Systems and methods to maximize power from multiple power line energy harvesting devices

Information

  • Patent Grant
  • 11476674
  • Patent Number
    11,476,674
  • Date Filed
    Wednesday, September 18, 2019
    5 years ago
  • Date Issued
    Tuesday, October 18, 2022
    2 years ago
Abstract
A power distribution monitoring system is provided that can include a number of features. The system can include a plurality of monitoring devices configured to attach to individual conductors on a power grid distribution network. In some embodiments, a monitoring device is disposed on each conductor of a three-phase network and utilizes a split-core transformer to harvest energy from the conductors. The monitoring devices can be configured to harvest energy from the AC power grid. In some embodiments, the monitoring devices are configured to draw a ratiometric current to maintain an output resistance that equals an input resistance. Methods of installing and using the monitoring devices are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present application relates generally to distribution line monitoring, sensor monitoring, and power harvesting.


BACKGROUND

Power harvesting using induction pick-up from the magnetic field surrounding a power distribution line can be used to provide power to distribution line monitoring sensors. Typically, the power line is routed through a current transformer whereby an AC signal is derived from the magnetic field induced by the AC current flow in the distribution line. The AC signal is converted to DC as part of the power harvesting process and used to power the monitoring sensors and associated electronics. This is typically referred to as “inductive harvesting using current transformers.”


While a true current transformer is designed to provide an accurate ratio of primary to secondary current, a distribution line monitoring sensor with an energy harvesting device must also produce an adequate output voltage, and thus traditional devices typically deviates away from being an accurate current source.


Because of the complex nature of the harvesting device's voltage, current and phase relationships, the maximum utilization of the power cannot be achieved by directly connecting multiple harvest devices in series or in parallel. Furthermore, the current levels of the individual primary conductors cannot be assumed to be precisely equal, and may in fact differ by significant amounts.


There is a need to be able to harvest power from power distribution lines in approximate proportion to the individual primary currents.


SUMMARY OF THE DISCLOSURE

This disclosure generally provides distribution line monitoring sensors that include a number of features. Particularly, described herein are distribution line monitoring sensors with energy harvesting devices that are configured to maximize harvested power from power distribution lines. Additionally, described herein are distribution line monitoring sensors with energy harvesting devices that provide a constant current output characteristic to allow maximum utilization of power by connecting multiple devices in series or in parallel.


In some embodiments, this disclosure provides for the use of multiple magnetic cores to allow for installation on differing primary conductors in a polyphase power system. This provides advantages in overall redundancy, in cases where one or more of the polyphase conductors is disconnected or has insufficient harvesting capacity. Alternately, multiple magnetic cores can be placed on the same primary conductor in order to harvest more power than fewer cores could provide.


A method of harvesting energy from one or more conductors of a power grid distribution network is provided, comprising the steps of harvesting energy from the one or more conductors with a first energy harvesting device installed on the one or more conductors, presenting an input current and an input voltage from the first energy harvesting device to a first energy harvesting circuit, drawing a first ratiometric current from the first energy harvesting device with the first energy harvesting circuit such that a ratio of the input voltage to the input current equals a desired loading resistance of the first energy harvesting circuit.


In one embodiment, the method can further comprise harvesting energy from the one or more conductors with a second energy harvesting device installed on the one or more conductors, presenting an input current and an input voltage from the second energy harvesting device to a second energy harvesting circuit, drawing a second ratiometric current from the second energy harvesting device with the second energy harvesting circuit such that a ratio of the input voltage to the input current equals a desired loading resistance of the second energy harvesting circuit, summing the first ratiometric current with the second ratiometric current to form a combined harvested current, and delivering the combined harvested current to a line monitoring device.


In some embodiments, drawing the first ratiometric current further comprises adjusting a resistance of the first energy harvesting circuit to the desired loading resistance.


In another embodiment, adjusting the resistance of the first energy harvesting circuit comprises implementing a plurality of cascading op-amps to be in balance when the input voltage divided by the input current equal the desired loading resistance.


