Systems and methods utilizing turbine compressor discharge for hydrostatic manifold purge

Information

  • Patent Grant
  • 11898504
  • Patent Number
    11,898,504
  • Date Filed
    Wednesday, December 23, 2020
    4 years ago
  • Date Issued
    Tuesday, February 13, 2024
    11 months ago
Abstract
Embodiments of systems and methods for air recovery are disclosed. The diverted pressurized air may be used to supply a hydrostatic purge to the unutilized portion of a turbine engine fuel manifold circuit to ensure that exhaust gases from the utilized side of the fuel manifold circuit do not enter the portion of the alternative fuel manifold circuit rack. The assembly used to remove compressor section pressurized air may include a flow control orifice, line pressure measuring instrumentation, non-return valves, isolation valves and hard stainless-steel tubing assemblies. In some embodiments, a turbine compressor section diverter system may include a small air receiver used to increase the volume of air supplying the manifold to aid in potential pressure and flow disruptions from a turbine engine compressor section.
Description
TECHNICAL FIELD

The application relates generally to that of turbine engines having dual fuel manifold circuits and associated methods. More specifically, this application relates to dual fuel, dual shaft turbine engines for the high pressure pumping and hydraulic fracturing market, as well as power generation, manufacturing, healthcare, and agricultural machinery markets.


BACKGROUND

Traditionally turbine engines operate from a single fuel source; that fuel source being what is known as #2 diesel or gaseous fuels such as natural gas. The turbine industry recently has developed turbines that may accept dual fuels to combat redundancy and dependency of a single fuel source to be able to operate and allow for all relating operations to be carried out uninterrupted. In most dual fuel turbine engines, the ability to perform fuel switching is carried out by the need to shut down the engine and replace the fuel manifold with one designed for the desired fuel source. An example of this is the time consuming removal of a gaseous fuel manifold pipework and components and the re-installation of a liquid fuel manifold; this is an occurrence in some turbine engines supplied by manufacturers such as General Electric (GE) or Siemens. The issues involved with a turbine fuel manifold replacement include time consumption, the need for highly skilled personnel, specialized tooling, and the potential of disruption to other components in the turbine when performing the switch.


The detrimental factors involved with these fuel switching procedures has caused many turbine engine manufactures to develop turbine engines that may house a single distribution manifold and be supplied from two fuel sources; one being liquid fuel and the other being gaseous fuel respectively. This removed many of the problems associated with fuel switching on turbine engines and even allowed for fuel switching to be performed “on the fly”. One condition that is still required to operate and perform such functions is the supply of a hydrostatic purge to the unused side of the turbine fuel manifold, thereby stopping exhaust gases from the “fuel in use” to enter the dormant fuel manifold and preventing damage and dirt ingress to components and pipework. The conventional way in which this hydrostatic purge is being performed is from an externally mounted air compressor that directs the generated air flow through a pneumatic intensifier system to increase the air pressure to that of the pressure of the exhaust gases and is then injected though a diverter valve that directs the flow to the fuel manifold that is in need of the purge.


SUMMARY

Applicant has recognized that despite this conventional hydrostatic purge being an effective and proven way to perform such an operation, the need for additional components and circuitry results in additional power consumption, additional space requirements, more machine consumables, and staged instrumentation to ensure that each sector of the system is producing the correct amount of pressure and flow to be able to meet the requirements of the fuel manifold.


Accordingly, Applicant discloses herein embodiments of systems, apparatuses, and methods to utilize turbine engine compressed air from a multi-stage compressor section of a turbine and direct the compressed air to the fuel manifold in an effort to reduce the dependency on external machinery and make the turbine fuel system more self-sustaining, for example. In one embodiment, for example, a system for the removal of compressed gas from a turbine compressor section is disclosed and includes an orifice fitting, a non-return valve, pressure reading instrumentation, actuated directional control valves and stainless-steel tubing to distribute the compressed air. The removal of compressed gas comes from a pre-drilled and tapped entry hole into the last compressor section that is positioned and sized so as not to disrupt regular turbine operation.


In another embodiment of a compressed air removal system, a system may include a variably flow control valve that is fed compressed air from the turbine section and adjusted to meet the demand of the fuel manifold while working in conjunction with previous components detailed above, for example.


In still another embodiment, a fuel manifold is disclosed to allow for receiving of compressor section air and allowing for the amount of compressed gas needed to be reduced resulting in less air flow removed from the compressor section. This, for example, allows more mass air flow to be delivered to the combustion chamber of the dual fuel dual shaft turbine engine.


In a further embodiment, a method for the storage of compressed air from the turbine compressor section is disclosed. This storage of compressed air may allow for onboard storage of high pressure compressed air on a hydraulic fracturing oilfield trailer and may be used to compensate for the pressure and flow variations of air supplied from the turbine during times of turbine start up, idle, and power disruption as will be understood by one skilled in the art.


In another embodiment, a dual fuel gas turbine engine includes a primary compressor, a combustion chamber, and a manifold pressurization system. The primary compressor has an inlet opening and an outlet opening. The combustion chamber is in fluid communication with the outlet opening of the primary compressor and is positioned to receive compressed air from the outlet opening of the primary compressor. The combustion chamber includes a first fuel manifold circuit and a second fuel manifold circuit. The combustion chamber has a first mode of operation in which the first fuel manifold circuit is configured to provide fuel to the combustion chamber and the second fuel manifold circuit is unused. The combustion chamber may have a second mode of operating in which the second fuel manifold circuit is configured to prevent fuel to the combustion chamber and the first fuel manifold circuit is unused. The manifold pressurization system includes a purge inlet, a common purge line, a first purge line, a second purge line, and a control valve. The purge inlet is in fluid communication with the primary compressor adjacent the outlet opening. The common purge line is connected at an upstream end to the purge inlet. The common purge line is configured to provide purge air at a purge pressure equal to or greater than a combustion pressure within the combustion chamber. The first purge line is connected at a downstream end thereof to the first fuel manifold circuit. The second purge line is connected at a downstream end thereof to the second fuel manifold circuit. The control valve is connected to a downstream end of the common purge line, an upstream end of the first purge line, and an upstream end of the second purge line. The control valve has a first position in which the control valve connects the common purge line with the second purge line to supply purge air to the second fuel manifold circuit. The control valve has a second position in which the control valve connects the common purge line with the first purge line to supply purge air to the first fuel manifold circuit. The control valve is in the first position when the combustion chamber is in the first mode of operation and in the second position when the combustion chamber is in the second mode of operation.


In some embodiments, the common purge line includes an orifice that is configured to limit a volume of air removed from the primary compressor. The orifice may be a fixed orifice and, in some embodiments, may be replaceably received within an orifice fitting such that a size of the fixed orifice is variable.


In certain embodiments, the primary compressor is a multistage compressor having a P3 point and the purge inlet may be positioned at the P3 point of the primary compressor.


In particular embodiments, the common purge line includes a plenum that is configured to store purge air. The common purge line may include a pneumatic intensifier that is configured to increase a pressure of purge air within the common purge line to the purge pressure.


In a further embodiment, a hydraulic fracturing pumping system includes an engine as detailed herein, a hydraulic fracturing pump, and a trailer. The hydraulic fracturing pump is connected to the engine such that the hydraulic fracturing pump I driven by the engine. The engine and the hydraulic fracturing pump may be mounted to the trailer.


In another embedment, a manifold pressurization system includes a purge inlet, a common purge line, a first purge line, a second purge line, and a control valve. The purge inlet is configured to receive purge air from a compressor of an engine. The common purge line is connected at an upstream end to the purge inlet. The common purge line is configured to provide purge air at a purge pressure. The first purge line is configured to connect at a downstream end thereof to a first fuel manifold circuit of the engine. The second purge line is configured to connect at a downstream end thereof to a second fuel manifold circuit of the engine. The control valve is connected to a downstream end of the common purge line, an upstream end of the first purge line, and an upstream end of the second purge line. The control valve has a first position in which the control valve connects the common purge line with the second purge line. The control valve has a second position in which the control valve connects the common purge line with the first purge line. The control valve is configured to selectively provide purge air to the first fuel manifold circuit or the second fuel manifold circuit to prevent backflow of air into the respective one of the first fuel manifold circuit or the second fuel manifold circuit.


