” means a medical condition that is, in Table 1, classified as being in Class Q. The medical conditions listed in this paragraph are each an example of a Prototype Medical Condition.


As noted above, the diagnostic system may determine whether or not a patient has a viral infection and whether or not a patient has a bacterial infection, based on electrical current measurements that take only a few minutes. This ability to quickly and accurately detect and differentiate between viral and bacterial infections enables the diagnostic system to be used as a mass-scale, rapid screening tool in a viral or bacterial epidemic.


For instance, the medical conditions listed in rows 7 and 65 of Table 1 are bacterial infection and viral infection, respectively. Table 1 associates bacterial infection with the electric current state listed in row 7 of Table 1 and associates viral infection with the electric current state listed in row 65 of Table 1. For example, if the electrical current state listed in row 65 of Table 1 is detected, then the diagnostic system may output a diagnosis that the patient has a viral infection. Likewise, if the electrical current state listed in row 7 of Table 1 is detected, then the diagnostic system may output a diagnosis that the patient has a bacterial infection.


Machine Learning

In some implementations of this invention, a computer employs a trained machine learning model instead of a lookup table, in order to predict a medical condition based on measurements of cross-body electrical currents.


In some implementations, the input to the machine learning model is data representing measurements of cross-body currents at multiple different measurement locations for a single patient during a single diagnostic session. For instance, the input to the machine learning model may comprise measurements of electrical currents, where: (a) the currents flow between a probe electrode and a ground electrode; and (b) the measurements are taken during a single diagnostic session while the patient holds the ground electrode and while the probe electrode is pressed against the patient's skin at each of multiple different locations on limbs of the patient, one location at a time.


In some cases, the data is calibrated (e.g., to adjust for the effect, if any, of pressure exerted against an electrode) and filtered (e.g., to remove outliers) before being fed as input into the machine learning model. In some cases: (a) multiple current measurements are taken at each measurement location; (b) the multiple measurements for each given location are averaged and the resulting average current for that given location is fed as an input into the machine learning model. In some cases: (a) the currents for the respective measurement locations are assigned into current ranges; and (b) the current ranges for the respective measurement locations are fed as inputs into the machine learning model. In some cases, one or more other features are extracted from the current measurements (and/or from contextual information), and are also fed as input into the machine learning algorithm.


In some implementations, the machine learning model that is used to predict medical conditions is a supervised learning algorithm, such as a decision tree algorithm, random forests algorithm, ANN (artificial neural network), CNN (convolutional neural network), RNN (recurrent neural network), RNN with LSTM (long short term memory), RNN with Gated Recurrent Unit, MLP (multi-layered perceptron), or SVM (support vector machine) algorithm or a classifier such as a KNN (k-nearest neighbors) or naive Bayes algorithm. The supervised learning model may be trained on a training dataset that has been labeled by a health care worker or other human expert. The labels may be medical conditions. The data that is labeled may comprise electrical current measurements or data or features derived therefrom. In some cases: (a) there are practical difficulties in obtaining a sufficiently large dataset for training; and (b) a generative model (e.g., a variable autoencoder or generative adversarial network) is employed to generate a synthetic database. This synthetic database may be added to a database derived from actual measurements, in order to form a large training database for supervised learning.


In some other implementations of this invention, the machine learning model that is used to predict medical conditions is a reinforcement learning algorithm (such as a Monte Carlo, Q-learning, state-action-reward-state-action, or deep Q network algorithm). Alternatively, the machine learning model that is used to predict medical conditions is an unsupervised machine learning algorithm, such as an AE (auto-encoder), SAE (stacked auto-encoder) VAE (variational auto-encoder), DBN (deep belief network), GAN (generative adversarial network), conditional GAN, or infoGAN algorithm. Or, for instance, the machine learning model may comprise a restricted Boltzmann machine.


In some implementations, the machine learning model outputs both: (a) one or more predicted medical conditions; and (b) a confidence level or probability for each of the one or more predicted medical conditions. Again, the confidence level or probability may be explicitly stated or may be implicit. For instance, the machine learning model may output a list of medical conditions, ranked from most probable to less probable. Or, for instance, the machine learning algorithm may output a “rule-out” recommendation—that is, a recommendation that further medical tests be performed to evaluate whether or not a specific medical condition is actually present.


In some implementations: (a) the machine learning model is a supervised learning algorithm; (b) after the model is initially trained, additional data is gathered based on ongoing experiences with patients; and (c) this additional data is labeled and used for additional training of the machine learning model.


User Interface

In some implementations, one or more computers control input/output (I/O) devices in such a way as to present a GUI (graphical user interface) or audiovisual UI (user interface) to a patient, health care worker or other user. For instance, a touch screen or other electronic display screen (e.g., 133, 451) may render a GUI. The patient, health care worker or other user may interact with the GUI by inputting instructions or data via one or more I/O devices such as a touch screen, keyboard 134, or mouse 135. In some implementations, the I/O devices present an audiovisual UI, including audio information outputted by speaker 132. In this audiovisual UI, audio input by the user may be detected by microphone 131 or by a microphone onboard smartphone 450.


The GUI or UI may present (to a patient, health care worker or other user) information about, among other things: (a) electrical current measurements taken during a diagnostic session; (b) current ranges assigned to different currents; (c) a diagnosis or tentative diagnosis that specifies one or more medical conditions that are indicated by the electrical current measurements taken during the diagnostic session; (d) a confidence level or probability associated with each diagnosis or tentative diagnosis; (e) one or more recommendations for action to be taken (e.g., a recommendation to check with a physician for further testing or for confirmation or treatment of a medical condition); (f) additional information about the diagnostic process and the current measurements; (g) results of previous diagnostic sessions; and (h) a comparison of a current diagnosis (or diagnoses) with a past diagnosis (or diagnoses).


The GUI or UI may include a chat box. The chat box may enable a patient to provide additional information about symptoms and to ask questions. In some cases, the chatbox will enable a patient to select from a list of symptoms, and also enable the patient to input information about symptoms that are not listed. The chat box may also enable a health care worker to ask additional questions and to receive answers from the patient.


One or more computers may employ a chatbot in a UI, in order to gather input from and provide information to a patient, health care worker or other user. In some cases, at least some of the information that is provided to a patient, health care worker or other user is sent via one or more emails or other social media messages. The information that is provided by chatbot, email or other social media message may comprise any or all of the information described above in this “User Interface” section.


In some cases, an audiovisual UI guides a user (e.g., patient or health care worker) to take the electrical current measurements under conditions that are suitable for accurate readings. Put differently, the audiovisual UI may provide real-time feedback regarding whether the electrodes are properly positioned and pressed firmly enough against the skin.


When an electrode is pressed against a patient's skin, the measured electrical current may increase as the pressure exerted against the skin increases, until the measured electrical current reaches a plateau. In some cases: (a) the current sensor detects when the electric current is increasing and when the current plateaus; (b) the only measurements of electric current that are used for diagnostic purposes occur after the measured current has increased and reached a plateau, and (c) measurements of electric current that are taken before the current reaches a plateau are disregarded for diagnostic purposes. Alternatively or in addition, in some cases: (a) one or more pressure sensors measure pressure exerted against an electrode; (b) the only measurements of electric current that are used for diagnostic purposes occur when the pressure exerted on the electrode exceeds a threshold value; and (c) measurements of electric current that are taken when the pressure exerted on the electrode is less than or equal to the threshold are disregarded for diagnostic purposes. In some cases, an electrode has multiple pads, and electric current measurements are disregarded for diagnostic purposes unless the pressure exerted against a threshold number of the pads exceeds a threshold pressure. In some cases, pressure is measured for both the ground electrode and probe electrode, and electric current measurements are disregarded for diagnostic purposes unless pressure exerted against each electrode exceeds the threshold pressure for that electrode. In some cases, the same pressure threshold is used for both the ground and probe electrodes and for all of the pads of a ground electrode. Alternatively, different pressure thresholds may be employed for different electrodes and/or for different pads of an electrode.


The audiovisual UI may emit a sound (e.g., a beep or tone) when the probe and ground electrodes are held correctly. The UI may include a sonic guide that changes pitch or tone depending on the amount of pressure applied to electrode(s) or depending on the amount of current being detected. The UI may also include a visual indicator that shows whether each electrode is in proper contact with the patient's skin. For instance, the graphic display may highlight which electrode is not properly contacting the patient's skin, by changing the color or shape of an electrode icon on the screen.


Thus, the UI may enable self-calibrated measurements of cross-body electrical currents on patients of varying measurement location physiologies (e.g., sizes, skin thickness, exact probe placement, variations in galvanic skin response and transient surface currents effects) and may be used to rapidly screen for optimal measurement protocols. In some implementations, the measurement protocol includes both: (a) real-time determination of quality of signal; and (b) real-time feedback to a user via the audiovisual UI.


Customization

In some cases, the machine learning algorithm is trained on a dataset for a general population.


In other cases, the machine learning algorithm is trained to predict medical conditions in a way that is customized for one or more features of a patient, such as the patient's age, sex, race, weight, habits (e.g., smoker vs non-smoker), personal medical history and/or family medical history. For instance, the training dataset for the machine learning algorithm may be labeled with not only medical conditions but also with one or more these features (e.g., patient's age, sex, race, weight, habits, personal medical history and/or family medical history).


Likewise, if a lookup table is employed instead of a machine learning algorithm, then multiple lookup tables may be used, each customized for a different combination of these features. As a non-limiting example, there may be a first lookup table for males over age 59, a second lookup table for women over age 59, a third lookup table for males age 31-59, and so on.


In some implementations of this invention, a machine learning model is personalized for a particular patient. For instance, a machine learning algorithm may be initially trained on data for a general population or for a subset of a general population. Then the machine learning algorithm may be further trained for a particular patient, based on data gathered in the course of performing diagnoses of the particular patient. For instance, if the machine learning algorithm predicts medical condition A for a patient but the patient actually has medical condition B, then this information may be used as part of an additional training dataset to train the machine learning algorithm to make personalized predictions for the patient.


Likewise, if a lookup table is employed instead of a machine learning algorithm, then the lookup table may be personalized, based on data gathered in the course of making diagnoses of the particular patient.


Adaptive Prediction

In some cases, the electrical current measurements for a patient are supplemented with information about contextual features. For instance, the contextual information may include sensor readings that are taken by one or more sensors which are worn by, or located near to, the patient. These other sensors may measure one or more physiological states of the patient (e.g., heart rate, respiration rate, body temperature) and/or one or more states of the patient's environment (e.g., temperature, humidity, ambient light). These other sensors may wirelessly transmit their readings to a receiver in the diagnostic system. In some cases, the contextual information also includes text or audio input from a patient or health care worker regarding the patient's state (e.g., happy, worried) and/or the patient's environment (e.g., at work).


In some cases, the machine learning algorithm is trained to adapt its prediction in real time based on data about the patient's context. For instance, the training dataset for the machine learning algorithm may be labeled with not only medical conditions but also with one or more contextual features (such as one or more physiological states, mental states, and environmental features). Likewise, if a lookup table is employed, different versions of the lookup table may be employed, depending on the patient's context.


After a machine learning model is initially trained, it may adaptively learn based on the patient's context when electric current measurements are taken. Data regarding both the electrical currents and the context may be gathered while making diagnoses and may later be employed as an additional training dataset, in order to further train the model to predict medical conditions in a manner that depends in part on context.


Machine Learning Example

The following 23 paragraphs describe an example (the “ML Example”) of a diagnostic system that employs a trained machine learning model. The ML Example is a non-limiting example of this invention.


In this ML Example, a diagnostic system captures, organizes and analyzes measurements of electrical currents. The system employs machine learning and a database (knowledge library). The system may be used by less experienced practitioners to quickly and accurately diagnose their patients.


In this ML Example: (a) electrical current (or conductivity of the skin) is measured at each meridian point; and (b) excessive and deficient energies are plotted on a chart and identified. Treatment may consist of stimulating specific acupuncture points to either “tonify” a deficient meridian, or “sedate” an excessive meridian. For example, stimulation treatment may be conducted using a preferred range of about 100 microamps to about 200 microamps for humans and a range of about 100 microamps to about 500 microamps for other animals (e.g., mammals).


In this ML Example, patients have different electrical conductivity potentials. Thus, in this ML Example, current measurements are not absolute, but rather may be taken relative to all other measurements on the same patient. Thus, deviation from an average measurement may be more important than the actual measurement itself. Deviations (which may be used for diagnosis) may be determined by analyzing measurements within a broader context (e.g., plotting the current measurements on a chart and looking for outliers from the mean). For instance, an analysis may be designed to encompass the majority of measurements, in an area we sometimes call a “physiological corridor.” Measurements outside the corridor may be deemed abnormal, and treatment applied to restore balance to abnormal meridians.


In this ML example, screening may be employed to identify the possible presence of an as-yet-undiagnosed disease in an individual patient (e.g., without signs or symptoms). This may include individuals with pre-symptomatic or unrecognized symptomatic disease.


In this ML Example, electrical measurements along acupuncture meridian lines may be used to examine and identify an individual's specific areas of weakness and strength in order determine a condition, disease or illness. The electrical conductance of the primary meridian lines may be measured at various points on the patient's wrists and ankles. Both excessive and deficient electrical conductance levels outside the patient's normal range may be correlated to classify the condition of the patient.