In some embodiments, the desired loading resistance comprises 100 ohms.


An energy harvesting circuit configured to receive an input current and an input voltage from an energy harvesting device is also provided, comprising a drive circuit configured to provide an output indicating if a load resistance of the energy harvesting circuit is above or below a desired load resistance, and a boost regulator configured to receive the output and to adjust the input voltage to match the load resistance of the energy harvesting circuit to the desired load resistance, wherein an output of the energy harvesting circuit is an output current set by the available power of the energy harvesting device when loaded with the load resistance of the energy harvesting circuit.


In some embodiments, the drive circuit comprises a plurality of cascading op-amps configured to be in balance when the input voltage divided by the input current equals the desired load resistance.


In one embodiment, the desired load resistance comprises 100 ohms.


An energy harvesting system is also provided, comprising a first energy harvesting circuit configured to receive a first input current and a first input voltage from a first energy harvesting device, the first energy harvesting circuit being configured to draw a first ratiometric current from the first energy harvesting device such that a first ratio of the first input voltage to the first input current equals a first desired loading resistance of the first energy harvesting circuit, a second energy harvesting circuit configured to receive a second input current and a second input voltage from a second energy harvesting device, the second energy harvesting circuit being configured to draw a second ratiometric current from the second energy harvesting device such that a second ratio of the second input voltage to the second input current equals a second desired loading resistance of the second energy harvesting circuit, a summation circuit configured to sum the first ratiometric current with the second ratiometric current into a combined current output, and a line monitoring device configured to receive the combined current output for operation.


In some embodiments, the first and second energy harvestings circuits each include a plurality of cascading op-amps configured to be in balance when the input voltage divided by the input current equals the desired load resistance.


In one embodiment, the first desired load resistance comprises 100 ohms.





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIG. 1 illustrates an underground power distribution network with a plurality of harvesting devices located in close proximity to an underground enclosure.



FIG. 2 shows the upper half of the power harvesting current transformer positioned above the lower half in what would be the closed position for normal operation. The upper and lower core halves separate with the mechanics of the housing to facilitate mounting the core on a power line.



FIG. 3 shows an energy harvesting circuit configured to control the electrical output of an energy harvesting device and to allow for multiple instances to be paralleled.



FIG. 4 is a schematic drawing showing multiple energy harvesting devices arranged in parallel to allow addition of output currents between the devices.



FIG. 5 is a flowchart describing one method of harvesting energy from a conductor of a power distribution network.





DETAILED DESCRIPTION

Power line monitoring devices and systems described herein are configured to measure the currents and voltages of power grid distribution networks. Referring to FIG. 1, a monitoring system 100 comprises a plurality of energy harvesting devices 102 mounted to underground conductors 103 of an underground power distribution network. As shown, each of the conductors can have one or more energy harvesting device 102 mounted to the conductors. The energy harvesting devices 102 are connected to a single monitoring device 104. The power distribution network can be a three phase AC network, or alternatively, a single-phase network, for example. The power distribution network can be any type of network, such as a 60 Hz North American network, or alternatively, a 50 Hz network such as is found in Europe and Asia, for example. The monitoring device can also be used on high voltage “transmission lines” that operate at voltages higher than 65 kV.


The energy harvesting devices can be mounted on each power line of a three-phase network, as shown, and can be configured to generate or harvest power from the conductors to provide power for the operation of the monitoring device 104. The energy harvesting devices 102 are configured to convert the changing magnetic field surrounding the distribution lines into current and/or voltage that can be rectified into DC current and used to power the monitoring devices. Each of the energy harvesting devices can harvest and produce an output comprising a DC current, which can then be summed in parallel at circuit element 106 to provide a single DC current input to the monitoring device 104 for operation.


The monitoring device can be configured to monitor, among other things, current flow in the power lines and current waveforms, conductor temperatures, ambient temperatures, vibration, and monitoring device system diagnostics. In additional embodiments, multiple energy harvesting devices can be used on a single phase line. The monitoring device can further include wireless and or wired transmission and receiving capabilities for communication with a central server and for communications between other monitoring devices.


