Systems and methods to operate a dual-shaft gas turbine engine for hydraulic fracturing

Information

  • Patent Grant
  • 11572774
  • Patent Number
    11,572,774
  • Date Filed
    Monday, August 9, 2021
    3 years ago
  • Date Issued
    Tuesday, February 7, 2023
    a year ago
Abstract
Systems and methods to pump fracturing fluid into a wellhead may include a gas turbine engine including a compressor turbine shaft connected to a compressor, and a power turbine output shaft connected to a power turbine. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The systems may also include a transmission including a transmission input shaft connected to the power turbine output shaft and a transmission output shaft connected to a hydraulic fracturing pump. The systems may also include a fracturing unit controller configured to control one or more of the rotational speeds of the compressor turbine shaft, the power turbine output shaft, or the transmission output shaft based at least in part on target signals and fluid flow signals indicative of one or more of pressure or flow rate associated with fracturing fluid pumped into the wellhead.
Description
TECHNICAL FIELD

The present disclosure relates to systems and methods for operating a dual-shaft gas turbine engine for hydraulic fracturing and, more particularly, to systems and methods for operating a dual-shaft gas turbine engine to pump fracturing fluid into a wellhead.


BACKGROUND

Hydraulic fracturing is an oilfield operation that stimulates production of hydrocarbons, such that the hydrocarbons may more easily or readily flow from a subsurface formation to a well. For example, a hydraulic fracturing system may fracture a formation by pumping a fracturing fluid into a well at high pressure and high flow rates. Some fracturing fluids may take the form of a slurry including water, proppants, and/or other additives, such as thickening agents and/or gels. The slurry may be forced via one or more pumps into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure may build rapidly to the point where the formation may fail and may begin to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation are caused to expand and extend in directions farther away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well bore. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the formation is fractured, large quantities of the injected fracturing fluid are allowed to flow out of the well, and the production stream of hydrocarbons may be obtained from the formation.


Prime movers may be used to supply power to hydraulic fracturing pumps for pumping the fracturing fluid into the formation. For example, internal combustion engines may each be mechanically connected to a corresponding hydraulic fracturing pump and operated to drive the hydraulic fracturing pump. The prime mover, hydraulic fracturing pump, and auxiliary components associated with the prime mover and hydraulic fracturing pump may be connected to a common platform or trailer for transportation and set-up as a hydraulic fracturing unit at the site of a fracturing operation, which may include up to a dozen or more of such hydraulic fracturing units operating together to perform the fracturing operation.


Hydraulic fracturing units have traditionally used diesel engines as the prime movers to drive the hydraulic fracturing pumps. In order to reduce the consumption of diesel fuel, a recent trend has developed for using electrically-powered fracturing pumps. For example, a gas turbine engine may be used to drive an electric generator, which supplies power to electric motors used to drive the hydraulic fracturing pumps. Such systems may result in the production of power using cleaner energy sources relative to the combustion of diesel fuel, thereby reducing undesirable emissions. However, the deployment and use of electrically-powered fracturing units may suffer from possible drawbacks.


For example, in order to supply electric power in an amount sufficient to operate the large number of hydraulic fracturing pumps that may often be required to successfully complete a fracturing operation, the gas turbine engine may need to be extremely large. Because fracturing equipment must often be transported to a relatively remote wellsite and be assembled on-site, the assembly and preparation of a sufficiently large gas turbine engine may be cumbersome and complex, for example, often requiring the assembly of large components, such as the exhaust and intake systems, as well as connection of numerous and complex electrical components across the fracturing site. Moreover, using a single gas turbine engine to generate electrical power and transfer of the electrical power to each of the hydraulic fracturing units may be relatively inefficient, for example, depending on ambient conditions. For example, in high temperature climates and high altitude environments, the gas turbine engine may produce relatively less power. In addition, the efficiency of electrical power generation and transfer of the electrical power to the fracturing units may be relatively lower at high temperatures. In addition, in high-temperature environments, additional cooling for the gas turbine engine, electrical components, and the hydraulic fracturing pumps may be needed, which may result in additional inefficiencies. When combined, such inefficiencies may result in reducing the amount of power available for performing the fracturing operation. In addition, electrically-powered fracturing operations may still require a large foot-print at the wellsite, which may be magnified by the need of supplemental electric power generation and conditioning trailers, as well as large and complex cable assemblies for supplying power to the electric motors of the hydraulic fracturing units. For example, an electrically-powered fracturing operation may include electrical transfer and conditioning equipment, such as drive trailers and transformer systems, which may be connected to one another by relatively large and complex interconnecting cable assemblies.


Accordingly, Applicant has recognized a need for systems and methods that reduce undesirable emissions common to diesel-powered fracturing operations, while still providing a relatively efficient set-up and a fracturing operation that provides sufficient power for the multiple hydraulic fracturing pumps of a fracturing operation. The present disclosure may address one or more of the above-referenced drawbacks, as well as other possible drawbacks.


SUMMARY

As referenced above, in order to reduce the consumption of diesel fuel and the resulting undesirable emissions, a recent trend has developed for using electrically-powered fracturing units, which use electric motors to drive hydraulic fracturing pumps for performing fracturing operations. However, electrically-powered fracturing units may use a large gas turbine engine to drive an electrical generator and convert mechanical power into electrical power supplied to the electric motors driving the fracturing pumps. As noted above, this may result in several possible drawbacks, including difficult and complex on-site assembly of the gas turbine engine and electrical equipment necessary to perform the fracturing operation, and reduced operational efficiencies in some environments, such in high-temperature or high-altitude environments.


The present disclosure generally is directed to systems and methods for operating a dual-shaft gas turbine engine for hydraulic fracturing and, more particularly, to systems and methods for operating a dual-shaft gas turbine engine to pump fracturing fluid into a wellhead. For example, in some embodiments, a hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead may include a dual-shaft gas turbine engine connected to a hydraulic fracturing pump by a transmission, and a fracturing unit controller configured to control operation of the gas turbine engine, the transmission, and/or the hydraulic fracturing pump of the hydraulic fracturing unit assembly, for example, during start-up, operation, and/or completion of a hydraulic fracturing operation.


According to some embodiments, a hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead may include a chassis and a gas turbine engine connected to the chassis. The gas turbine engine may include a compressor positioned to compress air, and a combustor section positioned to receive compressed air from the compressor and fuel. The combustor section may be positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas. The gas turbine engine also may include a compressor turbine shaft connected to the compressor, such that the compressor turbine shaft rotates with the compressor, and a compressor turbine connected to the compressor turbine shaft, such that the compressor turbine shaft and the compressor turbine rotate a first rotational speed. The gas turbine engine further may include a power turbine positioned downstream relative to the compressor turbine, such that the heated combustion gas causes the power turbine to rotate at a second rotational speed. The gas turbine engine still further may include a power turbine output shaft connected to the power turbine, such that the power turbine output shaft rotates with the power turbine at the second rotational speed. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The hydraulic fracturing unit assembly also may include a transmission including a transmission input shaft connected to the power turbine output shaft, such that the transmission input shaft rotates at the second rotational speed, and a transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed. The hydraulic fracturing unit assembly further may include a hydraulic fracturing pump positioned to pump fracturing fluid into the wellhead. The hydraulic fracturing pump may include a pump drive shaft connected to the transmission output shaft, such that the transmission output shaft drives the pump drive shaft at the third rotational speed. The hydraulic fracturing unit assembly also may include a fracturing unit controller in communication with one or more of the gas turbine engine, the transmission, or the hydraulic fracturing pump. The fracturing unit controller may be configured to receive one or more target signals indicative of one or more of a target pressure associated with the fracturing fluid pumped into the wellhead or a target flow rate associated with the fracturing fluid pumped into the wellhead. The fracturing unit controller further may be configured to receive one or more fluid flow signals indicative of one or more of an actual pressure associated with the fracturing fluid pumped into the wellhead or an actual flow rate associated with the fracturing fluid pumped into the wellhead. The fracturing unit controller still further may be configured to control, based at least in part on one or more of the one or more target signals or the one or more fluid flow signals, one or more of the first rotational speed, the second rotational speed, or the third rotational speed.


According some embodiments, a method for pumping fracturing fluid into a wellhead may include receiving, via a fracturing unit controller, one or more target signals indicative of one or more of a target pressure associated with pumping fracturing fluid into a wellhead or a target flow rate associated with the fracturing fluid pumped into the wellhead. The method also may include receiving, via the fracturing unit controller, one or more fluid flow signals indicative of one or more of an actual pressure associated with pumping the fracturing fluid into the wellhead or an actual flow rate associated with pumping the fracturing fluid into the wellhead. The method further may include controlling, via the fracturing unit controller, based at least in part on one or more of the one or more target signals or the one or more fluid flow signals, one or more of: a first rotational speed associated with a compressor turbine shaft connected to a compressor and a compressor turbine of a gas turbine engine; a second rotational speed associated with a power turbine output shaft connected to a power turbine of the gas turbine engine; or a third rotational speed associated with a transmission output shaft connected to a pump drive shaft of a hydraulic fracturing pump positioned to pump the fracturing fluid into the wellhead.


According to some embodiments, a powertrain to supply power to a hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead may include a gas turbine engine, which may include a compressor positioned to compress air and a combustor section positioned to receive compressed air from the compressor and fuel. The combustor section may be positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas. The gas turbine engine also may include a compressor turbine shaft connected to the compressor, such that the compressor turbine shaft rotates with the compressor, and a compressor turbine connected to the compressor turbine shaft, such that the compressor turbine shaft and the compressor turbine rotate a first rotational speed. The gas turbine engine further may include a power turbine positioned downstream relative to the compressor turbine, such that the heated combustion gas causes the power turbine to rotate at a second rotational speed, and a power turbine output shaft connected to the power turbine, such that the power turbine output shaft rotates with the power turbine at the second rotational speed. The compressor turbine shaft and the power turbine output shaft may be rotatable at different rotational speeds. The powertrain also may include a transmission including a transmission input shaft connected to the power turbine output shaft, such that the transmission input shaft rotates at the second rotational speed, and a transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed and to drive a pump drive shaft. The powertrain further may include a fracturing unit controller in communication with one or more of the gas turbine engine or the transmission. The fracturing unit controller may be configured to receive one or more target signals indicative of one or more of a target pressure associated with fracturing fluid pumped into a wellhead or a target flow rate associated with the fracturing fluid pumped into the wellhead. The fracturing unit controller also may be configured to receive one or more fluid flow signals indicative of one or more of an actual pressure associated with the fracturing fluid pumped into the wellhead or an actual flow rate associated with the fracturing fluid pumped into the wellhead. The fracturing unit controller further may be configured to control, based at least in part on one or more of the one or more target signals or the one or more fluid flow signals, one or more of the first rotational speed, the second rotational speed, or the third rotational speed.


Still other aspects and advantages of these exemplary embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present invention herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than can be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they can be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings can be expanded or reduced to more clearly illustrate embodiments of the disclosure.



FIG. 1 schematically illustrates an example hydraulic fracturing system including a plurality of hydraulic fracturing unit assemblies, and including a schematic side view of an example hydraulic fracturing unit assembly according to embodiments of the disclosure.



FIG. 2 is a schematic side view of an example hydraulic fracturing unit assembly according to embodiments of the disclosure.



FIG. 3 is a block diagram of an example hydraulic fracturing unit assembly according to embodiments of the disclosure.



FIG. 4 is a schematic exploded perspective view of components of an example gas turbine engine according to embodiments of the disclosure.



FIG. 5 is a schematic perspective cutaway view of an example torsional vibration damper according to embodiments of the disclosure.



FIG. 6A is a block diagram of an example method for pumping fracturing fluid into a wellhead according to embodiments of the disclosure.



