This application claims priority to Chinese Patent Application No. 201910124049.0, filed Feb. 19, 2019, incorporated by reference herein for all purposes.
Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for voltage conversion. Merely by way of example, some embodiments of the invention have been applied to light emitting diode (LED) lighting systems that include TRIAC dimmers. But it would be recognized that the invention has a much broader range of applicability.
A conventional lighting system often includes a TRIAC dimmer that is a dimmer including a Triode for Alternating Current (TRIAC). For example, the TRIAC dimmer is either a leading-edge TRIAC dimmer or a trailing-edge TRIAC dimmer. Usually, the leading-edge TRIAC dimmer and the trailing-edge TRIAC dimmer are configured to receive an alternating-current (AC) input voltage, process the AC input voltage by clipping part of the waveform of the AC input voltage, and generate a voltage that is then received by a rectifier (e.g., a full wave rectifying bridge) in order to generate a rectified output voltage. The rectified output voltage is converted to a DC voltage by an RC filtering circuit that includes a resistor and a capacitor, and the DC voltage is then used to control a driver to generate a drive signal for one or more light emitting diodes (LEDs).
The TRIAC dimmer 110 receives an AC input voltage 114 (e.g., VLine) and generates a voltage 112. The voltage 112 is received by the rectifier 120 (e.g., a full wave rectifying bridge), which then generates a rectified output voltage 122. The rectified output voltage 122 is larger than or equal to zero. As shown in
where Vs represents the voltage 182, and Vo represents the voltage 122. Additionally, R1 represents the resistance of the resistor 170, and R2 represents the resistance of the resistor 172. The voltage 182 (e.g., Vs) is received by the resistor 174. In response, the RC filtering circuit including the resistor 174 and the capacitor 180 generates a reference voltage 184 (e.g., VREF). For example, the reference voltage 184 (e.g., VREF) is a DC voltage. The reference voltage 184 is received by the driver 140, which in response affects (e.g., controls) a load current 142 that flows through the one or more LEDs 150. Referring to
As shown in
As shown in
As shown in
Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for voltage conversion. Merely by way of example, some embodiments of the invention have been applied to light emitting diode (LED) lighting systems that include TRIAC dimmers. But it would be recognized that the invention has a much broader range of applicability.
According to some embodiments, a system for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer, the system comprising: a phase detector configured to receive a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer, the phase detector being further configured to generate a digital signal representing phase information associated with the first rectified voltage; a voltage generator configured to receive the digital signal and generate a DC voltage based at least in part on the digital signal; and a driver configured to receive the DC voltage and affect, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function.
According to certain embodiments, a method for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer, the method comprising: receiving a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer; processing at least information associated with the first rectified voltage; generating a digital signal representing phase information associated with the first rectified voltage; receiving the digital signal; generating a DC voltage based at least in part on the digital signal; receiving the DC voltage; and affecting, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function.
Depending upon embodiment, one or more benefits may be achieved. These benefits and various additional objects, features and advantages of the present invention can be fully appreciated with reference to the detailed description and accompanying drawings that follow.
Certain embodiments of the present invention are directed to integrated circuits. More particularly, some embodiments of the invention provide systems and methods for voltage conversion. Merely by way of example, some embodiments of the invention have been applied to light emitting diode (LED) lighting systems that include TRIAC dimmers. But it would be recognized that the invention has a much broader range of applicability.
Referring to
τ=R3×C (Equation 2)
where R3 represents the resistance of the resistor 174, and C represents the capacitance of the capacitor 180. As an example, if the capacitor 180 is a parallel plate capacitor, its capacitance is determined as follows:
where C represents the capacitance of the capacitor 180. Additionally, A represents the area of the smaller of the two conductive plates, and d represents the distance between the two conductive plates of the capacitor 180.
As shown in Equations 2 and 3, to increase the RC time constant, the area of the smaller of the two conductive plates may need to become larger. If the area of the smaller of the two conductive plates becomes larger, integrating the capacitor 180 into the IC chip becomes more difficult. Even though the techniques of equivalent capacitance can be used to help integrating the RC filtering circuit into the IC chip, the capacitor 180 often still occupies a significant area of the IC chip.
In certain embodiments, the TRIAC dimmer 310 receives an AC input voltage 314 (e.g., VLine) and generates a voltage 312. For example, the voltage 312 is received by the rectifier 320 (e.g., a full wave rectifying bridge), which then generates a rectified output voltage 322. As an example, the rectified output voltage 322 is larger than or equal to zero. In some embodiments, as shown in
where Vs represents the voltage 382, and Vo represents the voltage 322. Additionally, R1 represents the resistance of the resistor 370, and R2 represents the resistance of the resistor 372. As an example, the voltage 382 (e.g., Vs) is a rectified voltage.