The monitoring device can be configured to also measure the electric field surrounding the power lines, to record and analyze event/fault signatures, and to classify event waveforms. Current and electric field waveform signatures can be monitored and catalogued by the monitoring device to build a comprehensive database of events, causes, and remedial actions. In some embodiments, an application executed on a central server can provide waveform and event signature cataloguing and profiling for access by the monitoring devices and by utility companies. This system can provide fault localization information with remedial action recommendations to utility companies, pre-emptive equipment failure alerts, and assist in power quality management of the distribution grid.



FIG. 2 illustrates one embodiment of a power harvesting system 200, which can be included in the energy harvesting devices of FIG. 1. In some embodiments, the power harvesting system is positioned in the energy harvesting devices so as to surround the power lines when the energy harvesting devices are installed.


Referring to FIG. 2, power harvesting system 200 can include a split core transformer 201 having first and second core halves 204a and 204b. The split core transformer can include a primary winding (not shown) comprising the power line or conductor passing through the center of the two core halves, and a harvesting coil 202 around first core half 204a. The harvesting coil can be comprised, of any number of turns in order to establish the proper ‘turns ratio” required for the operation of the circuitry. The power harvesting system 200 may further include a second harvesting coil around the second core half 204b (not shown).


The current induced in the harvesting core coil supplies AC power to the electronic circuits of the monitoring device. In general, the monitoring devices are designed to operate over a wide range of power grid distribution networks and operating conditions. In some embodiments, the monitoring devices are designed and configured to operate over a range of line currents between 5 amps and 800 amps.



FIG. 3 illustrates a schematic diagram of an energy harvesting circuit 300 configured to control the harvesting of power from a power distribution network. The energy harvesting circuit 300 is configured to receive input(s) from an energy harvesting device, as described above. Therefore, an energy harvesting circuit can be disposed within each of the energy harvesting devices described above. Alternatively, the energy harvesting circuits can be disposed within the monitoring device described above, and electrically connected to a corresponding energy harvesting device. However, it should be understood that each energy harvesting device is coupled to its own energy harvesting circuit.


The energy harvesting circuit 300 can receives an input voltage 302 and an input current 304 from an energy harvesting device. Resistors 306 represent a divider circuit configured to divide the input voltage down to a usable level for the energy harvesting circuit 300. Circuit U1 is configured to measure the input current 302 and the divided input voltage via resistors 306. The circuit U1 itself can comprise, for example, a plurality of cascading op-amps. The circuit U1 (e.g., a plurality of cascading op-amps) is designed and configured to be in balance when the input voltage 302 divided by the input current 304 is a predetermined resistance value. In one example the predetermined resistance is chosen to be 100 ohms to maximize the amount of current than can be extracted from the conductor(s) with the energy harvesting device(s). The output of circuit U1 goes above zero or below zero depending on if the energy harvesting circuit needs to be driven more or less to achieve balance in the circuit U1 (i.e., to achieve the predetermined resistance value). Thus, the output of circuit U1 determines if more or less is required to achieve the desired resistance.


The output of circuit U1 is fed into an error amplifier 308 and pulse width modulator 310. The error amplifier, pulse width modulator, boost inductor 312, and resistor 314 are configured to add or remove a load on the circuit which therefore adjusts the resistance of the circuit to the desired predetermined level. For example, the pulse width modulator operates at a certain frequency to make load of the circuit the predetermined resistance value (e.g., 100 ohms). The boost inductor 312 wants a constant current, so the boost inductor's output becomes the constant current. The amplifier US and the voltage divider formed by resistors 316 put an upper limit on the output voltage, which is set to be relatively high so as to avoid entering a voltage limit state in the circuit. The output current through diode 318 represents the maximum harvested current based on the operation of the circuit as described above.