FIG. 6B is a continuation of the example method for pumping fracturing fluid into a wellhead of the block diagram of FIG. 6A according to embodiments of the disclosure.



FIG. 6C is a continuation of the example method for pumping fracturing fluid into a wellhead of the block diagrams of FIGS. 6A and 6B according to embodiments of the disclosure.



FIG. 7 is a schematic diagram of an example fracturing unit controller configured to operate a hydraulic fracturing unit assembly according to embodiments of the disclosure.





DETAILED DESCRIPTION

The drawings include like numerals to indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes may be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.


The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.



FIG. 1 schematically illustrates a top view of an example hydraulic fracturing system 10 including a plurality of hydraulic fracturing unit assemblies 12 (depicted individually as 12a-12f), and including a block diagram of an example hydraulic fracturing unit assembly 12 according to embodiments of the disclosure. Although FIG. 1 shows six hydraulic fracturing unit assemblies 12, other numbers and/or other arrangements of hydraulic fracturing unit assemblies are contemplated, as will be understood by those skilled in the art. In some embodiments, one or more of the hydraulic fracturing unit assemblies 12a-12f may include a hydraulic fracturing pump 14 driven by an internal combustion engine 16, such as a gas turbine engine (GTE). For example, in some embodiments, each of the hydraulic fracturing unit assemblies 12a-12f may include a dual-shaft directly-driven turbine (DDT) hydraulic fracturing pump 14, in which the hydraulic fracturing pump 14 is connected to one or more GTEs 16 that supply power to the respective hydraulic fracturing pump 14 for supplying fracturing fluid at high pressure and high flow rates to a formation for fracturing. For example, the GTE 16 may be connected to a respective hydraulic fracturing pump 14 via a transmission 18, for example, as explained in more detail herein.


In some embodiments, one or more of the GTEs 16 may be a dual-fuel or bi-fuel GTE, for example, capable of being operated using of two or more different types of fuel, such as natural gas and diesel fuel, although other types of fuel are contemplated. For example, a dual-fuel or bi-fuel GTE may be capable of being operated using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels. Gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated as will be understood by those skilled in the art. The one or more GTEs 16 may be operated to provide horsepower to drive the transmission 18 connected to one or more of the hydraulic fracturing pumps 14 to safely and successfully fracture a formation during a well stimulation project or fracturing operation.


In some embodiments, the fracturing fluid may include, for example, water, proppants, and/or other additives, such as thickening agents and/or gels. For example, proppants may include grains of sand, ceramic beads or spheres, shells, and/or other particulates, and may be added to the fracturing fluid, along with gelling agents to create a slurry as will be understood by those skilled in the art. The slurry may be forced via the hydraulic fracturing pumps 14 into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure may build rapidly to the point where the formation may fail and begin to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions farther away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the well is fractured, large quantities of the injected fracturing fluid may be allowed to flow out of the well, and the water and any proppants not remaining in the expanded fractures may be separated from hydrocarbons produced by the well to protect downstream equipment from damage and corrosion. In some instances, the production stream may be processed to neutralize corrosive agents in the production stream resulting from the fracturing process.


In the example shown in FIG. 1, the hydraulic fracturing system 10 may include one or more water tanks 20 for supplying water for fracturing fluid, one or more chemical additive units 22 for supplying gels or agents for adding to the fracturing fluid, and one or more proppant tanks 24 (e.g., sand tanks) for supplying proppants for the fracturing fluid. The example fracturing system 10 shown also includes a hydration unit 26 for mixing water from the water tanks 20 and gels and/or agents from the chemical additive units 22 to form a mixture, for example, gelled water. The example shown also includes a blender 28, which receives the mixture from the hydration unit 26 and proppants via conveyers 30 from the proppant tanks 24. The blender 28 may mix the mixture and the proppants into a slurry to serve as fracturing fluid for the hydraulic fracturing system 10. FIG. 1 schematically depicts the chemical additive tanks 22, the hydration unit 26, and the blender 28 as single unit, but it is contemplated that they may be separate from one another as will be understood by those skilled in the art. Once combined, the slurry may be discharged through low-pressure hoses 32, which convey the slurry into two or more low-pressure lines in a fracturing manifold 36. In some embodiments, the low-pressure lines in the fracturing manifold 36 feed the slurry to the hydraulic fracturing pumps 14 through low-pressure suction hoses as will be understood by those skilled in the art.


The hydraulic fracturing pumps 14, driven by the respective internal GTEs 16, discharge the slurry (e.g., the fracturing fluid including the water, agents, gels, and/or proppants) at high flow rates and/or high pressures through individual high-pressure discharge lines 40 into two or more high-pressure flow lines, sometimes referred to as “missiles,” on the fracturing manifold 36. The flow from the high-pressure flow lines is combined at the fracturing manifold 36, and one or more of the high-pressure flow lines provide fluid flow to a manifold assembly 44, sometimes referred to as a “goat head.” The manifold assembly 44 delivers the slurry into a wellhead manifold 46. The wellhead manifold 46 may be configured to selectively divert the slurry to, for example, one or more wellheads 48 via operation of one or more valves. Once the fracturing process is ceased or completed, flow returning from the fractured formation discharges into a flowback manifold, and the returned flow may be collected in one or more flowback tanks as will be understood by those skilled in the art.


As schematically depicted in FIG. 1, one or more of the components of the fracturing system 10 may be configured to be portable, so that the hydraulic fracturing system 10 may be transported to a well site, quickly assembled, operated for a relatively short period of time, at least partially disassembled, and transported to another location of another well site for use. For example, the components may be connected to and/or supported on a chassis 50, for example, a trailer and/or a support incorporated into a truck, so that they may be easily transported between well sites. In some embodiments, the GTE 16, the transmission 18, and/or the hydraulic fracturing pump 14 may be connected to the chassis 50. In some embodiments, the transmission 18 may be connected to the chassis 50, and the GTE 16 may be connected to the transmission 18, without also connecting the GTE 16 directly to the chassis 50, which may result in fewer support structures being needed for supporting the GTE 16, transmission 18, and/or hydraulic fracturing pump 14 on the chassis 50.


As shown in FIG. 1, some embodiments of the hydraulic fracturing system 10 may include one or more fuel supplies 52 for supplying the GTEs 16 and any other fuel-powered components of the hydraulic fracturing system 10, such as auxiliary equipment, with fuel. The fuel supplies 52 may include gaseous fuels, such as compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, such as fuel tanks coupled to trucks, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. The fuel may be supplied to the hydraulic fracturing unit assemblies 12 by one of more fuel lines 54 supplying the fuel to a fuel manifold 56 and unit fuel lines 58 between the fuel manifold 56 and the hydraulic fracturing unit assemblies 12. Other types and associated fuel supply sources and arrangements are contemplated as will be understood by those skilled in the art.


As shown in FIG. 1, some embodiments also may include one or more data centers 60 configured to facilitate receipt and transmission of data communications related to operation of one or more of the components of the hydraulic fracturing system 10. Such data communications may be received and/or transmitted via hard-wired communications cables and/or wireless communications, for example, according to known communications protocols. For example, the data centers 60 may contain at least some components of a hydraulic fracturing control assembly, such as a supervisory controller configured to receive signals from components of the hydraulic fracturing system 10 and/or communicate control signals to components of the hydraulic fracturing system 10, for example, to at least partially control operation of one or more components of the hydraulic fracturing system 10, such as, for example, the GTEs 16, the transmissions 18, and/or the hydraulic fracturing pumps 14 of the hydraulic fracturing unit assemblies 12, the chemical additive units 22, the hydration units 26, the blender 28, the conveyers 30, the fracturing manifold 36, the manifold assembly 44, the wellhead manifold 46, and/or any associated valves, pumps, and/or other components of the hydraulic fracturing system 10.



FIG. 1 also shows a block diagram of an example hydraulic fracturing unit assembly 12 according to embodiments of the disclosure. As shown in FIG. 1, some embodiments of the hydraulic fracturing unit assembly 12 may include a chassis 50, for example, a trailer and/or a support incorporated into a truck, so that the hydraulic fracturing unit assembly 12 may be more easily transported between well sites. The GTE 16 may be connected to the chassis 50, and the GTE 16 may include a compressor 62 configured and positioned to compress air, and a combustor section 64 positioned downstream relative to the compressor 62 and configured to receive compressed air from the compressor 62 and fuel for combustion. The combustor section 64 may be positioned and configured to combust at least a portion of the compressed air and fuel to provide heated combustion gas as will be understood by those skilled in the art. The GTE 16 also may include a compressor turbine shaft 66 connected to the compressor 62, such that the compressor turbine shaft 66 rotates with the compressor 62, and the compressor turbine shaft 66 may be connected to a compressor turbine 68, such that the compressor turbine shaft 66 and the compressor turbine 68 rotate, for example, as a unit, at the same rotational speed.


As shown in FIG. 1, in some embodiments, the GTE 16 may further may include a power turbine 70 positioned downstream relative to the compressor turbine 68, such that the heated combustion gas causes the power turbine 70 to rotate at a rotational speed, for example, different than the rotational speed of the compressor turbine 68, as explained in more detail herein. The GTE 16 still further may include a power turbine output shaft 72 connected to the power turbine 70, such that the power turbine output shaft 72 rotates with the power turbine 70, for example, as a unit, at the same rotational speed. As explained in more detail herein, the compressor turbine shaft 66 and the power turbine output shaft 72 may be rotatable at different rotational speeds.


In some embodiments, the compressor 62, combustor section 64, and/or the compressor turbine 68 may form a gas generator. The compressor 62 may be configured to rotate and compress air drawn into the GTE 16, such that compressed air is supplied to the combustor section 64 for combustion. The combustor section 64 may be configured to receive the compressed air and fuel and combust an air fuel mixture to generate heated combustion gas. In some embodiments, the combustor section 64 may receive fuel from a fuel feed system having at least one independently controlled fuel line to regulate the combustion process. In some embodiments, control of each respective fuel line may be provided by at least one actuator-controlled fuel valve positioned and configured to regulate fuel flow to a combustor stage of the combustor section 64.


The power turbine 70, located downstream of the combustor section 64, may receive the heated combustion gas, causing the power turbine 70 to rotate, except as otherwise described herein, thereby driving the power turbine output shaft 72. In some embodiments, for example, as shown, the compressor 62, the compressor turbine shaft 66, the compressor turbine 68, the power turbine 70, and the power turbine output shaft 72 are concentrically arranged, and in some embodiments, the compressor turbine shaft 66 and the power turbine output shaft 72 may rotate independently of one another. In some embodiments, changing the amount of compressed air and/or fuel supplied to the combustor section 64 for combustion may be used to at least partially control the output of the GTE 16 and/or to change the rotational speed of the power turbine 70 and power turbine output shaft 72.


As shown in FIG. 1, in some embodiments, the hydraulic fracturing unit assembly 12 also may include a transmission 18 including a transmission input shaft 74 connected to the power turbine output shaft 72, such that the transmission input shaft 74 rotates at the same rotational speed as the power turbine output shaft 72. The transmission 18 may also include a transmission output shaft 76 positioned to be driven by the transmission input shaft 74 at a different rotational speed than the transmission input shaft 74. In some embodiments, the transmission 18 may be a reduction transmission, which results in the transmission output shaft 76 having a relatively slower rotational speed than the transmission input shaft 74, as explained herein. The transmission 18 may include a continuously variable transmission, an automatic transmission including one or more planetary gear trains, a transmission shiftable between different ratios of input-to-output, etc., or any other suitable of types of transmissions as will be understood by those skilled in the art.


