Systems and methods to predict the chances of neurologically intact survival while performing CPR

Information

  • Patent Grant
  • 11488703
  • Patent Number
    11,488,703
  • Date Filed
    Tuesday, October 3, 2017
    6 years ago
  • Date Issued
    Tuesday, November 1, 2022
    a year ago
  • CPC
    • G16H20/40
    • G16H50/30
  • Field of Search
    • CPC
    • G16H20/40
    • G16H50/30
  • International Classifications
    • G16H20/40
    • G16H50/30
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      498
Abstract
According to one aspect, a method for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure includes obtaining an electroencephalogram (EEG) signal of the particular individual during the CPR procedure. The method also includes obtaining a non-invasive measure of circulation of the particular individual during the CPR procedure and generating a prediction for the likelihood of survival of the particular individual with favorable neurological function based on the EEG signal and the non-invasive measure of circulation.
Description
BACKGROUND

Cardiac arrest is one of the leading causes of death in the United States. As a result, a number of approaches to treating cardiac arrest have been developed, which have resulted in significant clinical advances in the field. Despite this progress, greater than 80% of patients who experience sudden and unexpected out of hospital cardiac arrest (OHCA) cannot be successfully resuscitated. The prognosis is particularly grim in patients with a prolonged time between cardiac arrest and the start of cardiopulmonary resuscitation (CPR).


Recent advances in techniques to optimize blood flow to the heart and brain during CPR reduce reperfusion injury and improve post-resuscitation restoration of brain function. The recent advances may include therapeutic hypothermia and/or other procedures, which may significantly improve the likelihood for survival with favorable neurological function. At present, however, rescuer personnel typically terminate their resuscitation efforts based upon the duration of CPR performed without a guide as to whether or not the patient actually has a chance to survive and thrive. Consequently, it may be difficult to identify during administration of CPR those patients that may and may not be able to be resuscitated and wake up after successful resuscitation.


SUMMARY

The present disclosure is directed to systems and methods for predicting the likelihood of neurologically intact survival while performing cardiopulmonary resuscitation. In particular, and as discussed throughout, spectral analysis of electroencephalogram signals measured during cardiopulmonary resuscitation may be used as a predictor, exclusively or in combination with a non-invasive measure of perfusion or circulation, to determine the chances of a favorable outcome of performing cardiopulmonary resuscitation.


In an aspect, a method for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure is disclosed. The method may include obtaining an electroencephalogram (EEG) signal of the particular individual during the CPR procedure. The method may include obtaining a non-invasive measure of circulation of the particular individual during the CPR procedure. The method may include generating a prediction for the likelihood of survival of the particular individual with favorable neurological function based on the EEG signal and the non-invasive measure of circulation.


Additionally, or alternatively, the method may include performing an intrathoracic pressure regulation procedure or a reperfusion injury protection procedure during the CPR procedure. It is contemplated that any of a number of such procedures may be performed during the CPR procedure such as, for example, performing a stutter CPR procedure, administering anesthetics at or during the CPR procedure, administering sodium nitroprusside in connection with the CPR procedure, etc. Examples of such procedures and techniques are described in, for example, U.S. patent application Ser. Nos. 12/819,959, 13/026,459, 13/175,670, 13/554,986, 61/509,994, and 61/577,565, each of which are incorporated herein by reference.


Additionally, or alternatively, the method may include generating the prediction for the likelihood of survival of the particular individual with favorable neurological function on a mathematical product of the EEG signal and the non-invasive measure of circulation. It is contemplated however that one or more other mathematical operations may be performed to generate an indicator or predictor for the likelihood of survival of a particular individual with favorable neurological function.


Additionally, or alternatively, the method may include measuring the EEG signal using a bispectral index monitor. It is contemplated however that any device or system configured to measure an EEG signal may be used to measure or otherwise sense the same.


Additionally, or alternatively, the method may include obtaining the non-invasive measure of circulation of the particular individual by monitoring the concentration or partial pressure of carbon dioxide in respiratory gases of the particular individual. It is contemplated however that other means such as diffuse correlation spectroscopy or impedance changes measured across the thorax or other body parts could also be used as a non-invasive measure of circulation during CPR.


Additionally, or alternatively, the method may include determining whether sedation is needed during or following the CPR procedure based on the EEG signal and the non-invasive measure of circulation. Here, when the EEG signal or a product, for example, of the EEG signal and a measure of circulation (e.g., end tidal CO2) reaches a threshold value during CPR, then a care provider may know that it may be appropriate to deliver a low dose of a sedative, such as medazelam for example, to prevent the patient undergoing cardiac arrest or from becoming too agitated.


Additionally, or alternatively, the method may include extracting respiratory gases from the airway of the particular individual to create an intrathoracic vacuum that lowers pressure in the thorax in order to achieve at least one of: enhancing the flow of blood to the heart of the particular individual; lowering intracranial pressures of the particular individual; and enhancing cerebral profusion pressures of the particular individual. It is contemplated, however, that any device or system that is configured to create a vacuum and that may be coupled to an individual so as to create an intrathoracic vacuum may be used to lower pressure in the thorax and/or to artificially inspire, such as a ventilator, iron lung cuirass device, a phrenic nerve stimulator, and many others.


Additionally, or alternatively, the method may include at least periodically delivering a positive pressure breath to the particular individual to provide ventilation. Such an implementation may be consistent with a CPR procedure.


Additionally, or alternatively, the method may include preventing air from at least temporarily entering the particular individual's lungs during at least a portion of a relaxation or decompression phase of the CPR procedure to create an intrathoracic vacuum that lowers pressure in the thorax in order to achieve at least one of: enhanced flow of blood to the heart of the particular individual; lowered intracranial pressures of the particular individual; and enhanced cerebral profusion pressures of the particular individual. It is contemplated that any device or system that is configured to prevent air from at least temporarily entering the particular individual's lungs may be used to implement the same. For example, a valve system may be used to prevent air from at least temporarily entering the particular individual's lungs. Other embodiments are possible.


In an aspect, a computing system configured for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure is described. The computing device includes a module that is configured to obtain an electroencephalogram (EEG) signal of the particular individual during the CPR procedure and a module that is configured to obtain a non-invasive measure of circulation of the particular individual during the CPR procedure. The computing system also includes a module that is configured to output a prediction for the likelihood of survival of the particular individual with favorable neurological function based on EEG signal and the non-invasive measure of circulation.


In some embodiments, the computing system further includes a bispectral index monitor that is configured to calculate a bispectral index value of the particular individual based on the EEG signal. In some embodiments, the module that is configured to obtain the non-invasive measure of circulation is a capnography monitor that is configured to calculate the non-invasive measure of circulation of the particular individual. In some embodiments, the module that is configured to output the prediction for the likelihood of survival is a computing device processor. In such embodiments, the prediction of the likelihood of survival may be based on a bispectral index value and the non-invasive measure of circulation.


In some embodiments, the module that is configured to obtain the EEG signal is an EEG sensor. In some embodiments, the non-invasive measure of circulation of the particular individual is a measure of concentration or partial pressure of carbon dioxide in respiratory gases of the particular individual. In some embodiments, the computing system further includes a module that is configured to determine whether sedation is needed during and/or following the CPR procedure based on the non-invasive measure of circulation and a bispectral index value calculated from the EEG signal. In such embodiments, the module may be a computing device processor.


In an aspect, an apparatus configured and arranged for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure is disclosed. The apparatus may include a circulation enhancement device that is configured to enhance a person's circulation while performing CPR on the person. The apparatus may include an EEG sensor that is configured to measure an EEG signal of the person. The apparatus may include a non-invasive sensor to measure circulation data on the person's circulation.


Additionally, or alternatively, the apparatus may include a bispectral index monitor for measuring the EEG signal, and a capnography monitor to measure circulation data on the person's circulation.


Additionally, or alternatively, the apparatus may include a computing device having a processor that is configured to receive and process the EEG signal and the circulation data, and to produce a prediction of the likelihood of survival of the person with favorable neurological function.


Additionally, or alternatively, the circulation enhancement device may be selected from the group consisting of: a vacuum source; and a pressure responsive valve.


Additionally, or alternatively, the apparatus may include a vacuum source configured to extract respiratory gases from the airway of the person to create an intrathoracic vacuum to lower pressures in the thorax, wherein the vacuum source comprises an impeller that creates the vacuum, and wherein the pressures are lowered in the thorax in order to achieve at least one of: enhanced flow of blood to the heart of the particular individual; lower pressures in the thorax in order to lower intracranial pressures of the person; and lower pressures in the thorax in order to enhance cerebral profusion pressures of the person.


Additionally, or alternatively, the apparatus may include a pressure responsive valve configured to prevent respiratory gases from entering the lungs during at least a portion of a relaxation or decompression phase of CPR to create an intrathoracic vacuum that lowers pressure in the thorax in order to achieve at least one of: enhanced flow of blood to the heart of the particular individual; lowered intracranial pressures of the particular individual; and enhanced cerebral profusion pressures of the particular individual.


In an aspect, a method for determining whether sedation is needed while performing cardiopulmonary resuscitation (CPR) on a particular individual is disclosed. The method may include obtaining an electroencephalogram (EEG) signal of the particular individual during a CPR procedure. The method may include obtaining a non-invasive measure of circulation of the particular individual during the CPR procedure. The method may include determining whether to sedate the individual while performing CPR based upon the product of the EEG signal and a non-invasive measure of circulation.


In an aspect, a method for determining whether sedation is needed after concluding cardiopulmonary resuscitation (CPR) on a particular individual is disclosed. The method may include obtaining an electroencephalogram (EEG) signal of the particular individual during a CPR procedure. The method may include obtaining a non-invasive measure of circulation of the particular individual during the CPR procedure. The method may include determining whether to sedate the individual after performing CPR based upon the product of the EEG signal and a non-invasive measure of circulation.