In a further embodiment, a method of operating a duel fuel engine includes supplying a first fuel to a combustion chamber of an engine in a first mode of operation and switching the engine to a second mode of operation such that a second fuel is supplied to the combustion chamber, supplying combustion air to the combustion chamber with a primary compressor of the engine, diverting purge air from the primary compressor, positioning a direction control valve in a first position, and positioning the directional control valve in a second position. In the first mode of operation of the engine the first fuel may be supplied to the combustion chamber through a first fuel manifold circuit and no fuel may be supplied to the combustion chamber through a second fuel manifold circuit. Switching the engine to the second mode of operation may include the second fuel being supplied to the combustion chamber through the second fuel manifold circuit and no fuel being supplied to the combustion chamber through the first fuel manifold circuit. Diverting purge air from the primary compressor may include diverting air into a common purge line from the primary compressor via a purge inlet during operation of the engine. The purge air by be separated from the combustion air before the combustion chamber. Positioning the control valve in the first position may include positioning the control valve in the first position in the first mode of operation such that the diverted purge air flows into the second fuel manifold circuit at a purge pressure that is equal to or greater than a pressure within the combustion chamber such that backflow from the combustion chamber into the second fuel manifold circuit is prevented. Positioning the directional control valve in the second position may include positioning the control valve when the engine is in the second mode of operation such that the diverted purge air flows into the first fuel manifold circuit a purge pressure equal to or greater than a pressure within the combustion chamber such that backflow from the combustion chamber into the first fuel manifold circuit is prevented.


In embodiments, the method may include selecting a fixed orifice based on a pressure of the primary compressor and fitting the selected fixed orifice in the common purge line to limit a volume of air diverted from the primary compressor.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, and together with the detailed description, serve to explain the principles of the embodiments discussed herein. The present disclosure may be more readily described with reference to the accompanying drawings.



FIG. 1 is a perspective view of a mobile power unit according to embodiments of the disclosure.



FIG. 2 is a perspective view of a turbine engine being used to drive a fracturing pump according to embodiments of the disclosure.



FIG. 3 is a schematic diagram which highlights the turbine compressor sections of a dual shaft turbine engine according to embodiments of the disclosure.



FIG. 4 is a 2-axis Pressure (P) versus volume (v) graph and diagram demonstrating the Brayton Cycle for a Turbine Engine according to embodiments of the disclosure.



FIG. 5 is a schematic diagram that illustrates pipework and components of a dual fuel turbine engine according to embodiments of the disclosure.



FIG. 6 is a schematic diagram that illustrates an example of a fuel purge and air recovery system according to embodiments of the disclosure.



FIG. 7 is a 2-axis graph of air volume versus air pressure which shows the allowable air flow through an orifice given pressure and orifice size according to embodiments of the disclosure.



FIG. 8 is a schematic diagram a fuel purge and air recovery system with the inclusion of a pneumatic intensifier according to embodiments of the disclosure.



FIG. 9 is a flowchart illustrating a method of operating an engine according to embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure will now be described more fully hereinafter with reference to example embodiments thereof with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. These example embodiments are described so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Features from one embodiment or aspect may be combined with features from any other embodiment or aspect in any appropriate combination. For example, any individual or collective features of method aspects or embodiments may be applied to apparatus, product, or component aspects or embodiments and vice versa. The disclosure may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. As used in the specification and the appended claims, the singular forms “a,” “an,” “the,” and the like include plural referents unless the context clearly dictates otherwise. In addition, while reference may be made herein to quantitative measures, values, geometric relationships or the like, unless otherwise stated, any one or more if not all of these may be absolute or approximate to account for acceptable variations that may occur, such as those due to manufacturing or engineering tolerances or the like.


The embodiments of the present disclosure are directed to mobile power units, for example, mobile power units that are mounted to a transportation platform that are transportable on and off highways. In particular, embodiments of the present disclosure are directed to manifold pressurization systems that are mounted to a transportation platform with a mobile power unit. The manifold pressurization systems disclosed herein utilize air from a compressor of the engine to purge an unused manifold circuit of the engine. In some embodiments, for example, the manifold pressurization systems may hydrostatically purge the unused manifold circuits of the engine.



FIG. 1 illustrates an exemplary mobile power unit 100 is provided in accordance with an embodiment of the present disclosure. The exemplary mobile power unit 100 includes transportation platform 110, an engine 120, and a power unit 140. The transportation platform 110 is shown as a single trailer with the entire mobile power unit 100 and components thereof mounted thereto. For example, it may be advantageous to have the entire mobile power unit 100 mounted to a single trailer such that setup and startup of the mobile power unit 100 does not require onsite assembly of the mobile power unit 100. In addition, mounting the entire mobile power unit 100 to a single trailer may decrease a footprint of the mobile power unit 100. The transportation platform 110 may be a trailer that may be pulled by a tractor (not shown) on and off public highways. In some embodiments, the transportation platform may include more than one trailer.


The engine 120 is mounted to the transportation platform 110 and may be any suitable engine including, but not limited to, an internal combustion engine or a gas turbine engine. The engine 120 may be a dual fuel engine operating on gasoline, natural gas, well gas, field gas, diesel, and/or other suitable fuel. In some embodiments, the engine 120 may be a dual fuel engine operating on a liquid fuel and a gaseous fuel. In certain embodiments, the engine 120 is a dual fuel gas turbine engine that asynchronously operates on diesel fuel, e.g., #2 diesel as will be understood by those skilled in the art, and on a gaseous fuel, e.g., natural gas, well gas, or field gas. In particular embodiments, the engine 120 is a dual fuel, dual shaft gas turbine engine that operates on a liquid fuel such as diesel fuel and a gaseous fuel such as natural, well gas, or field gas.



FIG. 2 illustrates an exemplary engine 120 and power unit 140 configuration provided in accordance with an embodiment of the present disclosure. The engine 120 is operably coupled to the power unit 140 such that the engine 120 drives the power unit 140 to supply power to a system external of the mobile power unit 100. As shown, the power unit 140 is a high pressure pump, such as those that include hydraulic fracturing pumps, that is configured to supply power in the form of high pressure fluid. The power unit 140 may be a high pressure single acting reciprocating pump or a high pressure centrifugal pump. In certain embodiments, the power unit 140 may be a generator configured to produce electric power. The engine 120 may be operably coupled to the power unit 140 by a gearbox 130. The gearbox 130 may decrease a speed of an input from the engine 120 while increasing a torque or increase the speed of an input from the engine 120 while decreasing a torque. In some embodiments, the gearbox 130 is a transmission that allows for adjustment of the ratio between a speed of rotation of the input from the engine 120 to a speed of rotation of the power unit 140. In certain embodiments, the transmission has a set number of speed ratios. In particular embodiments, the transmission is continuously variable through a wide range of speed ratios. Other variations of pump, drive shaft, gearbox, and turbine may be used with the achieved goal of high volume, high pressure fluid delivery being achieved as will be understood by those skilled in the art. As will be appreciated, turbine engines are a type of high RPM (rotations per minute) prime mover which are optimized to produce high shaft horse power (SHP) in relevance to their compact size.



FIG. 3 illustrates a schematic of an exemplary engine 120 shown as a dual-shaft gas turbine engine. The engine 120 includes an intake 122, an axial compressor 124, a radial compressor 125, a combustion chamber 126, a producer turbine 127, a power turbine 128, and an exhaust duct 129 as will be understood by those skilled in the art. As air moves through the compressors 124, 125 from the intake 122 to the combustion chamber 126, the pressure of the air is increased. As the air moves through the combustion chamber 126, fuel is mixed with the air and ignited such that the temperature of the air is increased. As the air flows through the producer and power turbines 127, 128 the pressure of the air is decreased as the air rotates the turbines 127, 128. The air continues through engine 120 and out the exhaust duct 129 to be released to the environment.