As shown in FIG. 1, in some embodiments, the hydraulic fracturing unit assembly 12 further may include the hydraulic fracturing pump 14 positioned and configured to pump fracturing fluid into the wellhead 48. In some embodiments, the hydraulic fracturing pump 14 may be, for example, a reciprocating, in-line fluid pump as will be understood by those skilled in the art. In some embodiments, the hydraulic fracturing pump 14 may include a pump drive shaft 78 connected to the transmission output shaft 76, such that the transmission output shaft 76 drives the pump drive shaft 78 at a desired rotational speed. For example, as shown, the transmission output shaft 76 may include an output shaft connection flange 80, and the pump drive shaft 78 may include a drive shaft connection flange 82, and the output shaft connection flange 80 and the drive shaft connection flange 82 may be coupled to one another, for example, directly connected to one another. In some embodiments, the transmission output shaft 76 and the pump drive shaft 78 may be connected to one another via any known coupling types as will be understood by those skilled in the art (e.g., such as a universal joint and/or a torsional coupling).


As shown in FIG. 2, in some embodiments, is a schematic side view of an example hydraulic fracturing unit assembly 12 according to embodiments of the disclosure. In the embodiment shown, the chassis 50 may be a trailer 86 including a bed 88 for supporting components of the hydraulic fracturing unit assembly 12, one or more pairs of wheels 90 facilitating movement of the trailer 86, a pair of retractable supports 92 to support the hydraulic fracturing unit assembly 12 during use, and a tongue 94 including a coupler 96 for connecting the trailer 86 to a truck for transport of the hydraulic fracturing unit assembly 12 between well sites to be incorporated into a hydraulic fracturing system 10 of a well site fracturing operation, as will be understood by those skilled in the art.


As shown in FIG. 2, one or more of the hydraulic fracturing unit assemblies 12 may include an enclosure 100 connected to and supported by the chassis 50 according to embodiments of the disclosure. In some embodiments, as shown in FIG. 1, the GTE 16 may be connected to the transmission 18 via the power turbine output shaft 72 and the transmission input shaft 74, both of which may be substantially contained within the enclosure 100. The GTE 16 may include an air intake duct 102 and a turbine exhaust duct 104 passing through walls of the enclosure 100 and connected to the GTE 16. The GTE 16 may be connected to the hydraulic fracturing pump 14 via the transmission 18, with the transmission output shaft 72 connected to the pump drive shaft 78, for example, as explained herein.



FIG. 3 is a block diagram of an example hydraulic fracturing unit assembly 12 according to embodiments of the disclosure. As shown in FIG. 3, some embodiments of the hydraulic fracturing unit assembly 12 may include a powertrain 106 positioned and configured to supply power to the hydraulic fracturing pump 14. The powertrain 106 may include the GTE 16, the transmission 18, and/or a fracturing unit controller 108 in communication with one or more of the GTE 16, the transmission 18, or the hydraulic fracturing pump 14, and configured to control operation of one or more of the GTE 16, the transmission 18, or hydraulic fracturing pump 14. The communication may be provided by any known hard-wired and/or wireless communications protocols as will be understood by those skilled in the art.


In some embodiments, for example, as shown in FIG. 3, the fracturing unit controller 108 may be configured to receive one or more target signals 110 indicative of one or more of a target pressure associated with fracturing fluid pumped into a wellhead 48 or a target flow rate associated with the fracturing fluid pumped into the wellhead 48. For example, the hydraulic fracturing system 10 (e.g., the hydraulic fracturing unit assemblies 12, the data center 60, and/or a remotely located control center) may include an input device including a user interface (e.g., a display device, a keyboard, touch-sensitive screen, and/or a voice-command component) configured to provide operational parameters for operating the hydraulic fracturing system 10 and/or the hydraulic fracturing unit assemblies 12. The fracturing unit controller 108 may be configured to receive one or more fluid flow signals indicative of one or more of an actual pressure associated with the fracturing fluid pumped into the wellhead 48 or an actual flow rate associated with the fracturing fluid pumped into the wellhead 48. For example, the hydraulic fracturing system 10 may include one or more fluid sensor(s) 112 configured to generate signals indicative of the pressure of the fracturing fluid pumped into the wellhead 48 and/or the flow rate of the fracturing fluid pumped into the wellhead 48 by one or more of the hydraulic fracturing unit assemblies 12. In some embodiments, one or more of the fluid sensor(s) 112 may be located in, for example, the high-pressure discharge lines 40, the high-pressure flow lines 42, the manifold assembly 44, the wellhead manifold 46, and/or the wellhead 48. The fracturing unit controller 108 may be configured to control, based at least in part on one or more of the target signals 110 and/or the one or more fluid flow signals, (1) one or more of a rotational speed of the compressor 62, a rotational speed of the compressor turbine shaft 66, and/or a rotational speed of the compressor turbine 68, (2) a rotational speed of the power turbine 70, a rotational speed of the power turbine output shaft 72, and/or a rotational speed of the transmission input shaft 74, or (3) a rotational speed of transmission output shaft 76 and/or a rotational speed of the pump drive shaft 78. In some embodiments, the respective rotational speeds of one or more of the following may be controlled independently from one another: (1) the compressor 62, the compressor turbine shaft 66, and/or the compressor turbine 68, (2) the power turbine 70, the power turbine output shaft 72, and/or the transmission input shaft 74, or (3) the transmission output shaft 76 and/or the pump drive shaft 78.


For example, a user or operator of the hydraulic fracturing system 10, using a user interface, may input a desired or target fracturing pressure and/or a desired or target fracturing flow rate for one or more hydraulic fracturing unit assemblies 12 for one or more stages of the fracturing operation, for example, to achieve the desired results of the fracturing operation. The fracturing unit controller 108 may be configured to receive one or more target signals 110 indicative of the target pressure and/or target flow rate and control operation of the GTE 16, the transmission 18, and/or the hydraulic fracturing pump 14, based at least in part on the one or more target signals 110. For example, the fracturing unit controller 108 may be configured to control the output of the GTE 16 (e.g., the rotational speed and/or torque output of the power turbine output shaft 72), the ratio of the rotational speed of the transmission input shaft 74 to the rotational speed of the transmission output shaft 76, and/or operation of the hydraulic fracturing pump 14 to substantially achieve and/or substantially maintain the target pressure and/or target flow rate of the fracturing fluid, for example, within a range of the target pressure and/or target flow rate. For example, the range may be within less than 10% of the target pressure and/or target flow rate, within less than 7.5% of the target pressure and/or target flow rate, or within less than 5% of the target pressure and/or target flow rate.


In some embodiments, the hydraulic fracturing unit assembly 12 may be incorporated into a hydraulic fracturing system 10 to perform high pressure, high volume hydraulic fracturing operations. Such operations may involve fluid pressures greater than 13,000 pounds per square inch (psi) and/or flow rates in excess of 100 barrels per minute (bpm). In some embodiments, the GTE 16 may be a dual-shaft DDT gas turbine engine able to produce, for example, from about 4,100 hydraulic horsepower (hhp) to about 4,400 hhp, although GTEs 16 of different types and/or having different power output capabilities are contemplated. In some embodiments, the GTE 16 may be a dual-shaft gas turbine engine, which may facilitate an ability to operate the GTE 16 at a relatively elevated power output level known as Maximum Intermittent Power (MIP). In such embodiments, the GTE 16 may be operated at about 90% load, with a maximum continuous power output being 100% and the MIP power output being about 108% load, although other MIP levels are contemplated. In some embodiments, the ability of the GTE 16 to be selectively operated at MIP may facilitate mitigating a loss of power from one GTE 16 of the hydraulic fracturing system 10 by at least partially offsetting the power loss by operating one or more other GTEs 16 of the hydraulic fracturing system 10 at MIP, for example, while the GTE 16 experiencing the power loss may be serviced or replaced, and in some instances, without necessarily discontinuing the fracturing operation. In at least some such instances, when the GTE 16 experiencing the power loss has been repaired or replaced, it may be brought back online, and the power output of the remaining GTEs 16 may be reduced from the respective MIP levels to respective rated power output levels.


In some embodiments, the transmission 18 may be configured to convert the rotational speed of the power turbine output shaft 72 to a rotational speed of the pump drive shaft 78 that enhances efficiency and/or operation of the hydraulic fracturing unit assembly 12 and the hydraulic fracturing pump 14. For example, the GTE 16 may be configured to be operated such that the rotational speed of the power turbine output shaft 72 is up to about 16,500 revolutions per minute (rpm). The transmission 18, in some embodiments, may be configured to provide a reduction ratio ranging from about 15:1 to about 5:1 (e.g., about 11:1), such that the resulting rotational speed of the pump drive shaft is reduced to about 1,500 rpm, which may be a more efficient rotational speed for operation of the hydraulic fracturing pump 14 and which may facilitate operation of the hydraulic fracturing pump 14 at a desired or target output, for example, depending on the fracturing operation conditions. Other ratios (and/or variable ratios) are contemplated. For example, the transmission 18 may be a continuously variable transmission, a transmission including one or more planetary gear trains, and/or a transmission shiftable between discrete input-to-output ratios. In some embodiments, if the GTE 16 is operated at rotational speeds greater than, or otherwise different from, 16,500 rpm, the transmission 18 may be configured to provide a different input-to-output ratio, for example, to more efficiently or effectively utilize the power generated by the GTE 16 to efficiently operate the hydraulic fracturing pump 14.


In some embodiments, the hydraulic fracturing pump 14 may be rated for operation to be greater than or equal to the maximum power output of the GTE 16, for example, so that the GTE 16 may be efficiently utilized with the maximum hydraulic horsepower output capacity of the hydraulic fracturing pump 14. For example, if the hydraulic fracturing pump 14 is rated at 5,000 hp, in some embodiments, the GTE 16 may be rated, at iso conditions, at 5,000 hp. In some embodiments, the hydraulic fracturing pump 14 may be rated for operation to be greater than the maximum power output of the GTE 16, for example, so that the GTE 16 may be selectively operated at relatively higher power output levels, such as at MIP.


In some embodiments, the GTE 16 may have a rated shaft horsepower (shp) of 5,100 at standard conditions, and the transmission 18 may be a reduction helical gearbox that has a constant running power rating of 5,500 shp and an intermittent power output of 5,850 shp, although other suitable transmission types having the same or other ratings are contemplated. For example, example, the hydraulic fracturing pump 14 may be a high-pressure, high-power, reciprocating positive-displacement pump rated at 5,000 hp, although the hydraulic fracturing pump 14 may be rated for a relatively elevated power output above the rating of the GTE 16 (e.g., 7,000 hp). In some embodiments, during operation, the GTE 16 may be subjected to dynamic and/or rapid load changes, such as for example, step-load changes of the hydraulic fracturing pump 14 as will be understood by those skilled in the art.


In some embodiments, as shown in FIG. 3, the hydraulic fracturing unit assembly 12 may include one or more variable geometry assemblies 114 configured to at least partially control the rotational speed of the power turbine output shaft 72. For example, the one or more variable geometry assemblies 114 may include one or more air bleed devices, for example, in the form of one or more bleed valves positioned and configured to divert air from the compressor 62, for example, such that a lower volume of compressed air from the compressor 62 reaches the combustor section 64 for combustion. In some embodiments, the one or more air bleed devices may act or serve as high-pressure compressor inter-stage bleeds, high pressure compressor exit bleeds, and/or power turbine bleeds. Air bleed devices having other configurations and or positions are contemplated as will be understood by those skilled in the art.


In some embodiments, the one or more variable geometry assemblies 114 may include one or more variable position/orientation vanes, for example, in the form of variable inlet guide vanes, which may be provided for compressor turbine 68 and/or the power turbine 70. In some embodiments, variable position/orientation vanes may be positioned and configured to control the amount of air flowing through the compressor turbine 68 and/or the power turbine 70, which may be used to at least partially control the output of the GTE 16 and/or to change the rotational speed of the power turbine 70 and power turbine output shaft 72. Other forms and/or positions of variable geometry assemblies 114 are contemplated.