Because of the output characteristics of the energy harvesting circuit, having neither a fixed output voltage, nor fixed output current, the maximum obtainable power will be delivered when the load resistance equals the equivalent source resistance of the energy harvesting circuit. This is in accordance with the “Maximum Power Transfer Theorem”. The energy harvesting circuit of the present disclosure therefore is configured to sense the output voltage of the energy harvesting device and draw a ratiometric current such that the ratio of the input voltage to the input current equates to the desired loading resistance of the energy harvesting circuit.


The energy harvesting circuit includes a “boost” regulator and inductor which is configured to boost the input voltage to a level higher than the input. The schematic diagram of FIG. 3 shows how U1, with its inputs connected to both the input voltage and input current, will be able to maintain a constant resistance loading of the harvest device, since resistance is simply voltage divided by current. The output of the circuit is a current whose level is set by the available power of the harvesting device, when loaded with the constant resistance. The output voltage of the circuit depends on the ultimate load connected to the overall summed output. In order to limit the voltage to a practical level, U2 will establish a certain maximum voltage.


As noted above, the output voltage and current levels of the energy harvesting circuit are not fixed, but rather are free to establish themselves at the levels demanded by the desired resistance. The output voltage however, must be high enough to multiple devices to add their current without hitting an upper voltage limit.


The present disclosure further provides the ability to parallel multiple devices since the output is a current source. When paralleling current sources, the currents directly add together, while the voltage of the paralleled circuit will depend upon the load placed upon the circuit. Heavy loads will keep the paralleled voltage low, while a light load will allow the paralleled voltage to rise to some practical upper limit. Once an upper voltage limit is reached, current sharing can no longer maintained. However, it is important to note that operation at the voltage limit infers that ample power is being harvested and the need for current sharing is no longer a priority.



FIG. 4 is a schematic illustration of multiple energy harvesting devices 402 arranged in parallel, as described above. Each energy harvesting device is electrically connected to an energy harvesting circuit 400, such as the energy harvesting circuit described above. The output from each energy harvesting circuit comprises a current source. The arrangement of FIG. 4 advantageously provides an input that looks resistive but an output that looks like a current source, which allows for multiple devices to be placed in parallel to allow the currents to directly add together. The sum of all the currents can then be fed directly to a monitoring device (as described in FIG. 1) to provide power for the operation of the device.


The novelty of the present disclosure is the way the energy harvesting circuit loads the harvest device (the magnetic core and coil) with a constant resistance (its most efficient load) and then creates a “current” output, so that multiple instances can be paralleled. This energy harvesting circuit actively performs its current summing function only at very low currents, when it matters most. As soon as enough currents are summed so that the circuit hits the upper voltage limit (and sharing stops), the monitoring device has enough power. The constant resistance loading mentioned herein, allows each energy harvesting core to operate at its best point of power transfer.



FIG. 5 illustrates a flowchart that describes a method for harvesting energy from one or more conductors of a power distribution network. At an operation 502, energy can be harvested from one or more conductors of a power distribution network with an energy harvesting device. As described above, one or more energy harvesting devices can be installed on one or more conductors of the power distribution network. In some examples, a single harvesting device is installed on each conductor. In other embodiments, more than one harvesting device can be installed on a single conductor, or on all conductors. The energy harvesting devices can comprise current transformers configured to induce a current proportional to the current flowing through the main conductors.


At an operation 504, the method can further comprise inputting the voltage and current from the energy harvesting device into an energy harvesting circuit. As described above, each energy harvesting device can include its own energy harvesting circuit. This circuit may be disposed within a housing of the harvesting device, or alternatively, may be located remotely from the harvesting device but be electrically coupled to the device.


At an operation 506, the method can further comprise drawing a ratiometric current from the energy harvesting device such that a ratio of the input voltage to the input current equals a desired loading resistance of the energy harvesting circuit. At operation 508, the ratiometric current can be outputted to a line monitoring device.