Although not so limited, an appreciation of the various aspects of the present disclosure may be obtained from the following description in connection with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described in conjunction with the appended figures:



FIGS. 1A and 1B show bispectral index (BIS) and end-tidal CO2 (ETCO2) after 6 minutes ventricular fibrillation during differing types of cardiopulmonary resuscitation (CPR), and a BIS screenshot during a typical study.



FIGS. 2A and 2B show BIS, ETCO2, and BISx ETCO2 after 4 minutes VF and multiple methods of CPR.



FIG. 3 shows an example vacuum source device that has an impeller to create a vacuum, the example vacuum source device is a transport ventilator with integrated intrathoracic pressure regulation.



FIG. 4 shows an integrated index calculator and display.



FIG. 5 shows an example treatment system in accordance with the present disclosure.



FIG. 6 shows an example computing system or device.



FIG. 7 shows a method for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure.



FIG. 8 shows a method for determining whether sedation is needed while performing cardiopulmonary resuscitation (CPR) on a particular individual.





In the appended figures, similar components and/or features may have the same numerical reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components and/or features. If only the first numerical reference label is used in the specification, the description is applicable to any one of the similar components and/or features having the same first numerical reference label irrespective of the letter suffix.


DETAILED DESCRIPTION

Out-of-hospital cardiac arrest (OHCA) is one of the leading causes of death in at least the United States. Even with clinically documented methods of CPR and post-resuscitation care, more than 85-90% of the 350,000 Americans stricken by OHCA die suddenly and unexpectedly annually. Over the past twenty years, Applicants have developed and implemented ways to improve blood flow to the heart and the brain during CPR. With the development of the Applicants' ResQPOD impedance threshold device (ITD) and active compression decompression (ACD) CPR, Applicants have demonstrated that the combination of ITD and ACD CPR (ACD+ITD) can increase survival rates with favorable neurological outcomes by a relative 53% compared with conventional standard CPR (S-CPR). This therapy is based upon the physiological principle that a reduction in intrathoracic pressure during the decompression phase of CPR pulls more venous blood back to the heart, and simultaneously lowers intracranial pressure (ICP) when compared with S-CPR. The reduced ICP lowers cerebral resistance allowing for greater forward flow. Applicants have developed further ways to regulate intrathoracic pressure during CPR based upon this general principle of intrathoracic pressure regulation (IPR) therapy. This approach may significantly increase coronary and cerebral perfusion during CPR and enhance the likelihood for successful resuscitation. Such devices and techniques are described in, for example, U.S. Pat. Nos. 7,082,945, 7,185,649, 7,195,012, 7,195,013, 7,766,011, 7,836,881, and 8,108,204, and U.S. patent application Ser. Nos. 13/175,670, 13/554,458, and 13/852,142, each incorporated herein by reference.


While this progress has saved lives, it has also created exciting new challenges and opportunities. For example, it would be advantageous to provide paramedics with a tool that encourages the continued performance of CPR in instances where the chance of meaningful survival after cardiac arrest is high. It is contemplated herein that new techniques may be needed to determine the likelihood of long-term survivability with favorable neurological function, so that those performing CPR recognize when to continue resuscitation efforts and when to stop. Without such technologies, patients with the potential to be fully resuscitated and restored back to their baseline health may be at high risk of being left for dead due to premature stoppage of CPR, despite actually having a favorable prognosis. The continued performance of CPR may be encouraged by providing rescuers and/or paramedics with indications of brain functioning and/or positive signs of likely long term survival. A new way to assess brain function during CPR may be even more important in years ahead as even more effective ways to successfully resuscitate patients are discovered.


The present disclosure is directed to the non-invasive and rapid determination of the likelihood of neurological viability in patients during CPR. Measuring electroencephalograms (EEGs) during CPR with a non-invasive system that measures the bispectral index may be used together with end tidal (ET) CO2 to determine signs of brain activity that may indicate or be used to predict the chances of recovering from a cardiac arrest with brain function remaining neurologically intact.


EEG measurements may be used intra-operatively to determine the depth of anesthesia and post resuscitation from cardiac arrest as an indicator for brain survival. In some embodiments, EEGs measurements may be used during CPR to help provide a non-invasive window to assess the potential for the individual awakening after OHCA. While this approach may not provide a consistent signal with conventional standard CPR, as brain perfusion is generally less than 20% of normal, it may provide promise during CPR with IPR therapy where brain perfusion can be nearly normal during CPR. Further, when EEG measurements are coupled together with ETCO2—an index of vital organ perfusion—Applicants studies suggest that dual monitoring of these two indicators of brain flow and function may provide a means to predict successful resuscitation with favorable neurological outcome. Thus, the present application is focused on using EEG activity, measured using a bispectral index (BIS) monitor during CPR to predict neurological status during CPR, alone or in combination with another non-invasive measurement, such as ETCO2, as an index to suggest whether rescuers should continue or discontinue CPR. In some embodiments, a data log storage process and data display for EEG and ETCO2 measurements may be employed in an IPR ventilation device for the treatment of patients with OHCA.


Building on animal and human studies that have focused on improving blood flow during CPR, Applicants have shown that a combination of non-invasive technologies that modulate intrathoracic pressures—specifically, ACD+ITD—may be applied in patients with OHCA to improve survival rates with favorable neurological outcomes compared with S-CPR. This combination of devices was found to increase patient survival with favorable neurological function by about 50%, from about 5.9 to 8.8% at hospital discharge (p=0.02), and at one year post cardiac arrest. Further, Applicants have developed strategies to prevent reperfusion injury during CPR using IPR therapy that result in an improvement in neurologically-intact survival after up to 15 minutes of untreated cardiac arrest. Other approaches to reduce the cerebral injury associated with reperfusion after prolonged untreated cardiac arrest may include, for example, using IPR therapy in combination with alternating 20 second pauses followed by 20 seconds of CPR during the first 3 minutes of CPR to provide protection from reperfusion injury. These studies demonstrate that there is a greater potential to fully restore the brain after prolonged untreated cardiac arrest than previously realized, allowing for a prediction of which patients are likely to awake after CPR.


An increased level of consciousness may be achieved during ACD+ITD CPR despite being in a non-perfusing rhythm (cardiac arrest). This type of patient may commonly die because of a highly stenotic or occluded coronary artery where the culprit lesion causes the cardiac arrest and prevents circulation to the myocardium during CPR.


A database containing data from a clinical trial, was examined to determine 1) the frequency of re-arrest; 2) the initial rhythms for subjects that re-arrest; 3) the frequency of gasping during CPR; 4) signs of neurological activity (moving limbs, opening eyes, trying to sit up, late gasping developing after several minutes of CPR) during chest compressions. In an analysis of greater than 2200 subjects who met initial enrollment criteria, the re-arrest rate was about 20% and half of those subjects did not survive to hospital admission. Signs of neurological activity were observed in about 2-12% of subjects depending upon the trial site, and gasping (a favorable prognostic sign suggestive of brain stem perfusion) was observed in about 8.5% of all subjects. About one half of these subjects did not survive to hospital admission as CPR was abandoned. Accordingly, an estimation of about 10-15% of all subjects receiving CPR may actually have the potential to survive and thrive but currently are left to die in the field because there is no way for the rescuer or emergency physician to easily determine whether the afflicted patient has the potential to survive with additional CPR and in-hospital care. In one aspect, the present application may be focused on this patient population. For example, an objective may be at least to develop a non-invasive system to provide the rescuer an indication of whether CPR is warranted beyond the traditional 15-30 minutes based upon the likelihood for neurologically intact survival.


In the course of assessing the effects of IPR therapy using different methods of CPR in animal studies, Applicants discovered that BIS levels vary depending on the type of CPR performed. In an aspect, the term “BIS” is used throughout as a general term for spectral analysis of EEG signals. Also, somatosensory evoked potential monitoring has been employed to assess anesthesia levels and awareness during total intravenous anesthesia (TIVA). Like BIS level, this technique may also prove valuable in assessing brain function and electrical shutdown due to cerebral ischemia. In the Applicants studies, it was observed that even though there was not a significant change in calculated cerebral perfusion pressure, or coronary perfusion pressure, BIS levels increased markedly when IPR therapy was optimized.


During general anesthesia, the BIS may provide a non-invasive measurement of the level of a patient's consciousness. The BIS value may be derived from the patient's EEG tracings, which are a real-time graphical representation of the spontaneously generated electrical potentials in the brain area underlying an electrode. As these EEG patterns diminish with exposure to an anesthetic drug, a BIS monitor may transform the EEG waveform into a dimensionless number ranging from 0 (complete cerebral suppression) to 100 (active cerebral cortex; fully awake and alert). To compute this value, the BIS monitor may process the EEG to detect the presence of cerebral suppression and perform a fast Fourier transform (FFT) on the waveform. The FFT data may be used to compute the ratio of higher frequency waves to lower frequency waves which results in the BIS value. An accompanying variable, the suppression ratio, estimates the percentage of isoelectric (flatline) periods during 63 second epochs. This number may be presented as a value from 0-100%. The suppression ratio may be factored into the overall BIS, and values of 40-60 may represent an appropriate level for general anesthesia.


In an aspect, a concept of using EEG recordings in the form of a BIS index and ETCO2 during CPR as a predictor of outcomes is disclosed. Using conventional CPR, BIS levels remain low and indicative of no significant brain activity, whereas the addition of IPR therapy causes a surprising rise in BIS despite a minimal increase in calculated cerebral perfusion pressure (CerPP). This suggests a non-linear relationship between restoration of consciousness during CPR and the level of cerebral perfusion. The use of CPR that incorporates IPR therapy, as opposed to conventional standard CPR, may cause a sufficient reduction of ICP and an improvement in brain perfusion to allow for restoration of brain electrical activity and, in some cases, near consciousness in the setting of cardiac arrest and CPR. Applicants have previously shown that IPR therapy lowers ICP by actively removing more venous blood from the brain and perhaps by also sequestering more spinal fluid in the intracranial space. The technique may predict the possibility of neurological recovery after OHCA and provide rescuers feedback to encourage additional CPR and/or transport to hospital if the chances of neurologically intact survival are evident. In addition, an EEG activity index level alone or coupled with a non-invasive measure of perfusion such as ETCO2 may be used to titrate the IPR therapy.