In some embodiments, as shown in FIG. 3, the fracturing unit controller 108 may be configured to generate, based at least in part on one or more of the one or more target signals 110 or the one or more fluid flow signals received from the one or more fluid sensor(s) 112, one or more geometry signals configured to control operation of the one or more variable geometry assemblies 114 to at least partially control the rotational speed and/or torque output of the power turbine 70 and power turbine output shaft 72. For example, the fracturing unit controller 108 may determine that the fracturing fluid pressure and/or the fracturing fluid flow rate provide to the wellhead 48 is outside a prescribed range of the target pressure and/or target flow rate, and at least partially control the output of the GTE 16 by adjusting one or more of the variable geometry assemblies 114, so that the fracturing fluid pressure and/or the fracturing fluid flow rate provided to the wellhead 48 is within a prescribed range of the target pressure and/or target flow rate.


In some embodiments, as shown in FIG. 3, the hydraulic fracturing unit assembly 12 may include one or more transmission actuators 116 positioned and configured to control a ratio of the rotational speed of the transmission input shaft 74 to the rotational speed of the transmission output shaft 76. For example, in some embodiments, the transmission 18 may be a type of transmission capable of changing the effective ratio of the transmission input shaft speed to the transmission output shaft speed, which may be used to at least partially control the output of the hydraulic fracturing pump 14, for example, by changing the ratio. In some embodiments, the fracturing unit controller 108 may be configured to generate, based at least in part on the one or more target signals 110 and/or the one or more fluid flow signals received from the fluid sensor(s) 112, one or more ratio signals to one or more transmission actuators 116 configured to control the ratio of the rotational speed of the transmission input shaft 74 to the rotational speed of the transmission output shaft 76 of the transmission 18. For example, the fracturing unit controller 108 may determine that the fracturing fluid pressure and/or the fracturing fluid flow rate provide to the wellhead 48 is outside a prescribed range of the target pressure and/or target flow rate, and at least partially control the output of the hydraulic fracturing pump 14 by changing the ratio of the transmission 18 (e.g., by changing gears and/or controlling one or more planetary gear trains), so that the fracturing fluid pressure and/or the fracturing fluid flow rate provided to the wellhead 48 is within a prescribed range of the target pressure and/or target flow rate.


As shown in FIG. 3, in some embodiments, the hydraulic fracturing unit assembly 12 may include a brake assembly 118 connected to the hydraulic fracturing unit assembly 12 and configured to at least partially control the rotational speed of the power turbine 70 and the power turbine output shaft 72, for example, independent from the rotational speed of the compressor turbine shaft 66 and the compressor turbine 68. In some embodiments, the brake assembly 118 may include a disc brake connected to the power turbine output shaft 72 and configured to at least partially control the speed of rotation of the power turbine output shaft 72. In some embodiments, the fracturing unit controller 108 may be configured to generate one or more brake control signals configured to at least partially control operation of the brake assembly 118. As explained herein, activation of the brake assembly 118 may be used during an initial power-up of the GTE 16 to prevent the power turbine 70 and power turbine output shaft 72 from rotating until operation of the hydraulic fracturing pump 14 is initiated. In some embodiments, the braking assembly 18 may be activated to reduce the output of the GTE 16 and/or reduce the output of the hydraulic fracturing pump 14.


As shown in FIG. 3, in some embodiments, the hydraulic fracturing unit assembly 12 may include one or more speed sensors 120 associated with (e.g., connected to) the compressor turbine shaft 66, the power turbine output shaft 72, and/or the pump drive shaft 78. The speed sensor(s) 120 may be positioned and configured to generate one or more rotational signals indicative of the rotational speed of the compressor turbine shaft 66, the power turbine output shaft 72, and/or the pump drive shaft 78. In some embodiments, the fracturing unit controller 108 may be configured to receive the one or more rotational signals and at least partially control, based at least in part on the one or more rotational signals, the rotational speed of the pump drive shaft 78. For example, the rotational speed of the pump drive shaft 78 may be indicative of the output of the hydraulic fracturing pump 14, such as the fracturing fluid pressure and/or the fracturing fluid flow rate. The rotational speed of the compressor turbine shaft 66 and/or the rotational speed of the power turbine output shaft 72 may be indicative of the output of the GTE 16. In some embodiments, the fracturing unit controller 108 may be configured to determine whether the fracturing fluid pressure and/or the fracturing fluid flow are within a desired range of the target pressure and/or target flow rate, and control operation of the GTE 16 and/or the transmission 18 to achieve a fracturing fluid pressure and/or fracturing fluid flow rate within the desired range.


As shown in FIG. 3, in some embodiments, the hydraulic fracturing unit assembly 12 may include one or more torque sensors 122 associated with (e.g., connected to) the compressor turbine shaft 66, the power turbine output shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or the pump drive shaft 78. The torque sensor(s) 122 may be positioned and configured to generate one or more torque signals indicative of torque at a respective location of the torque sensor(s) 122. In some embodiments, the torque sensor(s) 122 may include strain gauges and related instrumentation configured to generate signals indicative of torque experienced by one or more of the compressor turbine shaft 66, the power turbine output shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or the pump drive shaft 78. In some embodiments, the fracturing unit controller 108 may be configured to control, based at least in part on the one or more torque signals, one or more of the rotational speed of the compressor turbine shaft 66, the rotational speed of the power turbine output shaft 72, the rotational speed of the transmission input shaft 74, and/or the rotational speed of the transmission output shaft 76 and/or the rotational speed of the pump drive shaft 78.


For example, the torque sensor(s) 122 may be positioned on the pump drive shaft 78 between the hydraulic fracturing pump 14 transmission 18, for example, so that torque signals may be generated during operation of the hydraulic fracturing unit assembly 12. The fracturing unit controller 12 may be configured to monitor the torque signals and detect whether the torque associated with the compressor turbine shaft 66, the power turbine output shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or the pump drive shaft 78, is greater than a threshold torque above which may result in excessive wear rates and/or damage to components of the hydraulic fracturing unit assembly 12. For example, upon detection of a torque level beyond the threshold torque level, the fracturing unit controller 108 may be configured to reduce the output of the GTE 16, alter the ratio of the transmission 18, and/or reduce the output of the hydraulic fracturing pump 14, to thereby protect one or more of the components of the hydraulic fracturing unit assembly 12.


In some embodiments, as shown in FIG. 3, the hydraulic fracturing unit assembly 12 may include a vibration damping assembly 124 associated with (e.g., connected to) the transmission output shaft 76 and/or the pump drive shaft 78 and configured to damp vibrations associated with operation of the hydraulic fracturing pump 14. In some embodiments, the vibration damping assembly 124 may be configured to damp torsional vibration and may include a torsional vibration damper and/or a flywheel.


In some embodiments, the hydraulic fracturing pump 14 may be a reciprocating pump. During operation, the GTE 16 may be operated to cause the transmission output shaft 76 to drive the pump drive shaft 78 of the hydraulic fracturing pump 14, such that the hydraulic fracturing pump 14 pumps slugs of fracturing fluid into the high-pressure discharge lines 40, for example, such that the hydraulic fracturing pump 14 provides a relatively constant flow of fracturing fluid into the wellhead 48. As the hydraulic fracturing pump 14 pumps slugs of fracturing fluid, pulses of the slugs of fluid being pumped by cylinders of the reciprocating pump create a pulsating pressure increase superimposed onto the nominal operating fluid pressure supplied by the hydraulic fracturing pump 14. The pulsating pressure increase may be transmitted through the powertrain 106 from the pump drive shaft 78, to the transmission output shaft 76 and transmission 18, and/or to the power turbine output shaft 72. For example, the pulsating pressure increase may result in torque variations in the crank shaft of the hydraulic fracturing pump 14 that may be transferred as torque output variations at the pump drive shaft 78. These torque output variations may generate minor and/or significant torsional shocks that may reduce the service life or damage components of the hydraulic fracturing unit assembly 12.


In some embodiments, the vibration damping assembly 124 may be positioned and configured to reduce transmission of torsional shocks to the transmission output shaft 76, any gear trains or similar structures in the transmission 18, the transmission input shaft 74, the power turbine output shaft 72, and/or the GTE 16. The vibration damping assembly 124 may include one or more flywheels coupled to the pump drive shaft 78, the transmission output shaft 76, the transmission 18, the transmission input shaft 74, the power turbine output shaft 72, and/or the GTE 16. The one or more flywheels may dampen torsional vibrations transmitted to components of the powertrain 106 caused by the pulsating pressure increases generated by operation of the hydraulic fracturing pump 14. Such pulsating pressure increases may be relatively low frequency and relatively high amplitude. In some embodiments, a torsional vibration damper may be connected to the pump drive shaft 78 and/or may be connected to a downstream side of a flywheel. In some embodiments, the torsional vibration damper may be connected directly to a flywheel or directly to the pump drive shaft 78. It is contemplated that the torsional vibration damper(s) and/or the flywheel(s) may be connected to the hydraulic fracturing unit assembly 12 at multiple and/or different locations.


In some embodiments, the torsional vibration damper(s) 140 (see FIG. 5) may be positioned and configured to prevent torsional resonance within the powertrain 106 that may lead to a reduced service life or damage (e.g., due to fatigue) of components of the GTE 16, the power turbine output shaft 72, the transmission input shaft 74, the transmission 18, the transmission output shaft 76, the pump drive shaft 78, and/or the hydraulic fracturing pump 14. Torsional vibration damper(s) 140 may be configured to dampen relatively high frequency and relatively low amplitude torsional vibrations transmitted to the hydraulic fracturing unit assembly 12 caused by forced excitations from operation of the components (e.g., the synchronous machinery). In some embodiments, the torsional vibration damper(s) 140 may include a viscous, a spring-viscous, and/or a spring torsional vibration damper. Examples of suitable torsional vibration dampers may include, but are not limited to, a Geislinger® damper, a Geislinger® Vdamp®, a Metaldyne® viscous damper, a Kendrion® torsional vibration damper, a Riverhawk® torsional vibration damper, and the like.


As shown in FIG. 3, some embodiments of the hydraulic fracturing unit assembly 12 may include a starter assembly 126 associated with (e.g., connected to) the compressor 62 (e.g., the compressor turbine shaft 66) of the GTE 16. The fracturing unit controller 108 may be positioned and configured to receive one or more starter signals 128 indicative of starting the GTE 16, and generate one or more idle signals to cause the starter assembly 126 to cause the compressor 62 and the compressor turbine 68 to rotate at a target idle speed while the power turbine 70 and power turbine output shaft 72 remain stationary (e.g., at zero rotational speed).


For example, the GTE 16 may be commanded to achieve an idle status. The starter signal(s) 128 may be generated in response to an operator or a master controller entering into a user interface an idle command for the GTE 16. In some embodiments, the fracturing unit controller 108 may generate the one or more idle signals commanding, for example, a hydraulic starter to selectively, mechanically couple to the compressor turbine shaft 66 of the GTE 16 to rotate the compressor turbine shaft 66 while sequencing a fuel feed system and igniters of the combustor section 64. In some embodiments, at idle, the compressor turbine shaft 72 may be controlled by the fracturing unit controller 108 to rotate at a rotational speed ranging from about 40% to about 80% of rated speed (e.g., about 60% of rated speed). In some embodiments, the fracturing unit controller 108 may be configured to determine whether the compressor turbine shaft 66 is rotating at a speed consistent with the GTE 16 being idle mode. In some embodiments, the fracturing unit controller 12 may be configured to continue to operate the GTE at idle, while maintaining the power turbine 70 and the power turbine output shaft 72 in a static, non-rotating condition.