According to certain embodiments, the voltage 382 (e.g., Vs) is received by the phase detector 330. For example, the phase detector 330 and the voltage generator 340 convert the voltage 382 (e.g., Vs) to a reference voltage 384 (e.g., VREF). As an example, the reference voltage 384 (e.g., VREF) is a DC voltage. According to some embodiments, the reference voltage 384 is received by the driver 350, which in response affects (e.g., controls) a load current 362 that flows through the one or more LEDs 360. Referring to
These diagrams are merely examples, which should not unduly limit the scope of the claims. One of ordinary skill in the art would recognize many variations, alternatives, and modifications. As an example, for each cycle of the AC input voltage 114 (e.g., VLine), time t1 corresponds to phase 0, time t2 corresponds to phase ϕJ, time t3 corresponds to phase ϕK, time t4 corresponds to phase π, time is corresponds to phase π+ϕJ, time t6 corresponds to phase π+ϕK, and time t7 corresponds to phase 2π.
As shown in
As shown in
Referring to
In some examples, the phase detector 330 determines the time duration, during which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310, and then uses this time duration to determine the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. As an example, the phase change is determined as follows:
where A represents the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. Additionally, TC represents the time duration, during which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. Moreover, TA represents the time duration of one half cycle of the AC input voltage 314 (e.g., VLine). For example, one half cycle of the AC input voltage 314 (e.g., VLine) is the same as one cycle of the voltage 382 (e.g., Vs) in duration.
According to certain embodiments, the phase detector 330 includes a counter. In some examples, the counter keeps counting when the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310, but the counter does not count when the AC input voltage 314 (e.g., VLine) is clipped by the TRIAC dimmer 310. In some examples, as shown in
In some embodiments, for each half cycle of the AC input voltage 314 (e.g., each cycle of the voltage 382), the total number of counts by the counter is used by the phase detector 330 to determine the time duration, during which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. For example, as shown in
In certain embodiments, the phase detector 330 uses the total number of counts to determine the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. As an example, the phase change is determined as follows:
where A represents the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. Additionally, Cc represents the total number of counts when, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. Moreover, TI represents the time interval between two consecutive counts. Also, TA represents the time duration of one half cycle of the AC input voltage 314 (e.g., VLine). For example, one half cycle of the AC input voltage 314 (e.g., VLine) is the same as one cycle of the voltage 382 (e.g., Vs) in duration.
Referring to
According to certain embodiments, the voltage generator 340 and the driver 350 use the signal 342 (e.g., a digital signal) to affect (e.g., to control) the load current 362. For example, the signal 342 (e.g., a digital signal) represents the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. As an example, the load current 362 flows through the one or more LEDs 360.
As shown in
According to some embodiments, the vertical axis represents the relative magnitude of the load current 362 that flows through the one or more LEDs 360. In some examples, the relative magnitude is represented in percentage. For example, 0 percent (i.e., 0%) for the relative magnitude of the load current 362 indicates that the one or more LEDs 360 are completely turned off (e.g., to complete darkness). As an example, 100 percent (i.e., 100%) for the relative magnitude of the load current 362 indicates that the one or more LEDs 360 are completely turned on (e.g., to the maximum brightness).
In some embodiments, as shown by the curve 500, if the phase change is equal to or larger than 0 degree but smaller than Pa degrees, the relative magnitude of the load current 362 is equal to zero percent. In certain examples, if the phase change is larger than Pa degrees but smaller than Pb degrees, the relative magnitude of the load current 362 increases with the phase change linearly at a slope S1 from zero percent to m percent. For example, if the phase change is equal to Pa degrees, the relative magnitude of the load current 362 is equal to zero percent. As an example, if the phase change is equal to Pb degrees, the relative magnitude of the load current 362 is equal to m percent. In some examples, if the phase change is larger than Pb degrees but smaller than Pc degrees, the relative magnitude of the load current 362 increases with the phase change linearly at a slope S2 from m percent to n percent. For example, if the phase change is equal to Pb degrees, the relative magnitude of the load current 362 is equal to m percent. As an example, if the phase change is equal to Pc degrees, the relative magnitude of the load current 362 is equal to n percent. In certain examples, if the phase change is larger than Pc degrees but smaller than or equal to 180 degrees, the relative magnitude of the load current 362 is equal to n percent. In certain embodiments, 0≤Pa≤Pb≤Pc≤180, and 0≤m≤n≤100. As an example, 0<Pa<Pb<Pc<180, and 0<m<n≤100. For example, Pa=40, Pb=80, Pc=120, 0<m<n, and n=100. In some examples, S1 and S2 are equal to each other. In certain examples, S1 and S2 are not equal to each other.