Pilot animal work may demonstrate the potential of utilizing EEG measurements and the BIS to demonstrate the potential of this technology to correlate with improved brain perfusion and subsequent neurologically intact survival. In one study to determine the potential synergy between an automated CPR device called the LUCAS and the impedance threshold device (ITD) ResQPOD, after 6 minutes of untreated VF, CPR was performed with the LUCAS device (delivers S-CPR) for 4 minutes and then ITD was added for 4 minutes, and then IPR therapy for 4 minutes. As shown in FIG. 1, BIS levels decreased to zero rapidly after induction of VF, rose to 52 with the S-CPR and then rose again with the addition of the ITD and IPR therapy. ETCO2 levels rose as well in this study from 0 to 33 mmHg. Here, the suppression ratio (SR) or “flatline” periods are typically 0 at baseline, 85 during VF, 4 during S-CPR, and 1 during IPR CPR. These results are consistent with the hypothesis that with enhanced perfusion may result in an increase in electrical activity within the brain, as manifested by the rise in BIS levels. In other studies with 12 minutes of untreated VF and treatment with ACD+ITD alternating with intentional 20 second pauses to reduce reperfusion injury, BIS levels fall to 0 within 2 minutes of VF, and then increase during 4 minutes of CPR back to 60. By contrast, in pigs treated with only SCPR after 12 minutes of VF, the average BIS values at the end of 4 minutes of S-CPR were 10. From survival studies performed before the use of EEGs like BIS to assess brain activity during CPR, treatment strategies designed to reduce reperfusion injury after a prolonged untreated cardiac arrest resulted in a significant number of neurologically intact pigs after 24-48 hours. A BIS level of between 40-60 may indicate a good chance at neurologically intact survival.


Applicants have also demonstrated a significant increase in BIS in a pilot study of 6 animals that each had standard CPR (S-CPR), then S-CPR with an ITD (Impedance Threshold Device—that prevents or hinders respiratory gases from reaching the lungs during the relaxation or decompression phase of CPR), followed by ACD-CPR and then ACD-CPR with advanced IPR device (Intrathoracic Pressure Regulation—such as using a vacuum to extract gases from the lungs during the relaxation phase) therapy. These results are shown in FIG. 2 and demonstrate how brain perfusion can be significantly improved with the methods of the present disclosure. In FIG. 2, it is demonstrated how the ETCO2 and BIS product might be utilized to predict not only ROSC but neurologically intact survival. From survival studies with advanced IPR therapy, the neurologically intact survival rate was 100% when ACD+ITD therapy was utilized in a pig model with 8 min of VF in contrast to 10% with S-CPR.


An increase in BIS levels and ETCO2 may be observed during the progression from S-CPR alone to S-CPR+ITD to S-CPR+IPR (advanced ITD therapy which actively creates a vacuum in between positive pressure ventilation that maximizes negative intrathoracic pressures) (FIG. 1) and a similar progression from S-CPR to ACD+ITD to ACD+IPR (FIG. 2). Based on these data, it is contemplated that a study focused specifically on the potential of EEG activity with, for example a BIS value alone or in combination with another non-invasive measurement such as ETCO2, may be evaluated to predict the chances of meaningful survival after cardiac arrest.


In patients undergoing CPR, the non-invasive measurement of cerebral electrical activity, as measured by BIS coupled with the non-invasive measurement of circulation, as measured by ETCO2, may be used to predict the likelihood of neurological recovery and thereby significantly increase survival rates with favorable neurological function after cardiac arrest.


At present, rescuer personnel typically terminate their resuscitation efforts based upon the duration of CPR performed without a guide as to whether or not the patient actually has a chance to survive and thrive. Recent advances in techniques to optimize blood flow to the heart and brain during CPR, reduce reperfusion injury, and improving post-resuscitation restoration of brain function with therapeutic hypothermia, have significantly improved the likelihood for survival with favorable neurological function. These CPR methods are associated with higher BIS and ETCO2 values in the Applicants preliminary studies. Currently it may be difficult to know during CPR which patients may be able to be resuscitated and wake up after successful resuscitation. In one example, perfusion as indicated by ETCO2, for example, and brain wave activity, as measured by BIS for example, may be used to provide a strong physiological signal for the potential to survive and thrive. The predictive ability of each of these physiological indicators may be examined alone, however, new findings support the use of mathematics, such as the mathematical product of these measures, as an indicator for predicting survival with a favorable neurological outcome. Similar to the heart, where both normal electrical and mechanical activity to provide perfusion are needed for life, the brain needs normal electrical activity and perfusion. These physiological cerebral processes may be assessed as a non-invasive means to help determine if successful resuscitation will result in the potential for restoration of full life.


In another aspect, a data log storage process and data display for EEG and ETCO2 measurements may be incorporated in an IPR ventilation device developed for the treatment of patients with OHCA. FIG. 3 shows an exemplary vacuum source device 300 that has an internal impeller configured to push air out of the device 300 through a vent to create an internal vacuum. In general, the device 300 is a transport ventilator with integrated intrathoracic pressure regulation. In one embodiment, the device 300 may correspond to a ResQVENT device, which is a transport ventilator capable of providing IPR therapy as previously described for use during CPR. The device 300 may combine positive pressure ventilation breaths with IPR therapy during the exhalation phase of the breath. The ResQVENT device may be attached to the patient's facemask or endotracheal tube via a coaxial breathing circuit. The ResQVENT's inside tube may convey inspiration gases to the patient and the outside tube may carry gas away from the patient. The apparatus may functionally integrate with existing monitor data streams (e.g., BIS Monitor, Capnometry). In such embodiments, the user interface may receive a Cerebral Resuscitation Assessment indicator which could be described as a brain tissue quality factor. In some embodiments, the monitor may be integrated into the ResQVENT. In other embodiments, the monitor may be a stand-alone monitor that provides data to the ResQVENT as shown in FIG. 4. One non-limiting example of equipment that may function similar to the ResQVENT is described in U.S. Patent Application No. 61/577,565, filed 19 Dec. 2011, the complete disclosure of which is herein incorporated by reference.


With this piece of information (i.e., the Cerebral Resuscitation Assessment indicator), rescuers would be provided with some indication related to the potential viability of the brain, which may provide rescuers guidance or an indication as to whether to continue or discontinue CPR. The device 300, either alone or in combination with other devices, may gather the needed information in one place and mathematically relate the values. To receive this information, inputs from the BIS and/or ETCO2 monitors may require specific software communication methods. In some embodiments, continuous data may be stored in the computer at an acceptable data storage rate to ensure good fidelity.


An electronic interface with the BIS monitor or a comparable EEG system and the ETCO2 monitor may be used to electronically read the BIS and ETCO2 data from the outputs of the two devices. The output data from the devices may then be stored and mathematical calculations performed. The resultant index may be displayed on a user interface/display to provide an easy-to-read index. The user may utilize the index to adjust therapy such as IPR levels, ventilation, compression depth, etc. Software validation methods may be utilized to confirm that the software code is intact and representative of the desired output.


In some embodiments, the ResQVENT may produce a continuously variable IPR level from 0-12 cmH2O. The ResQVENT may be adapted to accept an external digital input, which may control the IPR level based on the inputs from the above described Index calculation. This adaptation may include additional modification of the ResQVENT software to accept an external control signal from the existing serial port. The ResQVENT may be programmed to optimize the beneficial effects of IPR in a particular patient or set of conditions. In some embodiments, the BIS monitor may be available as a module that fits into various multi-parametric bedside monitors. Monitoring packages of BIS and ETCO2 monitors may be physically integrated into a single portable device with its own small graphic display. The single box may quickly connected to a patient experiencing cardiac arrest and be unobtrusive during resuscitation. A quick application of the forehead electrodes and an attachment of the ETCO2 monitor to the airway may enable the user interface to deliver resuscitation feedback to the user.


In some embodiments, the device 300 may be configured for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure. As described herein, the device 300 may include a circulation enhancement device (e.g., a vacuum source, a pressure responsive valve, and the like) that is configured to enhance a person's circulation while performing CPR on the person. The device 300 may also include an EEG sensor and/or a bispectral index monitor that is configured to measure an EEG signal of the person. The device 300 may further include a non-invasive sensor and/or a capnography monitor to measure circulation data on the person's circulation.


In some embodiments, the device 300 may include a computing device having a processor that is configured to receive and process the EEG signal and the circulation data and to produce a prediction of the likelihood of survival of the person with favorable neurological function. In some embodiments, the device 300 may include a vacuum source that is configured to extract respiratory gases from the airway of the person to create an intrathoracic vacuum to lower pressures in the thorax. The vacuum source may include an impeller that creates the vacuum. The pressures may be lowered in the thorax in order to achieve: enhanced flow of blood to the heart of the particular individual, lower pressures in the thorax in order to lower intracranial pressures of the person, and/or lower pressures in the thorax in order to enhance cerebral profusion pressures of the person. In some embodiments, the device 300 may include a pressure responsive valve that is configured to prevent respiratory gases from entering the lungs during at least a portion of a relaxation or decompression phase of CPR to create an intrathoracic vacuum that lowers pressure in the thorax in order to achieve: enhanced flow of blood to the heart of the particular individual, lowered intracranial pressures of the particular individual, and/or enhanced cerebral profusion pressures of the particular individual.