FIG. 4, for example, demonstrates the Brayton cycle for a turbine engine for which the prime working media of a turbine is air and the conditions in which air enters the compressor section of the turbine engine directly correlates to the amount of SHP a turbine engine, e.g., engine 120, may produce. At point 1, air is drawn into the turbine inlet or intake. At point 2 the air has been compressed resulting in a pressure increase and a reduction in volume. From point 2 to point 3 the air is passed into the combustion chamber 126. As the air is passed from point 2 to point 3, the turbine extracts power from the hot high pressure air that is generated from the air and fuel combustion mixture resulting in a drop in pressure but a drastic increase in volume. This combusted or exhaust air is then exhausted out of the turbine from point 4 to 1 where the cycle repeats itself for the duration of the operation of the turbine.



FIG. 5 illustrates an exemplary dual fuel delivery circuits 200 provided in accordance with the present disclosure. The dual fuel delivery circuits 200 is configured to selectively provide a liquid fuel or a gaseous fuel to a combustion chamber of an engine, e.g., engine 120. The dual fuel delivery circuits 200 includes inputs of a liquid fuel, a gaseous fuel, and purge air and outputs substantially all of the inputs through the fuel distribution manifolds 210 as detailed below. It will be appreciated by one skilled in the art that a portion of the liquid fuel and the gaseous fuel may be returned to a fuel reservoir or the environment as detailed below.


Starting with the first or liquid fuel manifold circuit 212 of the fuel delivery circuits 200, the liquid fuel manifold circuit 212 includes a liquid fuel inlet 220 that receives liquid fuel from a liquid fuel reservoir (not explicitly shown). The liquid fuel reservoir may include a fuel pump (not shown) that pressurizes the liquid fuel for use within the liquid fuel manifold circuit 212. From the liquid fuel inlet 220, the liquid fuel flows through a fuel filter 222, a liquid fuel metering valve 224, and a liquid fuel control valve 226. At the liquid fuel metering valve 224 and the liquid fuel control valve 226, excess liquid fuel may be directed out of the fuel delivery circuits 200 and returned to the liquid fuel reservoir. The liquid fuel control valve 226 has a supply or first position in which the liquid fuel control valve 226 supplies liquid fuel from the liquid fuel metering valve 224 to a liquid fuel distribution block 230 and a divert or second position in which the liquid fuel control valve 226 directs fuel from the liquid fuel metering valve 224 back to the fuel reservoir. The liquid fuel control valve 226 may include solenoid that switches the liquid fuel control valve 226 between the first and second positions thereof. For example, the solenoid may have an off or deactivated condition corresponding to the second position of the liquid fuel control valve 226 and an on or activated condition corresponding to the first position of the liquid fuel control valve 226. The solenoid may be adjustable between the activated and deactivated condition such that the liquid fuel control valve 226 is between the supply and divert positions thereof. The liquid fuel metering valve 224 may be electrically controlled to control a flow, e.g., an amount, of liquid fuel into the fuel delivery circuits 200.


The liquid fuel distribution block 230 receives liquid fuel through a block inlet 232 and distributes the liquid fuel through two or more block outlets 234. Each of the block outlets 234 is in fluid communication with a fuel manifold 210 by the way of one or more liquid fuel lines 236. The individual liquid fuel lines 236 may extend from the liquid fuel distribution block 230 directly to one of the fuel manifolds 210 or may pass through one or more additional components of the fuel delivery circuits 200. As shown, one of the liquid fuel lines 236 may pass through a tee 238 such that the liquid fuel line 236 is divided from one liquid fuel line 236 into two liquid fuel lines 236 that extend from the tee 238 to the fuel manifold 210. A tee 238 may divide a single liquid fuel line 236 into two or more liquid fuel lines 236. Additionally, or alternatively, a liquid fuel line 236 may pass through a check valve 239 and then into a tee 264 before continuing towards the fuel manifold 210. The check valve 239 allows for flow through the liquid fuel line 238 downstream, e.g., towards the fuel manifold 210, and prevents backflow within the liquid fuel line 238, e.g., towards the distribution block 230. The tee 264 will be detailed below with respect to the purge air portion of the fuel delivery circuits 200.


Continuing to refer to FIG. 5, the second or gaseous fuel manifold circuit 214 of the fuel delivery circuits 200 is detailed in accordance with an embodiment of the present disclosure. The gaseous fuel manifold circuit 214 includes a gaseous fuel inlet 240 that receives gaseous fuel from a gaseous fuel source (not explicitly shown). The gaseous fuel source may be a pipeline, a well, or a storage tank, as understood by one skilled in the art. The gaseous fuel source may be pressurized or may include a gaseous fuel pump or intensifier to pressurize the gaseous fuel. From the gaseous fuel inlet 240, the gaseous fuel flows through a primary gaseous fuel valve 242, a gaseous fuel metering valve 244, a secondary gaseous fuel control valve 246, and a bleed valve 248. The primary gaseous fuel control valve 242 has a supply or first position in which the primary gaseous fuel control valve 242 supplies gaseous fuel to the gaseous fuel metering valve 244 and a closed or second position in which the primary gaseous fuel control valve 242 prevents gaseous fuel from entering the fuel delivery circuits 200. The gaseous fuel metering valve 244 may be electrically controlled to control a flow, e.g., an amount, of gaseous fuel into the fuel delivery circuits 200. The primary gaseous fuel control valve 242 may include a solenoid that transitions the primary gaseous fuel control valve 242 between the first and second positions thereof. The deactivated condition of the solenoid may correspond to the closed position of the primary gaseous fuel control valve 242.


The secondary gaseous control valve 246 is downstream of the gaseous fuel metering valve 244. The secondary gaseous control valve 246 has a supply or first position in which the secondary gaseous control valve 246 supplies gaseous fuel to a gaseous fuel hub 250 and a closed or second position in which the secondary gaseous control valve 246 prevents gaseous fuel from entering the gaseous fuel hub 250. The secondary gaseous control valve 246 may include a solenoid that transitions the secondary gaseous control valve 246 between the first and second positions thereof The deactivated condition of the solenoid may correspond to the closed position of the secondary gaseous control valve 246.


The bleed valve 248 is downstream of the gaseous fuel metering valve 244 and upstream of the secondary gaseous control valve 246 but is out of a direct flow path between the gaseous fuel metering valve 244 and the secondary gaseous control valve 246. The bleed valve 248 has a bleed or first position in which the bleed valve 248 diverts gaseous fuel from the secondary gaseous control valve 246 and a closed or second position in which the secondary gaseous control valve 246 prevents gaseous fuel from exiting the fuel delivery circuits 200. The bleed valve 248 may include a solenoid that transitions the bleed valve 248 between the first and second positions thereof. The deactivated condition of the solenoid may correspond to the closed position of the bleed valve 248. Diverting the gaseous fuel from the secondary gaseous control valve 246 may include returning the gaseous fuel to the supply of gaseous fuel, releasing the gaseous fuel to the environment, diverting the gaseous fuel to a storage tank, or delivering the gaseous fuel to a distribution network, e.g., a pipeline, as will be understood by one skilled in the art.