According to some embodiments, the curve 500 is used by the voltage generator 340 and the driver 350 to affect (e.g., to control), in response to the signal 342, the load current 362 that flows through the one or more LEDs 360. For example, the curve 500 is designed by taking into account the compatibility of the TRIAC dimmer 310 and/or the reaction of human eyes to brightness changes of the one or more LEDs 360.
As discussed above and further emphasized here,
In some embodiments, the phase detector 330 receives the voltage 382 (e.g., Vs) and generates the signal 342 (e.g., a digital signal) that represents the time duration, during which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. For example, the voltage generator 340 receives the signal 342 (e.g., a digital signal) that represents the time duration, and determines, according to Equation 5, the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. As an example, the voltage generator 340 uses the phase change to generate the reference voltage 384 (e.g., VREF). In some examples, the voltage generator 340 and the driver 350 use the curve 500 to affect (e.g., to control), in response to the signal 342, the load current 362 that flows through the one or more LEDs 360.
Also, as discussed above and further emphasized here,
According to some embodiments, with the modified curve 500, if the phase change is equal to or larger than 0 degree but smaller than Pa degrees, the relative magnitude of the load current 362 is equal to n percent. In certain examples, if the phase change is larger than Pa degrees but smaller than Pb degrees, the relative magnitude of the load current 362 decreases with the phase change linearly at a slope S1 from n percent to m percent. For example, if the phase change is equal to Pa degrees, the relative magnitude of the load current 362 is equal to n percent. As an example, if the phase change is equal to Pb degrees, the relative magnitude of the load current 362 is equal to m percent. In some examples, if the phase change is larger than Pb degrees but smaller than Pc degrees, the relative magnitude of the load current 362 decreases with the phase change linearly at a slope S2 from m percent to 0 percent. For example, if the phase change is equal to Pb degrees, the relative magnitude of the load current 362 is equal to m percent. As an example, if the phase change is equal to Pc degrees, the relative magnitude of the load current 362 is equal to 0 percent. In certain examples, if the phase change is larger than Pc degrees but smaller than or equal to 180 degrees, the relative magnitude of the load current 362 is equal to 0 percent. In certain embodiments, 0≤Pa≤Pb≤Pc≤180, and 0≤m≤n≤100. As an example, 0<Pa<Pb<Pc<180, and 0<m<n≤100. For example, Pa=40, Pb=80, Pc=120, 0<m<n, and n=100. In some examples, S1 and S2 are equal to each other. In certain examples, S1 and S2 are not equal to each other.
Moreover, as discussed above and further emphasized here,
In certain embodiments, at the process 810, the rectified voltage 382 (e.g., Vs) is received by the phase detector 330. For example, the voltage divider including the resistors 370 and 372 receives the rectified output voltage 322 and, in response, generates the rectified voltage 382 (e.g., Vs) according to Equation 4.
In some embodiments, at the process 820, the phase detector 330 generates, based at least in part on the rectified voltage 382, the digital signal 342 that represents phase information of the rectified voltage 382 (e.g., Vs). For example, the digital signal 342 represents the phase change, within which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. As an example, the digital signal 342 represents the total number of counts made within each half cycle of the AC input voltage 314 (e.g., each cycle of the voltage 382) when the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310. For example, the digital signal 342 represents the time duration, during which, for each half cycle, the AC input voltage 314 (e.g., VLine) is not clipped by the TRIAC dimmer 310.