FIG. 5 shows an example treatment system 500 in accordance with the present disclosure. The system 500 may include a facial mask 502 and a valve system 504. The valve system 504 may be coupled to a controller 506. In turn, the controller 506 may be used to control an impedance level of the valve system 504. The level of impedance may be varied based on measurements of physiological parameters, or using a programmed schedule of changes. The system 500 may include a wide variety of sensors and/or measuring devices to measure any of a number physiological parameters. Such sensors or measuring devices may be integrated within or coupled to the valve system 504, the facial mask 502, etc., or may be separate depending on implementation. An example of sensors and/or measuring devices may include a pressure transducer for taking pressure measurements (such as intrathoracic pressures, intracranial pressures, intraocular pressures), a flow rate measuring device for measuring the flow rate of air into or out of the lungs, or a CO2 sensor for measuring expired CO2. Examples of other sensors or measuring devices include a heart rate sensor 508, a blood pressure sensor 510, and/or a temperature sensor 512. These sensors may also be coupled to the controller 506 so that measurements may be recorded. Further, it will be appreciated that other types of sensors and/or measuring devices may be coupled to the controller 506 and may be used to measure various physiological parameters, such as bispectral index, oxygen saturation and/or blood levels of O2, blood lactate, blood pH, tissue lactate, tissue pH, blood pressure, pressures within the heart, intrathoracic pressures, positive end expiratory pressure, respiratory rate, intracranial pressures, intraocular pressures, respiratory flow, oxygen delivery, temperature, end tidal CO2, tissue CO2, cardiac output, and many others.


In some cases, the controller 506 may be used to control the valve system 504, to control any sensors or measuring devices, to record measurements, and/or to perform any comparisons. Alternatively, a set of computers and/or controllers may be used in combination to perform such tasks. This equipment may have appropriate processors, display screens, input and output devices, entry devices, memory or databases, software, and the like needed to operate the system 500. A variety of devices may also be coupled to controller to cause the person to artificially inspire. For example, such devices may comprise a ventilator 514, an iron lung cuirass device 516 or a phrenic nerve stimulator 518. The ventilator 514 may be configured to create a negative intrathoracic pressure within the person, or may be a high frequency ventilator capable of generating oscillations at about 200 to about 2000 per minute. Other embodiments are possible. For example, in some embodiments, the device 300 of FIG. 3 and/or FIG. 4 may substitute for the ventilator 514.


In some embodiments, the system 500 may be configured for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure. To predict the likelihood of survival, the system 500 may include a module that is configured to calculate a bispectral index value of the particular individual during the CPR procedure. The module may be a bispectral index monitor that is configured to calculate the bispectral index value. The system 500 may also include a module that is configured to calculate a non-invasive measure of circulation of the particular individual during the CPR procedure. The module may be a capnography monitor that calculates the non-invasive measure of circulation. The system 500 may further include a module, such as a computing device processor, that is configured to output a prediction for the likelihood of survival based on the bispectral index value and the non-invasive measure of circulation.


In some embodiments, the system 500 may additionally include a module that is configured to obtain an electroencephalogram (EEG) signal of the particular individual during the CPR procedure. It is contemplated that any device or system that is configured to obtain an EEG signal may be used to acquire the same. For example, a dedicated EEG sensor may be used to obtain an EEG signal during the CPR procedure.


In some embodiments, the non-invasive measure of circulation may include a measure of concentration or partial pressure of carbon dioxide in respiratory gases of the particular individual. In some embodiments, the system 500 may additionally include a module, such as a computing device processor, that is configured to determine whether sedation is needed during and/or following the CPR procedure based on the bispectral index value and the non-invasive measure of circulation.



FIG. 6 shows an example computer system or device 600 in accordance with the present disclosure. An example of a computer system or device includes a medical device, a desktop computer, a laptop computer, a tablet computer, a personal data assistant, smartphone, and/or any other type of machine configured for performing calculations.


The computer system 600 may be wholly or at least partially incorporated as part of previously-described computing devices, such as the devices described above in connection with one or more of FIGS. 1-5. The example computer device 600 may be configured to perform and/or include instructions that, when executed, cause the computer system 600 to perform a method for predicting the likelihood of survival of a particular individual with favorable neurological function. The example computer device 600 may be configured to perform and/or include instructions that, when executed, cause the computer system 600 to implement or be incorporated within a computing system or apparatus configured for predicting the likelihood of survival of a particular individual with favorable neurological function. The example computer device 600 may be configured to perform and/or include instructions that, when executed, cause the computer system 600 to perform a method for determining whether sedation is needed while performing cardiopulmonary resuscitation. The example computer device 600 may be configured to perform and/or include instructions that, when executed, cause the computer system 600 to perform a method for determining whether sedation is needed after concluding cardiopulmonary resuscitation.


The computer device 600 is shown comprising hardware elements that may be electrically coupled via a bus 602 (or may otherwise be in communication, as appropriate). The hardware elements may include a processing unit with one or more processors 604, including without limitation one or more general-purpose processors and/or one or more special-purpose processors (such as digital signal processing chips, graphics acceleration processors, and/or the like); one or more input devices 606, which may include without limitation a remote control, a mouse, a keyboard, and/or the like; and one or more output devices 608, which may include without limitation a presentation device (e.g., television), a printer, and/or the like.


The computer system 600 may further include (and/or be in communication with) one or more non-transitory storage devices 610, which may comprise, without limitation, local and/or network accessible storage, and/or may include, without limitation, a disk drive, a drive array, an optical storage device, a solid-state storage device, such as a random access memory, and/or a read-only memory, which may be programmable, flash-updateable, and/or the like. Such storage devices may be configured to implement any appropriate data stores, including without limitation, various file systems, database structures, and/or the like.


The computer device 600 might also include a communications subsystem 612, which may include without limitation a modem, a network card (wireless or wired), an infrared communication device, a wireless communication device, and/or a chipset (such as a Bluetooth™ device, an 602.11 device, a WiFi device, a WiMax device, cellular communication facilities (e.g., GSM, WCDMA, LTE, etc.), and/or the like. The communications subsystem 612 may permit data to be exchanged with a network (such as the network described below, to name one example), other computer systems, and/or any other devices described herein. In many embodiments, the computer system 600 may further comprise a working memory 614, which may include a random access memory and/or a read-only memory device, as described above.


The computer device 600 also may comprise software elements, shown as being currently located within the working memory 614, including an operating system 616, device drivers, executable libraries, and/or other code, such as one or more application programs 618, which may comprise computer programs provided by various embodiments, and/or may be designed to implement methods, and/or configure systems, provided by other embodiments, as described herein. By way of example, one or more procedures described with respect to the method(s) discussed above, and/or system components might be implemented as code and/or instructions executable by a computer (and/or a processor within a computer); in an aspect, then, such code and/or instructions may be used to configure and/or adapt a general purpose computer (or other device) to perform one or more operations in accordance with the described methods.


A set of these instructions and/or code might be stored on a non-transitory computer-readable storage medium, such as the storage device(s) 610 described above. In some cases, the storage medium might be incorporated within a computer system, such as computer system 600. In other embodiments, the storage medium might be separate from a computer system (e.g., a removable medium, such as flash memory), and/or provided in an installation package, such that the storage medium may be used to program, configure, and/or adapt a general purpose computer with the instructions/code stored thereon. These instructions might take the form of executable code, which is executable by the computer device 600 and/or might take the form of source and/or installable code, which, upon compilation and/or installation on the computer system 600 (e.g., using any of a variety of generally available compilers, installation programs, compression/decompression utilities, etc.), then takes the form of executable code.


It will be apparent to those skilled in the art that substantial variations may be made in accordance with specific requirements. For example, customized hardware might also be used, and/or particular elements might be implemented in hardware, software (including portable software, such as applets, etc.), or both. Further, connection to other computing devices such as network input/output devices may be employed.


As mentioned above, in one aspect, some embodiments may employ a computer system (such as the computer device 600) to perform methods in accordance with various embodiments of the invention. According to a set of embodiments, some or all of the procedures of such methods are performed by the computer system 600 in response to processor 604 executing one or more sequences of one or more instructions (which might be incorporated into the operating system 616 and/or other code, such as an application program 618) contained in the working memory 614. Such instructions may be read into the working memory 614 from another computer-readable medium, such as one or more of the storage device(s) 610. Merely by way of example, execution of the sequences of instructions contained in the working memory 614 may cause the processor(s) 604 to perform one or more procedures of the methods described herein.


The terms “machine-readable medium” and “computer-readable medium,” as used herein, may refer to any medium that participates in providing data that causes a machine to operate in a specific fashion. In an embodiment implemented using the computer device 600, various computer-readable media might be involved in providing instructions/code to processor(s) 604 for execution and/or might be used to store and/or carry such instructions/code. In many implementations, a computer-readable medium is a physical and/or tangible storage medium. Such a medium may take the form of a non-volatile media or volatile media. Non-volatile media may include, for example, optical and/or magnetic disks, such as the storage device(s) 610. Volatile media may include, without limitation, dynamic memory, such as the working memory 614.


Example forms of physical and/or tangible computer-readable media may include a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any other optical medium, a RAM, a PROM, EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other medium from which a computer may read instructions and/or code.


Various forms of computer-readable media may be involved in carrying one or more sequences of one or more instructions to the processor(s) 604 for execution. By way of example, the instructions may initially be carried on a magnetic disk and/or optical disc of a remote computer. A remote computer might load the instructions into its dynamic memory and send the instructions as signals over a transmission medium to be received and/or executed by the computer system 600.


The communications subsystem 612 (and/or components thereof) generally will receive signals, and the bus 602 then might carry the signals (and/or the data, instructions, etc. carried by the signals) to the working memory 614, from which the processor(s) 604 retrieves and executes the instructions. The instructions received by the working memory 614 may optionally be stored on a non-transitory storage device 610 either before or after execution by the processor(s) 604.