As described above, these devices and methods can be scaled to include multiple energy harvesting devices and circuits. Thus, in steps 510 and 512 of the flowchart, the method can include repeating these steps for additional energy harvesting devices and circuits, and summing the output currents to form a combined output current that can be used to power one or more line monitoring devices.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A method of harvesting energy from one or more conductors of a power grid distribution network, comprising the steps of: harvesting energy from the one or more conductors with a first energy harvesting device installed on the one or more conductors;presenting an input current and an input voltage from the first energy harvesting device to a first energy harvesting circuit comprising an amplifier, a pulse width modulator, and a boost converter driven by the pulse width modulator, the boost converter comprising a switching device and an inductor; andbased on operation of the boost converter, adjusting an inductor current flowing through the inductor to output a first ratiometric current from the first energy harvesting device with the first energy harvesting circuit such that a ratio of the input voltage to the input current equals a desired loading resistance of the first energy harvesting circuit.
  • 2. The method of claim 1, further comprising: harvesting energy from the one or more conductors with a second energy harvesting device installed on the one or more conductors;presenting an input current and an input voltage from the second energy harvesting device to a second energy harvesting circuit;output a second ratiometric current from the second energy harvesting device with the second energy harvesting circuit such that a ratio of the input voltage to the input current equals a desired loading resistance of the second energy harvesting circuit;summing the first ratiometric current with the second ratiometric current to form a combined harvested current; anddelivering the combined harvested current to a line monitoring device.
  • 3. The method of claim 1, wherein the first energy harvesting circuit further comprises implementing a plurality of cascading op-amps to be in balance when the ratio of the input voltage to the input current equals a desired loading resistance of the first energy harvesting circuit.
  • 4. The method of claim 1, wherein the desired loading resistance comprises 100 ohms.
  • 5. An energy harvesting circuit configured to receive an input current and an input voltage from an energy harvesting device, comprising: a drive circuit configured to provide an output indicating if a load resistance of the energy harvesting circuit is above or below a desired load resistance; anda boost regulator circuit comprising a pulse width modulator, an inductor, and a switching device driven by the pulse width modulator, wherein, using the output from the drive circuit, the boost regulator circuit adjusts an inductor current of the inductor to adjust a ratiometric current output from the energy harvesting device such that a ratio of the input voltage to the input current equals the desired loading resistance of the energy harvesting circuit.
  • 6. The circuit of claim 5, wherein the drive circuit comprises a plurality of cascading op-amps configured to be in balance when the input voltage divided by the input current equals the desired load resistance.
  • 7. The circuit of claim 5, wherein the desired load resistance comprises 100 ohms.
  • 8. The circuit of claim 5, the inductor being in series with a boost resistor.
  • 9. The circuit of claim 5, further comprising an error amplifier; wherein the error amplifier, the pulse width modulator, a boost resistor, and the inductor collectively add or remove a load on the circuit to adjust the load resistance.
  • 10. An energy harvesting system, comprising: a first energy harvesting circuit configured to receive a first input current and a first input voltage from a first energy harvesting device, the first energy harvesting circuit comprising: a first amplifier, anda first boost regulator circuit comprising a first pulse width modulator, a first inductor, and a first switching device driven at least in part by the first pulse width modulator, wherein, based at least in part on a first output from the first amplifier, a first inductor current of the first inductor is adjusted thereby controlling a first ratiometric current output from the first energy harvesting device such that a first ratio of the first input voltage to the first input current equals a first desired loading resistance of the first energy harvesting circuit;a second energy harvesting circuit configured to receive a second input current and a second input voltage from a second energy harvesting device, the second energy harvesting circuit comprising: a second amplifier, anda second boost regulator circuit comprising a second pulse width modulator, a second inductor, and a second switching device driven at least in part by the second pulse width modulator, wherein, based on a second output from the second amplifier, a second inductor current of the second inductor is adjusted thereby controlling a second ratiometric current output from the second energy harvesting device such that a second ratio of the second input voltage to the second input current equals a second desired loading resistance of the second energy harvesting circuit;a summation circuit configured to sum the first ratiometric current with the second ratiometric current into a combined current output; anda line monitoring device configured to receive the combined current output for operation.
  • 11. The system of claim 10, wherein the first amplifier and the second amplifier each include a plurality of cascading op-amps configured to be in balance when the input voltage divided by the input current equals the desired load resistance.
  • 12. The circuit of claim 10, wherein the first desired load resistance comprises 100 ohms.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application No. 62/732,818, filed Sep. 18, 2018, titled “Systems and Methods to Maximize Power From Multiple Power Line Energy Harvesting Devices”, the contents of which are incorporated by reference herein.