As explained above, some embodiments of the hydraulic fracturing unit assembly 12 may include a brake assembly 118 associated with the hydraulic fracturing unit assembly 12 (e.g., with the GTE 16) and configured to at least partially control the rotational speed of the power turbine 70 and power turbine output shaft 72, for example, independent from the rotational speed of the compressor 62, the compressor turbine shaft 66, and the compressor turbine 68. In some embodiments, the fracturing unit controller 108 may be configured to generate one or more brake control signals causing the brake assembly 118 to prevent rotation of the power turbine 70 and power turbine output shaft 72 while the GTE 16 is idling with the compressor 62, the compressor turbine shaft 66, and the compressor turbine 68 rotating at idle speed.


In some embodiments, as shown in FIG. 3, the fracturing unit controller 108 may be configured to receive one or more drive signals 130 indicative of supplying power to the hydraulic fracturing pump 14, and generate, based at least in part on the one or more drive signals 130, one or more pump actuation signals to cause the power turbine 70 and power turbine output shaft 72 to rotate and drive the transmission input shaft 74 of the transmission 18, such that the hydraulic fracturing pump 14 pumps fracturing fluid into the wellhead 48. For example, the one or more one or more drive signals 130 may be configured to cause the brake assembly 118 connected to the hydraulic fracturing unit assembly 12 to release and permit the power turbine 70 and power turbine output shaft 72 to rotate and drive the transmission input shaft 74. In some embodiments, the fracturing unit controller 108 may be configured to control, based at least in part on the target signal(s) 110 and/or the fluid flow signal(s) received from the fluid sensor(s) 112, the rotational speed of the pump drive shaft 78. In some embodiments, the fracturing unit controller 108 may be configured to at least partially control operation of the hydraulic fracturing unit assembly 12, including operation of the GTE 16, the transmission 18, and/or the hydraulic fracturing pump 14, for example, by generating control signals controlling the output of the GTE 16, the ratio of the transmission 18, and/or the output of the hydraulic fracturing pump 14. For example, the fracturing unit controller 108 may be configured to control the combustor section 64, the variable geometry assembly 114, the brake assembly 118, and/or the transmission actuators 116, for example, as explained herein.



FIG. 4 is a schematic exploded perspective view of an example of components of an example GTE 16 according to embodiments of the disclosure according to embodiments of the disclosure. As shown in FIG. 4, some embodiments of the GTE 16 may have an at least semi-modular construction, which may facilitate relative ease of assembly, disassembly, service, repair, and/or inspection of components of the GTE 16. For example, in embodiments in which the GTE 16 is a dual-shaft GTE, for example, as shown in FIGS. 1, 2, and 3, an inlet housing 132 for receiving the intake duct 102 (see FIG. 2), a gas generation assembly 134, and combustor turbine 136, as well as other components, may be configured to be assembled and/or disassembled in modules. As shown in FIG. 4, some embodiments of the GTE 16 may also include an accessory transmission 138, which provides a power take-off facilitating operation of other components associated with the hydraulic fracturing unit assembly 12.



FIG. 5 is a schematic perspective cutaway view of an example vibration damping assembly 124 including a torsional vibration damper 140 according to embodiments of the disclosure. As shown in FIG. 5, some embodiments of the torsional vibration damper 140 may include a hub 142 configured to be coupled to the pump drive shaft 78 (see, e.g. FIG. 3), the transmission output shaft 76, the transmission input shaft 74, and/or the power turbine output shaft 72. As shown in FIG. 5, the hub 142 may extend radially outward to a housing 144 including an annular inner ring 146, an annular outer ring 148, and opposing side covers 150. A cavity may be at least partially defined by the annular inner ring 146, the annular outer ring 148, and the opposing side covers 150, and the cavity may receive therein an inertia ring 152 at least partially covered by a silicone cover 154. In some embodiments a slide bearing 156 may be included at a radially inner edge of the inertia ring 152.


As discussed above with respect to FIG. 3, the torsional vibration damper 140 may be configured to prevent torsional resonance within the powertrain 106 (see FIG. 3) that may lead to a reduced service life or damage (e.g., due to fatigue) of components of the GTE 16, the power turbine output shaft 72, the transmission input shaft 74, the transmission 18, the transmission output shaft 76, the pump drive shaft 78, and/or the hydraulic fracturing pump 14. In some embodiments, the torsional vibration damper(s) 140 may be configured to dampen relatively high frequency and relatively low amplitude torsional vibrations transmitted to the hydraulic fracturing unit assembly 12 caused by forced excitations from operation of the components (e.g., the synchronous machinery).


In some embodiments, during operation, the fracturing unit controller 108 may be configured to control the output of the hydraulic fracturing pump 14, for example, by controlling the output (the rotational speed and/or torque) of the GTE 16 and/or the input-to-output ratio of the transmission 18 (e.g., in transmissions having a changeable input-to-output ratio). For example, the fracturing unit controller 108 may be configured to control the rotational speed of the GTE 16 by controlling a fuel feed system associated with the combustor section 64 to increase or decrease the flow rate of fuel supplied to the combustor section 64. In some embodiments, the fracturing unit controller 108 may be configured to control the rotational speed of the GTE 16 (e.g., the power turbine 70 and the power turbine output shaft 72) by controlling the variable geometry assembly 114, for example, to change the degree to which blades or vanes and/or other structures of the variable geometry assembly 114 obstruct or allow the flow of air through the GTE 16 (e.g., through the compressor 62 and/or the compressor turbine 68).


In some embodiments, as the load on the hydraulic fracturing pump 14 increases, for example, due to an increase in resistance to the flow of fracturing fluid into the wellhead 48 and into the formation of the well, the rotational speed of the pump drive shaft 78, the transmission output shaft 76, the transmission input shaft 74, the power turbine output shaft 72, and the fluid pressure and/or the flow rate of the fracturing fluid may decrease. In some such instances, the fracturing unit controller 108 may be configured to increase the flow rate of fuel supplied by the fuel feed system to the combustor section 64 of the GTE 16, for example, based at least in part on a difference between the target pressure and/or the target flow rate and the actual pressure and/or the actual flow rate, respectively. The rotational speed of the pump drive shaft 78 may be selectively controlled so that the actual pressure and/or flow rate of the fracturing fluid substantially stays within a range of the target pressure and/or target flow rate of the fracturing fluid.


In contrast, if the load on the hydraulic fracturing pump 14 decreases, for example, due to a decrease in the resistance to the flow of fracturing fluid into the wellhead 48 and into the formation of the well, the rotational speed of the pump drive shaft 78, the transmission output shaft 76, the transmission input shaft 74, the power turbine output shaft 72, and the fluid pressure and/or the flow rate of the fracturing fluid may increase. In some such instances, the fracturing unit controller 108 may be configured to decrease the flow rate of fuel supplied by the fuel feed system to the combustor section 64 of the GTE 16, for example, based at least in part on a difference between the target pressure and/or the target flow rate and the actual pressure and/or the actual flow rate, respectively. The rotational speed of the pump drive shaft 78 may be selectively controlled, so that the actual pressure and/or flow rate of the fracturing fluid substantially stays within a range of the target pressure and/or target flow rate of the fracturing fluid.


In some embodiments, as the load on the hydraulic fracturing pump 14 changes and causes the output of the hydraulic fracturing pump 14 to begin to change, the fracturing unit controller 108 may be configured to adjust the variable geometry assembly 114 based at least in part on a difference between the target pressure and/or the target flow rate and the actual pressure and/or the actual flow rate, respectively. This may substantially offset or mitigate changing loads on the hydraulic fracturing pump 14.


In some embodiments, the fracturing unit controller 108 may be configured to determine (or may be provided with) a target rotational speed for the hydraulic fracturing pump 14 that generally corresponds to the target pressure and/or the target flow rate. In some such embodiments, the fracturing unit controller 108 may be configured control the output (e.g., the rotational speed and/or the torque) of the GTE 16 and/or the input-to-output ratio of the transmission 18, for example, as described herein, so that the rotational speed of the pump drive shaft 78 and the hydraulic fracturing pump 14 is substantially maintained within a range of the target rotational speed.


In some embodiments, as the load increases on the hydraulic fracturing pump 14 and causes the rotational speed of the pump drive shaft 78, the power turbine output shaft 72, power turbine 70, and the resulting output pressure and/or flow rate provided by the hydraulic fracturing pump 14 may begin to drop, the fracturing unit controller 108 may be configured to raise the flow rate of the fuel supplied by the fuel feed system to the combustor section 64 of the GTE 16. For example, the fracturing unit controller 108 may raise the fuel flow rate based at least in part on a difference between a target rotational speed of the compressor 62 and/or the compressor turbine shaft 66, which is suitable for substantially maintaining a target rotational speed for the pump drive shaft 78 of the hydraulic fracturing pump 14 for the applied load, and an actual rotational speed of the pump drive shaft 78, which may be determined based at least in part on speed signals generated by one of more of the speed sensor(s) 120. For example, the actual rotational speed of the pump drive shaft 78 may be substantially maintained within a range of the target speed of the pump drive shaft 78. In contrast, if the load on the hydraulic fracturing pump 14 decreases, the fracturing unit controller 108 may be configured to reduce the flow rate of the fuel suppled to the combustor section 64 based at least in part on the difference between the target rotational speed of the pump drive shaft 78 and the actual rotational speed of the pump drive shaft 78.


In some embodiments, the fracturing unit controller 108 may be configured to control the rotational speed of the pump drive shaft 78 by monitoring the torque applied to the power turbine shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or pump drive shaft 78, for example, based on torque signals received from the one or more torque sensors 122. For example, the fracturing unit controller 108 may be configured to determine (and/or receive) a target torque, for example, which may be based at least in part on a value of the target pressure and/or the target flow rate of the hydraulic fracturing pump 14, and/or which may be input by an operator via an input device such as a user interface. The fracturing unit controller 108 may be configured to adjust the flow rate of the fuel supplied by the fuel feed system to the combustor section 64 based, for example, on actual torque applied to the power turbine shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or pump drive shaft 78, for example, based on torque signals received from the one or more torque sensors 122. If the fracturing unit controller 108 determines that a difference exists between the actual torque value and the target torque, the fracturing unit controller 108 may be configured to selectively cause a change the rotational speed of the power turbine shaft 72, the transmission input shaft 74, the transmission output shaft 76, and/or the pump drive shaft 78, such that the actual torque is substantially maintained within a range of the target torque, for example, as described herein, so that the that target pressure and/or target flow rate is substantially maintained.



FIGS. 6A, 6B, and 6C are block diagrams of an example method 600 for pumping fracturing fluid into a wellhead according to embodiments of the disclosure, illustrated as a collection of blocks in a logical flow graph, which represent a sequence of operations. In the context of software, the blocks represent computer-executable instructions stored on one or more computer-readable storage media that, when executed by one or more processors, perform the recited operations. Generally, computer-executable instructions include routines, programs, objects, components, data structures, and the like that perform particular functions or implement particular data types. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks can be combined in any order and/or in parallel to implement the methods.



FIGS. 6A, 6B, and 6C depict a flow diagram of an embodiment of a method 600 for pumping fracturing fluid in to a wellhead, according to embodiments of the disclosure. For example, the example method 600 may be configured to initiate a process for pumping fracturing fluid into a wellhead, which may control operation of one or more hydraulic fracturing unit assemblies 12, for example, as previously described herein.