In this ML Example, a differential diagnostic process may distinguish a particular condition from others that present similar symptoms. A differential diagnosis may include the following steps: (a) gather information about the patient to be diagnosed and create a symptoms list; (b) list possible causes (candidate conditions) for the symptoms; (c) prioritize the list by placing the most urgently dangerous condition at the top of the list; (d) work down the list to rule out possible causes; and (e) remove diagnoses from the list by observing and applying tests that produce different results.


In this ML Example, meridian point assessment of the patient's condition may be used to assemble and support possible candidate conditions and also potentially rule out other possible causes from consideration.


In this ML Example, the diagnostic system may be applied to assess the mental health status of a patient.


In this ML Example, the mental health or psychiatric condition of the patient's mind may have adverse effects on the patient's body. For example, anxiety or depression (rather than an infection or physical abnormality in the digestive tract) may be the root cause of dyspepsia. The conductivity measurements may also provide data regarding psychological aspects of an individual, not just the physical.


In this ML Example, the diagnostic system may be a decision/support system that: (a) links observations with a database of knowledge; and (b) helps to analyze the current state of a patient and to reach a diagnostic conclusion.



FIG. 12 is a flowchart for a diagnostic method employed in the ML Example. The method shown in FIG. 12 includes at least the following steps: capture 1210, machine learning 1220, and prediction 1230.


In the ML Example, the capture step may comprise: (a) taking patient observations in the form of recorded meridian points; and (b) producing a database of associated labeled outcomes for a selected diagnosis (e.g., where the outcome labels are Positive, Negative and Rule Out). The information acquired during capture may be used to create the knowledge library database. Each patient record may consist of 24 meridian points, 12 from the left and right hands and 12 from the left and right feet.


In the ML Example, the machine learning step may include generating a set of random forests through supervised training, in such a way that: (a) one random forest is created for each potential diagnostic entity; and (b) the collection of random forests constitutes the knowledge library database.


In the ML Example, each random forest may be employed as an ensemble of knowledge for a given diagnostic conclusion. The conclusion may be either positive, negative or needs further testing to rule out. Each trained ensemble may represent a single hypothesis.


In the ML Example, any type of machine learning model may be employed, including: (a) an artificial neural network; (b) decision tree; (c) random forests; or (d) support vector machine.


In the ML Example, the machine learning model is trained by supervised learning. For example, the experience (and/or separate diagnosis) data entered by a doctor may be organized into the content of the models. Thus, a doctor may supervise the learning of the machine learning model.


In the version of the ML Example that is shown in FIG. 12, a doctor may enter a set of outcomes (positive, negative and/or rule out) for a specific set of patient meridian points as it relates to a specific diagnosis. Each experience is recorded in the database. In the supervised learning, the patient meridian points may be features and the outcomes may be labels. During supervised learning, a decision tree may split data into smaller data groups based on the features of the data until a small enough set of data identifies to one label. After the decision tree is trained, it may take as an input a feature set (meridian points) and may output one label (positive, negative or rule out).


In the ML Example, rather than rely on only one decision tree, a random forest is created that consists of a number of competing decision trees, where each tree is trained in a slightly different way. Then each tree in the forest may determine an answer on its own and the forest may be surveyed for the best agreed upon answer.


In the ML Example, the supervised learning mode may output an accurate predicted label (outcome). Meridian points recorded from a new patient may be entered into the diagnostic system and a patient diagnosis may be displayed on a practitioner's monitor.


In the ML Example, the machine learning algorithm may create a random forest for each diagnostic candidate and each forest may consist of hundreds of trees. As a non-limiting example, if there are a hundred diagnostic candidates, then there may be tens of thousands of decision trees that are making decisions (e.g., correlating meridian point data to possible outcomes).


In the ML Example, an inference engine may query each random forest for its outcome decision. The inference engine may assess the reliability of each decision, rank them and present them. The inference engine may also present supporting justification for the final set of outcomes. The inference engine may also record feedback from the practitioner to determine the validity of the final outcome. The information may be recorded and ultimately fed back into the machine learning algorithm to enhance system performance and accuracy.


In the ML Example, data may be stored in a relational database. For instance, data may be stored in the relational database shown in FIG. 13. This relational database may include data regarding, among other things, patients 1300, conditions 1310, positive outcomes 1320, negative outcomes 1330, and rule-outs 1340.


In the ML Example, each meridian record may be analyzed against the various diagnostic candidates and an outcome of positive, negative or rule out may be determined. A graphical user interface may display diagnostic results and may also display a justification for the diagnosis.


The ML Example described in the preceding 23 paragraphs is a non-limiting example of this invention. This invention may be implemented in many other ways.


Practical Applications

This invention has many practical applications. For instance, in some cases, the diagnostic system may be employed to diagnose or tentatively diagnose a medical condition. The diagnostic system may also be employed to screen for medical conditions, and to determine when further testing is needed in order to determine whether a particular medical condition is present. In some implementations, the diagnostic system is employed to quickly distinguish between a viral infection and a bacterial infection. Also, in some cases, the diagnostic system may be employed to rapidly screen for: (a) optimal dosing levels for medicine; (b) effects of (physical or psycho-) therapy or exercise; (c) effects of diet or other therapeutic or preventative or wellness-focused supplements; and (d) effects of pharmaceuticals and/or other therapeutic and diagnostic interventions.


Computers

In illustrative implementations of this invention, one or more computers (e.g., servers, network hosts, client computers, integrated circuits, microcontrollers, controllers, microprocessors, field-programmable-gate arrays, personal computers, digital computers, driver circuits, or analog computers) are programmed or specially adapted to perform one or more of the following tasks: (1) to control the operation of, or interface with, hardware components of a current sensor, power source, or signal generator; (2) to calibrate, filter and/or average current measurements; (3) to calculate current ranges and to assign currents to current ranges; (4) to determine an electrical current state that consists of a current range for a specific current or of current ranges for respective currents; (5) to access a lookup table to determine that one or more medical conditions are indicated by the electrical current state; (6) to train a machine learning model; (7) to employ a trained machine learning model to predict, based on measured cross-body electrical currents, that one or more medical conditions are present; (8) to output a diagnosis or tentative diagnosis; (9) to output a rule-out recommendation to perform further medical testing to evaluate whether a medical condition is actually present; (10) to output a probability or confidence level for each medical condition that is diagnosed or tentatively diagnosed; (11) to control input/output devices in such as to present a UI that provides real-time feedback regarding whether electrodes are being used properly and that provides other information including current readings and diagnoses; (12) to receive data from, control, or interface with one or more sensors, including one or more pressure sensors; (13) to perform any other calculation, computation, program, algorithm, or computer function described or implied herein; (14) to receive signals indicative of human input; (15) to output signals for controlling transducers for outputting information in human perceivable format; (16) to process data, to perform computations, and to execute any algorithm or software; and (17) to control the read or write of data to and from memory devices (tasks 1-17 of this sentence being referred to herein as the “Computer Tasks”). The one or more computers (e.g. 105, 121 or a computer in smartphone 450) may, in some cases, communicate with each other or with other devices: (a) wirelessly, (b) by wired connection, (c) by fiber-optic link, or (d) by a combination of wired, wireless or fiber optic links.


In exemplary implementations, one or more computers are programmed to perform any and all calculations, computations, programs, algorithms, computer functions and computer tasks described or implied herein. For example, in some cases:


(a) a machine-accessible medium has instructions encoded thereon that specify steps in a software program; and (b) the computer accesses the instructions encoded on the machine-accessible medium, in order to determine steps to execute in the program. In exemplary implementations, the machine-accessible medium may comprise a tangible non-transitory medium. In some cases, the machine-accessible medium comprises (a) a memory unit or (b) an auxiliary memory storage device. For example, in some cases, a control unit in a computer fetches the instructions from memory.


In illustrative implementations, one or more computers execute programs according to instructions encoded in one or more tangible, non-transitory computer-readable media. For example, in some cases, these instructions comprise instructions for a computer to perform any calculation, computation, program, algorithm, or computer function described or implied herein. For instance, in some cases, instructions encoded in a tangible, non-transitory, computer-accessible medium comprise instructions for a computer to perform the Computer Tasks.


Computer Readable Media

In some implementations, this invention comprises one or more computers that are programmed to perform one or more of the Computer Tasks.


In some implementations, this invention comprises one or more tangible, machine readable media, with instructions encoded thereon for one or more computers to perform one or more of the Computer Tasks. In some implementations, these one or more media are not transitory waves and are not transitory signals.


In some implementations, this invention comprises participating in a download of software, where the software comprises instructions for one or more computers to perform one or more of the Computer Tasks. For instance, the participating may comprise (a) a computer providing the software during the download, or (b) a computer receiving the software during the download.


Network Communication

In illustrative implementations of this invention, one or more devices (e.g., 105, 450) are configured for wireless or wired communication with other devices in a network.


For example, in some cases, one or more of these devices include a wireless module for wireless communication with other devices in a network. Each wireless module may include (a) one or more antennas, (b) one or more wireless transceivers, transmitters or receivers, and (c) signal processing circuitry. Each wireless module may receive and transmit data in accordance with one or more wireless standards.


In some cases, one or more of the following hardware components are used for network communication: a computer bus, a computer port, network connection, network interface device, host adapter, wireless module, wireless card, signal processor, modem, router, cables and wiring.


In some cases, one or more computers (e.g., 105 or a computer in smartphone 450) are programmed for communication over a network. For example, in some cases, one or more computers are programmed for network communication: (a) in accordance with the Internet Protocol Suite, or (b) in accordance with any other industry standard for communication, including any USB standard, ethernet standard (e.g., IEEE 802.3), token ring standard (e.g., IEEE 802.5), or wireless communication standard, including IEEE 802.11 (Wi-Fi®), IEEE 802.15 (Bluetooth®/Zigbee®), IEEE 802.16, IEEE 802.20, GSM (global system for mobile communications), UMTS (universal mobile telecommunication system), CDMA (code division multiple access, including IS-95, IS-2000, and WCDMA), LTE (long term evolution), or 5G (e.g., ITU IMT-2020).


Definitions

The terms “a” and “an”, when modifying a noun, do not imply that only one of the noun exists. For example, a statement that “an apple is hanging from a branch”: (i) does not imply that only one apple is hanging from the branch; (ii) is true if one apple is hanging from the branch; and (iii) is true if multiple apples are hanging from the branch.


“Associate” is defined above.


To compute “based on” specified data means to perform a computation that takes the specified data as an input.


To say that a current flows “between” A and B does not create any implication regarding direction of flow (i.e., from A to B, or from B to A).


“BL current” is defined above.


Non-limiting examples of a “camera” include: (a) a digital camera; (b) a digital grayscale camera; (c) a digital color camera; and (d) a video camera.


The term “comprise” (and grammatical variations thereof) shall be construed as if followed by “without limitation”. If A comprises B, then A includes B and may include other things.


A digital computer is a non-limiting example of a “computer”. An analog computer is a non-limiting example of a “computer”. A computer that performs both analog and digital computations is a non-limiting example of a “computer”. However, a human is not a “computer”, as that term is used herein.


“Computer Tasks” is defined above.


“Defined Term” means a term or phrase that is set forth in quotation marks in this Definitions section.


For an event to occur “during” a time period, it is not necessary that the event occur throughout the entire time period. For example, an event that occurs during only a portion of a given time period occurs “during” the given time period.


The term “e.g.” means for example.


The fact that an “example” or multiple examples of something are given does not imply that they are the only instances of that thing. An example (or a group of examples) is merely a non-exhaustive and non-limiting illustration.


Chronic fatigue is a non-limiting example of “fatigue”.


The terms “Class A Condition” through “Class N Condition” are defined above. Also, “Class P Condition” and “Class Q Condition” are defined above.


“Diagnostic session” means a period of time.


Unless the context clearly indicates otherwise: (1) a phrase that includes “a first” thing and “a second” thing does not imply an order of the two things (or that there are only two of the things); and (2) such a phrase is simply a way of identifying the two things, so that they each may be referred to later with specificity (e.g., by referring to “the first” thing and “the second” thing later). For example, if a device has a first socket and a second socket, then, unless the context clearly indicates otherwise, the device may have two or more sockets, and the first socket may occur in any spatial order relative to the second socket. A phrase that includes a “third” thing, a “fourth” thing and so on shall be construed in like manner.


As used herein, “food-related sinus allergy” means a sinus allergy that is caused (or exacerbated) at least in part by one or substances (e.g., allergens) in ingested food.


“Forearm” is defined above.


“For instance” means for example.


To say a “given” X is simply a way of identifying the X, such that the X may be referred to later with specificity. To say a “given” X does not create any implication regarding X. For example, to say a “given” X does not create any implication that X is a gift, assumption, or known fact.


A migraine is a non-limiting example of a “headache”.


“Herein” means in this document, including text, specification, claims, abstract, and drawings.


As used herein: (1) “implementation” means an implementation of this invention; (2) “embodiment” means an embodiment of this invention; (3) “case” means an implementation of this invention; and (4) “use scenario” means a use scenario of this invention.


To say that a current is “in” a patient means that the current flows through at least a portion of the body of the patient.


The term “include” (and grammatical variations thereof) shall be construed as if followed by “without limitation”.


“GB current” is defined above.


“HT current” is defined above.


“KI current” is defined above.