US Referenced Citations (190)
Number Name Date Kind
3075166 Peek Jan 1963 A
3558984 Smith et al. Jan 1971 A
3676740 Schweitzer, Jr. Jul 1972 A
3686531 Decker et al. Aug 1972 A
3702966 Schweitzer, Jr. Nov 1972 A
3708724 Schweitzer, Jr. Jan 1973 A
3715742 Schweitzer, Jr. Feb 1973 A
3720872 Russell et al. Mar 1973 A
3725832 Schweitzer, Jr. Apr 1973 A
3755714 Link Aug 1973 A
3768011 Swain Oct 1973 A
3777217 Groce et al. Dec 1973 A
3814831 Olsen Jun 1974 A
3816816 Schweitzer, Jr. Jun 1974 A
3866197 Schweitzer, Jr. Feb 1975 A
3876911 Schweitzer, Jr. Apr 1975 A
3957329 McConnell May 1976 A
3970898 Baumann et al. Jul 1976 A
4063161 Pardis Dec 1977 A
4152643 Schweitzer, Jr. May 1979 A
4161761 Moran Jul 1979 A
4339792 Yasumura et al. Jul 1982 A
4378525 Burdick Mar 1983 A
4396794 Stiller Aug 1983 A
4396968 Stiller Aug 1983 A
4398057 Shankle et al. Aug 1983 A
4408155 McBride Oct 1983 A
4466071 Russell, Jr. Aug 1984 A
4559491 Saha Dec 1985 A
4570231 Bunch Feb 1986 A
4584523 Elabd Apr 1986 A
4649457 Talbot et al. Mar 1987 A
4654573 Rough et al. Mar 1987 A
4709339 Fernandes Nov 1987 A
4714893 Vaniz et al. Dec 1987 A
4723220 Vaniz Feb 1988 A
4728887 Davis Mar 1988 A
4746241 Burbank May 1988 A
4766549 Schweitzer, III et al. Aug 1988 A
4775839 Kosina et al. Oct 1988 A
4808916 Smith Vaniz Feb 1989 A
4829298 Fernandes May 1989 A
4881028 Bright Nov 1989 A
4886980 Fernandes et al. Dec 1989 A
4904932 Schweitzer, Jr. Feb 1990 A
4937769 Verbanets Jun 1990 A
5006846 Granville et al. Apr 1991 A
5125738 Kawamura et al. Jun 1992 A
5138265 Kawamura et al. Aug 1992 A
5159561 Watanabe et al. Oct 1992 A
5181026 Granville Jan 1993 A
5182547 Griffith Jan 1993 A
5202812 Shinoda et al. Apr 1993 A
5206595 Wiggins et al. Apr 1993 A
5220311 Schweitzer, Jr. Jun 1993 A
5428549 Chen Jun 1995 A
5438256 Thuries et al. Aug 1995 A
5473244 Libove et al. Dec 1995 A
5495169 Smith Feb 1996 A
5519560 Innes May 1996 A
5550476 Lau et al. Aug 1996 A
5600248 Westrom et al. Feb 1997 A
5608328 Sanderson Mar 1997 A
5650728 Rhein et al. Jul 1997 A
5656931 Lau et al. Aug 1997 A
5682100 Rossi et al. Oct 1997 A
5696788 Choi et al. Dec 1997 A
5712796 Ohura et al. Jan 1998 A
5729144 Cummins Mar 1998 A
5737203 Barrett Apr 1998 A
5764065 Richards et al. Jun 1998 A
5839093 Novosel et al. Nov 1998 A
5892430 Wiesman et al. Apr 1999 A
5905646 Crewson et al. May 1999 A
5990674 Schweitzer, Jr. Nov 1999 A
6002260 Lau et al. Dec 1999 A
6016105 Schweitzer, Jr. Jan 2000 A
6043433 Schweitzer, Jr. Mar 2000 A
6133723 Feight Oct 2000 A
6133724 Schweitzer, Jr. et al. Oct 2000 A
6288632 Hector et al. Sep 2001 B1