FIG. 7 shows a method for predicting the likelihood of survival of a particular individual with favorable neurological function during a cardiopulmonary resuscitation (CPR) procedure. At block 710, an electroencephalogram (EEG) signal of the particular individual is obtained during the CPR procedure. At block 720, a non-invasive measure of circulation of the particular individual is obtained during the CPR procedure. At block 730, a prediction for the likelihood of survival of the particular individual with favorable neurological function is generated based on the EEG signal and the non-invasive measure of circulation.


In some embodiments, the method includes performing an intrathoracic pressure regulation procedure and/or a reperfusion injury protection procedure during the CPR procedure. It is contemplated that any of a number of such procedures may be performed during the CPR procedure such as, for example, performing a stutter CPR procedure, administering anesthetics at or during the CPR procedure, administering sodium nitroprusside in connection with the CPR procedure, and the like. Exemplary procedures and techniques are described in U.S. patent application Ser. Nos. 12/819,959, 13/026,459, 13/175,670, 13/554,986, 61/509,994, and 61/577,565, each of which are incorporated herein by reference.


In some embodiments, the prediction for the likelihood of survival of the particular individual with favorable neurological function may be generated based on a mathematical product of the EEG signal and the non-invasive measure of circulation. In some embodiments, the method may also include measuring the EEG signal using a bispectral index monitor. In some embodiments, the non-invasive measure of circulation of the particular individual may be obtained by monitoring the concentration or partial pressure of carbon dioxide in the respiratory gases of the particular individual. In other embodiments, however, other means may be used to obtain the non-invasive measure of circulation, such as diffuse correlation spectroscopy or impedance changes measured across the thorax or other body parts.


At block 740, the method may optionally include determining whether sedation is needed during and/or following the CPR procedure based on the EEG signal and the non-invasive measure of circulation. Here, when the EEG signal and/or a product of the EEG signal and a measure of circulation (e.g., end tidal CO2) reaches a threshold value during CPR, a care provider may recognize that it may be appropriate to deliver a low dose of a sedative (e.g., medazelam and the like) to prevent the patient from undergoing cardiac arrest or from becoming too agitated.


In some embodiments, the method may further include extracting respiratory gases from the airway of the particular individual to create an intrathoracic vacuum that lowers pressure in the thorax in order to achieve: enhancing the flow of blood to the heart of the particular individual, lowering intracranial pressures of the particular individual, and/or enhancing cerebral profusion pressures of the particular individual. Any device and/or system that is configured to create a vacuum and that may be coupled to an individual so as to create an intrathoracic vacuum may be used to lower pressure in the thorax and/or to artificially inspire, such as a ventilator, iron lung cuirass device, a phrenic nerve stimulator, and the like. In some embodiments, the method may additionally include at least periodically delivering a positive pressure breath to the particular individual to provide ventilation.


In some embodiments, the method may additionally include preventing air from at least temporarily entering the particular individual's lungs during at least a portion of a relaxation or decompression phase of the CPR procedure to create an intrathoracic vacuum that lowers pressure in the thorax in order to: enhance the flow of blood to the heart of the particular individual, lower the intracranial pressures of the particular individual, and/or enhance cerebral profusion pressures of the particular individual.



FIG. 8 shows a method for determining whether sedation is needed while performing cardiopulmonary resuscitation (CPR) on a particular individual. At block 810, an electroencephalogram (EEG) signal of the particular individual is obtained during a CPR procedure. At block 820, a non-invasive measure of circulation of the particular individual is obtained during the CPR procedure. At block 830, it is determined whether to sedate the individual while and/or after performing CPR based upon the product of the EEG signal and a non-invasive measure of circulation.


The methods, systems, and devices discussed above are examples. Various configurations may omit, substitute, or add various method steps or procedures, or system components as appropriate. For instance, in alternative configurations, the methods may be performed in an order different from that described, and/or various stages may be added, omitted, and/or combined. Also, features described with respect to certain configurations may be combined in various other configurations. Different aspects and elements of the configurations may be combined in a similar manner. Also, technology evolves and, thus, many of the elements are examples and do not limit the scope of the disclosure or claims.


Specific details are given in the description to provide a thorough understanding of example configurations (including implementations). However, configurations may be practiced without these specific details. For example, well-known circuits, processes, algorithms, structures, and techniques have been shown without unnecessary detail in order to avoid obscuring the configurations. This description provides example configurations only, and does not limit the scope, applicability, or configurations of the claims. Rather, the preceding description of the configurations will provide those skilled in the art with an enabling description for implementing described techniques. Various changes may be made in the function and arrangement of elements without departing from the spirit or scope of the disclosure.


Also, configurations may be described as a process which is depicted as a flow diagram or block diagram. Although each may describe the operations as a sequential process, many of the operations may be performed in parallel or concurrently. In addition, the order of the operations may be rearranged. A process may have additional steps not included in the figure. Furthermore, examples of the methods may be implemented by hardware, software, firmware, middleware, microcode, hardware description languages, or any combination thereof. When implemented in software, firmware, middleware, or microcode, the program code or code segments to perform the necessary tasks may be stored in a non-transitory computer-readable medium such as a storage medium. Processors may perform the described tasks.


Furthermore, the example embodiments described herein may be implemented as logical operations in a computing device in a networked computing system environment. The logical operations may be implemented as: (i) a sequence of computer implemented instructions, steps, or program modules running on a computing device; and (ii) interconnected logic or hardware modules running within a computing device.


Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims
  • 1. A medical system for assisting a rescuer during a cardiopulmonary resuscitation (CPR) procedure, comprising: one or more electroencephalogram (EEG) sensors configured to be used during CPR to measure one or more EEG signals of an individual during the CPR procedure;one or more non-invasive carbon dioxide (CO2) sensors configured to be used during CPR to measure CO2 data of the individual during the CPR procedure;a memory;a processor communicatively coupled to the memory, the one or more EEG sensors and the one or more non-invasive CO2 sensors, and the processor being configured to be used during CPR to: receive, store in the memory, and process the one or more EEG signals during the CPR procedure,based on the received and processed EEG signals, calculate a first value indicative of brain activity of the individual during the CPR procedure, comprising performing at least one mathematical transformation on at least one EEG waveform associated with the received and processed EEG signals,receive, store in the memory, and process the CO2 data during the CPR procedure,based on the received and processed CO2 data, calculate a second value indicative of circulation in the individual during the CPR procedure, andbased on the calculated first value and the calculated second value, generate an index of a likelihood of neurologically intact survival of the individual after the CPR procedure, comprising performing at least one mathematical calculation including the first value and the second value; andan output device communicatively coupled to the processor and configured to display the generated index of the likelihood of neurologically intact survival of the individual after the CPR procedure to provide the rescuer with an indication of whether to continue the CPR procedure.
  • 2. The medical system of claim 1, wherein the processor is configured to determine, over a predetermined period of time, whether there is a change in the first value and the second value.
  • 3. The medical system of claim 1, wherein the one or more EEG sensors configured to measure the one or more EEG signals includes a bispectral index monitor.
  • 4. The medical system of claim 1, wherein the first value includes a bispectral index value, wherein the bispectral index value is a dimensionless number calculated by the processor via a fast Fourier transform (FFT) and computation of a ratio between higher frequency waves and lower frequency waves in the one or more measured EEG signals.
  • 5. The medical system of claim 4, wherein the processor is configured to calculate a suppression ratio on the one or more measured EEG signals, wherein the suppression ratio estimates a percentage of isoelectric periods during 63 second epochs in the one or more measured EEG signals.
  • 6. The medical system of claim 5, wherein the suppression ratio is presented as a value from 0% to 100%, and wherein the suppression ratio is combined with the bispectral index value to generate an overall bispectral index value.
  • 7. The medical system of claim 4, wherein a bispectral index value of at least 40 during the CPR procedure provides a positive indication of the likelihood of neurologically intact survival of the individual.
  • 8. The medical system of claim 7, wherein the output device includes a display that provides feedback to encourage the rescuer to continue the CPR procedure when the index indicative of the likelihood of neurologically intact survival indicates the individual is likely to survive with intact neurological functions.
  • 9. The medical system of claim 7, wherein the one or more non-invasive CO2 sensors comprises an end tidal CO2 (ETCO2) sensor.
  • 10. The medical system of claim 9, wherein the ETCO2 sensor measures an ETCO2 value, and wherein an ETCO2 value of at least 20 mmHg (millimeters of mercury) during the CPR procedure provides a positive indication of the likelihood of neurologically intact survival of the individual.
  • 11. The medical system of claim 10, wherein the ETCO2 sensor measures an ETCO2 value, and wherein the index indicative of the likelihood of neurologically intact survival is calculated by computing a product of the bispectral index value and the ETCO2 value.
  • 12. The medical system of claim 11, wherein the index is compared to a threshold to determine the likelihood of neurologically intact survival of the individual, wherein the threshold to determine neurologically intact survival is at least 800.
  • 13. The medical system of claim 1, wherein the one or more non-invasive CO2 sensors comprises an end tidal CO2 (ETCO2) sensor.
  • 14. The medical system of claim 1, wherein the one or more EEG sensors is configured to measure the brain activity via somatosensory evoked potential.
  • 15. The medical system of claim 1, wherein the output device is configured to display, in real-time, a graphical representation of electrical potentials in brain area underlying the one or more EEG sensors.
  • 16. The medical system of claim 1, wherein the processor is configured to perform the at least one mathematical calculation comprising calculating a product of the first value and the second value.
  • 17. The medical system of claim 1, wherein the one or more non-invasive CO2 sensors comprise at least one end tidal CO2 (ETCO2) sensor, and wherein the CO2 data comprises ETCO2 data.
  • 18. The medical system of claim 1, wherein the CO2 data relates to a concentration or a partial pressure of CO2 in respiratory gases of the patient.
  • 19. The medical system of claim 1, wherein the system comprises at least one device configured for use to enhance blood flow during CPR.
  • 20. The medical system of claim 19, wherein the processor is communicatively coupled to the at least one device during CPR.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/262,423, filed Apr. 25, 2014, which claims priority to U.S. Provisional Patent Application No. 61/816,064 filed Apr. 25, 2013, entitled “SYSTEMS AND METHODS TO PREDICT THE CHANCES OF NEUROLOGICALLY INTACT SURVIVAL WHILE PERFORMING CPR,” the entire disclosures of which are hereby incorporated by reference, for all purposes, as if fully set forth herein.