“Left side” is defined above.


“Leg” is defined above.


“LI current” is defined above.


As used herein, “lower back” means the portion of the back that is inferior to the transpyloric plane.


“LR current” is defined above.


“LU current” is defined above.


A physiological condition is a non-limiting example of a “medical condition”, as that term is used herein.


“Meridian” means acupuncture meridian.


The term “mobile computing device” or “MCD” means a device that includes a computer, a camera, a display screen and a wireless transceiver. Non-limiting examples of an MCD include a smartphone, cell phone, mobile phone, tablet computer, laptop computer and notebook computer.


Unless the context clearly indicates otherwise, “or” means and/or. For example, A or B is true if A is true, or B is true, or both A and B are true. Also, for example, a calculation of A or B means a calculation of A, or a calculation of B, or a calculation of A and B.


“PC current” is defined above.


As used herein, “poor glycemic control” means: (a) blood glucose levels that are persistently greater than 200 mg/dl; together with (b) glycated hemoglobin levels in the blood that are persistently greater than 9%.


“Prototype Current” is defined above.


“Prototype Current Ranges” is defined above.


“Prototype Electrical Current State” is defined above.


“Prototype Measurement Locations” is defined above.


“Prototype Medical Condition” is defined above.


“Right side” is defined above.


As used herein, the term “set” does not include a group with no elements.


“SI current” is defined above.


An electrode touching or being pressed against a conductive gel (or other conductive material) that is on a region of skin of a patient is a non-limiting example of the electrode “touching” or being “pressed against” the region of skin, as those terms are used herein.


Unless the context clearly indicates otherwise, “some” means one or more.


“SP current” is defined above.


“ST current” is defined above.


As used herein, a “subset” of a set consists of less than all of the elements of the set.


The term “such as” means for example.


“TH current” is defined above.


To say that a current flows “through” a body means that the current flows through at least a portion of the body.


To say that a machine-readable medium is “transitory” means that the medium is a transitory signal, such as an electromagnetic wave.


As used herein, “upper back” means the portion of the back that is superior to the transpyloric plane.


In the clause “HT current is above average or below average on left side”, the phrase “on left side” modifies both “above average” and “below average”. Likewise, other clauses with the same grammatical structure shall be construed in the same way. For instance, in the clause “LI current is average or below average on right side”, the phrase “on right side” modifies both “average” and “below average”.


“A xor B” means A or B but not A and B. Put differently, the term “xor” signifies an exclusive or.


Except to the extent that the context clearly requires otherwise, if steps in a method are described herein, then the method includes variations in which: (1) steps in the method occur in any order or sequence, including any order or sequence different than that described herein; (2) any step or steps in the method occur more than once; (3) any two steps occur the same number of times or a different number of times during the method; (4) one or more steps in the method are done in parallel or serially; (5) any step in the method is performed iteratively; (6) a given step in the method is applied to the same thing each time that the given step occurs or is applied to a different thing each time that the given step occurs; (7) one or more steps occur simultaneously; or (8) the method includes other steps, in addition to the steps described herein.


Headings are included herein merely to facilitate a reader's navigation of this document. A heading for a section does not affect the meaning or scope of that section.


This Definitions section shall, in all cases, control over and override any other definition of the Defined Terms. The Applicant or Applicants are acting as his, her, its or their own lexicographer with respect to the Defined Terms. For example, the definitions of Defined Terms set forth in this Definitions section override common usage and any external dictionary. If a given term is explicitly or implicitly defined in this document, then that definition shall be controlling, and shall override any definition of the given term arising from any source (e.g., a dictionary or common usage) that is external to this document. If this document provides clarification regarding the meaning of a particular term, then that clarification shall, to the extent applicable, override any definition of the given term arising from any source (e.g., a dictionary or common usage) that is external to this document. Unless the context clearly indicates otherwise, any definition or clarification herein of a term or phrase applies to any grammatical variation of the term or phrase, taking into account the difference in grammatical form. For example, the grammatical variations include noun, verb, participle, adjective, and possessive forms, and different declensions, and different tenses.


Table 2, below, provides exemplary data measurements obtained from 133 people, and associated diagnoses, rule-outs, and symptoms, if any. The measurements were taken as herein described at the respective lung, pericardium, heart, small intestine, triple heater, large intestine, spleen, liver, kidney, bladder, gall bladder, and stomach acupuncture meridian locations. The measurements are provided in units of microamps (μA).









TABLE 2







Patient 1 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



74
66
78
62
144 
154 
76
54
66
76
46
92


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



72
46
50
170 
186 
176 
48
58
46
68
36
108 










Diagnosis:


Group #1: nerve damage


Group #1: nerve damage - upper and lower back


Group #1: microcirculatory problem


Group #1: microcirculatory-orthostatic hypotension


Group #2: low protein intake


Group #2: increased metabolism


Group #2: weight loss


Group #3: stress


Rule Outs:


Group #1: coronary artery disease


Symptoms:


Group #1: chronic fatigue










Patient 2 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



112 
114 
102 
26
64
78
184 
82
116 
132 
86
128 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



152 
126 
118 
120 
126 
96
116 
98
134 
132 
72
122 










Diagnosis:


Group #1: lower and upper back irritation


Group #2: low protein intake


Symptoms:


Group #1: lower back pain










Patient 3 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



82
62
66
70
110 
64
86
42
38
64
46
72


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



52
62
50
76
78
66
82
80
46
68
42
66










Diagnosis:


Group #1: headaches


Group #1: nerve damage - neck


Rule Outs:


Group #2: hyperthyroid










Patient 4 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



24
42
26
14
20
20
92
56
48
108 
46
42


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



68
36
22
28
26
16
148 
118 
86
106 
78
 4










Diagnosis:


Group #1: lower and upper back irritation


Group #2: gastroparesis


Group #3: fatigue


Group #3: low blood pressure


Group #4: depression


Group #5: high carbohydrate intake


Group #6: sinus congestion










Patient 5 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



24
42
26
14
20
20
92
56
48
108 
46
42


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



68
36
22
28
26
16
148 
118 
86
106 
78
 0










Diagnosis:


Group #1: gastroparesis


Group #2: nerve related slow peristaltic activity


Group #3: low blood pressure


Group #4: lower and upper back irritation


Group #5: depression


Group #5: chronic fatigue


Group #6: sinus congestion


Rule Outs:


Group #6: sinus infection


Group #7: depression










Patient 6 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



16
 8
24
86
128 
124 
138 
192 
102 
122 
46
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



74
36
18
108 
108 
100 
142 
200 
90
130 
200 
200 










Diagnosis:


Group #1: low blood pressure


Group #2: sinus congestion


Group #2: asthma


Group #3: reflux


Group #4: helicobacter infection of stomach


Group #5: shoulder pain


Group #6: lower and upper back irritation










Patient 7 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



186 
182 
140 
102 
170 
188 
172 
44
136 
158 
174 
58


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
184 
174 
200 
200 
182 
182 
40
122 
130 
132 
40










Diagnosis:


Group #1: gastroparesis


Group #2: low protein intake


Group #2: low stomach function


Group #2: weight loss


Group #3: stress


Group #4: neck damage


Group #5: microcirculatory problem


Group #6: post nasal drip










Patient 8 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



172 
196 
188 
46
68
60
102 
78
130 
130 
94
108 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
108 
88
80
58
46
94
108 
116 
132 
90
126 










Diagnosis:


Group #1: lower and upper back irritation


Group #2: stress


Group #3: post nasal drip


Group #4: high carbohydrate intake


Rule Outs:


Group #3: lung cancer










Patient 9 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
112 
198 
112 
132 
144 
134 
160 
120 
70
128 
196 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



120 
102 
124 
170 
176 
174 
108 
150 
144 
82
134 
184 










Diagnosis:


Group #1: lower back injury


Group #1: neck injury


Group #2: microcirculatory problem


Group #2: fatigue


Group #2: sleep disturbance


Group #3: stomach irritation










Patient 10 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



114 
92
70
66
32
70
142 
76
80
102 
80
78


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



96
94
60
58
52
56
112 
80
52
96
64
90










Diagnosis:


Group #1: lower and upper back irritation


Group #1: nerve damage - neck


Group #2: post nasal drip


Group #3: hyperthyroid










Patient 11 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



148 
124 
152 
174 
176 
180 
108 
174 
154 
52
152 
174 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



182 
146 
136 
168 
172 
190 
86
134 
150 
56
138 
142 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: bladder dysfunction


Group #1: microcirculatory problem


Group #1: fatigue


Group #1: sleep disturbance


Group #2: increased metabolism


Group #3: anemia or low blood count










Patient 12 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
88
108 
128 
120 
116 
148 
148 
88
120 
80
100 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
86
90
146 
118 
124 
172 
128 
80
128 
194 
182 










Diagnosis:


Group #1: nerve damage - neck


Group #1: microcirculatory-orthostatic hypotension


Group #1: microcirculatory problem


Group #1: sleep disturbance


Group #1: fatigue


Group #2: reflux


Group #2: shoulder pain










Patient 13 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



190 
190 
200 
142 
148 
162 
154 
186 
158 
142 
124 
150 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



182 
152 
122 
194 
182 
166 
178 
144 
176 
124 
118 
166 










Diagnosis:


Group #1: back injury


Group #2: depression










Patient 14 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
38
20
24
30
56
82
140 
34
44
70
148 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



90
18
20
20
50
44
60
96
54
36
158 
134 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #2: microcirculatory-orthostatic hypotension










Patient 15 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



34
26
46
10
80
18
38
22
36
22
10
10


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



24
16
14
28
44
36
46
16
42
34
 8
16










Diagnosis:


Group #1: fatigue










Patient 16 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



154 
128 
162 
128 
104 
124 
158 
88
118 
130 
36
128 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



160 
126 
128 
118 
112 
124 
188 
190 
118 
130 
166 
132 










Diagnosis:


Group #1: post nasal drip


Group #2: depression


Group #3: sinus infection


Group #4: hypothyroid disease










Patient 17 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
82
88
46
54
68
110 
126 
26
18
24
30


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
60
88
72
88
92
68
110 
36
18
36
104 










Diagnosis:


Group #1: sinus allergy


Group #2: depression


Group #3: nerve damage - lower back


Group #3: nerve damage - neck


Group #4: bladder dysfunction










Patient 18 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
98
70
118 
142 
154 
18
16
 8
10
30
34


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



80
54
48
102 
108 
154 
28
54
20
16
24
40










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #2: migraines


Group #3: weight loss


Group #4: MS


Group #4: bladder dysfunction










Patient 19 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



28
36
36
30
50
48
32
170 
44
28
140 
130 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



48
52
38
48
34
32
56
132 
28
26
104 
142 










Diagnosis:


Group #1: microcirculatory-orthostatic hypotension


Group #1: nerve damage - upper and lower back


Group #1: bladder dysfunction


Group #2: food related sinus allergy


Group #3: spicy or high fat injestion


Group #3: high carbohydrate intake


Group #3: high fat intake


Group #4: high carbohydrate intake


Group #4: high fat intake










Patient 20 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



174 
136 
104 
150 
148 
170 
136 
106 
152 
128 
110 
138 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



162 
130 
122 
138 
152 
130 
122 
94
112 
120 
122 
138 










Diagnosis:


Group #1: low protein intake


Group #2: neck injury


Group #2: nerve damage - neck


Group #2: microcirculatory problem


Group #2: fatigue


Group #3: post nasal drip


Group #3: lung cancer










Patient 21 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



182 
192 
192 
70
116 
30
110 
58
64
96
60
56


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



184 
170 
184 
94
118 
120 
98
84
70
114 
92
58










Diagnosis:


Group #1: high stress stress


Group #1: anxiety


Group #1: hypertension


Group #2: nerve damage - neck


Group #2: kidney failure


Group #3: large bowel issues


Group #3: low stomach function


Group #3: low bowel movements










Patient 22 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



120 
76
90
94
58
52
66
68
98
78
86
138 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



132 
86
84
126 
100 
126 
94
152 
74
48
122 
148 










Diagnosis:


Group #1: microcirculatory problem


Group #1: neck damage


Group #1: lower back injury


Group #1: fatigue


Group #1: bladder dysfunction


Group #2: reflux


Group #3: sinus irritation


Group #3: sinus allergy










Patient 23 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



142 
88
96
134 
130 
116 
82
126 
96
58
20
84


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



130 
134 
124 
130 
100 
112 
134 
130 
104 
58
86
104 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: fatigue


Group #1: bladder dysfunction


Group #1: lower back pain


Group #2: sinus allergy


Group #2: sinus irritation


Group #3: depression










Patient 24 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



78
40
38
20
34
24
88
50
78
116 
82
106 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



60
48
50
22
32
26
102 
94
82
116 
16
 0










Diagnosis:


Group #1: upper and lower back irritation


Group #1: bladder dysfunction


Group #2: fatigue


Group #2: coronary artery disease


Group #2: low blood pressure


Group #3: male


Group #3: possible prostate enlargement


Group #3: prostate cancer


Group #3: lower back injury










Patient 25 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



116 
86
86
110 
58
90
116 
42
104 
146 
72
74


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



142 
118 
106 
66
76
68
96
34
68
122 
84
64










Diagnosis:


Group #1: lower back injury


Group #1: back injury


Group #1: prostate cancer


Group #2: nerve damage - neck


Group #2: bladder dysfunction


Group #3: post nasal drip


Group #3: lung cancer


Group #4: low protein intake


Group #5: hypothyroid disease










Patient 26 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
52
88
60
30
52
76
92
64
98
38
94


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



80
52
92
54
40
72
114 
118 
70
64
30
80










Diagnosis:


Group #1: depression


Group #1: fatigue


Group #2: lower back injury


Group #2: lower back pain


Group #3: depression










Patient 27 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



48
76
92
58
56
34
60
134 
90
76
46
102 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



90
44
74
62
66
24
46
90
60
58
86
88










Diagnosis:


Group #1: food related sinus allergy


Group #2: microcirculatory problem


Group #2: depression


Group #3: large bowel issues










Patient 28 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
74
32
88
62
64
46
58
84
104 
18
72


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



126 
58
56
62
26
62
80
86
80
104 
90
42










Diagnosis:


Group #1: coronary artery disease


Group #2: post nasal drip


Group #3: lower back injury


Group #3: lower back pain


Group #4: male


Group #4: prostate cancer










Patient 29 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



68
66
78
38
60
46
104 
74
68
118 
122 
68


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



106 
56
78
54
106 
84
144 
80
70
86
160 
140 










Diagnosis:


Group #1: lower and upper back irritation


Group #1: shoulder pain


Group #1: bladder dysfunction


Group #2: reflux


Group #2: shoulder pain


Group #2: stomach irritation










Patient 30 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
152 
96
 8
34
26
136 
140 
134 
132 
52
140 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



166 
152 
96
34
34
22
126 
68
128 
128 
96
122 










Diagnosis:


Group #1: high carbohydrate intake


Group #1: low protein intake


Group #2: lower and upper back irritation


Group #2: neck irritation


Group #2: bladder dysfunction


Group #3: post nasal drip


Group #3: esophageal obstruction


Group #3: food related sinus allergy










Patient 31 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



96
78
106 
66
18
34
70
54
62
84
58
132 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



84
46
62
84
42
48
82
132 
52
66
64
114 










Diagnosis:


Group #1: depression


Group #2: fatigue


Group #3: post nasal drip


Group #3: sinus allergy


Group #4: stomach irritation


Group #5: hyperthyroid


Group #6: migraines










Patient 32 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
164 
170 
66
62
98
174 
78
158 
176 
98
118 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



180 
170 
160 
66
84
64
188 
128 
176 
164 
106 
102 










Diagnosis:


Group #1: hypertension


Group #1: stress


Group #2: high carbohydrate intake


Group #2: low protein intake


Group #3: lower and upper back irritation


Group #3: bladder infection


Group #3: bladder dysfunction










Patient 33 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



80
74
46
56
50
80
44
68
84
72
34
78


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



116 
84
68
78
64
62
74
34
40
98
76
60










Diagnosis:


Group #1: nerve damage - neck


Group #3: lower and upper back irritation


Group #4: post nasal drip










Patient 34 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
114 
96
152 
166 
112 
40
12
54
68
28
28


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



146 
74
72
198 
180 
190 
82
 8
58
62
72
92










Diagnosis:


Group #1: weight loss


Group #1: low protein intake


Group #2: post nasal drip


Group #3: nerve damage - neck


Group #3: nerve damage - lower back


Group #3: bladder dysfunction










Patient 35 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



32
 6
12
34
58
106 
34
102 
52
40
78
92


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



30
 8
36
34
32
52
76
76
62
20
116 
160 










Diagnosis:


Group #1: hypotension


Group #1: microcirculatory-orthostatic hypotension


Group #1: blood pressure medications overdose


Group #2: nerve damage - lower back


Group #2: bladder dysfunction


Group #3: sinus congestion


Group #4: large bowel issues










Patient 36 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
200 
172 
96
136 
106 
126 
164 
138 
120 
116 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
200 
190 
114 
114 
124 
172 
200 
108 
128 
198 
200 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: bladder dysfunction


Group #2: reflux


Group #3: post nasal drip


Group #4: depression


Group #5: trouble swallowing










Patient 37 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
144 
128 
144 
108 
188 
156 
192 
122 
128 
170 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



160 
134 
86
166 
88
96
152 
200 
92
136 
158 
200 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: bladder dysfunction


Group #2: coronary artery disease


Group #3: food related stomach irritation (spicy, cheese)


Group #4: hypothyroid disease










Patient 38 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



56
56
50
44
30
26
86
26
70
90
26
26


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
70
76
30
22
22
116 
40
64
122 
24
18










Diagnosis:


Group #1: back injury


Group #2: low protein intake


Group #2: high carbohydrate intake


Group #3: stress


Group #4: low food intake










Patient 39 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
152 
100 
126 
148 
158 
140 
150 
124 
126 
96
152 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



166 
126 
122 
128 
190 
154 
146 
142 
108 
90
132 
192 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #2: coronary artery disease


Group #3: female


Group #3: ovulation










Patient 40 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



172 
156 
132 
32
64
42
182 
84
188 
180 
112 
132 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



108 
114 
86
48
50
36
128 
98
172 
138 
118 
142 










Diagnosis:


Group #1: high carbohydrate intake


Group #1: low protein intake


Group #2: lower and upper back irritation


Group #2: bladder dysfunction


Group #3: stress










Patient 41 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



176 
98
98
86
182 
148 
82
198 
92
66
172 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



164 
98
76
94
188 
126 
80
188 
86
96
188 
192 










Diagnosis:


Group #1: hyperthyroid


Group #2: high fat intake


Group #2: spicy or high fat injestion


Group #3: post nasal drip


Group #4: nerve damage - upper and lower back


Group #4: MS


Group #5: low blood pressure


Group #5: hypotension










Patient 42 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



98
86
84
90
58
66
116 
154 
172 
64
112 
152 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



154 
112 
86
112 
102 
76
66
136 
154 
86
156 
132 










Diagnosis:


Group #1: neck injury


Group #1: nerve damage - lower back


Group #2: hypotension


Group #2: fatigue


Group #2: headaches










Patient 43 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



58
42
36
18
14
22
62
16
32
80
10
42


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
54
50
22
62
54
64
14
80
92
16
18










Diagnosis:


Group #1: lower and upper back irritation


Group #1: neck irritation


Group #2: low protein intake


Group #3: hyperthyroid


Group #4: post nasal drip










Patient 44 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



20
46
28
 8
18
16
68
108 
16
24
50
64


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



20
10
 8
30
12
32
16
58
22
20
66
34










Diagnosis:


Group #1: fatigue


Group #1: sleep disturbance


Group #1: possible coronary artery disease


Group #1: microcirculatory-orthostatic hypotension


Group #1: microcirculatory problem


Group #1: lack of sleep


Group #2: depression


Group #2: inflamation


Group #3: reflux


Group #4: bladder dysfunction










Patient 45 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



78
54
30
34
24
44
64
42
62
88
40
64


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



94
44
30
76
52
94
98
70
48
42
78
72










Diagnosis:


Group #1: microcirculatory problem


Group #1: possible coronary artery disease


Group #2: lower back injury


Group #2: lower back pain


Group #2: lack of sleep


Group #3: shoulder pain


Group #4: post nasal drip










Patient 46 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



106 
94
72
46
82
106 
86
80
100 
92
102 
146 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



112 
60
86
90
88
126 
60
164 
54
60
200 
176 










Diagnosis:


Group #1: possible coronary artery disease


Group #2: nerve damage - upper and lower back


Group #2: bladder dysfunction


Group #3: shoulder pain


Group #4: shoulder pain


Group #5: reflux


Group #6: spicy or high fat injestion










Patient 47 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
168 
162 
114 
170 
154 
166 
176 
156 
166 
120 
162 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
118 
122 
174 
154 
166 
156 
194 
150 
142 
166 
200 










Diagnosis:


Group #1: possible coronary artery disease


Group #2: inflamation










Patient 48 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



92
64
54
82
68
112 
64
114 
200 
80
140 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



122 
68
112 
64
122 
174 
100 
146 
200 
38
134 
200 










Diagnosis:


Group #1: microcirculatory problem


Group #1: microcirculatory-orthostatic hypotension


Group #1: possible coronary artery disease


Group #2: lower back injury


Group #2: nerve damage - lower back


Group #2: neck injury


Group #2: neck irritation


Group #3: helicobacter infection of stomach


Group #4: shoulder pain


Group #5: reflux


Group #6: depression










Patient 49 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



114 
108 
124 
22
22
46
132 
68
84
128 
44
78


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



92
44
60
26
50
100 
124 
54
80
128 
34
50










Diagnosis:


Group #1: stress


Group #2: back injury


Group #3: post nasal drip










Patient 50 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
68
38
128 
128 
144 
46
42
42
86
26
76


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



54
64
60
48
136 
108 
42
30
62
56
48
38










Diagnosis:


Group #1: low blood count


Group #2: nerve damage - upper and lower back


Group #2: nerve damage - neck


Group #3: hyperthyroid


Group #4: large bowel issues


Group #5: duodenal irritation


Group #6: low protein intake


Group #7: sinus congestion


Group #7: post nasal drip










Patient 51 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
128 
130 
52
24
58
62
50
122 
40
72
144 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



128 
112 
140 
116 
40
66
132 
184 
76
106 
160 
180 










Diagnosis:


Group #1: depression


Group #2: hypertension


Group #3: nerve damage - neck


Group #3: nerve damage - lower back


Group #3: bladder dysfunction


Group #4: food related sinus allergy


Group #4: food related stomach irritation (spicy, cheese)


Group #4: reflux










Patient 52 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



60
108 
112 
38
16
14
80
72
70
96
48
76


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
150 
138 
88
56
82
80
84
86
100 
82
94










Diagnosis:


Group #1: hyperthyroid


Group #2: stress


Group #2: hypertension


Group #3: back injury


Group #4: large bowel issues










Patient 53 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
104 
70
50
80
82
86
96
68
80
36
88


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
40
52
52
48
64
90
88
182 
96
124 
138 










Diagnosis:


Group #1: possible coronary artery disease


Group #1: chronic fatigue


Group #1: blood pressure medications overdose


Group #1: fatigue


Group #1: migraines


Group #2: neck irritation


Group #2: neck injury


Group #2: shoulder pain


Group #3: reflux










Patient 54 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



92
62
64
36
24
38
110 
48
80
90
32
70


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



112 
102 
96
32
34
98
92
80
56
94
76
78










Diagnosis:


Group #1: post nasal drip


Group #2: high stress


Group #3: lower back pain


Group #4: high carbohydrate intake


Group #5: large bowel issues










Patient 55 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
198 
174 
200 
200 
200 
200 
200 
200 
142 
164 
148 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
178 
144 
190 
198 
188 
154 
182 
170 
154 
148 
184 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: bladder dysfunction


Group #2: neck irritation


Group #3: microcirculatory problem


Group #4: sinus irritation










Patient 56 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



56
44
52
56
46
50
34
70
48
14
80
96


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
62
46
82
48
84
42
44
58
16
54
44










Diagnosis:


Group #1: sinus irritation


Group #2: duodenal irritation


Group #3: stomach irritation


Group #4: shoulder pain


Group #4: nerve damage - lower back


Group #4: bladder dysfunction


Rule Outs:


Group #1: lung cancer










Patient 57 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
124 
136 
124 
148 
154 
172 
132 
188 
176 
138 
148 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
116 
90
88
80
124 
186 
162 
188 
196 
176 
172 










Diagnosis:


Group #1: microcirculatory problem


Group #2: chronic fatigue


Group #3: neck injury


Group #3: headaches


Group #4: lower back injury


Group #4: lower back pain


Group #5: shoulder pain


Group #6: stomach irritation


Group #7: reflux










Patient 58 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



70
18
22
28
54
52
112 
74
98
126 
38
82


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



62
56
48
94
62
36
88
60
68
112 
38
50










Diagnosis:


Group #1: microcirculatory problem


Group #1: coronary artery disease


Group #1: headaches


Group #2: duodenal irritation


Group #3: neck irritation


Group #4: back injury


Group #4: bladder dysfunction


Group #5: microcirculatory -orthostatic hypotention related to neck, back injury










Patient 59 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



110 
92
120 
16
70
64
50
92
10
30
30
96


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



54
28
32
106 
160 
164 
46
102 
12
48
22
48










Diagnosis:


Group #1: depression


Group #2: microcirculatory -orthostatic hypotention related to neck, back injury


Group #3: nerve damage - upper and lower back


Group #3: bladder dysfunction


Group #4: gallbladder dysfunction


Group #5: coronary artery disease


Rule Outs:


Group #3: MS










Patient 60 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



42
84
62
58
64
60
138 
116 
76
148 
84
104 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



92
80
36
70
96
122 
146 
150 
74
130 
96
184 










Diagnosis:


Group #1: coronary artery disease


Group #1: microcirculatory problem


Group #1: migraines


Group #2: microcirculatory -orthostatic hypotention related to neck, back injury


Group #3: stomach irritation


Group #4: large bowel issues


Group #4: large intestinal irritation


Group #5: sinus congestion










Patient 61 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



106 
74
62
100 
102 
112 
108 
152 
132 
134 
128 
138 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



146 
74
58
112 
106 
100 
120 
170 
108 
94
154 
172 










Diagnosis:


Group #1: coronary artery disease


Group #1: hypotension


Group #1: blood pressure medications overdose


Group #1: microcirculatory -orthostatic hypotention related to neck, back injury


Group #2: food related stomach irritation (spicy, cheese)


Group #3: post nasal drip


Group #4: lower and upper back irritation


Group #4: neck irritation


Group #5: depression










Patient 62 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



198 
100 
104 
110 
118 
118 
150 
130 
120 
170 
90
184 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
78
78
148 
140 
130 
170 
102 
102 
164 
110 
160 










Diagnosis:


Group #1: coronary artery disease


Group #1: blood pressure medications overdose


Group #1: microcirculatory problem


Group #2: microcirculatory -orthostatic hypotention related to neck, back injury


Group #3: post nasal drip


Rule Outs:


Group #1: headaches


Group #1: migraines


Group #3: lung cancer


Group #3: lung disease


Group #4: low back irritation


Group #4: bladder dysfunction


Group #5: nerve damage - neck


Group #6: stomach irritation










Patient 63 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



108 
142 
124 
42
42
42
72
104 
110 
22
50
104 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



38
30
32
36
52
18
74
70
104 
90
88
44










Diagnosis:


Group #1: depression


Group #2: coronary artery disease


Group #2: chronic fatigue


Group #3: neck irritation


Group #4: nerve damage - lower back


Group #4: bladder dysfunction


Group #4: male


Group #4: possible prostate enlargement


Rule Outs:


Group #1: depression


Group #2: microcirculatory problem


Group #2: coronary artery disease










Patient 64 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



132 
110 
106 
120 
106 
90
154 
110 
112 
128 
68
100 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



116 
100 
106 
166 
124 
160 
140 
116 
78
130 
190 
144 







Diagnosis:


Group #1: shoulder pain


Group #2: nerve damage - neck


Group #2: neck irritation


Group #3: microcirculatory problem


Group #3: headaches










Patient 65 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



122 
114 
104 
36
104 
46
142 
84
118 
146 
78
118 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
124 
110 
50
68
70
118 
88
134 
170 
108 
118 










Diagnosis:


Group #1: post nasal drip


Group #2: neck irritation


Group #2: back injury


Group #3: low food intake










Patient 66 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



80
44
54
36
44
32
86
62
102 
132 
46
34


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



128 
84
58
120 
24
28
68
68
138 
148 
72
60










Diagnosis:


Group #1: lower and upper back irritation


Group #1: bladder dysfunction


Group #2: post nasal drip


Group #3: duodenal irritation


Group #4: high carbohydrate intake


Group #5: low food intake


Rule Outs:


Group #1: prostate cancer










Patient 67 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



76
40
20
52
98
88
96
104 
82
64
124 
90


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



72
86
74
98
70
90
60
158 
96
126 
152 
136 










Diagnosis:


Group #1: lower back pain


Group #1: lower back injury


Group #1: bladder dysfunction


Group #2: shoulder pain


Group #2: upper back irritation


Group #3: microcirculatory problem


Group #3: coronary artery disease


Group #3: headaches


Group #4: depression


Rule Outs:


Group #3: coronary artery disease










Patient 68 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



72
88
66
18
32
16
62
26
66
68
60
40


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
30
24
54
36
52
70
24
104 
80
64
68










Diagnosis:


Group #1: coronary artery disease


Group #2: neck irritation


Group #2: headaches


Group #3: low back irritation










Patient 69 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



80
52
82
64
60
36
152 
38
160 
146 
138 
52


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



42
30
80
66
76
62
134 
44
142 
152 
138 
68










Diagnosis:


Group #1: microcirculatory problem


Group #2: sinus congestion


Group #3: bladder infection


Group #4: back injury


Group #5: low protein intake


Group #6: low bowel movements










Patient 70 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



98
74
46
14
26
30
104 
200 
68
106 
96
192 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
70
46
24
16
28
86
82
80
142 
100 
98










Diagnosis:


Group #1: sinus congestion


Group #2: sinus allergy


Group #3: coronary artery disease


Group #4: high carbohydrate intake


Group #5: allergy to food


Group #6: neck irritation


Group #7: migraines










Patient 71 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



140 
120 
86
112 
120 
116 
82
72
84
74
146 
100 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



162 
132 
118 
154 
130 
102 
76
78
130 
80
118 
146 










Diagnosis:


Group #1: sinus congestion


Group #2: hyperthyroid


Group #3: nerve damage - upper and lower back


Group #3: bladder dysfunction


Group #4: neck irritation


Group #5: shoulder pain


Group #6: low protein intake


Group #7: coronary artery disease


Group #8: reflux


Rule Outs:


Group #1: lung cancer


Group #1: lung disease










Patient 72 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



130 
118 
112 
88
130 
128 
156 
48
54
130 
88
68


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



146 
110 
108 
148 
148 
158 
130 
44
78
138 
150 
66










Diagnosis:


Group #1: weight loss


Group #1: low protein intake


Group #1: low food intake


Group #2: low protein intake


Group #3: nerve damage - neck


Group #3: neck injury


Group #4: low back irritation


Group #5: shoulder pain


Group #6: post nasal drip










Patient 73 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



96
72
58
114 
142 
146 
86
66
60
68
52
92


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



94
70
60
80
92
108 
78
46
76
56
44
94










Diagnosis:


Group #1: large bowel issues


Group #2: hyperthyroid


Group #3: nerve damage - upper and lower back


Group #4: low food intake


Group #5: coronary artery disease


Group #6: headaches










Patient 74 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



168 
152 
154 
170 
166 
186 
180 
186 
168 
188 
80
148 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



180 
124 
126 
160 
142 
158 
140 
98
152 
182 
92
90










Diagnosis:


Group #1: lower back pain


Group #1: lower back injury


Group #1: bladder dysfunction


Group #2: post nasal drip


Group #2: allergy


Group #3: large bowel issues










Patient 75 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



64
70
88
136 
172 
194 
136 
148 
170 
114 
88
168 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
92
86
178 
168 
190 
136 
96
172 
82
164 
200 










Diagnosis:


Group #1: low blood pressure


Group #1: dysautonomia


Group #1: neck irritation


Group #1: headaches


Group #1: migraines


Group #2: nerve damage - lower back


Group #2: bladder dysfunction


Group #3: shoulder pain


Group #3: reflux


Group #3: stomach irritation


Group #4: sinus congestion










Patient 76 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



152 
134 
70
98
132 
156 
76
80
68
82
42
46


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



154 
48
30
116 
110 
110 
94
40
50
72
22
68










Diagnosis:


Group #1: orthostatic hypotention


Group #1: migraines


Group #2: nerve damage - neck


Group #3: post nasal drip


Group #4: microcirculatory problem


Group #4: microcirculatory -orthostatic hypotention related to neck, back injury


Group #5: weight loss


Group #5: low food intake










Patient 77 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
158 
106 
108 
110 
170 
80
76
88
42
74
54


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
72
70
102 
120 
160 
86
44
70
80
72
62










Diagnosis:


Group #1: coronary artery disease


Group #1: migraines


Group #2: nerve damage - upper and lower back


Group #2: bladder dysfunction


Group #3: large bowel issues


Group #4: hyperthyroid


Group #5: post nasal drip


Group #6: microcirculatory problem










Patient 78 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



114 
108 
106 
106 
94
94
62
126 
70
74
62
98


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
72
76
120 
88
50
80
82
70
72
96
140 










Diagnosis:


Group #1: coronary artery disease


Group #2: nerve damage - upper and lower back


Group #2: bladder dysfunction


Group #3: depression


Group #4: post nasal drip


Group #5: food related stomach irritation (spicy, cheese)










Patient 79 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



120 
98
104 
26
40
60
116 
90
92
160 
124 
98


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



130 
128 
88
80
68
54
120 
54
104 
140 
106 
88










Diagnosis:


Group #1: lower back pain


Group #1: lower back injury


Group #2: post nasal drip


Group #3: shoulder pain


Group #3: upper back irritation


Rule Outs:


Group #2: lung disease










Patient 80 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



156 
146 
130 
94
104 
118 
174 
162 
196 
138 
94
140 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



182 
168 
174 
100 
70
126 
182 
172 
160 
138 
128 
172 










Diagnosis:


Group #1: neck injury


Group #1: neck irritation


Group #2: depression










Patient 81 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



152 
86
94
110 
116 
118 
76
174 
110 
92
88
110 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



152 
82
84
42
42
78
76
182 
68
70
122 
124 










Diagnosis:


Group #1: post nasal drip


Group #1: allergy


Group #2: coronary artery disease


Group #3: nerve damage - neck


Group #3: nerve damage - lower back


Group #4: microcirculatory-orthostatic hypotension


Group #4: migraines


Group #4: bladder dysfunction










Patient 82 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



162 
146 
154 
134 
136 
118 
100 
200 
114 
98
200 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
200 
142 
182 
108 
112 
120 
200 
124 
80
188 
200 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: nerve damage - neck


Group #1: bladder dysfunction


Group #2: microcirculatory problem


Group #3: food related stomach irritation (spicy, cheese)


Group #3: spicy or high fat injestion


Group #4: post nasal drip










Patient 83 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



120 
118 
142 
134 
120 
92
146 
184 
188 
182 
174 
176 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



180 
108 
130 
132 
130 
114 
158 
184 
190 
170 
186 
192 










Diagnosis:


Group #1: microcirculatory-orthostatic hypotension


Group #1: fatigue


Group #1: coronary artery disease


Group #1: low blood pressure


Group #2: post nasal drip


Group #2: sinus congestion


Group #3: neck irritation


Group #3: lower back pain










Patient 84 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
144 
162 
96
116 
132 
84
90
60
108 
84
140 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



108 
98
154 
140 
130 
132 
134 
126 
66
74
144 
148 










Diagnosis:


Group #1: microcirculatory problem


Group #2: stress


Group #3: nerve damage - upper and lower back


Group #3: nerve damage - neck


Group #3: bladder dysfunction


Group #4: reflux


Group #6: sinus congestion










Patient 85 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



72
82
70
102 
158 
126 
78
102 
90
48
90
122 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



152 
162 
130 
164 
164 
102 
32
112 
82
44
98
102 










Diagnosis:


Group #1: bladder dysfunction


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #2: hyperthyroid


Group #3: stress


Group #4: microcirculatory problem


Group #5: sinus congestion










Patient 86 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



132 
98
124 
136 
132 
146 
122 
114 
92
80
112 
172 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



114 
116 
104 
152 
162 
154 
98
114 
86
74
138 
128 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #2: fatigue


Rule Outs:


Group #1: MS


Group #1: bladder dysfunction


Group #2: coronary artery disease


Group #2: reflux


Group #3: hyperthyroid










Patient 87 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
106 
136 
74
58
50
170 
94
122 
168 
158 
116 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



96
92
124 
70
108 
48
160 
122 
170 
128 
138 
108 










Diagnosis:


Group #1: fatigue


Group #1: neck irritation


Group #1: back injury


Group #1: shoulder pain










Patient 88 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



102 
124 
134 
88
68
66
46
56
50
44
22
44


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



62
64
62
102 
90
94
14
60
50
20
50
64










Diagnosis: None


Rule Outs:


Group #1: MS


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #1: bladder dysfunction


Group #2: stress


Group #3: duodenal irritation










Patient 89 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



78
38
50
78
66
60
64
14
24
24
30
18


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
62
46
68
26
54
18
30
18
16
34
28










Diagnosis:


Group #1: post nasal drip


Group #2: duodenal irritation


Group #3: nerve damage - neck


Group #3: nerve damage - lower back


Group #3: bladder dysfunction


Rule Outs:


Group #1: post nasal drip


Group #1: lung cancer


Group #1: lung disease










Patient 90 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
68
72
54
36
58
106 
78
102 
128 
76
80


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



90
76
82
50
180 
76
130 
86
104 
106 
90
98










Diagnosis:


Group #1: back injury


Group #1: bladder dysfunction


Rule Outs:


Group #2: thyroid problem


Group #2: pituitary problem










Patient 91 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



116 
78
84
46
64
52
146 
64
110 
100 
72
80


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



94
98
74
82
84
42
138 
72
120 
122 
96
62










Diagnosis:


Group #1: back injury


Group #1: neck irritation


Group #2: large bowel issues










Patient 92 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
158 
150 
170 
134 
156 
118 
116 
104 
98
158 
152 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



148 
136 
140 
194 
170 
172 
94
146 
94
92
184 
170 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: bladder dysfunction


Group #2: shoulder pain


Group #2: reflux


Group #3: duodenal irritation


Group #3: stress










Patient 93 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



42
52
52
44
52
24
48
76
84
52
102 
144 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



78
36
36
70
42
68
54
138 
80
70
180 
158 










Diagnosis:


Group #1: nerve damage - lower back


Group #1: bladder dysfunction


Group #2: shoulder pain


Group #3: reflux


Group #4: sinus allergy


Group #4: sinus congestion


Group #5: stomach irritation










Patient 94 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



62
16
16
52
94
104 
 8
12
22
16
16
18


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



112 
32
24
60
86
116 
22
18
14
20
22
18










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: nerve damage - neck


Group #2: microcirculatory -orthostatic hypotention related to neck, back injury


Group #2: microcirculatory problem


Group #3: post nasal drip


Group #4: large bowel issues


Group #4: large intestinal irritation


Group #5: thyroid problem


Rule Outs:


Group #6: gastroparesis


Group #6: MS


Group #6: bladder dysfunction










Patient 95 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



176 
156 
156 
10
24
26
200 
186 
186 
188 
190 
188 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



176 
182 
144 
56
52
42
200 
162 
200 
200 
186 
142 










Diagnosis:


Group #1: back injury


Group #1: neck injury


Group #1: neck irritation


Group #1: lower and upper back irritation


Group #2: shoulder pain


Group #3: reflux


Group #4: food related stomach irritation (spicy, cheese)


Group #5: high carbohydrate intake


Group #6: food related sinus allergy


Group #6: post nasal drip










Patient 96 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
130 
120 
154 
148 
124 
88
98
128 
114 
92
108 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



170 
128 
152 
160 
140 
96
120 
102 
106 
66
96
120 










Diagnosis:


Group #1: nerve damage - lower back


Group #2: duodenal irritation


Group #3: post nasal drip


Group #4: stress


Group #5: hyperthyroid










Patient 97 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



180 
144 
142 
64
16
40
104 
36
46
132 
58
52


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



150 
102 
116 
70
26
48
136 
44
28
128 
14
66










Diagnosis:


Group #1: high carbohydrate intake


Group #1: low protein intake


Group #2: high stress


Group #3: post nasal drip


Group #4: lower back injury


Rule Outs:


Group #4: bladder dysfunction










Patient 98 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



132 
158 
138 
98
68
98
110 
62
74
60
50
90


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



162 
154 
76
52
72
70
82
30
100 
94
40
92










Diagnosis:


Group #1: high stress


Group #2: nerve damage - neck


Group #2: nerve damage - lower back


Group #2: neck irritation


Group #3: low protein intake










Patient 99 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



178 
162 
174 
178 
186 
162 
196 
196 
146 
194 
164 
178 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



148 
136 
140 
146 
180 
156 
188 
194 
148 
196 
170 
172 










Diagnosis:


Group #1: neurodeficiency due to neck injury


Group #1: microcirculatory problem


Rule Outs:


Group #1: coronary artery disease


Group #2: nerve damage - neck


Group #3: low back irritation


Group #3: lower back pain


Group #3: lower back injury










Patient 100 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
88
132 
76
78
50
186 
106 
162 
178 
178 
124 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
88
132 
120 
74
44
162 
74
156 
164 
 0
 0










Diagnosis:


Group #1: lower back injury


Group #1: neck injury


Group #3: post nasal drip


Group #4: shoulder pain


Group #4: reflux


Rule Outs:


Group #1: bladder dysfunction


Group #2: microcirculatory problem


Group #2: headaches


Group #2: migraines


Group #3: post nasal drip










Patient 101 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
104 
152 
174 
148 
82
186 
80
146 
174 
174 
122 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



48
44
124 
134 
140 
66
180 
106 
164 
172 
178 
90










Diagnosis:


Group #1: microcirculatory problem


Group #2: reflux


Group #2: sinus congestion


Group #3: neck irritation


Group #3: low back irritation


Rule Outs:


Group #2: esophageal obstruction


Group #2: sinus infection


Group #3: nerve related slow peristaltic activity


Group #3: bladder dysfunction


Group #4: stress










Patient 102 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



122 
124 
122 
92
76
148 
170 
102 
110 
148 
132 
182 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



116 
138 
146 
106 
108 
104 
154 
144 
106 
146 
108 
178 










Diagnosis:


Group #1: stress


Group #1: nerve damage - neck


Group #1: back injury


Group #2: stomach irritation


Rule Outs:


Group #1: depression


Group #3: large bowel issues










Patient 103 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



22
34
34
60
66
60
84
136 
94
96
110 
90


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



68
56
62
76
72
70
82
136 
98
70
128 
126 










Diagnosis:


Group #1: low blood pressure


Group #2: food related stomach irritation (spicy, cheese)


Group #3: sinus congestion


Group #4: neck irritation


Group #4: low back irritation


Group #5: shoulder pain


Rule Outs:


Group #1: blood pressure medications overdose


Group #2: allergy to food










Patient 104 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



94
50
74
54
96
166 
66
110 
62
52
154 
126 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



172 
66
56
136 
172 
112 
56
26
44
44
90
112 










Diagnosis:


Group #1: low blood pressure


Group #1: orthostatic hypotention


Group #2: nerve damage - lower back


Group #2: nerve damage - neck


Group #2: bladder dysfunction


Group #4: shoulder pain


Group #7: duodenal irritation


Group #8: reflux


Rule Outs:


Group #2: MS


Group #4: depression


Group #5: thyroid problem


Group #6: thyroid problem


Group #7: large bowel issues










Patient 105 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
144 
132 
72
68
114 
126 
162 
156 
84
128 
166 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



146 
144 
118 
100 
120 
114 
74
170 
176 
144 
148 
176 










Diagnosis:


Group #1: neck irritation


Group #2: nerve damage - lower back


Group #3: thyroid problem


Group #4: stomach irritation


Group #5: shoulder pain


Group #6: post nasal drip


Group #7: food related stomach irritation (spicy, cheese)


Rule Outs:


Group #2: bladder dysfunction










Patient 106 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
130 
136 
104 
128 
108 
158 
140 
50
156 
136 
138 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



174 
142 
158 
160 
142 
144 
162 
180 
40
124 
176 
134 










Diagnosis:


Group #1: nerve damage - neck


Group #2: back injury


Group #3: nerve damage - neck


Group #3: neck injury


Group #4: stress


Group #5: post nasal drip


Rule Outs:


Group #5: lung disease










Patient 107 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
138 
130 
52
76
88
100 
80
90
140 
46
100 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
116 
112 
164 
166 
114 
110 
74
92
128 
76
66










Diagnosis:


Group #1: nerve damage - neck


Group #2: back injury


Group #3: post nasal drip


Group #4: stress


Group #5: nerve damage - neck


Group #6: low food intake


Rule Outs:


Group #2: male


Group #2: prostate cancer


Group #2: bladder dysfunction


Group #7: thyroid problem










Patient 108 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



44
56
60
132 
134 
112 
70
22
74
64
16
14


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



86
74
46
138 
84
86
80
20
58
52
68
42










Diagnosis:


Group #1: weight loss


Group #1: low food intake


Group #1: low protein intake


Group #2: sinus congestion


Group #2: post nasal drip










Patient 109 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



62
72
28
68
68
54
108 
96
88
78
56
126 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



50
50
50
78
46
54
94
92
80
62
104 
108 










Diagnosis:


Group #1: low blood pressure


Group #2: sinus infection


Group #3: reflux


Group #3: irritation of stomach lining


Group #4: large bowel issues


Rule Outs:


Group #1: coronary artery disease


Group #2: sinus infection


Group #2: infection bacterial


Group #3: infection bacterial


Group #5: hypothyroid disease










Patient 110 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



130 
164 
158 
44
60
58
146 
132 
146 
158 
134 
150 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



122 
116 
110 
24
46
82
170 
146 
126 
162 
144 
130 










Diagnosis:


Group #1: depression


Group #2: high carbohydrate intake


Group #3: low back irritation


Group #3: neck irritation


Group #6: infection bacterial


Rule Outs:


Group #3: bladder dysfunction


Group #4: shoulder pain


Group #5: reflux










Patient 111 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
98
70
44
104 
54
54
108 
50
50
106 
178 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



82
28
40
56
30
100 
48
120 
50
62
98
166 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: nerve damage - neck


Group #3: dysautonomia


Group #4: stomach irritation


Group #5: post nasal drip


Group #6: reflux


Group #7: food related stomach irritation (spicy, cheese)


Group #8: large bowel issues


Rule Outs:


Group #2: coronary artery disease


Group #3: orthostatic hypotention










Patient 112 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
122 
150 
146 
108 
142 
46
156 
182 
96
92
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
154 
154 
182 
178 
180 
102 
86
156 
60
80
184 










Diagnosis:


Group #1: nerve damage - lower back


Group #2: neck injury


Group #3: stomach irritation


Group #4: depression


Group #5: sinus allergy


Group #6: stress


Group #7: large bowel issues


Rule Outs:


Group #6: thyroid problem










Patient 113 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
108 
98
120 
76
98
102 
90
104 
108 
70
118 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



144 
112 
98
148 
132 
104 
76
116 
100 
124 
84
76










Diagnosis:


Group #1: low blood count


Group #1: high blood sugar


Group #2: post nasal drip


Group #3: lower back injury


Group #3: nerve damage - lower back


Group #4: post nasal drip


Rule Outs:


Group #2: lung cancer


Group #2: lung disease


Group #4: lung cancer


Group #4: lung disease










Patient 114 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



160 
160 
132 
86
120 
136 
176 
56
152 
200 
106 
98


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



132 
94
74
150 
162 
156 
132 
80
86
146 
166 
100 










Diagnosis:


Group #1: nerve damage - neck


Group #1: neck irritation


Group #2: migraines


Group #2: microcirculatory problem


Group #4: back injury


Group #6: shoulder pain


Group #7: post nasal drip


Group #8: low food intake


Group #8: low protein intake


Rule Outs:


Group #3: coronary artery disease


Group #4: bladder dysfunction


Group #5: male


Group #5: prostate cancer










Patient 115 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
92
114 
82
134 
126 
116 
120 
138 
146 
132 
124 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



138 
82
94
72
76
118 
136 
140 
140 
166 
104 
132 










Diagnosis:


Group #1: migraines


Group #1: fatigue


Group #2: neck irritation


Group #2: back injury


Group #3: orthostatic hypotention


Rule Outs:


Group #1: coronary artery disease


Group #3: bladder dysfunction


Group #4: sinus allergy


Group #4: post nasal drip










Patient 116 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



166 
136 
120 
184 
182 
184 
46
84
198 
46
58
148 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



160 
136 
130 
182 
184 
180 
70
94
92
66
118 
116 










Diagnosis:


Group #1: weight loss


Group #1: low protein intake


Group #2: post nasal drip


Group #2: nerve damage - lower back


Group #2: bladder dysfunction


Group #3: neck irritation


Group #3: nerve damage - neck


Rule Outs:


Group #1: weight loss


Group #2: lung cancer


Group #2: lung disease










Patient 117 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



124 
108 
88
162 
136 
182 
104 
76
98
108 
80
76


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
158 
106 
178 
188 
174 
118 
122 
102 
130 
130 
126 










Diagnosis:


Group #1: microcirculatory problem


Group #1: coronary artery disease


Group #2: post nasal drip


Group #3: nerve damage - neck


Group #4: nerve damage - lower back


Rule Outs:


Group #1: coronary artery disease


Group #4: bladder dysfunction


Group #5: thyroid problem


Group #6: large bowel issues


Group #7: duodenal irritation


Group #8: weight loss










Patient 118 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
96
94
30
56
52
86
86
86
98
56
78


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



134 
80
80
98
86
64
108 
76
82
88
90
74










Diagnosis:


Group #1: post nasal drip


Rule Outs:


Group #1: lung cancer


Group #1: lung disease










Patient 119 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



186 
174 
162 
86
100 
90
124 
88
200 
112 
132 
124 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



170 
100 
150 
138 
136 
88
144 
100 
188 
126 
160 
116 










Diagnosis:


Group #1: microcirculatory problem


Group #2: stress


Group #3: post nasal drip


Group #4: neck injury


Group #4: neck irritation


Group #5: low protein intake


Group #6: nerve damage - lower back


Rule Outs:


Group #6: bladder dysfunction


Group #7: large bowel issues


Group #8: thyroid problem










Patient 120 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



136 
162 
82
38
40
72
116 
152 
94
124 
180 
200 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



146 
138 
106 
84
118 
64
144 
200 
88
106 
172 
200 










Diagnosis:


Group #1: food related stomach irritation (spicy, cheese)


Group #2: reflux


Group #3: nerve damage - neck


Group #6: post nasal drip


Rule Outs:


Group #4: thyroid problem


Group #5: slow duodenal peristalsis


Group #6: large bowel issues


Group #6: constipation


Group #7: esophageal obstruction


Group #7: coronary artery disease










Patient 121 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



106 
70
54
106 
136 
44
158 
94
64
136 
124 
80


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
106 
52
194 
136 
68
162 
72
40
132 
178 
90










Diagnosis:


Group #3: duodenal irritation


Group #4: microcirculatory -orthostatic hypotention related to neck, back injury


Group #5: nerve damage - neck


Group #6: back injury


Rule Outs:


Group #1: pituitary problem


Group #1: thyroid problem


Group #6: male


Group #6: prostate cancer


Group #6: bladder dysfunction


Group #7: shoulder pain


Group #8: large bowel issues


Group #9: infection bacterial










Patient 122 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



90
94
108 
46
54
108 
132 
86
132 
128 
102 
132 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



100 
100 
86
114 
82
92
120 
92
104 
104 
104 
96










Diagnosis:


Group #1: neck irritation


Group #1: back injury


Group #2: stomach irritation


Group #3: slow duodenal peristalsis


Rule Outs:


Group #1: thyroid problem










Patient 123 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



110 
84
72
168 
110 
180 
134 
36
104 
132 
36
40


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



110 
100 
92
120 
96
122 
98
24
78
112 
80
76










Diagnosis:


Group #1: low food intake


Group #1: low protein intake


Group #2: duodenal irritation


Group #3: large intestinal irritation


Group #4: back injury


Group #5: large bowel issues


Group #6: duodenal irritation


Rule Outs:


Group #4: coronary artery disease










Patient 124 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



158 
88
114 
166 
196 
174 
120 
94
108 
118 
100 
102 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



184 
146 
150 
150 
176 
198 
146 
100 
130 
132 
130 
134 










Diagnosis:


Group #1: nerve damage - upper and lower back


Group #1: nerve damage - neck


Group #2: microcirculatory problem


Group #3: low food intake


Group #3: low protein intake


Group #3: weight loss


Group #3: post nasal drip


Rule Outs:


Group #1: bladder dysfunction


Group #2: coronary artery disease










Patient 125 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



118 
106 
108 
26
32
40
36
94
54
26
12
142 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



108 
84
90
24
82
182 
56
64
76
38
56
68










Diagnosis:


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #2: stomach irritation


Group #3: large bowel issues


Group #3: large intestinal irritation


Group #4: depression


Group #5: sinus allergy


Group #5: post nasal drip










Patient 126 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



98
70
84
68
110 
130 
108 
108 
36
36
76
60


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



88
76
54
114 
90
118 
102 
106 
64
60
94
88










Diagnosis:


Group #1: nerve damage - lower back


Group #1: nerve damage - neck


Group #3: thyroid problem


Rule Outs:


Group #2: large intestinal irritation


Group #2: autoimmune disease


Group #4: bladder dysfunction










Patient 127 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



196 
190 
178 
114 
186 
148 
82
120 
84
100 
88
70


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



200 
150 
180 
180 
176 
164 
112 
70
80
136 
106 
88










Diagnosis:


Group #2: post nasal drip


Group #3: weight loss


Group #3: low food intake


Group #3: low protein intake


Group #4: hyperthyroid


Group #5: nerve damage - upper and lower back


Group #5: nerve damage - neck


Rule Outs:


Group #1: stress


Group #2: lung cancer


Group #2: lung disease


Group #4: hyperthyroid


Group #5: MS


Group #5: bladder dysfunction










Patient 128 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



128 
72
112 
62
50
78
80
58
72
110 
 8
58


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



104 
76
64
82
70
54
98
92
84
82
36
78










Diagnosis:


Group #1: post nasal drip


Group #1: allergy


Group #2: depression


Group #3: low back irritation


Group #4: gallbladder dysfunction


Group #4: gallblader problem


Group #6: constipation


Rule Outs:


Group #5: thyroid problem










Patient 129 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



92
24
20
24
78
142 
48
38
50
38
178 
198 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



148 
52
78
78
50
146 
92
168 
152 
50
200 
200 










Diagnosis:


Group #1: microcirculatory -orthostatic hypotention related to neck, back injury


Group #1: microcirculatory problem


Group #2: nerve damage


Group #2: nerve damage - lower back


Group #2: nerve damage - neck


Group #2: neck irritation


Group #3: bladder dysfunction


Group #5: shoulder pain


Group #6: reflux


Group #6: stomach irritation


Group #7: food related stomach irritation (spicy, cheese)


Group #8: sinus allergy


Group #8: post nasal drip


Rule Outs:


Group #2: MS










Patient 130 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



162 
102 
126 
90
82
114 
64
88
122 
92
126 
114 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



192 
88
96
96
96
128 
200 
64
116 
96
154 
148 










Diagnosis:


Group #3: lower back injury


Group #4: lower back pain


Rule Outs:


Group #1: coronary artery disease


Group #2: lung cancer


Group #2: lung disease


Symptoms:


Group #2: post nasal drip


Group #4: lower back pain


Group #4: lower back injury










Patient 131 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



78
70
36
146 
106 
150 
74
110 
70
170 
58
168 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



96
52
54
122 
40
116 
66
68
78
96
92
188 










Diagnosis:


Group #3: nerve damage - neck


Group #3: neck injury


Group #4: lower back injury


Group #4: lower back pain


Group #5: microcirculatory-orthostatic hypotension


Group #6: stomach irritation


Group #7: duodenal irritation


Rule Outs:


Group #2: coronary artery disease


Symptoms:


Group #1: low blood pressure










Patient 132 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



54
20
30
90
62
122 
48
42
14
32
42
66


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



48
20
24
40
70
50
36
62
26
22
84
58










Diagnosis:


Group #1: neurodeficiency due to neck injury


Group #1: orthostatic hypotention


Group #1: migraines


Group #4: shoulder pain


Group #5: nerve damage - neck


Group #6: duodenal irritation


Rule Outs:


Group #2: coronary artery disease


Group #3: constipation










Patient 133 Measurements:



















Left:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



120 
132 
122 
30
126 
120 
136 
142 
118 
148 
122 
110 


Right:
LU
PC
HT
SI
TH
LI
SP
LR
KI
BL
GB
ST



140 
122 
106 
74
102 
82
128 
96
82
128 
126 
120 










Diagnosis:


Group #1: lower back injury


Group #1: lower back pain


Group #2: nerve damage - neck


Group #3: bladder dysfunction









Variations

This invention may be implemented in many different ways. Here are some non-limiting examples:


In some implementations, this invention is a method comprising: (a) taking, in a diagnostic session, a set of measurements of electric current that flow between a ground electrode and a probe electrode through a patient's body, the measurements being taken in such a way that (i) different measurements in the set are taken while the probe electrode touches skin of the patient at different Prototype Measurement Locations, one location at a time, and (ii) each of the respective measurements in the set is taken while (A) the ground electrode touches skin of a hand of a forearm of the patient, and (B) the probe electrode touches skin of another limb of the patient at one of the Prototype Measurement Locations; (b) calculating, based on the set of measurements, a Prototype Electrical Current State for the diagnostic session; (c) employing a lookup table to identify a medical condition that the lookup table Associates with the Prototype Electrical Current State, which medical condition is a Prototype Medical Condition; and (d) outputting (i) a diagnosis that the patient has the medical condition, or (ii) a recommendation that the patient undergo medical testing to evaluate whether the patient has the medical condition. In some cases, the Prototype Medical Condition is a Class B Condition. In some cases, the Prototype Medical Condition is a Class M Condition. In some cases, the Prototype Medical Condition is a Class N Condition. In some cases, the Prototype Medical Condition is a Class P Condition. In some cases, the Prototype Medical Condition is a Class A Condition. In some cases, the Prototype Medical Condition is a Class C Condition. In some cases, the Prototype Medical Condition is a viral infection. In some cases, the Prototype Medical Condition is a bacterial infection. In some cases, the Prototype Medical Condition is a Class D Condition. Each of the cases described above in this paragraph is an example of the method described in the first sentence of this paragraph, and is also an example of an embodiment of this invention that may be combined with other embodiments of this invention.


In some implementations, this invention is a method comprising: (a) calculating a Prototype Electrical Current State for a diagnostic session, based on a set of measurements of electric current in a patient; (b) employing a lookup table to identify a medical condition that the lookup table Associates with the Prototype Electrical Current State, which medical condition is a Prototype Medical Condition; and (c) outputting (i) a diagnosis that the patient has the medical condition, or (ii) a recommendation that the patient undergo medical testing to evaluate whether the patient has the medical condition. In some cases, different measurements in the set were taken while: (a) the probe electrode touched skin of the patient at different Prototype Measurement Locations, one location at a time; and (b) the electric current flowed between a ground electrode and a probe electrode through the patient's body. In some cases, each of the respective measurements in the set was taken while: (a) the electric current flowed between a ground electrode and a probe electrode through the patient's body; (b) the ground electrode touched skin of a hand of a forearm of the patient; and (c) the probe electrode touched skin of another limb of the patient at a Prototype Measurement Location. In some cases, the Prototype Medical Condition is a Class B Condition, Class M Condition, Class N Condition or Class P Condition. Each of the cases described above in this paragraph is an example of the method described in the first sentence of this paragraph, and is also an example of an embodiment of this invention that may be combined with other embodiments of this invention.


In some implementations, this invention is a system comprising: (a) a current sensor that includes a ground electrode and a probe electrode; and (b) one or more computers; wherein (i) the current sensor is configured to take, during a diagnostic session, a set of measurements of electric current, in such a way that (A) the electric current being measured flows between the ground electrode and the probe electrode through a patient's body, (B) different measurements in the set are taken while the probe electrode touches skin of the patient at different Prototype Measurement Locations, one location at a time, and (C) each of the respective measurements in the set is taken while (I) the ground electrode touches skin of a hand of a forearm of the patient, and (II) the probe electrode touches skin of another limb of the patient at one of the Prototype Measurement Locations, and (ii) the one or more computers are programmed (A) to calculate, based on the set of measurements, a Prototype Electrical Current State for the diagnostic session, (B) to employ a lookup table to identify a medical condition that the lookup table Associates with the Prototype Electrical Current State, which medical condition is a Prototype Medical Condition, and (C) to output (I) a diagnosis that the patient has the medical condition, or (II) a recommendation that the patient undergo medical testing to evaluate whether the patient has the medical condition. In some cases, the ground electrode and the probe electrode are parts of a single rigid structure and are in a fixed position relative to each other. In some cases: (a) the system further comprises one or more pressure sensors that are each configured to measure pressure exerted on the ground electrode or the probe electrode; and (b) the ground electrode and the probe electrode are in fixed positions relative to each other, except for any movement due to displacement that occurs within the one or more pressure sensors. In some cases: (a) the system further comprises an electronic display screen and an audio transducer; and (b) the one or more computers are programmed to cause the screen and the audio transducer to together output an audiovisual presentation that provides information about whether the ground and probe electrodes are positioned correctly on the patient. In some cases: (a) the ground electrode and the probe electrode are parts of a single rigid structure and are in a fixed position relative to each other; and (b) the rigid structure is configured to partially surround a smartphone or other mobile computing device. In some cases, the Prototype Medical Condition is a Class B Condition, Class M Condition, Class N Condition or Class P Condition. Each of the cases described above in this paragraph is an example of the system described in the first sentence of this paragraph, and is also an example of an embodiment of this invention that may be combined with other embodiments of this invention.


Each description herein (or in the Provisional) of any method, apparatus or system of this invention describes a non-limiting example of this invention. This invention is not limited to those examples, and may be implemented in other ways.


Each description herein (or in the Provisional) of any prototype of this invention describes a non-limiting example of this invention. This invention is not limited to those examples, and may be implemented in other ways.


Each description herein (or in the Provisional) of any implementation, embodiment or case of this invention (or any use scenario for this invention) describes a non-limiting example of this invention. This invention is not limited to those examples, and may be implemented in other ways.


Each Figure, diagram, schematic or drawing herein (or in the Provisional) that illustrates any feature of this invention shows a non-limiting example of this invention. This invention is not limited to those examples, and may be implemented in other ways.


The above description (including without limitation any attached drawings and figures) describes illustrative implementations of the invention. However, the invention may be implemented in other ways. The methods and apparatus which are described herein are merely illustrative applications of the principles of the invention. Other arrangements, methods, modifications, and substitutions by one of ordinary skill in the art are also within the scope of the present invention. Numerous modifications may be made by those skilled in the art without departing from the scope of the invention. Also, this invention includes without limitation each combination and permutation of one or more of the items (including any hardware, hardware components, methods, processes, steps, software, algorithms, features, and technology) that are described herein.


Non-Human Animals

The embodiments of the invention as described above may also be employed with respect to the “cross-body” electrical currents of non-human animals (i.e. dog, cat, horse, cows etc.), especially mammals (including but not limited to hominids, canines, bovines, equines, porcines, ovines, felines, hercines, giraffines, cervines, musines, and elephantines). Preferably, measurement methodology for no-human mammals is substantially the same as with human patients described above, that is measurements are taken of cross-currents that flow through the animal torso between animal limbs along acupuncture meridians.


For example, measurement data is preferably taken while by probing each animal leg, with 6 locations of probing on each leg, as shown in FIGS. 14A-D with reference to examples of dogs, cats, horses and cows. Locations 1701-1706 are associated with the animal's back legs and locations 1801-1806 are associated with the animal's front legs.


Specifically, locations 1701-1706 are positioned on the Spleen, Liver, Kidney, Bladder, Gall Bladder, and Stomach acupuncture meridians, respectively. In acupuncture terminology: (a) location 1701 is sometimes called SP3 or Spleen 3; (b) location 1702 is sometimes called LR3 or Liver 3; (c) location 1703 is sometimes called KI4 or Kidney 4; (d) location 1704 is sometimes called BL65 or Bladder 65; (e) location 1705 is sometimes called GB40 or Gall Bladder 40; and (f) location 1706 is sometimes called ST42 or Stomach 42. Locations 1801-1806 are positioned on the Lung, Pericardium, Heart, Small Intestine, Triple Heater and Large Intestine acupuncture meridians, respectively. In acupuncture terminology: (a) location 1801 is sometimes called LU9 or Lung 9; (b) location 1802 is sometimes called PC7 or Pericardium 7; (c) location 1803 is sometimes called HT7 or Heart 7; (d) location 1804 is sometimes called SI5 or Small Intestine 5; (e) location 1805 is sometimes called TH4 or Triple Heater 4; and (f) location 1806 is sometimes called LI5 or Large Intestine 5.