The gaseous fuel distribution block 250 receives gaseous fuel through a block inlet 252 and distributes the gaseous fuel through two or more block outlets 254. The gaseous fuel distribution block 250 also includes a purge inlet 255 that is in fluid communication with a purge inlet 260 as detailed below with respect to the purge air side of the fuel delivery circuits 200. Each of the block outlets 254 is in fluid communication with a fuel manifold 210 by the way of one or more gaseous fuel lines 256. The individual gaseous fuel lines 256 may extend from the gaseous fuel distribution block 250 directly to one of the fuel manifolds 210 or may pass through one or more additional components of the fuel delivery circuits 200. As shown, one of the gaseous fuel lines 256 may pass through a tee 258 such that the gaseous fuel line 256 is divided from one gaseous fuel line 256 into two gaseous fuel lines 256 that extend from the tee 258 to the fuel manifold 210. A tee 258 may divide a single gaseous fuel line 256 into two or more gaseous fuel lines 256.


Still referring to FIG. 5, the fuel delivery circuits 200 receives purge air as detailed in accordance with an embodiment of the present disclosure. The liquid side purge inlet 260 is in fluid communication with a first purge line 60 (FIG. 6) and the gas side purge inlet 261 is in fluid communication with a second purge line 70 (FIG. 6), which are described in detail below.


The liquid fuel manifold circuit 212 includes a check valve 262 downstream of each of the liquid side purge inlet 260. The check valve 262 allows flow of purge air downstream, e.g., towards the fuel manifolds 210, and prevents flow upstream. The liquid side purge inlet 260 is in fluid communication with a tee air inlet 265 of the tee 264. The tee 264 also includes a tee liquid inlet 266 that is in fluid communication with the liquid fuel block 230 such that liquid fuel is supplied to the tee 264. The tee 264 further includes a tee outlet 267 that flows downstream to the fluid manifold 210 such that purge air and/or liquid fuel from the tee 264 flows into the fuel manifold 210. When the liquid side purge inlet 260 receives purge air, the purge air flows through the tee 264 such that liquid fuel downstream of the tee 264 flows into the fuel manifold 210 and the fuel manifold 210 is filled with purge air such that exhaust gases from the combustion chamber 126 and gaseous fuel from the fuel manifolds 210 are prevented from flowing upstream into the liquid fuel manifold circuit 212 of the fuel delivery circuits 200 when liquid fuel is not being supplied to the fuel manifolds 210.


The gaseous fuel manifold circuit 214 includes a check valve 262 downstream of each of the gaseous side purge inlet 261. The check valve 262 allows flow of purge air downstream, e.g., towards the fuel manifolds 210, and prevents flow upstream. The gas side purge inlet 261 is in fluid communication with the gaseous fuel distribution block 250 such that purge air flows downstream from the gas side purge inlet 261 into the gaseous fuel distribution block 250 via the purge inlet 255. When the gas side purge inlet 261 receives purge air, the purge air flows into the gaseous fuel distribution block 250 such that gaseous fuel downstream of the gaseous fuel distribution block 250 flows into the fuel manifold 210 from the gaseous fuel manifold circuit 214 of the fuel delivery circuits 200 is filled with purge air such that exhaust gases from the combustion chamber 126 and liquid fuel within the fuel manifolds 210 are prevented from flowing upstream into the gaseous fuel manifold circuit 214 of the fuel delivery circuits 200 when gaseous fuel is not being supplied to the fuel manifold 210.


The components of the fuel delivery circuits 200, e.g., valves 224, 226, 242, 244, 246, and 248, may be controlled by a controller 202. The controller 202 may be part of an engine controller of the engine 120 or may be a separate subcontroller of the fuel delivery circuits 200. The controller 202 may receive and provide signals to one or more other controllers as will be appreciated by one skilled in the art.


As detailed above, in some prior art purge air systems, the purge air is provided to the liquid side purge inlet 260 and the gaseous side purge inlet 261 from a pneumatic intensifier apparatus which takes in air at atmospheric pressure and increases the pressure to a purge pressure that is greater than a pressure of the exhaust gases within the combustion chamber 126. Such a pneumatic intensifier apparatus takes up significant space and requires additional power inputs to power the pneumatic intensifier apparatus. The manifold pressurization systems detailed below in accordance with an embodiments of the present disclosure receive air at a pressure significantly higher than atmospheric pressure and in some instances at or above the purge pressure such space and/or power requirements required for a pneumatic intensifier apparatus is reduced or eliminated from mobile power unit 10 (FIG. 1). This space savings may allow for a reduced size of the mobile power unit 10 or for additional components of the mobile power unit 10 to be mounted to a single transportation platform 110.



FIG. 6 illustrates a manifold circuit pressurization system 20 provided in accordance with embodiments of the present disclosure which is mounted to an engine, e.g., engine 120. The manifold circuit pressurization system 20 includes a common purge line 22, a first purge line 60, and a second purge line 70. The common purge line 22 has an upstream end 21 and a downstream end 23 and includes, from the upstream end 21 to the downstream end 23, a purge inlet 30, and a control valve 50. The common purge line 22 receives compressed air from a compressor of the engine 120 through the purge inlet 30. As shown, the purge inlet 30 is positioned adjacent an outlet of the primary compressor 124, e.g., at the last compressor section of the primary compressor 124. In embodiments, the purge inlet 30 is positioned at a P3 take off point of the primary compressor 124. In certain embodiments, the purge inlet 30 uses an existing P3 take off designed for a pressure transducer of the primary compressor 124 as the purge inlet 30 for the manifold circuit pressurization system 20. It will be appreciated by one skilled in the art that the P3 take off of a compressor is a point where the pressure of the air within the compressor is at its highest and the volume of the air is at its smallest within the compressor, e.g., point 2 of the Brayton Cycle of FIG. 4. As the pressure of the purge air entering the manifold circuit pressurization system 20 is already at a pressure substantially equal to the highest pressure within the engine 120, including the pressure within the combustion chamber 126, the manifold circuit pressurization system 20 may be provided without a pneumatic intensifier. The purge air inlet 30 is sized to not disrupt regular turbine operation.


The purge inlet 30 may include a valve that has an open position in which the purge inlet 30 allows for air to flow into the common air line 22 and closed position in which the air is prevented from flowing into the common air line 22. The valve of the purge inlet 30 may be a variable valve that is in electrical or wireless communication with a controller 80. The controller 80 may receive a signal from a pressure sensor 38 associated with the common purge line downstream of the purge inlet 30. The controller 80 may control a position of the valve of the purge inlet 30 in response to a pressure within the common purge line 22. The controller 80 may have a predetermined purge pressure programed therein that is a desired pressure of purge air within the common purge line 22. Additionally or alternatively, the controller 80 may receive a pressure within the combustion chamber 126 from a sensor within the combustion chamber 126 and/or a controller of the engine 120. The controller 80 may control the valve of the purge inlet 30 in response to a pressure within the combustion chamber 126. The controllers detailed herein, e.g., controllers 80, 202, may be commonly programmable logistical controllers (PLC), micro controllers, and/or off highway controllers.


The common purge line 22 may include an orifice 34 downstream of the purge inlet 30 that limits a volume of air drawn from the compressor 124 such that the air diverted to the common purge line 22 does not have a detrimental effect on the overall efficiency of the primary compressor 124 and thus the engine 120. The orifice 34 may be a variable orifice or valve that is configured to control an amount of air drawn into the common purge line 22 from the primary compressor 124. The orifice 34 may be controlled by the controller 80 in response to a pressure within the common purge line 22 downstream of the orifice 34 and/or a pressure within the combustion chamber 126 in a manner similar to control of the valve of the purge inlet 30 detailed above.


In some embodiments, the orifice 34 may be a fixed orifice that limits a volume of air drawn from the primary compressor 124 such that the air diverted to the common purge line 22 does not have a detrimental effect on the overall efficiency of the compressor 124 and thus the engine 120. FIG. 7 illustrates a volume of air that passes through a fixed orifice having a variety of sizes base on an air pressure within the common purge line 22. As shown in FIG. 7, the fixed orifice 34 may be sized, e.g., an opening of the fixed orifice, in a range of 1/64 of an inch to ¼ of an inch. The orifice 34 may be fixed within the common purge line 22 based on properties of the compressor 124 and/or engine 120. In some embodiments, the common purge line 22 may include an orifice fitting 32 that removably receives the fixed orifice 34. The orifice fitting 32 may allow for the fixed orifice 34 to be varied or replaced based on operating parameters of the compressor 124 and or engine 120. For example, if the compressor 124 is operating below an optimum pressure, the size of the fixed orifice 34 may be increased to allow more air into the common purge air line 22 or may be decreased to allow less air into the common purge air line 22.