In certain embodiments, at the process 830, the voltage generator 340 receives the digital signal 342 and generates the DC voltage 384 (e.g., VREF) based at least in part on the digital signal 342. For example, the reference voltage 384 is received by the driver 350, which in response affects (e.g., controls) the load current 362 that flows through the one or more LEDs 360. As an example, the voltage generator 340 and the driver 350 use the curve 500 as shown in
According to some embodiments, the process 830 is performed by the voltage generator 340 as shown in
According to certain embodiments, the process 830 is performed by the voltage generator 340 as shown in
In some embodiments, the lighting system 300 does not use an RC filtering circuit that includes a resistor and a capacitor, and the lighting system 300 does not need a large capacitor to generate a DC voltage; therefore, the size and/or the cost of the IC chip is reduced. In certain embodiments, the curve 500 as shown in
According to some embodiments, a system for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer, the system comprising: a phase detector configured to receive a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer, the phase detector being further configured to generate a digital signal representing phase information associated with the first rectified voltage; a voltage generator configured to receive the digital signal and generate a DC voltage based at least in part on the digital signal; and a driver configured to receive the DC voltage and affect, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function. For example, the system is implemented according to at least
In some examples, the phase information includes a phase change, within which, for each cycle of the first rectified voltage, the AC input voltage is not clipped by the TRIAC dimmer. In certain examples, the phase information includes a time duration, within which, for each cycle of the first rectified voltage, the AC input voltage is not clipped by the TRIAC dimmer. In some examples, the phase information includes, for each cycle of the first rectified voltage, a total number of counts made by the phase detector when the AC input voltage is not clipped by the TRIAC dimmer.
In certain examples, the phase information includes a phase change, within which, for each cycle of the first rectified voltage, the AC input voltage is clipped by the TRIAC dimmer. In some examples, the phase information includes a time duration, within which, for each cycle of the first rectified voltage, the AC input voltage is clipped by the TRIAC dimmer. In certain examples, the phase information includes, for each cycle of the first rectified voltage, a total number of counts made by the phase detector when the AC input voltage is clipped by the TRIAC dimmer.
In some examples, the voltage generator includes a digital-to-analog converter and an analog voltage generator; wherein: the digital-to-analog converter is configured to receive the digital signal and convert the digital signal to an analog signal also representing the phase information associated with the first rectified voltage; and the analog voltage generator configured to receive the analog signal and generate the DC voltage based at least in part on the analog signal. In certain examples, the voltage generator includes a digital voltage generator and a digital-to-analog converter; wherein: the digital voltage generator is configured to receive the digital signal and generate a digital output voltage based at least in part on the digital signal; and the digital-to-analog converter is configured to receive the digital output voltage and convert the digital output voltage to the DC voltage.
In some examples, the system further includes: the TRIAC dimmer configured to receive the AC input voltage and generate a processed voltage by clipping at least a part of the AC input voltage; a rectifier configured to receive the processed voltage and generate a second rectified voltage; and a voltage divider configured to receive the second rectified voltage and generate the first rectified voltage.
According to some embodiments, a method for voltage conversion to drive one or more light emitting diodes with at least a TRIAC dimmer, the method comprising: receiving a first rectified voltage generated based at least in part on an AC input voltage processed by at least the TRIAC dimmer; processing at least information associated with the first rectified voltage; generating a digital signal representing phase information associated with the first rectified voltage; receiving the digital signal; generating a DC voltage based at least in part on the digital signal; receiving the DC voltage; and affecting, based at least in part on the DC voltage, a current flowing through the one or more light emitting diodes; wherein the current changes with the phase information according to a predetermined function. For example, the method is implemented according to at least
In some examples, the phase information includes a phase change, within which, for each cycle of the first rectified voltage, the AC input voltage is not clipped by the TRIAC dimmer. In certain examples, the phase information includes a time duration, within which, for each cycle of the first rectified voltage, the AC input voltage is not clipped by the TRIAC dimmer. In some examples, the phase information includes, for each cycle of the first rectified voltage, a total number of counts made when the AC input voltage is not clipped by the TRIAC dimmer.
In certain examples, the phase information includes a phase change, within which, for each cycle of the first rectified voltage, the AC input voltage is clipped by the TRIAC dimmer. In some examples, the phase information includes a time duration, within which, for each cycle of the first rectified voltage, the AC input voltage is clipped by the TRIAC dimmer. In certain examples, the phase information includes, for each cycle of the first rectified voltage, a total number of counts made when the AC input voltage is clipped by the TRIAC dimmer.
In some examples, the generating a DC voltage based at least in part on the digital signal includes: receiving the digital signal; converting the digital signal to an analog signal also representing the phase information associated with the first rectified voltage; receiving the analog signal; and generating the DC voltage based at least in part on the analog signal. In certain examples, the generating a DC voltage based at least in part on the digital signal includes: receiving the digital signal; generating a digital output voltage based at least in part on the digital signal; receiving the digital output voltage; and converting the digital output voltage to the DC voltage.