US Referenced Citations (364)
Number Name Date Kind
1848232 Swope et al. Mar 1932 A
2325049 Frye et al. Jul 1943 A
2774346 Halliburton Dec 1956 A
2854982 Pagano Oct 1958 A
2904898 Marsden Sep 1959 A
3009266 Brook Nov 1961 A
3049811 Ruben Aug 1962 A
3068590 Padellford Dec 1962 A
3077884 Batrow et al. Feb 1963 A
3191596 Bird et al. Jun 1965 A
3199225 Robertson et al. Aug 1965 A
3209469 James Oct 1965 A
3216413 Arecheta Mota Nov 1965 A
3274705 Breakspear Sep 1966 A
3276147 Padellford Oct 1966 A
3307541 Hewson Mar 1967 A
3357426 Cohen Dec 1967 A
3420232 Bickford Jan 1969 A
3459216 Bloom et al. Aug 1969 A
3467092 Bird et al. Sep 1969 A
3509899 Hewson May 1970 A
3515163 Freeman Jun 1970 A
3523529 Kissen Aug 1970 A
3552390 Muller Jan 1971 A
3562924 Baerman et al. Feb 1971 A
3562925 Baermann et al. Feb 1971 A
3568333 Clark Mar 1971 A
3662751 Barkalow et al. May 1972 A
3669108 Sundblom et al. Jun 1972 A
3734100 Walker et al. May 1973 A
3739776 Bird et al. Jun 1973 A
3794043 McGinnis Feb 1974 A
3815606 Mazai Jun 1974 A
3834383 Weigl et al. Sep 1974 A
3872609 Smrcka Mar 1975 A
3874093 Garbe Apr 1975 A
3875626 Tysk et al. Apr 1975 A
3933171 Hay Jan 1976 A
3949388 Fuller Apr 1976 A
3973564 Carden Aug 1976 A
3981398 Boshoff Sep 1976 A
3993059 Sjostrand Nov 1976 A
4037595 Elam Jul 1977 A
4041943 Miller Aug 1977 A
4054134 Kritzer Oct 1977 A
4077400 Harrigan Mar 1978 A
4077404 Elam Mar 1978 A
4095590 Harrigan Jun 1978 A
4166458 Harrigan Sep 1979 A
4193506 Jinotti Mar 1980 A
4198963 Barkalow et al. Apr 1980 A
4226233 Kritzer Oct 1980 A
4237872 Harrigan Dec 1980 A
4240419 Fulong et al. Dec 1980 A
4259951 Chernack et al. Apr 1981 A
4262667 Grant Apr 1981 A
4297999 Kitrell Nov 1981 A
4298023 McGinnis Nov 1981 A
4316458 Hammerton-Fraser Feb 1982 A
4320754 Watson et al. Mar 1982 A
4326507 Barkalow Apr 1982 A
4331426 Sweeney May 1982 A
4349015 Aleferness Sep 1982 A
4360345 Hon Nov 1982 A
4397306 Weisfeldt et al. Aug 1983 A
4424806 Newman et al. Jan 1984 A
4446864 Watson et al. May 1984 A
4448192 Stawitcke et al. May 1984 A
4449526 Elam May 1984 A
4481938 Lindley Nov 1984 A
4501582 Schulz Feb 1985 A
4513737 Mabuchi Apr 1985 A
4519388 Schwanbom et al. May 1985 A
4520811 White et al. Jun 1985 A
4533137 Sonne Aug 1985 A
4543951 Phuc Oct 1985 A
4588383 Parker et al. May 1986 A
4598706 Darowski et al. Jul 1986 A
4601465 Roy Jul 1986 A
4602653 Ruiz-Vela et al. Jul 1986 A
4637386 Baum Jan 1987 A
4738249 Linman et al. Apr 1988 A
4774941 Cook Oct 1988 A
4797104 Laerdal et al. Jan 1989 A
4807638 Sramek Feb 1989 A
4809683 Hanson Mar 1989 A
4827935 Geddes et al. May 1989 A
4828501 Ingenito et al. May 1989 A
4863385 Pierce Sep 1989 A
4881527 Lerman Nov 1989 A
4898166 Rose et al. Feb 1990 A
4898167 Pierce et al. Feb 1990 A
4928674 Halperin et al. May 1990 A
4932879 Ingenito et al. Jun 1990 A
4971042 Lerman Nov 1990 A
4971051 Toffolon Nov 1990 A
4984987 Brault et al. Jan 1991 A
5014698 Cohen May 1991 A
5016627 Dahrendorf et al. May 1991 A
5029580 Radford et al. Jul 1991 A
5042500 Norlien et al. Aug 1991 A
5050593 Poon Sep 1991 A
5056505 Warwick et al. Oct 1991 A
5083559 Brault et al. Jan 1992 A
5109840 Daleiden May 1992 A
5119825 Huhn Jun 1992 A
5150291 Cummings et al. Sep 1992 A
5163424 Kohnke Nov 1992 A
5183038 Hoffman et al. Feb 1993 A
5184620 Cudahy et al. Feb 1993 A
5188098 Hoffman et al. Feb 1993 A
5193529 Labaere Mar 1993 A
5193544 Jaffe Mar 1993 A
5195896 Sweeney et al. Mar 1993 A
5217006 McCulloch Jun 1993 A
5231086 Sollevi Jul 1993 A
5235970 Augustine Aug 1993 A
5238409 Brault et al. Aug 1993 A
5239988 Swanson et al. Aug 1993 A
5263476 Henson Nov 1993 A
5265595 Rudolph Nov 1993 A
5282463 Hammersley Feb 1994 A
5295481 Geeham Mar 1994 A
5301667 McGrail et al. Apr 1994 A
5305743 Brain Apr 1994 A
5306293 Zacouto Apr 1994 A
5312259 Flynn May 1994 A
5313938 Garfield et al. May 1994 A
5316907 Lurie et al. May 1994 A
5330514 Egelandsdal et al. Jul 1994 A
5335654 Rapoport Aug 1994 A
5353788 Miles Oct 1994 A
5355879 Brain Oct 1994 A
5359998 Lloyd Nov 1994 A
5366231 Hung Nov 1994 A
5377671 Biondi et al. Jan 1995 A
5383786 Kohnke Jan 1995 A
5388575 Taube Feb 1995 A
5392774 Sato Feb 1995 A
5395399 Rosenwald Mar 1995 A
5397237 Dhont et al. Mar 1995 A
5398714 Price Mar 1995 A
5413110 Cummings et al. May 1995 A
5423685 Adamson et al. Jun 1995 A
5423772 Lurie et al. Jun 1995 A
5425742 Joy Jun 1995 A
5437272 Fuhrman Aug 1995 A
5452715 Boussignac Sep 1995 A
5454779 Lurie et al. Oct 1995 A
5458562 Cooper Oct 1995 A
5468151 Egelandsdal et al. Nov 1995 A
5474533 Ward et al. Dec 1995 A
5477860 Essen-Moller Dec 1995 A
5490820 Schock et al. Feb 1996 A
5492115 Abramov et al. Feb 1996 A
5492116 Scarberry et al. Feb 1996 A
5496257 Kelly Mar 1996 A
5517986 Starr et al. May 1996 A
5544648 Fischer, Jr. Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5549581 Lurie et al. Aug 1996 A
5551420 Lurie et al. Sep 1996 A
5557049 Ratner Sep 1996 A
5580255 Flynn Dec 1996 A
5582182 Hillsman Dec 1996 A
5588422 Lurie et al. Dec 1996 A
5593306 Kohnke Jan 1997 A
5614490 Przybelski Mar 1997 A
5617844 King Apr 1997 A
5618665 Lurie et al. Apr 1997 A
5619665 Emma Apr 1997 A
5628305 Melker May 1997 A
5632298 Artinian May 1997 A
5643231 Lurie et al. Jul 1997 A
5645522 Lurie et al. Jul 1997 A
5657751 Karr, Jr. Aug 1997 A
5678535 Dimarco Oct 1997 A
5685298 Idris Nov 1997 A
5692498 Lurie et al. Dec 1997 A
5697364 Chua et al. Dec 1997 A
5701883 Hete et al. Dec 1997 A
5701889 Danon Dec 1997 A
5704346 Inoue Jan 1998 A
5720282 Wright Feb 1998 A
5722963 Lurie et al. Mar 1998 A
5730122 Lurie Mar 1998 A
5735876 Kroll et al. Apr 1998 A
5738637 Kelly et al. Apr 1998 A
5743864 Baldwin, II Apr 1998 A
5782883 Kroll et al. Jul 1998 A
5794615 Estes Aug 1998 A
5806512 Abramov et al. Sep 1998 A
5814086 Hirschberg et al. Sep 1998 A
5817997 Wernig Oct 1998 A
5823185 Chang Oct 1998 A
5823787 Gonzalez et al. Oct 1998 A
5827893 Lurie et al. Oct 1998 A
5832920 Field Nov 1998 A
5853292 Eggert et al. Dec 1998 A
5881725 Hoffman et al. Mar 1999 A
5885084 Pastrick et al. Mar 1999 A
5891062 Schock et al. Apr 1999 A
5896857 Hely et al. Apr 1999 A
5916165 Duchon et al. Jun 1999 A
5919210 Lurie et al. Jul 1999 A
5927273 Federowicz et al. Jul 1999 A
5937853 Strom Aug 1999 A
5941710 Lampotang et al. Aug 1999 A
5975081 Hood et al. Nov 1999 A
5977091 Nieman et al. Nov 1999 A
5984909 Lurie et al. Nov 1999 A
5988166 Hayek Nov 1999 A
6001085 Lurie et al. Dec 1999 A
6010470 Albery et al. Jan 2000 A
6029667 Lurie Feb 2000 A
6042532 Freed et al. Mar 2000 A
6062219 Lurie et al. May 2000 A
6078834 Lurie et al. Jun 2000 A
6086582 Altman et al. Jul 2000 A
6123074 Hete et al. Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6155257 Lurie et al. Dec 2000 A
6155647 Albecker, III Dec 2000 A
6165105 Boutellier et al. Dec 2000 A
6167879 Sievers et al. Jan 2001 B1
6174295 Cantrell et al. Jan 2001 B1
6176237 Wunderlich et al. Jan 2001 B1
6193519 Eggert et al. Feb 2001 B1
6209540 Sugiura et al. Apr 2001 B1
6224562 Lurie et al. May 2001 B1
6234916 Carusillo et al. May 2001 B1
6234985 Lurie et al. May 2001 B1
6277107 Lurie et al. Aug 2001 B1
6296490 Bowden Oct 2001 B1
6312399 Lurie et al. Nov 2001 B1