The manifold pressurization system 20 may include the valve of the purge inlet 30, the orifice 34 (variable or fixed), or both the valve of the purge inlet 30 and the orifice 34 (variable or fixed). The pressure sensor 38 is positioned within the common purge line 22 downstream of purge inlet 30 and/or the orifice 34. The pressure sensor 38 may measure a pressure within the common purge line 22 and may transmit a signal indicative of the pressure within the common purge line 22 to one or more controllers associated with the engine 120, e.g., controller 80 or controller 202 (FIG. 4).


The common purge line 22 may include a check valve 36 between purge inlet 30 and the control valve 50. When the common purge line 22 includes an orifice 34, the check valve 36 may be downstream of the orifice 34. The check valve 36 allows air within the common purge line 22, e.g., purge air, to flow downstream towards the control valve 50 and prevents air within the common purge line 22 from backflowing upstream towards and into the compressor 124.


The common purge line 22 may include a purge air reservoir 40 downstream of the check valve 36. The purge air reservoir 40 may store purge air at purge pressure upstream of the control valve 50. The purge air reservoir 40 may stabilize a pressure within the common purge line 22 due to fluctuations of pressure from the compressor 124. For example, the purge air reservoir 40 may compensate for pressure and flow variations of air supplied from the primary compressor 124 during start up, idle, and/or power disruption. Additionally, or alternatively, the purge air reservoir 40 may provide purge air to the control valve 60 when the purge inlet 30 is in a closed position. The purge air reservoir 40 may provide purge air to the control valve 50 when the compressor 124 is not operating. For example, the purge air reservoir 40 may provide purge air to the control valve 50 to purge the fuel manifold circuits 200 when the primary compressor 124 is not operating.


Continuing to refer to FIG. 6, the control valve 50 is in fluid communication with a downstream end 23 of the common purge line 22, an upstream end 62 of the first purge line 60, and an upstream end 72 of the second purge line 70. Downstream flow within the common valve 50 is from the common purge line 22 into the first or second purge line 60, 70. The control valve 50 has a first position in which the control valve 50 connects the common purge line 22 with the first purge line 60 such that the common purge line 22 is in fluid communication with the gaseous or second fuel manifold circuit 214. In the first position of the control valve 50, the control valve 50 may connect the upstream end 62 of the second purge line 60 to a pressure relief valve 28. The control valve 50 also has a second position in which the control valve 50 connects the common purge line 22 with the second purge line 70 such that the common purge line 22 is in fluid communication with the liquid or first fuel manifold circuit 212. In the second position of the control valve 50, the control valve 50 may connect the upstream end 72 of the second purge line 70 to the pressure relief valve 28. The control valve 50 may have a third position in which the common purge line 22 is not in fluid communication with either of the first purge line 60 or the second purge line 70. In the third position, the first and/or the second purge line 60, 70 may be in fluid communication with the pressure relief valve 28. The pressure relief valve 28 may remain in a closed position to prevent air in fluid communication therewith from escaping the manifold pressurization system 20 and may have an open position in which the pressure relief valve 28 releases pressure in fluid communication therewith to the environment. The pressure relief valve 28 may release pressure to prevent excess pressure within the fluid manifold circuits 212, 214.


The position of the control valve 50 is controlled by the controller 80. Specifically, when the engine 120 is in a first mode of operation in which it receives fuel from the first manifold circuit 212, the controller 80 positions the control valve 50 in the first position such that purge air is provided to the second manifold circuit 214. When the engine 120 is in the second mode of operation in which it receives fuel from the second manifold circuit 214, the controller 80 positions the control valve 50 in the second position such that purge air is provided to the first manifold circuit 212. Providing the purge air to a respective one of the first or second manifold circuits 212, 214 prevents exhaust gasses from within the combustion chamber 126 from flowing into an unused manifold circuit 212, 214, e.g., a manifold circuit not providing fuel to the combustion chamber 126.


The components of the manifold pressurization system 20, e.g., the purge inlet 30, the pressure sensor 38, and the control valve 50, may be controlled by the controller 80. The controller 80 may be part of an engine controller of the engine 120 or may be a separate subcontroller of the manifold pressurization system 20. The controller 80 may receive and provide signals to one or more other controllers as will be appreciated by one skilled in the art.



FIG. 8 illustrates another manifold pressurization system 1020 provided in accordance with an embodiment of the present disclosure. The manifold pressurization system 1020 is similar to the manifold pressurization system of FIG. 6 detailed above with like elements including like labels and only the differences detailed below for brevity. The manifold pressurization system 1020 has a common purge line 22 that includes a purge inlet 30, a pneumatic intensifier 42, and a control valve 50.


The pneumatic intensifier 42 receives purge air from the common purge line 22 and increases a pressure of the purge air to a purge pressure before supplying the purge air to the control valve 50. The pneumatic intensifier 42 may receive purge air above atmospheric pressure but below the purge pressure, e.g., a pressure greater than or equal to a pressure of exhaust gasses in the combustion chamber 126. By receiving pressure above atmospheric pressure, the pneumatic intensifier 42 may be smaller and require less power to operate than a pneumatic intensifier receiving air at atmospheric pressure and increasing the received air to purge pressure.


The controller 80 may control the pneumatic intensifier 42 to provide purge air to the control valve 50 at purge pressure. The controller 80 may be in electrical or wireless communication with a pressure sensor 38 to receive a pressure of air within the common purge line 22 upstream of the pneumatic intensifier 42 and may receive a pressure within the combustion chamber, e.g., from a sensor within the combustion chamber 126 or another controller. When the pressure of air within the common purge line 22 is less than the pressure within the combustion chamber 126, the controller 80 controls the pneumatic intensifier 42 to increase a pressure of the purge air to a purge pressure which is equal to or greater than a pressure within the combustion chamber 126.


The manifold pressurization systems detailed herein, e.g., manifold pressurization systems 20, 1020, are configured to pressurize an unused fuel manifold circuits to prevent backflow of exhaust gases and/or fuel therein. The purge pressure may be substantially equal to the pressure within the combustion chamber 126 such that the fuel manifold circuit receiving the purge air is in a hydrostatic state with the combustion chamber 126 to prevent backflow from the combustion chamber 126 into the respective fuel manifold circuit. Preventing backflow may prevent particulates and/or other substances within the exhaust gases from entering and damaging the unused manifold circuits. Preventing backflow may also prevent fuel from the used fuel manifold circuit from entering the unused fuel manifold circuit which may prevent damage to the unused fuel manifold circuit. An additional use of this pneumatic purge is to dispel residual fuels from the turbine manifolds in an attempt to clean these manifold from dirt ingress and combustion bi-products. When the purge pressure is greater than a pressure within the combustion chamber 126, purge air may flow from the unused manifold circuit into the fuel manifolds 210 and/or the combustion chamber 126.



FIG. 9 illustrates a method of operating a dual fuel engine in accordance with an embodiment of the present disclosure and is referred to generally as method 300. The method 300 will be detail with respect to the engine 120, the fuel delivery circuits 200, and the manifold pressurization systems 20, 1020 of FIGS. 1-8. The method 300 is initiated with the functioning of the primary compressor 124, e.g., spinning of the primary compressor 124, such that the primary compressor 124 supplies combustion air to the combustion chamber 126 of the engine 120 (Step 310).