In some examples, the method further includes: receiving the AC input voltage; generating a processed voltage by clipping at least a part of the AC input voltage; receiving the processed voltage; processing at least information associated with the processed voltage; generating a second rectified voltage based at least in part on the processed voltage; receiving the second rectified voltage; and generating the first rectified voltage based at least in part on the second rectified voltage.
For example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented using one or more software components, one or more hardware components, and/or one or more combinations of software and hardware components. In another example, some or all components of various embodiments of the present invention each are, individually and/or in combination with at least another component, implemented in one or more circuits, such as one or more analog circuits and/or one or more digital circuits. In yet another example, various embodiments and/or examples of the present invention can be combined.
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments.
Number | Date | Country | Kind |
---|---|---|---|
201910124049.0 | Feb 2019 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3803452 | Goldschmied | Apr 1974 | A |
3899713 | Barkan et al. | Aug 1975 | A |
4253045 | Weber | Feb 1981 | A |
5144205 | Motto et al. | Sep 1992 | A |
5249298 | Bolan et al. | Sep 1993 | A |
5504398 | Rothenbuhler | Apr 1996 | A |
5949197 | Kastner | Sep 1999 | A |
6196208 | Masters | Mar 2001 | B1 |
6218788 | Chen et al. | Apr 2001 | B1 |
6229271 | Liu | May 2001 | B1 |
6278245 | Li et al. | Aug 2001 | B1 |
7038399 | Lys et al. | May 2006 | B2 |
7649327 | Peng | Jan 2010 | B2 |
7759881 | Melanson | Jul 2010 | B1 |
7825715 | Greenberg | Nov 2010 | B1 |
7880400 | Zhou et al. | Feb 2011 | B2 |
7944153 | Greenfeld | May 2011 | B2 |
8018171 | Melanson et al. | Sep 2011 | B1 |
8129976 | Blakeley | Mar 2012 | B2 |
8134302 | Yang et al. | Mar 2012 | B2 |
8278832 | Hung et al. | Oct 2012 | B2 |
8373313 | Garcia et al. | Feb 2013 | B2 |
8378583 | Hying et al. | Feb 2013 | B2 |
8378588 | Kuo et al. | Feb 2013 | B2 |
8378589 | Kuo et al. | Feb 2013 | B2 |
8415901 | Recker et al. | Apr 2013 | B2 |
8432438 | Ryan et al. | Apr 2013 | B2 |
8497637 | Liu | Jul 2013 | B2 |
8558477 | Bordin et al. | Oct 2013 | B2 |
8569956 | Shteynberg et al. | Oct 2013 | B2 |
8644041 | Pansier | Feb 2014 | B2 |
8653750 | Deurenberg et al. | Feb 2014 | B2 |
8686668 | Grotkowski et al. | Apr 2014 | B2 |
8698419 | Yan et al. | Apr 2014 | B2 |
8716882 | Pettler et al. | May 2014 | B2 |
8742674 | Shteynberg et al. | Jun 2014 | B2 |
8829819 | Angeles et al. | Sep 2014 | B1 |
8890440 | Yan et al. | Nov 2014 | B2 |
8896288 | Choi et al. | Nov 2014 | B2 |
8941324 | Zhou et al. | Jan 2015 | B2 |
8941328 | Wu et al. | Jan 2015 | B2 |
8947010 | Barrow et al. | Feb 2015 | B2 |
9030122 | Yan et al. | May 2015 | B2 |
9084316 | Melanson et al. | Jul 2015 | B2 |
9131581 | Hsia et al. | Sep 2015 | B1 |
9148050 | Chiang | Sep 2015 | B2 |
9167638 | Le | Oct 2015 | B2 |
9173258 | Ekbote | Oct 2015 | B2 |
9207265 | Grisamore et al. | Dec 2015 | B1 |
9220133 | Salvestrini et al. | Dec 2015 | B2 |