6292340 O'Regan et al. Sep 2001 B1
6347027 Nelson et al. Feb 2002 B1
6433698 Schweitzer, Jr. et al. Aug 2002 B1
6459998 Hoffman Oct 2002 B1
6466030 Hu et al. Oct 2002 B2
6466031 Hu et al. Oct 2002 B1
6477475 Takaoka et al. Nov 2002 B1
6483435 Saha et al. Nov 2002 B2
6549880 Willoughby et al. Apr 2003 B1
6559651 Crick May 2003 B1
6566854 Hagmann et al. May 2003 B1
6577108 Hubert et al. Jun 2003 B2
6601001 Moore Jul 2003 B1
6622285 Rust et al. Sep 2003 B1
6677743 Coolidge et al. Jan 2004 B1
6718271 Tobin Apr 2004 B1
6734662 Fenske May 2004 B1
6798211 Rockwell et al. Sep 2004 B1
6822457 Borchert et al. Nov 2004 B2
6822576 Feight et al. Nov 2004 B1
6879917 Turner Apr 2005 B2
6894478 Fenske May 2005 B1
6914763 Reedy Jul 2005 B2
6917888 Logvinov et al. Jul 2005 B2
6927672 Zalitzky et al. Aug 2005 B2
6949921 Feight et al. Sep 2005 B1
6963197 Feight et al. Nov 2005 B1
6980090 Mollenkopf Dec 2005 B2
7023691 Feight et al. Apr 2006 B1
7046124 Cope et al. May 2006 B2
7053601 Fenske et al. May 2006 B1
7072163 McCollough, Jr. Jul 2006 B2
7076378 Huebner Jul 2006 B1
7085659 Peterson et al. Aug 2006 B2
7106048 Feight et al. Sep 2006 B1
7158012 Wiesman et al. Jan 2007 B2
7187275 McCollough, Jr. Mar 2007 B2
7203622 Pan et al. Apr 2007 B2
7272516 Wang et al. Sep 2007 B2
7295133 McCollough, Jr. Nov 2007 B1
7400150 Cannon Jul 2008 B2
7424400 McCormack et al. Sep 2008 B2
7449991 Mollenkopf Nov 2008 B2
7450000 Gidge et al. Nov 2008 B2
7508638 Hooper Mar 2009 B2
7518529 O'Sullivan et al. Apr 2009 B2
7532012 Cern May 2009 B2
7557563 Gunn et al. Jul 2009 B2
7586380 Natarajan Sep 2009 B1
7626794 Swartzendruber et al. Dec 2009 B2
7633262 Lindsey et al. Dec 2009 B2
7672812 Stoupis et al. Mar 2010 B2
7683798 Rostron Mar 2010 B2
7701356 Curt et al. Apr 2010 B2
7714592 Radtke et al. May 2010 B2
7720619 Hou May 2010 B2
7725295 Stoupis et al. May 2010 B2
7742393 Bonicatto et al. Jun 2010 B2
7764943 Radtke Jul 2010 B2
7795877 Radtke et al. Sep 2010 B2
7795994 Radtke Sep 2010 B2
7804280 Deaver, Sr. et al. Sep 2010 B2
7930141 Banting Apr 2011 B2
8421444 Gunn Apr 2013 B2
8497781 Engelhardt et al. Jul 2013 B2
8594956 Banting et al. Nov 2013 B2
8786292 Parsons Jul 2014 B2
8847576 Hannam Sep 2014 B1
9182429 Saxby et al. Nov 2015 B2
9229036 Kast et al. Jan 2016 B2
9383394 Banting Jul 2016 B2
9448257 Saxby et al. Sep 2016 B2
9581624 Rostron et al. Feb 2017 B2
9954354 Baker et al. Apr 2018 B2
9984818 Rumrill May 2018 B2
10298208 Venkatramani May 2019 B1
20040156154 Lazarovich et al. Aug 2004 A1
20050073200 Divan et al. Apr 2005 A1
20080077336 Fernandes Mar 2008 A1