The example method 600, at 602, may include receiving one or more starter signals indicative of starting a gas turbine engine associated with a hydraulic fracturing pump. For example, one or more starter signals indicative of an operator or user's desire to start the gas turbine engine may be communicated to a fracturing unit controller, for example, via an operator or user using an input device, such as a user interface, for example, as described herein


At 604, the example method may include causing, based at least in part on the one or more starter signals, a compressor turbine of the gas turbine engine to rotate at a target idle speed while the power turbine remains at zero rotational speed (e.g., at a static, non-rotational condition). For example, the fracturing unit controller may be configured to cause a starter assembly, which may include a hydraulic starter, to cause rotation of the compressor turbine, for example, by mechanically coupling to the compressor turbine shaft and rotating the compressor turbine shaft while sequencing a fuel feed system and igniters of the combustor section, for example, as described herein.


At 606, the example process 600 may include determining whether the compressor turbine is rotating at a rotational speed within a range of a target idle speed, which may range from about 40% to about 80% (e.g., about 60%) of the rated speed of the compressor turbine shaft, for example, when the gas turbine engine is operating to drive the hydraulic fracturing pump to pump fracturing fluid into the wellhead at a target pressure and/or target flow rate.


If at 606, it is determined that the compressor turbine shaft is not rotating at a rotational speed within the range of the target idle speed, at 608, the example method 600 may include causing the fuel feed system of the gas turbine engine to change the flow rate of fuel supplied to the combustor section to change the rotational speed of the compressor turbine shaft. In some examples, the fracturing unit controller may communicate one or more fuel signals to the fuel feed system indicative of the flow rate of fuel to be supplied to the combustor section and to cause the rotational speed of the compressor turbine shaft to change toward the target idle speed.


Thereafter, the example method 600, may return to 606 to determine whether the compressor turbine is rotating at rotational speed within a range of a target idle speed and repeat the process until it has been determined that the compressor turbine is rotating at rotational speed within a range of a target idle speed, for example, by the fracturing unit controller.


If at 606, it is determined that the compressor turbine shaft is rotating at a rotational speed within the range of the target idle speed, at 610, the example method 600 may include controlling a brake assembly connected to the hydraulic fracturing unit assembly to prevent rotation of the power turbine. For example, the gas turbine engine may include a brake assembly positioned and configured to at least partially control the rotational speed of the power turbine output shaft, for example, independent from the rotational speed of the compressor turbine shaft, which may be rotating according to an idle speed setting, for example, as described herein. The fracturing unit controller may be configured to generate one or more brake control signals configured to at least partially control operation of the brake assembly, and the one or more brake control signals may cause the brake assembly to prevent the power turbine shaft from rotating while the compressor turbine shaft is rotating at idle speed.


The example method 600, at 612, may include determining whether an operator or user of the hydraulic fracturing system has initiated a hydraulic fracturing stage. For example, the fracturing unit controller may determine whether it has received one or more drive signals indicative of commencement of the pumping of fracturing fluid into the wellhead using the hydraulic fracturing unit assembly.


If, at 612, it is determined that an operator or user of the hydraulic fracturing system has not initiated a hydraulic fracturing stage, at 614, the example method 600 may include waiting a period of time and returning to 612 to determine whether an operator or user of the hydraulic fracturing system has initiated a hydraulic fracturing stage.


If, at 612, it is determined that an operator or user of the hydraulic fracturing system has initiated a hydraulic fracturing stage, at 616, the example method 600 may include causing, based at least in part on the one or more drive signals, the power turbine to rotate and drive the transmission input shaft. For example, the fracturing unit controller, upon receipt of the one or more drive signals, may communicate one or more brake release signals to the brake assembly causing the brake assembly to release the power turbine output shaft, permitting the power turbine to rotate, thereby driving the transmission input shaft, the transmission output shaft, and the pump drive shaft, such that the hydraulic fracturing pump begins to pump fracturing fluid into the wellhead.


The example method 600, at 618 (see FIG. 6B), may include causing the power output of the gas turbine engine to increase, thereby causing the pressure and/or flow rate of the fracturing fluid being pumped into the wellhead to increase. For example, the fracturing unit controller may communicate one or more fuel signals to the fuel feed system of the gas turbine engine to increase the flow rate of fuel supplied to the combustor section to increase the rotational speed of the compressor turbine shaft, for example, as described herein.


At 620, the example method 600 may include determining whether the actual pressure and/or the actual flow rate of the fracturing fluid has increased to a level within a range of a target pressure and/or target flow rate. For example, the fracturing unit controller may be configured to receive one or more fluid signals from one or more fluid sensors positioned and configured to generate signals indicative of the pressure and/or flow rate of the fracturing fluid flowing into the wellhead. Based at least in part on the one or more fluid signals, the fracturing unit controller may determine whether the actual pressure and/or the actual flow rate of the fracturing fluid has increased to a level within the range of the target pressure and/or target flow rate.


If, at 620, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid has not increased to the level within the range of the target pressure and/or target flow rate, the example method 600, at 622, may include waiting a period of time and returning to 618 to increase the fuel flow rate to the combustor section of the gas turbine engine. For example, the fracturing unit controller may communicate one or more fuel signals to the fuel feed system of the gas turbine engine to increase the flow rate of fuel supplied to the combustor section to increase the rotational speed of the compressor turbine shaft, for example, as described herein.


If, at 620, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid has increased to the level within the range of the target pressure and/or target flow rate, the example method 600, at 624, may include determining whether the actual pressure and/or the actual flow rate of the fracturing fluid is within the range of the target pressure and/or target flow rate.


If, at 624, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid is not within the range of the target pressure and/or target flow rate, the example method 600, at 626, may include determining whether the actual pressure and/or the actual flow rate of the fracturing fluid is greater than or less than the range of the target pressure and/or target flow rate. For example, the fracturing unit controller may be configured to receive the one or more fluid signals from one or more fluid sensors positioned and configured to generate signals indicative of the pressure and/or flow rate of the fracturing fluid flowing into the wellhead. Based at least in part on the one or more fluid signals, the fracturing unit controller may determine whether the actual pressure and/or the actual flow rate of the fracturing fluid is greater than or less than the range of the target pressure and/or target flow rate.


If, at 626, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid is greater than the range of the target pressure and/or target flow rate, at 628, the example method 600 may include decreasing the fuel flow rate to the combustor section of the gas turbine engine to decrease the rotational speed of the pump drive shaft and the output of the hydraulic fracturing pump. For example, the fracturing unit controller may communicate one or more fuel signals to the fuel feed system of the gas turbine engine to decrease the flow rate of fuel supplied to the combustor section to decrease the rotational speed of the compressor turbine shaft, for example, as described herein. In some embodiments, the fracturing unit controller may be configured to alternatively, or additionally, control operation of one or more variable geometry assemblies associated with the power turbine, for example, by communicating variable geometry signals to the variable geometry assemblies to cause them to reduce the amount of air supplied to the combustor section and/or power turbine to reduce the rotational speed and/or torque output of the gas turbine engine (e.g., at the power turbine output shaft). In some embodiments, the fracturing unit controller may be configured to alternatively, or additionally, control operation of brake assembly, for example, by communicating brake signals to the brake assembly causing the brake assembly to at least partially slow the rotational speed of power turbine output shaft to reduce the rotational speed and/or torque output of the gas turbine engine (e.g., at the power turbine output shaft) and the output of the hydraulic fracturing pump. Thereafter, the example method may return to 624 to determine whether the actual pressure and/or the actual flow rate of the fracturing fluid is within the range of the target pressure and/or target flow rate.


If, at 626, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid is less than the range of the target pressure and/or target flow rate, at 630 (FIG. 6C), the example method 600 may include increasing the fuel flow rate to the combustor section of the gas turbine engine to increase the rotational speed of the pump drive shaft and the output of the hydraulic fracturing pump. For example, the fracturing unit controller may communicate one or more fuel signals to the fuel feed system of the gas turbine engine to increase the flow rate of fuel supplied to the combustor section to decrease the rotational speed of the compressor turbine shaft, for example, as described herein.


At 632, the example method 600 may include returning to 624 (FIG. 6B) to determine whether the actual pressure and/or the actual flow rate of the fracturing fluid is within the range of the target pressure and/or target flow rate.


If, at 624, it is determined that the actual pressure and/or the actual flow rate of the fracturing fluid is within the range of the target pressure and/or target flow rate, at 634, the example method 600 may include determining whether the fracturing stage has been completed. This may be determined, for example, by receipt of one or more signals indicative of the completion of the fracturing stage by the fracturing unit controller, for example, as will be understood by those skilled in the art.


If, at 634, it has been determined that the fracturing stage has not been completed, the example method 600, at 636, may include returning to 624 to continue monitoring whether the actual pressure and/or the actual flow rate of the fracturing fluid is within the range of the target pressure and/or target flow rate.


If, at 634, it has been determined that the fracturing stage has been completed, the example method 600, at 638 may include commencing a controlled shut down of the hydraulic fracturing unit assembly, for example, as will be understood by those skilled in the art.


It should be appreciated that subject matter presented herein may be implemented as a computer process, a computer-controlled apparatus, a computing system, or an article of manufacture, such as a computer-readable storage medium. While the subject matter described herein is presented in the general context of program modules that execute on one or more computing devices, those skilled in the art will recognize that other implementations may be performed in combination with other types of program modules. Generally, program modules include routines, programs, components, data structures, and other types of structures that perform particular tasks or implement particular abstract data types.


Those skilled in the art will also appreciate that aspects of the subject matter described herein may be practiced on or in conjunction with other computer system configurations beyond those described herein, including multiprocessor systems, microprocessor-based or programmable consumer electronics, minicomputers, mainframe computers, handheld computers, mobile telephone devices, tablet computing devices, special-purposed hardware devices, network appliances, and the like.



FIG. 7 illustrates an example fracturing unit controller 108 configured for implementing certain systems and methods for pumping fracturing fluid into a wellhead according to embodiments of the disclosure, for example, as described herein. The fracturing unit controller 108 may include one or more processor(s) 700 configured to execute certain operational aspects associated with implementing certain systems and methods described herein. The processor(s) 700 may communicate with a memory 702. The processor(s) 700 may be implemented and operated using appropriate hardware, software, firmware, or combinations thereof. Software or firmware implementations may include computer-executable or machine-executable instructions written in any suitable programming language to perform the various functions described. In some examples, instructions associated with a function block language may be stored in the memory 702 and executed by the processor(s) 700.


The memory 702 may be used to store program instructions that are loadable and executable by the processor(s) 700, as well as to store data generated during the execution of these programs. Depending on the configuration and type of the fracturing unit controller 108, the memory 702 may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only memory (ROM), flash memory, etc.). In some examples, the memory devices may include additional removable storage 704 and/or non-removable storage 706 including, but not limited to, magnetic storage, optical disks, and/or tape storage. The disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the devices. In some implementations, the memory 702 may include multiple different types of memory, such as static random access memory (SRAM), dynamic random access memory (DRAM), or ROM.


The memory 702, the removable storage 704, and the non-removable storage 706 are all examples of computer-readable storage media. For example, computer-readable storage media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Additional types of computer storage media that may be present may include, but are not limited to, programmable random access memory (PRAM), SRAM, DRAM, RAM, ROM, electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile discs (DVD) or other optical storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may be accessed by the devices. Combinations of any of the above should also be included within the scope of computer-readable media.


The fracturing unit controller 108 may also include one or more communication connection(s) 708 that may facilitate a control device (not shown) to communicate with devices or equipment capable of communicating with the fracturing unit controller 108. The fracturing unit controller 108 may also include a computer system (not shown). Connections may also be established via various data communication channels or ports, such as USB or COM ports to receive cables connecting the fracturing unit controller 108 to various other devices on a network. In some examples, the fracturing unit controller 108 may include Ethernet drivers that enable the fracturing unit controller 108 to communicate with other devices on the network. According to various examples, communication connections 708 may be established via a wired and/or wireless connection on the network.