As shown, the method 300 is initiated with the operation of the engine 120 in a first mode of operation (Step 320) such that the engine 120 is operating on a first fuel, e.g., liquid fuel. During the first mode of operation of the engine 120, the method 300 includes supplying the first fuel to the combustion chamber 126 via a first fuel manifold circuit 212 (Step 322). When the engine 120 is operated in the first mode of operation, air is diverted into a common purge line 22 from the primary compressor 124 of the engine 120 (Step 330). Diverting the purge air may include controlling a position of a valve of a purge inlet 30 in response to a pressure within the common purge line 22 (Step 332). The method 300 may include selecting a fixed orifice 34 based on a pressure of the primary compressor 124 (Step 333). The selected fixed orifice 34 may be fitted into the common purge line 22 to limit a volume of air diverted from the primary compressor 124. The fixed orifice may be selected from a plurality of fixed orifices having a size or an opening in a range of 1/64 of an inch to ¼ of an inch. Fitting the fixed orifice 34 may include positioning the fixed orifice 34 in a housing positioned in the common purge line 22. The method may include adjusting a variable orifice 34 to limit a volume of air diverted from the primary compressor 124.


The purge air may pass through a pneumatic intensifier 42 such that the pneumatic intensifier 42 increases a pressure of the purge air within the common purge line 22 to the purge pressure before the purge air is supplied to the control valve 50 (Step 336). A controller 80 of the engine 120 and/or the manifold pressurization system 20, 1020 may receive a signal from a pressure sensor 38 that provides a pressure of the purge air within the common purge line 22 upstream of the pneumatic intensifier 42. The controller 80 may also receive a signal indicative of a pressure within the combustion chamber 126. The controller 80 may provide a signal to the pneumatic intensifier 42 to increase a pressure of the purge air to a desired purge pressure in response to a pressure of the purge air upstream of the pneumatic intensifier 42 and/or a pressure within the combustion chamber 126.


The purge air flows through the common purge line 22 to a control valve 50. The control valve 50 may be positioned in a first position when the engine 120 is in the first mode of operation such that the purge air flows into the second fuel manifold circuit 214 at a purge pressure that is equal to or greater than a pressure within the combustion chamber 126 (Step 338). The purge air fills the second fuel manifold circuit 214 downstream of the distribution block 250 such that exhaust gasses from the combustion chamber 126 are prevented from entering the second fuel manifold circuit 214. When the purge air is at a pressure greater than the exhaust gasses within the combustion chamber 126, purge air may flow from the second fuel manifold circuit 214 into the fuel manifolds 210 and/or the combustion chamber 126.


When the engine 120 is operating in the first mode of operation, the engine 120 may be switched to a second mode of operation (Step 350). The mode of the operation of the engine 120 may be the results of an operating interfacing with a control interface of the mobile power unit 100. In some embodiments, the mode of operation of the engine 120 may result from a signal generated by the mobile power unit 100. For example, the mode of operation of the engine 120 may result from a property of field gas. Specifically, when field gas of sufficient quality is providing, the mobile power unit 100 may send a signal to switch from the first mode of operation to the second mode of operation. Alternatively, when field gas is below a required quality, the mobile power unit 100 may send a signal to switch from the second mode of operation to the first mode of operation. While the switch from the first mode of operation to the second mode of operation of the engine 120 is detailed herein, one skilled in the art would recognize that the method 300 may also include switching the engine 120 from the second mode of operation to the first mode of operation. As detailed herein, the switching of the mode of operation of the engine 120 is considered an on-the-fly fuel switch, as understood by one skilled in the art.


In the second mode of operation of the engine 120 (Step 360), the combustion chamber of the engine 120 is supplied with a second fuel via a second fuel manifold circuit 214 (Step 362). The second fuel may be a gaseous fuel. When the engine 120 is operated in the second mode of operation, air from the primary compressor 124 is diverted into a common purge line 22 from the primary compressor 124 of the engine 120 (Step 370). Diverting the purge air may include controlling a position of a purge inlet 30 in response to a pressure within the common purge line 22 (Step 372). The method 300 may include selecting a fixed orifice 34 based on a pressure of the primary compressor 124 (Step 373).


The purge air may pass through a pneumatic intensifier 42 such that the pneumatic intensifier 42 increases a pressure of the purge air within the common purge line 22 to the purge pressure before the purge air is supplied to the control valve 50 (Step 376). Step 376 is similar to step 336 detailed above and will not be detailed herein for brevity.


The purge air flows through the common purge line 22 to a control valve 50. The control valve 50 may be positioned in a second position when the engine is in the second mode of operation such that the purge air flows into the first fuel manifold circuit 212 at a purge pressure that is equal to or greater than a pressure within the combustion chamber 126 (Step 378). The purge air fills the first fuel manifold circuit 214 downstream of the tee 264 such that exhaust gasses from the combustion chamber 126 are prevented from entering the first fuel manifold circuit 212. When the purge air is at a pressure greater than the exhaust gasses within the combustion chamber 126, purge air may flow from the first fuel manifold circuit 212 into the fuel manifolds 210 and/or the combustion chamber 126.


When the engine 120 is operating in the second mode of operation, the engine 120 may be shutdown (Step 380). Shutting down the engine 120 may include terminating fuel flow into the first and second fuel manifold circuits 212, 214 (Step 382). After the fuel flow is terminated, first and second fuel manifold circuits 212, 214 may be purged with purge air (Step 384). Purging the first and second fuel manifold circuits 212, 214 may include switching the control valve 50 between the first and second positions thereof such that purge air alternates between flowing through the first and second fuel manifold circuits 212, 214. Purging the first and second fuel manifold circuits 212, 214 after fuel flow is terminated may expel residual fuel from the fuel manifold circuits 212, 214.


The manifold pressurization systems detailed herein allow for the manifold pressurization systems to be housed inside an enclosure of the engine 120 which may result in a more compact package for the mobile power unit 100. For example, when the transportation platform 110 is a trailer, the manifold pressurization systems detailed herein may allow for the trailer gooseneck being left with more space for other component sections by eliminating or reducing space required for a pressure intensifier and/or an air storage tank.


The foregoing description of the disclosure illustrates and describes various exemplary embodiments. Various additions, modifications, changes, etc., could be made to the exemplary embodiments without departing from the spirit and scope of the disclosure. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense. Additionally, the disclosure shows and describes only selected embodiments of the disclosure, but the disclosure is capable of use in various other combinations, modifications, and environments and is capable of changes or modifications within the scope of the inventive concept as expressed herein, commensurate with the above teachings, and/or within the skill or knowledge of the relevant art. Furthermore, certain features and characteristics of each embodiment may be selectively interchanged and applied to other illustrated and non-illustrated embodiments of the disclosure.