6334441 Zowtiak et al. Jan 2002 B1
6356785 Snyder et al. Mar 2002 B1
6374827 Bowden et al. Apr 2002 B1
6390996 Halperin et al. May 2002 B1
6425393 Lurie et al. Jul 2002 B1
6439228 Hete et al. Aug 2002 B1
6459933 Lurie et al. Oct 2002 B1
6463327 Lurie et al. Oct 2002 B1
6486206 Lurie Nov 2002 B1
6526970 Devries et al. Mar 2003 B2
6526973 Lurie et al. Mar 2003 B1
6536432 Truschel Mar 2003 B2
6544172 Toeppen-Sprigg Apr 2003 B2
6555057 Barbut et al. Apr 2003 B1
6575166 Boussignac Jun 2003 B2
6578574 Kohnke Jun 2003 B1
6584973 Biondi et al. Jul 2003 B1
6587726 Lurie et al. Jul 2003 B2
6595213 Bennarsten Jul 2003 B2
6604523 Lurie et al. Aug 2003 B2
6622274 Lee et al. Sep 2003 B1
6631716 Robinson et al. Oct 2003 B1
6648832 Orr et al. Nov 2003 B2
6656166 Lurie et al. Dec 2003 B2
6662032 Gavish et al. Dec 2003 B1
6676613 Cantrell et al. Jan 2004 B2
6729334 Baran May 2004 B1
6758217 Younes Jul 2004 B1
6776156 Lurie et al. Aug 2004 B2
6780017 Pastrick et al. Aug 2004 B2
6792947 Bowden Sep 2004 B1
6863656 Lurie Mar 2005 B2
6877511 Devries et al. Apr 2005 B2
6935336 Lurie et al. Aug 2005 B2
6938618 Lurie et al. Sep 2005 B2
6986349 Lurie Jan 2006 B2
6988499 Holt et al. Jan 2006 B2
7011622 Kuyava et al. Mar 2006 B2
7032596 Thompson et al. Apr 2006 B2
7040321 Gobel et al. May 2006 B2
7044128 Lurie et al. May 2006 B2
7066173 Banner et al. Jun 2006 B2
7000610 Bennarsten et al. Jul 2006 B2
7082945 Lurie Aug 2006 B2
7096866 Be'Eri et al. Aug 2006 B2
7174891 Lurie et al. Feb 2007 B2
7185649 Lurie Mar 2007 B2
7188622 Martin et al. Mar 2007 B2
7195012 Lurie Mar 2007 B2
7195013 Lurie Mar 2007 B2
7204251 Lurie Apr 2007 B2
7210480 Lurie et al. May 2007 B2
7220235 Geheb et al. May 2007 B2
7226427 Steen Jun 2007 B2
7244225 Loeb et al. Jul 2007 B2
7275542 Lurie et al. Oct 2007 B2
7311668 Lurie Dec 2007 B2
7469700 Baran Dec 2008 B2
7487773 Li et al. Feb 2009 B2
7500481 Delache et al. Mar 2009 B2
7594508 Doyle Sep 2009 B2
7618383 Palmer et al. Nov 2009 B2
7630762 Sullivan et al. Dec 2009 B2
7645247 Paradis Jan 2010 B2
7650181 Freeman Jan 2010 B2
7682312 Lurie Mar 2010 B2
7758623 Dzeng et al. Jul 2010 B2
7766011 Lurie Aug 2010 B2
7793659 Breen Sep 2010 B2
7836881 Lurie et al. Nov 2010 B2
7854759 Shirley Dec 2010 B2
7899526 Benditt et al. Mar 2011 B2
8011367 Lurie et al. Sep 2011 B2
8108204 Gabrilovich et al. Jan 2012 B2
8151790 Lurie et al. Apr 2012 B2
8161970 Cewers Apr 2012 B2
8210176 Metzger et al. Jul 2012 B2
8287474 Koenig et al. Oct 2012 B1
8343081 Walker Jan 2013 B2
8388682 Hendricksen et al. Mar 2013 B2
8408204 Lurie Apr 2013 B2
8439960 Burnett et al. May 2013 B2
8567392 Rumph et al. Oct 2013 B2
8702633 Voss et al. Apr 2014 B2
8755902 Lurie et al. Jun 2014 B2
8939922 Strand et al. Jan 2015 B2
8960195 Lehman Feb 2015 B2
8967144 Lurie et al. Mar 2015 B2
9198826 Banville et al. Dec 2015 B2
9238115 Homuth Jan 2016 B2
9649460 Robitaille et al. May 2017 B2
9687176 Hemnes et al. Jun 2017 B2
9724266 Voss et al. Aug 2017 B2
20010047140 Freeman Nov 2001 A1
20020007832 Doherty Jan 2002 A1
20020104544 Ogushi et al. Aug 2002 A1
20030037784 Lurie Feb 2003 A1
20030062040 Lurie et al. Apr 2003 A1
20030062041 Keith et al. Apr 2003 A1
20030144699 Freeman Jul 2003 A1
20030192547 Lurie et al. Oct 2003 A1
20040058305 Lurie et al. Mar 2004 A1
20040200473 Lurie et al. Oct 2004 A1
20040243017 Causevic Dec 2004 A1
20050016534 Ost Jan 2005 A1
20050182338 Huiku Aug 2005 A1
20060270952 Freeman et al. Nov 2006 A1
20070017523 Be-Eri et al. Jan 2007 A1
20070021683 Benditt et al. Jan 2007 A1
20070167694 Causevic Jul 2007 A1
20070199566 Be'Eri Aug 2007 A1
20070277826 Lurie Dec 2007 A1
20080047555 Lurie et al. Feb 2008 A1
20080097385 Vinten-Johnasen et al. Apr 2008 A1
20080255482 Lurie Oct 2008 A1
20090062701 Yannopoulos et al. Mar 2009 A1
20090124867 Hirsh May 2009 A1
20090277447 Voss et al. Nov 2009 A1
20090292210 Culver Nov 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20100000535 Wickham et al. Jan 2010 A1
20100179442 Lurie Jul 2010 A1
20110105930 Thiagarajan May 2011 A1
20110297147 Lick et al. Dec 2011 A1
20120253163 Afanasewicz Oct 2012 A1
20120330199 Lurie et al. Dec 2012 A1
20130231593 Yannopoulos et al. Sep 2013 A1
20140048061 Yannopoulos et al. Feb 2014 A1
20140276549 Osorio Sep 2014 A1
Foreign Referenced Citations (46)
Number Date Country
1487792 Oct 1992 AU
60539 Nov 1994 AU
687942 May 1995 AU
668771 Aug 1963 CA
2077608 Mar 1993 CA
2214887 Jul 2008 CA
1183731 Jun 1998 CN
2453490 May 1975 DE
4308493 Sep 1994 DE
0029352 May 1981 EP
0139363 May 1985 EP
0245142 Nov 1987 EP
0367285 May 1990 EP
0411714 Feb 1991 EP
0509773 Oct 1992 EP
0560440 Sep 1993 EP
0623033 Nov 1994 EP
1344862 Jan 1974 GB
1465127 Feb 1977 GB
2117250 Oct 1983 GB
2139099 Nov 1984 GB
2005000675 Jan 2005 JP
2006524543 Nov 2006 JP
2007504859 Mar 2007 JP
9005518 May 1990 WO
9302439 Feb 1993 WO
9321982 Nov 1993 WO
9426229 Nov 1994 WO
9513108 May 1995 WO
9528193 Oct 1995 WO
9628215 Sep 1996 WO
9820938 May 1998 WO
9947197 Sep 1999 WO
9963926 Dec 1999 WO
0020061 Apr 2000 WO
0102049 Jan 2001 WO
0170092 Sep 2001 WO
0170332 Sep 2001 WO
02092169 Nov 2002 WO
2004096109 Nov 2004 WO
2006088373 Aug 2006 WO
2008147229 Dec 2008 WO
2010044034 Apr 2010 WO
2013064888 May 2013 WO
2013094695 Jun 2013 WO
2014026193 Feb 2014 WO
Non-Patent Literature Citations (52)
Entry
US 5,584,866 A, 12/1996, Kroll et al. (withdrawn)
“Usefulness of the bispectral index during cardiopulmonary resuscitation”, Jung et al, Korean Anesthesiology, Jan. 2013, 64(1): 69-72. (Year: 2013).
Advanced Circulatory Systems, Inc. (Jan. 2014), Emerging Data: The Resuscitation Outcomes Consortium (ROC) PRIMED Study on the Efficacy of the ITD (#49-0864-000,06) [Brochure], Roseville, MN:Advanced Circulatory Systems Inc. 2 pages.
Advanced Circulatory Systems, Inc. (Jan. 2013), Emerging Data: The Resuscitation Outcomes Consortium (ROC) PRIMED Study on the Efficacy of the ITD (#49-0864-000,05) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (Mar. 2012), Benefits of the ResQPOD® Based Upon the ROC PRIMED Study (#49-0864-000-04) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (Jan. 2012), Benefits of the ResQPOD® Based Upon the ROC PRIMED Study (#49-0864-000-03) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (Aug. 2011), Early Intervention is Life-Saving in Cardiac Arrest (#49-0864-000,01) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (Aug. 2011), Early Intervention is Life-Saving in Cardiac Arrest (#49-0864-000,02) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2013), ResQPOD® More than a Heartbeat (#49-0336-000,08) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2011), ResQPOD® ITD:Strengthening the Chain of Survival (#49-0336-000,06) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2010), ResQPOD® Impedance Threshold Device:Strengthening the Chain of Survival (#49-0336-000,05) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2010), ResQPOD® ITD:Strengthening the Chain of Survival (#49-0336-000,04) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2009), ResQPOD® ITD:Strengthening the Chain of Survival (#49-0336-000,03) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2006), ResQPOD® Circulatory Enhancer: Strengthening the Chain of Survival (#49-0336-000,02) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2006), ResQPOD® Circulatory Enhancer: Strengthening the Chain of Survival (#49-0336-000,01) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2011), ResQPOD® Perfusion on Demand: ResQPOD® Impedance Threshold Device (#49-0324-001,05) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2011), ResQPOD® Perfusion on Demand: ResQPOD® Impedance Threshold Device (#49-0324-001,04) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2010), ResQPOD® Perfusion on Demand: ResQPOD® Impedance Threshold Device (#49-0324-001,03) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2009), ResQPOD® Perfusion on Demand: ResQPOD® Impedance Threshold Device (#49-0324-001,02) [Brochure], Roseville, MN:Advanced Circulatory Systems, Inc. 2 pages.