The fracturing unit controller 108 may also include one or more input devices 710, such as a keyboard, mouse, pen, voice input device, gesture input device, and/or touch input device. The one or more input device(s) 710 may correspond to the one or more input devices described herein. It may further include one or more output devices 712, such as a display, printer, and/or speakers. In some examples, computer-readable communication media may include computer-readable instructions, program modules, or other data transmitted within a data signal, such as a carrier wave or other transmission. As used herein, however, computer-readable storage media may not include computer-readable communication media.


Turning to the contents of the memory 702, the memory 702 may include, but is not limited to, an operating system (OS) 714 and one or more application programs or services for implementing the features and embodiments disclosed herein. Such applications or services may include remote terminal units for executing certain systems and methods for controlling operation of the hydraulic fracturing unit assemblies 12 (e.g., semi- or full-autonomously controlling operation of the hydraulic fracturing unit assemblies 12), for example, upon receipt of one or more control signals generated by the fracturing unit controller 108. In some embodiments, each of the hydraulic fracturing unit assemblies 12 may include a remote terminal unit 716. The remote terminal units 716 may reside in the memory 702 or may be independent of the fracturing unit controller 108. In some examples, the remote terminal unit 716 may be implemented by software that may be provided in configurable control block language and may be stored in non-volatile memory. When executed by the processor(s) 700, the remote terminal unit 716 may implement the various functionalities and features associated with the fracturing unit controller 108 described herein.


As desired, embodiments of the disclosure may include a fracturing unit controller 108 with more or fewer components than are illustrated in FIG. 7. Additionally, certain components of the example fracturing unit controller 108 shown in FIG. 7 may be combined in various embodiments of the disclosure. The fracturing unit controller 108 of FIG. 7 is provided by way of example only.


References are made to block diagrams of systems, methods, apparatuses, and computer program products according to example embodiments. It will be understood that at least some of the blocks of the block diagrams, and combinations of blocks in the block diagrams, may be implemented at least partially by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, special purpose hardware-based computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functionality of at least some of the blocks of the block diagrams, or combinations of blocks in the block diagrams discussed.


These computer program instructions may also be stored in a non-transitory computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement the function specified in the block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide task, acts, actions, or operations for implementing the functions specified in the block or blocks.


One or more components of the systems and one or more elements of the methods described herein may be implemented through an application program running on an operating system of a computer. They may also be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor-based or programmable consumer electronics, mini-computers, mainframe computers, and the like.


Application programs that are components of the systems and methods described herein may include routines, programs, components, data structures, etc. that may implement certain abstract data types and perform certain tasks or actions. In a distributed computing environment, the application program (in whole or in part) may be located in local memory or in other storage. In addition, or alternatively, the application program (in whole or in part) may be located in remote memory or in storage to allow for circumstances where tasks can be performed by remote processing devices linked through a communications network.


Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims.

Claims
  • 1. A hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead, the hydraulic fracturing unit assembly comprising: a chassis;a gas turbine engine connected to the chassis, the gas turbine engine comprising: a compressor positioned to compress air,a combustor section positioned to receive compressed air from the compressor and fuel, the combustor section positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas,a compressor turbine shaft connected to the compressor such that the compressor turbine shaft rotates with the compressor,a compressor turbine connected to the compressor turbine shaft such that the compressor turbine shaft and the compressor turbine rotate at a first rotational speed,a power turbine positioned downstream relative to the compressor turbine such that the heated combustion gas causes the power turbine to rotate at a second rotational speed, anda power turbine output shaft connected to the power turbine such that the power turbine output shaft rotates with the power turbine at the second rotational speed, the compressor turbine shaft and the power turbine output shaft being rotatable at different rotational speeds;a transmission comprising: a transmission input shaft connected to the power turbine output shaft such that the transmission input shaft rotates at the second rotational speed, anda transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed;a hydraulic fracturing pump positioned to pump fracturing fluid into the wellhead, the hydraulic fracturing pump comprising a pump drive shaft connected to the transmission output shaft such that the transmission output shaft drives the pump drive shaft at the third rotational speed;a vibration damping assembly connected to one or more of the transmission output shaft or the pump drive shaft and positioned to damp vibration associated with operation of the hydraulic fracturing pump;a starter assembly connected to the compressor; anda fracturing unit controller in communication with the starter assembly and one or more of (a) the gas turbine engine, (b) the transmission, or (c) the hydraulic fracturing pump, the fracturing unit controller being configured to: receive one or more starter signals indicative of starting the gas turbine engine, generate one or more idle signals to cause the starter assembly to cause the compressor and the compressor turbine to rotate at a target idle speed while the power turbine remains at zero rotational speed,receive one or more target signals indicative of one or more of (a) a target pressure associated with the fracturing fluid pumped into the wellhead or (b) a target flow rate associated with the fracturing fluid pumped into the wellhead;receive one or more fluid flow signals indicative of one or more of (a) an actual pressure associated with the fracturing fluid pumped into the wellhead or (b) an actual flow rate associated with the fracturing fluid pumped into the wellhead; andcontrol, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more of (x) the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed.
  • 2. The hydraulic fracturing unit assembly of claim 1, further comprising one or more variable geometry assemblies configured to control, at least partially, the second rotational speed of the power turbine output shaft, and wherein the fracturing unit controller further is configured to generate, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more geometry signals configured to control operation of the one or more variable geometry assemblies, thereby to control, at least partially, the second rotational speed of the power turbine output shaft.
  • 3. The hydraulic fracturing unit assembly of claim 1, further comprising one or more transmission actuators configured to control a ratio of the second rotational speed of the transmission input shaft to the third rotational speed of the transmission output shaft, and wherein the fracturing unit controller further is configured to generate, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more ratio signals configured to control the ratio of the second rotational speed of the transmission input shaft to the third rotational speed of the transmission output shaft.
  • 4. The hydraulic fracturing unit assembly of claim 1, further comprising a brake assembly connected to the hydraulic fracturing unit assembly and configured to at least partially control the second rotational speed of the power turbine output shaft independent from the first rotational speed of the compressor turbine shaft and the compressor turbine, and wherein the fracturing unit controller further is configured to generate one or more brake control signals configured to control, at least partially, operation of the brake assembly.
  • 5. The hydraulic fracturing unit assembly of claim 1, further comprising one or more speed sensors associated with one or more of (a) the compressor turbine shaft, (b) the power turbine output shaft, or (c) the pump drive shaft, the one or more speed sensors being configured to generate one or more rotational signals indicative of one or more of (x) the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed, and wherein the fracturing unit controller further is configured to: receive the one or more rotational signals; andcontrol, at least partially, based at least in part on the one or more rotational signals, the third rotational speed of the pump drive shaft.
  • 6. The hydraulic fracturing unit assembly of claim 1, further comprising one or more fluid sensors associated with a discharge conduit of the hydraulic fracturing unit assembly and configured to generate the fluid flow signals indicative of one or more of the actual pressure associated with the fracturing fluid pumped into the wellhead or the actual flow rate associated with the fracturing fluid pumped into the wellhead.
  • 7. The hydraulic fracturing unit assembly of claim 1, further comprising one or more torque sensors associated with one or more of (a) the compressor turbine shaft, (b) the power turbine output shaft, (c) the transmission input shaft, (d) the transmission output shaft, or (e) the pump drive shaft, the one or more torque sensors being configured to generate one or more torque signals indicative of torque at a respective location of the one or more torque sensors, and wherein the fracturing unit controller further is configured to control, based at least in part on one or more of (w) the one or more torque signals, (x) one or more of the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed.
  • 8. The hydraulic fracturing unit assembly of claim 1, further comprising a brake assembly connected to the hydraulic fracturing unit assembly and configured to at least partially control the second rotational speed of the power turbine independent from the first rotational speed of the compressor and the compressor turbine, and wherein the fracturing unit controller further is configured to generate one or more brake control signals causing the brake assembly to prevent rotation of the power turbine.
  • 9. The hydraulic fracturing unit assembly of claim 1, wherein the fracturing unit controller further is configured to: receive one or more drive signals indicative of supplying power to the hydraulic fracturing pump; andgenerate, based at least in part on the one or more drive signals, one or more pump actuation signals to cause the power turbine to rotate and drive the transmission input shaft.
  • 10. The hydraulic fracturing unit assembly of claim 1, wherein the fracturing unit controller further is configured to: generate, based at least in part on one or more drive signals indicative of supplying power to the hydraulic fracturing pump, one or more pump actuation signals to cause the power turbine to rotate and drive the transmission input shaft, the one or more pump actuation signals being configured to cause a brake assembly connected to the hydraulic fracturing unit assembly to release and permit the power turbine to rotate and drive the transmission input shaft.
  • 11. The hydraulic fracturing unit assembly of claim 1, wherein the vibration damping assembly comprises: a hub connected to either (a) the transmission output shaft or (b) the pump drive shaft; anda housing connected to the hub such that the housing rotates with the hub, the housing including: an annular inner ring,an annular outer ring,a pair of opposing side covers extending between the annular inner ring and the annular outer ring, andan annular cavity defined by the annular inner ring, the annular outer ring, and the pair of opposing side covers.
  • 12. The hydraulic fracturing unit assembly of claim 11, wherein the vibration damping assembly further comprises: an inertia ring positioned within the annular cavity, anda slide bearing positioned within the cavity, along a radially inner edge of the inertia ring.
  • 13. A hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead, the hydraulic fracturing unit assembly comprising: a chassis;a gas turbine engine connected to the chassis, the gas turbine engine comprising: a compressor positioned to compress air,a combustor section positioned to receive compressed air from the compressor and fuel, the combustor section positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas,a compressor turbine shaft connected to the compressor such that the compressor turbine shaft rotates with the compressor,a compressor turbine connected to the compressor turbine shaft such that the compressor turbine shaft and the compressor turbine rotate at a first rotational speed,a power turbine positioned downstream relative to the compressor turbine such that the heated combustion gas causes the power turbine to rotate at a second rotational speed, anda power turbine output shaft connected to the power turbine such that the power turbine output shaft rotates with the power turbine at the second rotational speed, the compressor turbine shaft and the power turbine output shaft being rotatable at different rotational speeds;a transmission comprising: a transmission input shaft connected to the power turbine output shaft such that the transmission input shaft rotates at the second rotational speed, anda transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed,a hydraulic fracturing pump positioned to pump fracturing fluid into the wellhead, the hydraulic fracturing pump comprising a pump drive shaft connected to the transmission output shaft such that the transmission output shaft drives the pump drive shaft at the third rotational speed;one or more torque sensors associated with one or more of: (a) the compressor turbine shaft, (b) the power turbine output shaft, (c) the transmission input shaft, (d) the transmission output shaft, or (e) the pump drive shaft, each of the one or more torque sensors being positioned to generate one or more torque signals indicative of torque at a respective location of the one or more torque sensors;a starter assembly connected to the compressor; anda fracturing unit controller in communication with the starter assembly and one or more of (a) the gas turbine engine, (b) the transmission, or (c) the hydraulic fracturing pump, the fracturing unit controller being configured to: (u) receive one or more starter signals indicative of starting the gas turbine engine,(v) generate one or more idle signals to cause the starter assembly to cause the compressor and the compressor turbine to rotate at a target idle speed while the power turbine remains at zero rotational speed,(w) receive one or more target signals indicative of one or more of (1) a target pressure associated with the fracturing fluid pumped into the wellhead or (2) a target flow rate associated with the fracturing fluid pumped into the wellhead,(x) receive one or more fluid flow signals indicative of one or more of (1) an actual pressure associated with the fracturing fluid pumped into the wellhead or (2) an actual flow rate associated with the fracturing fluid pumped into the wellhead,(y) receive the one or more torque signals, and(z) control, based at least in part on one or more of (1) the one or more target signals, (2) the one or more fluid flow signals, or (3) the one or more torque signals, one or more of (i) the first rotational speed, (ii) the second rotational speed, or (iii) the third rotational speed.
  • 14. The hydraulic fracturing unit assembly of claim 13, further comprising one or more speed sensors associated with one or more of (a) the compressor turbine shaft, (b) the power turbine output shaft, or (c) the pump drive shaft, the one or more speed sensors being configured to generate one or more rotational signals indicative of one or more of (x) the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed, and wherein the fracturing unit controller further is configured to: receive the one or more rotational signals, andcontrol, at least partially, based at least in part on the one or more rotational signals, the third rotational speed of the pump drive shaft.
  • 15. A method for pumping fracturing fluid into a wellhead via a hydraulic fracturing unit, the hydraulic fracturing unit comprising: a gas turbine engine comprising: a compressor positioned to compress air,a combustor section positioned to receive compressed air from the compressor and fuel, the combustor section positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas,a compressor turbine shaft connected to the compressor such that the compressor turbine shaft rotates with the compressor,a compressor turbine connected to the compressor turbine shaft such that the compressor turbine shaft and the compressor turbine rotate at a first rotational speed,a power turbine positioned downstream relative to the compressor turbine such that the heated combustion gas causes the power turbine to rotate at a second rotational speed, anda power turbine output shaft connected to the power turbine such that the power turbine output shaft rotates with the power turbine at the second rotational speed, the compressor turbine shaft and the power turbine output shaft being rotatable at different rotational speeds;a transmission comprising: a transmission input shaft connected to the power turbine output shaft such that the transmission input shaft rotates at the second rotational speed, anda transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed,a hydraulic fracturing pump positioned to pump fracturing fluid into the wellhead, the hydraulic fracturing pump comprising a pump drive shaft connected to the transmission output shaft such that the transmission output shaft drives the pump drive shaft at the third rotational speed, the method comprising: receiving, via a fracturing unit controller, one or more starter signals indicative of starting the gas turbine engine, and causing, based at least in part on the one or more starter signals, the compressor turbine to rotate at a target idle speed while the power turbine remains at zero rotational speed;receiving, via the fracturing unit controller, one or more target signals indicative of one or more of a target pressure associated with pumping fracturing fluid into a wellhead or a target flow rate associated with the fracturing fluid pumped into the wellhead;receiving, via the fracturing unit controller, one or more fluid flow signals indicative of one or more of an actual pressure associated with pumping the fracturing fluid into the wellhead or an actual flow rate associated with pumping the fracturing fluid into the wellhead;receiving, via the fracturing unit controller, one or more torque signals indicative of torque at one or more of the compressor turbine shaft, the power turbine output shaft, the transmission input shaft, the transmission output shaft, or the pump drive shaft; andcontrolling, via the fracturing unit controller, based at least in part on one or more of the one or more target signals, the one or more fluid flow signals, or the one or more torque signals, one or more of:(a) the first rotational speed associated with the compressor turbine shaft connected to the compressor and the compressor turbine of a gas turbine engine,(b) the second rotational speed associated with the power turbine output shaft connected to the power turbine of the gas turbine engine, or(c) the third rotational speed associated with the transmission output shaft connected to a pump drive shaft of a hydraulic fracturing pump positioned to pump the fracturing fluid into the wellhead.
  • 16. The method of claim 15, further comprising controlling, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, operation of one or more variable geometry assemblies associated with the power turbine and configured to control, at least partially, the second rotational speed of the power turbine output shaft.
  • 17. The method of claim 15, further comprising controlling, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, operation of one or more transmission actuators associated with the transmission and configured to control a ratio of the second rotational speed of the power turbine output shaft to the third rotational speed of the transmission output shaft.
  • 18. The method of claim 15, further comprising controlling, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, operation of a brake assembly configured to control, at least partially, the second rotational speed of the power turbine output shaft independent from the first rotational speed of the compressor turbine shaft and the compressor turbine.
  • 19. The method of claim 15, further comprising: receiving, via the fracturing unit controller, one or more rotational signals indicative of one or more of (a) the first rotational speed, (b) the second rotational speed, or (c) the third rotational speed; andcontrolling, based at least in part on the one or more rotational signals, the third rotational speed of the pump drive shaft.
  • 20. The method of claim 15, further comprising controlling, via the fracturing unit controller, a brake assembly connected to the hydraulic fracturing unit assembly to prevent rotation of the power turbine independent from rotation of the compressor turbine.
  • 21. The method of claim 15, further comprising: receiving, via the fracturing unit controller, one or more drive signals indicative of supplying power to the hydraulic fracturing pump; andcausing, based at least in part on the one or more drive signals, the power turbine to rotate and drive the transmission input shaft.
  • 22. The method of claim 20, further comprising causing the brake assembly to release and permit the power turbine to rotate and drive the transmission input shaft.
  • 23. The method of claim 15, further comprising controlling, via the fracturing unit controller, based at least in part on the one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, the third rotational speed of the pump drive shaft.
  • 24. A powertrain to supply power to a hydraulic fracturing unit assembly to pump fracturing fluid into a wellhead, the powertrain comprising: a gas turbine engine comprising: a compressor positioned to compress air,a combustor section positioned to receive compressed air from the compressor and fuel, the combustor section positioned to combust at least a portion of the compressed air and fuel to provide heated combustion gas,a compressor turbine shaft connected to the compressor such that the compressor turbine shaft rotates with the compressor,a compressor turbine connected to the compressor turbine shaft such that the compressor turbine shaft and the compressor turbine rotate at a first rotational speed,a power turbine positioned downstream relative to the compressor turbine such that the heated combustion gas causes the power turbine to rotate at a second rotational speed, anda power turbine output shaft connected to the power turbine such that the power turbine output shaft rotates with the power turbine at the second rotational speed, the compressor turbine shaft and the power turbine output shaft being rotatable at different rotational speeds;a transmission comprising: a transmission input shaft connected to the power turbine output shaft such that the transmission input shaft rotates at the second rotational speed, anda transmission output shaft positioned to be driven by the transmission input shaft at a third rotational speed and to drive a pump drive shaft;a starter assembly connected to the compressor; anda fracturing unit controller in communication with one or more of the gas turbine engine or the transmission, the fracturing unit controller being configured to: receive one or more target signals indicative of one or more of (a) a target pressure associated with fracturing fluid pumped into a wellhead or (b) a target flow rate associated with the fracturing fluid pumped into the wellhead,receive one or more fluid flow signals indicative of one or more of (a) an actual pressure associated with the fracturing fluid pumped into the wellhead or (b) an actual flow rate associated with the fracturing fluid pumped into the wellhead,receive one or more starter signals indicative of starting the gas turbine engine,generate one or more idle signals so as to cause the starter assembly to cause the compressor and the compressor turbine to rotate at a target idle speed while the power turbine remains at zero rotational speed, andcontrol during operation of the powertrain, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more of (x) the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed.
  • 25. The powertrain of claim 24, further comprising one or more variable geometry assemblies configured to control, at least partially, the second rotational speed of the power turbine output shaft, and wherein the fracturing unit controller further is configured to generate, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more geometry signals configured to control operation of the one or more variable geometry assemblies to control, at least partially, the second rotational speed of the power turbine output shaft.
  • 26. The powertrain of claim 24, further comprising one or more transmission actuators configured to control a ratio of the second rotational speed of the transmission input shaft to the third rotational speed of the transmission output shaft, and wherein the fracturing unit controller further is configured to generate, based at least in part on one or more of (a) the one or more target signals or (b) the one or more fluid flow signals, one or more ratio signals configured to control the ratio of the second rotational speed of the transmission input shaft to the third rotational speed of the transmission output shaft.
  • 27. The powertrain of claim 24, further comprising a brake assembly connected to the gas turbine engine and configured to at least partially control the second rotational speed of the power turbine output shaft independent from the first rotational speed of the compressor turbine shaft and the compressor turbine, and wherein the fracturing unit controller is configured to generate one or more brake control signals configured to at least partially control operation of the brake assembly.
  • 28. The powertrain of claim 24, further comprising one or more speed sensors associated with one or more of (a) the compressor turbine shaft, (b) the power turbine output shaft, or (c) the transmission output shaft, the one or more speed sensors being configured to generate one or more rotational signals indicative of one or more of (x) the first rotational speed, (y) the second rotational speed, or (z) the third rotational speed, and wherein the fracturing unit controller further is configured to: receive the one or more rotational signals, andat least partially control, based at least in part on the one or more rotational signals, the third rotational speed of the pump drive shaft.
  • 29. The powertrain of claim 24, further comprising one or more fluid sensors configured to be associated with a discharge conduit of the hydraulic fracturing unit assembly and configured to generate the fluid flow signals indicative of one or more of (a) the actual pressure associated with the fracturing fluid pumped into the wellhead or (b) the actual flow rate associated with the fracturing fluid pumped into the wellhead.
PRIORITY CLAIM