Claims
  • 1. A manifold pressurization system comprising: a purge inlet configured to receive purge air from a compressor of a dual fuel engine positioned to operate on a liquid fuel and a gaseous fuel;a common purge line connected at an upstream end to the purge inlet, the common purge line configured to provide the purge air at a purge pressure and including 1) one or more backflow prevention valves configured to prevent backflow within the common purge line, and 2) a pneumatic intensifier configured to increase the purge pressure of the purge air;a first purge line connected at a downstream end thereof to a manifold of the dual fuel engine via a first fuel circuit, the first fuel circuit connected to a supply of the liquid fuel;a second purge line connected at a downstream end thereof to the manifold via a second fuel circuit, the second fuel circuit connected to a supply of the gaseous fuel; anda control valve connected to a downstream end of the common purge line, an upstream end of the first purge line, and an upstream end of the second purge line, the control valve having a first position in which the control valve connects the common purge line with the second purge line such that the supply of the liquid fuel is in fluid communication with the purge air at the manifold, thereby to prevent backflow from the manifold into the second fuel circuit, and the control valve having a second position in which the control valve connects the common purge line with the first purge line such that the supply of the gaseous fuel is in fluid communication with the purge air at the manifold, thereby to prevent backflow from the manifold into the first fuel circuit;wherein the one or more backflow prevention valves are upstream of the pneumatic intensifier; andwherein the common purge line includes a pressure sensor configured to provide a signal indicative of a pressure of the common purge line, and the manifold pressurization system further comprising a control system configured to receive the signal from the pressure sensor and control a position of the purge inlet in response to the signal from the pressure sensor.
  • 2. The system according to claim 1, wherein the common purge line includes an orifice, the orifice configured to limit a volume of the purge air within the common purge line.
  • 3. The system according to claim 2, wherein the orifice is a fixed orifice.
  • 4. The system according to claim 3, wherein the fixed orifice has size in a range of 1/64 to ¼ of an inch.
  • 5. The system according to claim 3, wherein the fixed orifice is replaceably received within an orifice fitting such that a size of the fixed orifice is variable.
  • 6. The system according to claim 1, wherein the common purge line includes a plenum configured to store the purge air.
  • 7. The system according to claim 1, wherein the control valve has a third position in which control valve closes the downstream end of the common purge line, the upstream end of the first purge line, and the upstream end of the second purge line.
  • 8. The system according to claim 1, wherein the purge inlet is positioned at a P3 point of the compressor.
  • 9. The system according to claim 1, wherein the position of the purge inlet has a closed position in which the purge air is prevented from entering the common purge line and an open position in which the purge air is allowed to enter the common purge line.
  • 10. The system according to claim 1, wherein the dual fuel engine operates on one or more of gasoline, natural gas, well gas, field gas, or diesel.
  • 11. A method of operating a dual fuel engine positioned to operate on a liquid fuel and a gaseous fuel, the method comprising: supplying a first fuel to a combustion chamber of the dual fuel engine through a manifold and a first fuel circuit when no fuel is supplied to the manifold through a second fuel circuit such that the dual fuel engine is in a first mode of operation;switching the dual fuel engine to a second mode of operation such that a second fuel is supplied to the combustion chamber through the manifold and the second fuel circuit when no fuel is supplied to the manifold through the first fuel circuit;supplying combustion air to the combustion chamber with a primary compressor of the dual fuel engine;diverting purge air from the primary compressor into a common purge line including 1) one or more backflow prevention valves configured to prevent backflow within the common purge line, and 2) a pneumatic intensifier configured to increase the purge pressure of the purge air from the primary compressor of the dual fuel engine through a purge inlet during operation of the dual fuel engine, the purge air being separated from the combustion air before the combustion chamber;positioning a directional control valve in a first position when the dual fuel engine is in the first mode of operation such that the purge air flows into the manifold via the second fuel circuit at a purge pressure equal to or greater than a pressure within the combustion chamber such that backflow from the combustion chamber into the second fuel circuit is prevented; andpositioning the directional control valve in a second position when the dual fuel engine is in the second mode of operation such that the purge air flows into the manifold via the first fuel circuit at a purge pressure equal to or greater than a pressure within the combustion chamber such that backflow from the combustion chamber into the first fuel circuit is prevented;wherein the one or more backflow prevention valves are upstream of the pneumatic intensifier; andwherein the common purge line includes a pressure sensor configured to provide a signal indicative of a pressure of the common purge line, and the dual fuel engine further comprising a control system configured to receive the signal from the pressure sensor and control a position of the purge inlet in response to the signal from the pressure sensor.
  • 12. The method according to claim 11, further comprising selecting a fixed orifice based on a pressure of the primary compressor; andfitting the fixed orifice in the common purge line to limit a volume of the purge air diverted from the primary compressor.
  • 13. The method according to claim 12, wherein selecting the fixed orifice includes selecting a fixed orifice in a range of 1/64 to ¼ of an inch.
  • 14. The method according to claim 11, wherein diverting the purge air from the primary compressor includes diverting the purge air from a P3 point of the primary compressor.
  • 15. The method according to claim 11, wherein supplying the first fuel to the combustion chamber includes supplying the liquid fuel to the combustion chamber through the manifold and the first fuel circuit.
  • 16. The method according to claim 15, wherein supplying the second fuel to the combustion chamber includes supplying the gaseous fuel to the combustion chamber through the manifold and the second fuel circuit.
  • 17. The method according to claim 11, further comprising driving a hydraulic fracturing pump with the dual fuel engine, the hydraulic fracturing pump and the dual fuel engine mounted to a mobile trailer.
  • 18. The method according to claim 11, wherein the dual fuel engine operates on one or more of gasoline, natural gas, well gas, field gas, or diesel.
  • 19. A manifold pressurization system comprising: a purge inlet configured to receive purge air from a compressor of a dual fuel engine positioned to operate on a liquid fuel and a gaseous fuel;a common purge line connected at an upstream end to the purge inlet, the common purge line configured to provide the purge air at a purge pressure and including 1) one or more backflow prevention valves configured to prevent backflow within the common purge line, and 2) a pneumatic intensifier configured to increase the purge pressure of the purge air, wherein a position of the purge inlet has a closed position in which the purge air is prevented from entering the common purge line and an open position in which the purge air is allowed to enter the common purge line;a first purge line connected at a downstream end thereof to a manifold chamber of the dual fuel engine via a first fuel circuit;a second purge line connected to at a downstream end thereof to the manifold chamber via a second fuel circuit; anda control valve connected to a downstream end of the common purge line, an upstream end of the first purge line, and an upstream end of the second purge line, the control valve having a first position in which the control valve connects the common purge line with the second purge line, thereby to prevent backflow from the manifold chamber into the second fuel circuit, and the control valve having a second position in which the control valve connects the common purge line with the first purge line, thereby to prevent backflow from the manifold chamber into the first fuel circuit;wherein the one or more backflow prevention valves are upstream of the pneumatic intensifier;wherein the common purge line includes a pressure sensor configured to provide a signal indicative of a pressure of the common purge line, and the manifold pressurization system further comprising a control system configured to receive the signal from the pressure sensor and control the position of the purge inlet in response to the signal from the pressure sensor.
  • 20. The system according to claim 19, wherein the dual fuel engine operates on one or more of gasoline, natural gas, well gas, field gas, or diesel.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. Non-Provisional application Ser. No. 15/929,770, filed May 21, 2020, titled “SYSTEMS AND METHODS UTILIZING TURBINE COMPRESSOR DISCHARGE FOR HYDROSTATIC MANIFOLD PURGE”, which claims priority to and the benefit of U.S. Provisional Application No. 62/704,539, filed May 14, 2020, titled “AIR RECOVERY SYSTEMS AND METHODS TO UTILIZE TURBINE COMPRESSOR DISCHARGE PRESSURE”, the entire disclosures of each of which are incorporated herein by reference.