20090058582 Webb Mar 2009 A1
20090309754 Bou et al. Dec 2009 A1
20100085036 Banting et al. Apr 2010 A1
20110032739 Juhlin Feb 2011 A1
20120039062 McBee et al. Feb 2012 A1
20120081824 Narendra Apr 2012 A1
20120236611 Alexandrov et al. Sep 2012 A1
20130076323 Huang Mar 2013 A1
20130162136 Baldwin et al. Jun 2013 A1
20130169361 Killat Jul 2013 A1
20140062221 Papastergiou et al. Mar 2014 A1
20140145858 Miller et al. May 2014 A1
20140174170 Davis Jun 2014 A1
20140192458 Valdes Jul 2014 A1
20140226366 Morokuma et al. Aug 2014 A1
20140260598 Miller Sep 2014 A1
20150002165 Juntunen Jan 2015 A1
20150198667 Krekeler Jul 2015 A1
20150372626 Bartl Dec 2015 A1
20150378379 Bhattad Dec 2015 A1
20160116505 Kast et al. Apr 2016 A1
20160164310 Juntunen Jun 2016 A1
20160276950 Koo Sep 2016 A1
20170199533 McCollough Jul 2017 A1
20180003744 Juntunen Jan 2018 A1
20180143234 Saxby May 2018 A1
20180287370 Kinsella Oct 2018 A1
20190021154 Sadwick Jan 2019 A1
20200052488 Desmarais Feb 2020 A1
20200373850 Valtysson Nov 2020 A1
Foreign Referenced Citations (4)
Number Date Country
1508146 Feb 2005 EP
1938159 Jul 2008 EP
2340592 Jul 2011 EP
2350764 Aug 2011 EP
Non-Patent Literature Citations (7)
Entry
Chen et al.; Development of arc-guided protection devices against lightning breakage of covered conductors on distribution lines; IEEE Trans. Power Deliv.; 25(1); pp. 196-205; Jan. 2010.
Chen Yang Technologies; Split core hall effect de current sensor CYHCT-C2TC; 4 pages; retrieved from the internet Jan. 5, 2015 (http://www.hallsensors.de/CYHCT-C2TC.pdf) (Product Information).
Saha et al.; Fault Location on Power Networks (Power Systems); Springer Verlag; London, UK; 435 pgs.; 2010 (Preface: Oct. 2009).
Shepard et al.; An overview of rogowski coil current sensing technology; 13 pages; retrieved from the internet Jan. 5, 2016 (http://www.dynamp.net/ldadocum.nsf/c2270fbdd892ac3e86256e75000ad88a/e710af6d3e0f6255862565d7004b19db/$FILE/Report.pdf).
Stringfield et al.; Fault location methods for overhead lines; in Transactions of the American Institute of Electrical Engineers; Amer. Inst, of Electrical Eng.; New York, NY; Part. III; vol. 76; pp. 518-530; Aug. 1957.
Rumrill; U.S. Appl. No. 16/574,465 entitled “Systems and methods to measure primary voltage using capacitive coupled test point and grounded sensor circuit,” filed Sep. 18, 201.
Rumrill; U.S. Appl. No. 16/574,486 entitled “Distrubance detecting current sensor,” filed Sep. 18, 2019.
Related Publications (1)
Number Date Country
20200091721 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
62732818 Sep 2018 US