These locations 1701-1706, 1801-1806 may be determined by known acupressure meridian charts of the animal species or may be determined and/or varied on a case-by-case basis by the health-care worker. Locations 1701-1706, 1801-1806 may vary by animal species and even in individual animals within a species, thus determination of the locations 1701-1706, 1801-1806 should be left to a human diagnostician. In some cases, the measurement locations may be placed on different acupuncture points than described or somewhere else on the animal that is not along any acupuncture points at all, based on diagnostician discretion. In addition, in some cases, less than 24 measurement locations are utilized during a single diagnostic session, which may also be at diagnostician discretion.


As seen in FIGS. 14A-D, three locations are preferably determined on both the inside and the outside of each animal limb. These determined locations may be positioned on the same acupuncture meridians—and have the same acupuncture point numbers—as the respective corresponding locations on the opposite limb. For instance, FIG. 14A depicts the example of a canine. Measurement locations 1801, 1802, and 1806 are generally located laterally on (the outside of) a canine front leg, here shown on the lateral surface of a canine front left leg. Measurement locations 1804-1805 are generally located medially on (the inside of) a canine front leg, here shown on the medial surface of a canine front right leg. However, the measurement locations of the front legs preferably have substantial bilateral symmetry, thus measurement locations 1801, 1802, and 1806 may be determined for the canine front right leg and measurement locations 1803-1805 may be determined for the canine front left leg as well in mirrored positions. Thus, each limb will preferably have 6 measurement locations 1701-1706 or 1801-1806 for the diagnostician to locate and/or determine and probe, and each animal will preferably have 24 probe locations total, as was described for human patients above.


In some embodiments and/or uses of the method according to the present invention, diagnostician may take measurements by holding the probe electrode 1101 (to apply about 200 microamps to about 500 microamps) and ground electrode 1103 against the fur and/or skin at various measurement locations of the non-human animal. In other embodiments, the ground electrode 1103 and probe electrode 1101 may be configured to be attached to the body and/or limb of a non-human animal using a fastener, such as a strap.


During diagnostic sessions, the current sensor 122 takes multiple measurements of electrical current when the probe 1101 is positioned to deliver diagnostic electrical current at each measurement location for a predetermined diagnostic duration, such as about three to about five seconds. Put differently, the current sensor may take multiple measurements of electrical current at each point on the animal's skin and/or fur when the probe electrode is placed. Each of these current measurements may be calibrated based on simultaneous pressure measurement(s) that is/are indicative of pressure or force exerted against the probe electrode or ground electrode. The calibration may assist to or attempt to eliminate the impact of varying pressure or force on the magnitude of the current readings and may be used to eliminate outlier measurements. Thus, for probe placement at each single measurement location, multiple calibrated, filtered current measurements may be taken. Then, measurements of electrical current may be taken, using the same method as described above for humans, and compared to the lookup table Table 1 also described above for diagnosis.


Similarly to the human examples given above, the electric current used may be DC and/or AC current. Preferably, if a DC current is used, the DC current does not exceed 400 microamperes. Alternatively or additionally, AC currents may be employed that preferably range from 0.1 milliamperes to 400-500 milliamperes and up to a 100 hertz frequency. In cases where treatment via stimulation is sought, stimulation may be provided to an afflicted area in a preferred DC range of between 100-200 microamps. For larger animals, that preferred DC range may be increased to between 200-400 microamps in addition to, or alternatively to, an increased exposure time to stimulation.


Stimulation to Alter Meridian Conductivity

Before, after, or without a diagnostic method as described above, an electrical stimulation dose may be applied by using systems described herein in an attempt to alter electrical conductivity along identified meridians. Application of an electrical stimulation dose in a predetermined or variable amount and for a predetermined or variable time is understood to change the resistance along the meridian channels. Such dose is understood to change (e.g., improve) conductivity, and it improves blood circulation to affected bodily organs and organ systems corresponding to those meridians. Further, a stimulation dose is understood to optimize tissue environments by improving microcirculation and affecting bodily structure at a cellular level.


Generally, a stimulation dose may be indicated by human or other animal symptomatic presentation (e.g., ailments, complaints, responses to prompting questions related to pain or other symptoms) or indicated by use of a diagnostic method as herein described. Where a diagnostic method is utilized, electrical stimulation dose application locations may correspond to meridians having sensed currents that are a predetermined level, such as outside of the average range, as described above. If a diagnostic measurement provides a sensed current that is below average, or way below average (i.e., “low”), then conductivity along the respective meridian may be indicated to be increased. Conversely, if a diagnostic measurement provides a sensed current that is above average, or way above average (i.e., “high”), then conductivity along the respective meridian may be indicated to be decreased. As described above, there are 12 applicable meridian channels per lateral side of an animal body. Regarding dosing, there are preferably two points per channel that can be used for changing conductivity, one for reducing conductivity and one for improving conductivity. Generally, preferred stimulation dosing points are as follows:

    • Lung Channel (LU) (1): To increase conductivity, an electrical stimulation dose may be applied to point number LU-9; to decrease conductivity, an electrical stimulation dose may be applied to point number LU-5.
    • Pericardiam (PC) Channel (2): To increase conductivity, an electrical stimulation dose may be applied to point number PC-9; to decrease conductivity, an electrical stimulation dose may be applied to point number PC-7.
    • Heart Channel (HT) (3): To increase conductivity, an electrical stimulation dose may be applied to point number HT-9; to decrease conductivity, an electrical stimulation dose may be applied to point number HT-7.
    • Large Intestinal Channel (LI) (4): To increase conductivity, an electrical stimulation dose may be applied to point number LI-11; to decrease conductivity, an electrical stimulation dose may be applied to point number LI-2.
    • Triple Heater (TH) (or triple energizer) Channel (5): To increase conductivity, an electrical stimulation dose may be applied to point number TH-2; to decrease conductivity, an electrical stimulation dose may be applied to point number TH-10.
    • Small Intestinal Channel (SI) (6): To increase conductivity, an electrical stimulation dose may be applied to point number SI-2; to decrease conductivity, an electrical stimulation dose may be applied to point number SI-8.
    • Spleen (SP) Channel (7): To increase conductivity, an electrical stimulation dose may be applied to point number SP-3; to decrease conductivity, an electrical stimulation dose may be applied to point number SP-5.
    • Liver Channel (LR) (8): To increase conductivity, an electrical stimulation dose may be applied to point number LR-8; to decrease conductivity, an electrical stimulation dose may be applied to point number LR-2.
    • Bladder Channel (BL) (9): To increase conductivity, an electrical stimulation dose may be applied to point number BL-67; to decrease conductivity, an electrical stimulation dose may be applied to point number BL-66.
    • Kidney Channel (KI) (10): To increase conductivity, an electrical stimulation dose may be applied to point number KI-7; to decrease conductivity, an electrical stimulation dose may be applied to point number KI-1.
    • Gallbladder Channel (GB) (11): To increase conductivity, an electrical stimulation dose may be applied to point number GB-43; to decrease conductivity, an electrical stimulation dose may be applied to point number GB-39.
    • Stomach Channel (ST) (12): To increase conductivity, an electrical stimulation dose may be applied to point number ST-45; to decrease conductivity, an electrical stimulation dose may be applied to point number ST-44.


      Meridian point locations on a particular animal body are known and documented, but heretofore have been underappreciated.


Dosing is preferably provided with electrical current of a predetermined or variable level, preferably up to or about 200 microamperes if a direct current (DC) is utilized, if being applied to a human or small (under 250 pounds) animal. If a larger animal is dosed (or if the animal has significant amounts of fur or hair, or an unusually thick or tough skin), a preferred dosing current level may be greater than 200 microamperes and up to about 400 microamperes, if a direct current (DC) is utilized.


Electrical stimulation dosing is also preferably provided for a predetermined or variable duration. A preferred stimulation dosing duration is between about 5 seconds to about 15 seconds, with at least seven seconds being most preferred. That said, it periodic, repetitive and/or episodic dosing is contemplated.


A diagnostic method may be performed, and then, without removing the probe from the body, a stimulation dosing method may be performed. For instance, a stimulation dose may be provided at the same or different current level to a particular point to which a diagnostic stimulation was previously provided. Additionally or alternatively, a diagnostic method may be performed, then an electrical stimulation dose may be applied, and then another diagnostic method may be performed, all without removing the probe from the body.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, because numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention.

Claims
  • 1. A method comprising the steps of: in a first identifying step, identifying a first acupuncture meridian on an animal along which to increase or decrease an electrical conductivity; andin a first application step, if the result of the first identifying step is to increase electrical conductivity, applying an electrical stimulation dose at a first point along the first acupuncture meridian, orif the result of the first identifying step is to decrease electrical conductivity, applying an electrical stimulation dose at a second point along the first acupuncture meridian, the second point being different than the first point along the first acupuncture meridian.
  • 2. A method according to claim 1, wherein the stimulation dose comprises: a first type of electrical current selected from the group consisting of direct current and alternating current; anda first dosing duration.
  • 3. A method according to claim 2, wherein the first type is direct current provided at an at least substantially constant level of between one hundred and about two hundred microamps.
  • 4. A method according to claim 2, wherein the first dosing duration is at least seven seconds.
  • 5. A method according to claim 4, wherein the first dosing duration is less than or equal to fifteen seconds.
  • 6. A method according to claim 1, further comprising the steps of: in a second identifying step, identifying a second acupuncture meridian on the animal along which to increase or decrease an electrical conductivity; andif the result of the second identifying step is to increase electrical conductivity, applying a second electrical stimulation dose at a first point along the second acupuncture meridian, orif the result of the second identifying step is to decrease electrical conductivity, applying a second electrical stimulation dose at a second point along the second acupuncture meridian, the second point being different than the first point along the second acupuncture meridian.
  • 7. A method according to claim 1, wherein the first identifying step comprises the steps of (below average, etc.)
  • 8. A method according to claim 7, indicating increase or decrease
  • 9. A method according to claim 1, further comprising the steps of: after the step of applying an electrical stimulation dose, performing a diagnostic method to determine if
  • 10. A method according to claim 1, wherein the first point is selected from the group consisting of LU-9, PC-9, HT-9, LI-11, TH-2, SI-2, SP-3, LR-8, BL-67, KI-7, GB-43, and ST-45.
  • 11. A method according to claim 2, wherein the second point is selected from the group consisting of LU-5, PC-7, HT-7, LI-2, TH-10, SI-8, SP-5, LR-2, BL-66, KI-1, GB-39, and ST-44.
  • 12. A method according to claim 1, wherein the animal is a mammal.
  • 13. A method according to claim 12, wherein the mammal is selected from the group consisting of a hominid, a canine, a bovine, an equine, a porcine, an ovine, a feline, a hircine, a giraffine, a cervine, a musine, and an elephantine.
  • 14. A method comprising: (a) calculating a Prototype Electrical Current State for a diagnostic session, based on a set of measurements of electric current in an animal;(b) based on the calculating step, determining whether each measurement of electric current is average;(c) associating each measurement of electric current with an acupuncture meridian of the animal;(d) for each measurement below average or less, supplying an electrical current dose along the respective median at a first point; and(d) for each measurement above average or greater, supplying an electrical current dose along the respective median at a second point,wherein the first point and the second point are different.
  • 15. The method of claim 14 wherein different measurements in the set were taken while: a probe electrode touched skin of the animal at different Prototype Measurement Locations, one location at a time; andthe electric current flowed between a ground electrode and the probe electrode through the animal body.
  • 16. The method of claim 14, wherein each of the respective measurements in the set was taken while: the electric current flowed between a ground electrode and a probe electrode through the animal's body;the ground electrode touched a first portion the animal; andthe probe electrode touched a different portion of the animal at a Prototype Measurement Location.
  • 17. A system comprising: an electrical stimulator that includes a ground electrode and a probe electrode,wherein the ground electrode is supported against an animal body at a first distal location on a limb of the animal body,wherein the probe electrode is selectively positionable against a second location on the animal body to deliver an electrical stimulation dose, the dose comprising an electrical current type, an electrical current level, and a dose duration.
  • 18. The system of claim 17, wherein the ground electrode and the probe electrode are parts of a single rigid structure and are in a fixed position relative to each other.
  • 19. The system of claim 17, further comprising: one or more pressure sensors that are each configured to measure pressure exerted on the ground electrode or the probe electrode.
  • 20. The system of claim 17, further comprising: a current sensor configured to sense a conducted current level between the probe electrode and ground electrode;one or more computers; andan electronic display screen and an audio transducer,wherein the one or more computers are programmed to cause the screen and the audio transducer to together output an audiovisual presentation that at least one of(a) provides information about at least one of (i) whether the ground and probe electrodes are positioned correctly on the animal, (ii) the conducted current level, (iii) an indication of whether the conducted current level is above or below an average current level, and (iv) within an average range,(b) sequentially guides a user through an application of diagnostic electric currents at a plurality of points on the animal body, and(c) sequentially guides a user through an application of an electrical stimulation dose at one or more points on the animal body.
RELATED APPLICATIONS

This application claims the benefit of co-pending U.S. patent application Ser. No. 16/836,806, filed Mar. 31, 2020, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/828,206, filed Apr. 2, 2019, both of which are incorporated herein by reference in their entirety.

Provisional Applications (1)
Number Date Country
62828206 Apr 2019 US
Continuation in Parts (1)
Number Date Country
Parent 16836806 Mar 2020 US
Child 18054386 US