US Referenced Citations (965)
Number Name Date Kind
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Lars Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3560053 Ortloff Feb 1971 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3781135 Nickell Dec 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3866108 Yannone Feb 1975 A
3875380 Rankin Apr 1975 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4239396 Arribau et al. Dec 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4442665 Fick Apr 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5511956 Hasegawa Apr 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Walkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5761084 Edwards Jun 1998 A
5811676 Spalding et al. Sep 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchieri Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7581379 Yoshida et al. Sep 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog et al. Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7861679 Lemke et al. Jan 2011 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7955056 Pettersson Jun 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8099942 Alexander Jan 2012 B2
8186334 Ooyama May 2012 B2
8196555 Ikeda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8316936 Roddy et al. Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8708667 Collingborn Apr 2014 B2
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8763583 Hofbauer et al. Jul 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8894356 Lafontaine et al. Nov 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9175810 Hains Nov 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9222346 Walls Dec 2015 B1
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9593710 Laimboeck et al. Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9871406 Churnock et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10024123 Steffenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sorensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan et al. Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590867 Thomassin et al. Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10662749 Hill et al. May 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830225 Repaci Nov 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10895202 Yeung et al. Jan 2021 B1
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10927774 Cai et al. Feb 2021 B2
10927802 Oehring Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji et al. Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10982523 Hill et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier et al. May 2021 B2
11015423 Yeung et al. May 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11066915 Yeung et al. Jul 2021 B1
11068455 Shabi et al. Jul 2021 B2
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11125156 Zhang et al. Sep 2021 B2
11143000 Li et al. Oct 2021 B2
11143005 Dusterhoft et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
11306835 Dille et al. Apr 2022 B1
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11428165 Yeung et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
11512570 Yeung Nov 2022 B2
11519395 Zhang et al. Dec 2022 B2
11519405 Deng et al. Dec 2022 B2
11530602 Yeung et al. Dec 2022 B2
11549349 Wang et al. Jan 2023 B2
11555390 Cui et al. Jan 2023 B2
11555756 Yeung et al. Jan 2023 B2
11557887 Ji et al. Jan 2023 B2
11560779 Mao et al. Jan 2023 B2
11560845 Yeung et al. Jan 2023 B2
11572775 Mao et al. Feb 2023 B2
11575249 Ji et al. Feb 2023 B2
11592020 Chang et al. Feb 2023 B2
11596047 Liu et al. Feb 2023 B2
11598263 Yeung et al. Mar 2023 B2
11603797 Zhang et al. Mar 2023 B2
11607982 Tian et al. Mar 2023 B2
11608726 Zhang et al. Mar 2023 B2
11624326 Yeung et al. Apr 2023 B2
11629583 Yeung et al. Apr 2023 B2
11629589 Lin et al. Apr 2023 B2
11649766 Yeung et al. May 2023 B1
11662384 Liu et al. May 2023 B2
11668173 Zhang et al. Jun 2023 B2
11668289 Chang et al. Jun 2023 B2
11677238 Liu et al. Jun 2023 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20030161212 Neal et al. Aug 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Orr et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060228225 Rogers Oct 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080212275 Waryck et al. Sep 2008 A1
20080229757 Alexander et al. Sep 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090212630 Flegel et al. Aug 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Surnilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120137699 Montagne Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130189915 Hazard Jul 2013 A1
20130205798 Kwok et al. Aug 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanbom Nov 2013 A1
20140000668 Lessard Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140174097 Hammer et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20150027730 Hall et al. Jan 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Iund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160076447 Merlo et al. Mar 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160123185 Le Pache et al. May 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170114613 Ecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron de Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170241671 Ahmad Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170356470 Jaffrey Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Behring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190088845 Sugi et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick et al. May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckles et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevag et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husoy et al. Apr 2020 A1
20200109616 Oehring et al. Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meck et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309027 Rytkonen Oct 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325791 Himmelmann Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200355055 Pusterhoft et al. Nov 2020 A1
20200362760 Morenko Nov 2020 A1
20200362764 Saintignan Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386169 Hinderliter et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui et al. Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210190045 Zhang et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270261 Zhang et al. Sep 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui et al. Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210324718 Anders Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372394 Bagulayan et al. Dec 2021 A1
20210372395 Li et al. Dec 2021 A1
20210376413 Asfha Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang et al. Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220112892 Cui et al. Apr 2022 A1
20220120262 Ji et al. Apr 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
20220389799 Mao Dec 2022 A1
20220389803 Zhang et al. Dec 2022 A1
20220389804 Cui et al. Dec 2022 A1
20220389865 Feng et al. Dec 2022 A1
20220389867 Li et al. Dec 2022 A1
20220412196 Cui et al. Dec 2022 A1
20220412199 Mao et al. Dec 2022 A1
20220412200 Zhang et al. Dec 2022 A1
20220412258 Li et al. Dec 2022 A1
20220412379 Wang et al. Dec 2022 A1
20230001524 Jiang et al. Jan 2023 A1
20230003238 Du et al. Jan 2023 A1
20230015132 Feng et al. Jan 2023 A1
20230015529 Zhang et al. Jan 2023 A1
20230015581 Ji et al. Jan 2023 A1
20230017968 Deng et al. Jan 2023 A1
20230029574 Zhang et al. Feb 2023 A1
20230029671 Han et al. Feb 2023 A1
20230036118 King et al. Feb 2023 A1
20230040970 Liu et al. Feb 2023 A1
20230042379 Zhang et al. Feb 2023 A1
20230047033 Fu et al. Feb 2023 A1
20230048551 Feng et al. Feb 2023 A1
20230049462 Zhang et al. Feb 2023 A1
20230064964 Wang et al. Mar 2023 A1
20230074794 Liu et al. Mar 2023 A1
20230085124 Zhong et al. Mar 2023 A1
20230092506 Zhong et al. Mar 2023 A1
20230092705 Liu et al. Mar 2023 A1
20230106683 Zhang et al. Apr 2023 A1
20230107300 Huang et al. Apr 2023 A1
20230107791 Zhang et al. Apr 2023 A1
20230109018 Du et al. Apr 2023 A1
20230116458 Liu et al. Apr 2023 A1
20230117362 Zhang et al. Apr 2023 A1
20230119725 Wang et al. Apr 2023 A1
20230119876 Mao et al. Apr 2023 A1
20230119896 Zhang et al. Apr 2023 A1
20230120810 Fu et al. Apr 2023 A1
20230121251 Cui et al. Apr 2023 A1
20230124444 Chang et al. Apr 2023 A1
20230138582 Li et al. May 2023 A1
20230144116 Li et al. May 2023 A1
20230145963 Zhang et al. May 2023 A1
20230151722 Cui et al. May 2023 A1
20230151723 Ji et al. May 2023 A1
20230152793 Wang et al. May 2023 A1
20230160289 Cui et al. May 2023 A1
20230160510 Bao et al. May 2023 A1
20230163580 Ji et al. May 2023 A1
20230167776 Cui et al. Jun 2023 A1
Foreign Referenced Citations (627)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
102182904 Sep 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202926404 May 2013 CN
202935216 May 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
PCTCN2012074945 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
205260249 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108799473 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
208169068 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208253147 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
10848028 Feb 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
S57135212 Feb 1984 JP
20020026398 Apr 2002 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
2016186790 Nov 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (117)
Entry
US 11,459,865 B2, 10/2022, Cui et al. (withdrawn)
US 11,555,493 B2, 01/2023, Chang et al. (withdrawn)
ISM, What is Cracking Pressure, 2019 (Year: 2019).
Swagelok, The right valve for controlling flow direction? Check, 2016 (Year: 2016).
Technology.org, Check valves how do they work and what are the main type, 2018 (Year: 2018).
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Dowell B908 “Turbo-Jet” Operator's Manual.
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gas field operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?V=PlkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sep. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.com/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60.html.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia,Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI JET Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, TX: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q2700.pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/U.S. Appl. No. 10/181,905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
ResearchGate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
Plos One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Gardner Denver Hydraulic Fracturing Pumps GD 3000 https://www.gardnerdenver.com/en-us/pumps/triplex-fracking-pump-gd-3000.
Ekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
Tom Hausfeld, GE Power & Water, and Eldon Schelske, Evolution Well Services, TM2500+ Power for Hydraulic Fracturing.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
Pbng, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, https://ifsolutions.com/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., Ws-Series Blowout Prevention Safety Coupling—Quick Release Couplings, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan plant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical ingineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities purenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology G{tilde over ( )}oteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor; May 23, 2013; accessed at https://www.drillingcontractororg/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).
The Application of Flexible Couplings for Turbomachinery, Jon R.Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, ® 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, ® Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 /http://api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 /http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer=brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input_doc_number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
International Search Report and Written Opinion for PCT/US2022/030647, dated Oct. 7, 2022.
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
Final written decision of PGR2021-00102 dated Feb. 6, 2023.
Final written decision of PGR2021-00103 dated Feb. 6, 2023.
Related Publications (1)
Number Date Country
20210355883 A1 Nov 2021 US
Provisional Applications (1)
Number Date Country
62704539 May 2020 US
Divisions (1)
Number Date Country
Parent 15929770 May 2020 US
Child 17132066 US