Advanced Circulatory Systems, Inc. (2005). Introducing ResQPOD® (#49-0324-000,01) [Brochure], Roseville, MN: Advanced Circulatory Systems, Inc. 2 pages.
Ambu International NS Directions for use of Ambu® CarbioPump™. Sep. 1992, 8 pages.
Aufderheide, T., et al., “Standard cardiopulmonary resuscitation versus actice compression-decompression cardiopulmonary resuscitation with augmentation of negative intra-thoracic pressure for out-of-hospital cardiac: A randomized trial,” 2011, Lancet, vol. 377, pp. 301-311.
Aufderheide, T. et al., “Hyperventilation-Induced Hypotension During Cardiopulmonary Resuscitation,” Circulation Apr. 27, 2004:109(16):1960-5.
Babbs, Charles F. MD. PhD., CPR Techniques that Combine Chest and Abdominal Compression and Decompression: Hemodynamic Insights from a Spreadsheet Model, Circulation, 1999, pp. 2146-2152.
Christenson, J.M. “Abdominal Compressions During CPR: Hemodynamic Effects of Alterin Timing and Force”, The Journal of Emergency Medicine, vol. 10, pp. 257-266, 1992.
Cohen, Todd J. et al. “Active Compression-Decompression Resuscitation: A Novel Method of Cardiopulmonary Resuscitation”, Department of Medicine and the Cardiovascular Research Institute, UC San Francisco, American Heart Journal 124(5):1145-1150, 1992.
Cohen, Todd J. et al., “Active Compression-Decompression: A New Method of Cardiopulmonary Resuscitation”, JAMA 267(21): 2916-2923 (Jun. 3, 1992).
Dupuis, Yvon G., Ventilators—Theory and Clinical Application, pp. 447-448, 481, 496: Jan. 1986, Mosby Company.
Geddes, L.A. et al., “Inspiration Produced by Bilateral Electromagnetic, Cervical Phrenic Nerve Stimulation in Man,” IEEE Transactions on Biomedical Engineering 38(9): 1047-1048 (Oct. 1991).
Geddes, L.A. et al., “Optimum Stimulus Frequency for Contracting the Inspiratory Muscles with Chest Surface Electrodes to Produce Artificial Respiration,” Annals of Biomedical Engineering 18:103-108 (1990).
Geddes, L.A. et al., “Electrically Produced Artificial Ventilation,” Medical Instrumentation, vol. 22(5); 263-271, 1988.
Geddes, L.A., “Electroventilation—AMissed Opportunity?”, Biomedical Instrumentation & Technology, Jul./Aug. 1998, pp. 401-414.
Glenn, William W.L. et al., Diaphragm Pacing by Electrical Stimulation of the Phrenic Nervce, Neurosurgery 17 (6):974-984 (1985).
Glenn, William W.L., et al., “Twenty Years of Experience in Phrenic Nerve Stimulation to Pace the Diaphragm,” Pace 9:78-784 (Nov./Dec. 1986, Part 1).
Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiac Care, JAMA, 1992:268; 2172-2177.
Kotze, P.L. et al., “Diaphgragm Pacing in the Treatment of Ventilatory Failure,” San. Deel 68:223-224 (Aug. 17, 1995).
Laghi, Franco et al., “Comparison of Magnetic and Electrical Phrenic Nerve Stimulation in Assessment of Diaphgragmantic Contractility,” American Physiological Society, pp. 1731-1742 (1996).
Lindner, Karl H. et al., “Effects of Active Compression-Decompression Resuscitationon Myocardialand Cerebral Blood Flow in Pigs,” Department of Anesthesiology and Critical Care Medicine, University of Ulm, Germany, Circulation 88 (3):1254-1263, (Oct. 7, 1993).
Lurie, K. et al., “Comparison of a 10-Breaths-Per-Minute Versus a 2-Breaths-Per-Minute Strategy During Cardiopulmonary Resuscitation in a Porcine Model of Cardiac Arrest,” Respiratory Care 2008, vol. 53, No. 7, pp. 862-870.
Lurie, K. et al., “Regulated to Death: The Matter of Informed Consent for Human Experimentation in Emergency Resuscitation Research,” Cardiac Arrhythmia Center at the University of Minnesota, PACE 18:1443-1447 (Jul. 1995).
Michigan Instruments, Inc. Thumper 1007CC Continuous Compression Cardiopulmonary Resuscitation System, obtained online Jul. 15, 2006 at http://www.michiganinstruments.com/resus-thumper.htm, 2 pages.
Mushin W.W. et al., “Automatic Ventilation of the Lungs—The Lewis-Leigh Inflating Valve,” Blackwell Scientific, Oxford, GB, p. 838.
Schultz, J. et al., “Sodium Nitroprusside Enhanced Cardiopulmonary Resuscitation (SNPeCPR) Improsed Vitalorgan Perfusion Pressures and Carotid Blook Flow in a Porcine Model of Cardiac Arrest,” Resuscitation, 2012, vol. 83, pp. 374-377.
Segal, N. et al., “Ischemic Postconditioning at the Initiation of Cardiopulmonary Resuscitation Facilitates Cardiac and Cerebral Recovery After Prolonged Untreated Ventricular Fibrillation,” Resuscitation, Apr. 18, 2012, 7 pages.
Shapiro et al., “Neurosurgical Anesthesia and Intracranial Hypertension” Chapter 54, Anesthesia; 3rd Edition; Ed. Ron Miller 1990.
Yannopoulos, D., et al., “Controlled Pauses at the Initiation of Sodium Nitroprussdi E-Enhanced Cardiopulmonary Resuscitation Facilitate Neurological and Cardiac Recover After 15 Minutes of Untreated Ventricular Fibrillation,” Critical Care Medicine, 2012, vol. 40, No. 5, 8 pages.
Yannopoulos, Demetris et al., “Intrathoracic Pressure Regulator During Continuous-Chest Compression Advanced Cardia Resuscitation Improves Vital Organ Perfusion Pressures in a Porcine Model of Cardiac Arrest,” Circulation, 2005, pp. 803-811.
Yannopoulos, D., et al., “Intrathoracic Pressure Regulation Improves 24 Hour Survival in a Porcine Model of Hypovolemic Shock,” Amesthesia & Analgesia. ITPR and Survival in Hypovolemic Shock, vol. 104, No. 1, Jan. 2007, pp. 157-162.
Yannopoulos, D. et al., “Intrathoracic Pressure Regulation Improves Vital Organ Perfusion Pressures in Normovolemic and Hypovolemic Pigs,” Resuscitation, 2006, 70, pp. 445-453.
Yannopoulos, D., et al., “Sodium Nitroprusside Enhanced Cardiopulmonary Resuscitation Improves Survival with Good Neurological Function in a Porcine Model of Prolonged Cardiac Arrest,” Critical Care Medicine 2011, vol. 39, No. 6, 6 pages.
Zhao, et al., Inhibitiion of a Myocardial Injury by Ischemic Postconditioning During RePerfusion:Comparison with Ischemic Preconditioning, Am. J. Physiol Heart Circ 285: H579-H588 (2003).
Zoll Autopulse Non-Invasive Cardiac Support Pump, obtained online on 715106 at http://www.zoll.com/product.aspx?id=84, 4 pages.
Related Publications (1)
Number Date Country
20180158546 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
61816064 Apr 2013 US
Continuations (1)
Number Date Country
Parent 14262423 Apr 2014 US
Child 15723751 US