This is a continuation of U.S. Non-Provisional application Ser. No. 17/173,475, filed Feb. 11, 2021, titled “SYSTEMS AND METHODS TO OPERATE A DUAL-SHAFT GAS TURBINE ENGINE FOR HYDRAULIC FRACTURING,” which claims priority to and the benefit of, under 35 U.S.C. § 119(e), U.S. Provisional Application No. 62/705,334, filed Jun. 22, 2020, titled “METHOD AND SYSTEM OF OPERATING A DUAL SHAFT GAS TURBINE IN A DIRECT DRIVE TURBINE FRACKING UNIT,” the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (838)
Number Name Date Kind
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Lars Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5511956 Hasegawa Apr 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6279309 Lawlor et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchier Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8316936 Roddy Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9222346 Walls Dec 2015 B1
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oering et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Dehring et al. Jul 2018 B2
10024123 Steffenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sørensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590867 Thomassin Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10662749 Hill et al. May 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830225 Repaci Nov 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10895202 Yeung et al. Jan 2021 B1
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10927774 Cai et al. Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10982523 Hill et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier May 2021 B2
11015423 Yeung et al. May 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11125156 Zhang et al. Sep 2021 B2
11143000 Li et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Or et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Sumilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120137699 Montagne et al. Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar et al. Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324903 Dewis Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130189915 Hazard Jul 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20150027730 Hall et al. Jan 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski et al. Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Fawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris Mar 2017 A1
20170114613 Lecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron de Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu et al. Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckies et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husøy Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meek et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200362760 Morenko et al. Nov 2020 A1
20200362764 Saintignan et al. Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui et al. Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui et al. Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372395 Li et al. Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
Foreign Referenced Citations (626)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
102182904 Sep 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202926404 May 2013 CN
202935216 May 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
PCTCN2012074945 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
205260249 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108799473 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
208169068 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208253147 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
110848028 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (114)
Entry
US 11,459,865 B2, 10/2022, Cui et al. (withdrawn)
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).
The Application of Flexible Couplings for Turbomachinery, Jon R.Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, © Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD% 20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc _number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use n Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
Plos One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. DMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G{umlaut over ( )}oteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS FRAC Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-njection Stations; American Petroleum Institute; API-63 144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (SOLAR Division International Harvester Co.), Modem Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, (Nov. 1994.).
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, Dc: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, Tx: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
SPM® OEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Dowell B908 “Turbo-Jet” Operator's Manual.
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.pmewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gasfield operations, Vericor (2017), https://www. vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PlkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available an Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.
ISM, What is Cracking Pressure, 2019.
Swagelok, The right valve for controlling flow direction? Check, 2016.
Technology.org, Check valves how do they work and what are the main type, 2018.
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
Ziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
International Search Report and Written Opinion for PCT/US2022/030647, dated Oct. 7, 2022.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
Related Publications (1)
Number Date Country
20210396123 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62705334 Jun 2020 US
Continuations (1)
Number Date Country
Parent 17173475 Feb 2021 US
Child 17396914 US