9220136 | Zhang | Dec 2015 | B2 |
9247623 | Recker et al. | Jan 2016 | B2 |
9247625 | Recker et al. | Jan 2016 | B2 |
9301349 | Zhu et al. | Mar 2016 | B2 |
9332609 | Rhodes et al. | May 2016 | B1 |
9402293 | Vaughan et al. | Jul 2016 | B2 |
9408269 | Zhu et al. | Aug 2016 | B2 |
9414455 | Zhou et al. | Aug 2016 | B2 |
9467137 | Eum et al. | Oct 2016 | B2 |
9480118 | Liao et al. | Oct 2016 | B2 |
9485833 | Datta et al. | Nov 2016 | B2 |
9554432 | Zhu et al. | Jan 2017 | B2 |
9572224 | Gaknoki et al. | Feb 2017 | B2 |
9585222 | Zhu et al. | Feb 2017 | B2 |
9655188 | Lewis et al. | May 2017 | B1 |
9661702 | Mednik et al. | May 2017 | B2 |
9723676 | Ganick et al. | Aug 2017 | B2 |
9750107 | Zhu et al. | Aug 2017 | B2 |
9781786 | Ho et al. | Oct 2017 | B2 |
9820344 | Papanicolaou | Nov 2017 | B1 |
9883561 | Liang et al. | Jan 2018 | B1 |
9883562 | Zhu et al. | Jan 2018 | B2 |
9961734 | Zhu et al. | Jun 2018 | B2 |
10054271 | Xiong et al. | Aug 2018 | B2 |
10153684 | Liu et al. | Dec 2018 | B2 |
10194500 | Zhu et al. | Jan 2019 | B2 |
10264642 | Liang et al. | Apr 2019 | B2 |
10292217 | Zhu et al. | May 2019 | B2 |
10299328 | Fu et al. | May 2019 | B2 |
10334677 | Zhu et al. | Jun 2019 | B2 |
10342087 | Zhu et al. | Jul 2019 | B2 |
10362643 | Kim et al. | Jul 2019 | B2 |
10375785 | Li et al. | Aug 2019 | B2 |
10383187 | Liao et al. | Aug 2019 | B2 |
10447171 | Newman, Jr. et al. | Oct 2019 | B2 |
10448469 | Zhu et al. | Oct 2019 | B2 |
10448470 | Zhu et al. | Oct 2019 | B2 |
10455657 | Zhu et al. | Oct 2019 | B2 |
10512131 | Zhu et al. | Dec 2019 | B2 |
10568185 | Ostrovsky et al. | Feb 2020 | B1 |
10616975 | Gotou et al. | Apr 2020 | B2 |
10687397 | Zhu et al. | Jun 2020 | B2 |
10530268 | Newman, Jr. et al. | Sep 2020 | B2 |
10785837 | Li et al. | Sep 2020 | B2 |
10827588 | Zhu et al. | Nov 2020 | B2 |
10973095 | Zhu et al. | Apr 2021 | B2 |
10999903 | Li et al. | May 2021 | B2 |
10999904 | Zhu et al. | May 2021 | B2 |
11026304 | Li et al. | Jun 2021 | B2 |
20060022648 | Ben-Yaakov et al. | Feb 2006 | A1 |
20070182338 | Shteynberg et al. | Aug 2007 | A1 |
20070182699 | Ha et al. | Aug 2007 | A1 |
20070267978 | Shteynberg et al. | Nov 2007 | A1 |
20080224629 | Melanson | Sep 2008 | A1 |
20080224633 | Melanson et al. | Sep 2008 | A1 |
20080278092 | Lys et al. | Nov 2008 | A1 |
20090021469 | Yeo et al. | Jan 2009 | A1 |
20090085494 | Summerland | Apr 2009 | A1 |
20090251059 | Veltman | Oct 2009 | A1 |
20100141153 | Recker et al. | Jun 2010 | A1 |
20100148691 | Kuo et al. | Jun 2010 | A1 |
20100156319 | Melanson | Jun 2010 | A1 |
20100017673 | King | Jul 2010 | A1 |
20100164406 | Kost et al. | Jul 2010 | A1 |
20100207536 | Burdalski | Aug 2010 | A1 |
20100213859 | Shteynberg | Aug 2010 | A1 |
20100219766 | Kuo et al. | Sep 2010 | A1 |
20100231136 | Reisenauer et al. | Sep 2010 | A1 |
20110012530 | Zheng et al. | Jan 2011 | A1 |
20110037399 | Hung et al. | Feb 2011 | A1 |
20110074302 | Draper et al. | Mar 2011 | A1 |
20110080110 | Nuhfer et al. | Apr 2011 | A1 |
20110080111 | Nuhfer et al. | Apr 2011 | A1 |
20110101867 | Wang et al. | May 2011 | A1 |
20110121744 | Salvestrini | May 2011 | A1 |
20110121754 | Shteynberg | May 2011 | A1 |
20110133662 | Yan et al. | Jun 2011 | A1 |
20110140620 | Lin et al. | Jun 2011 | A1 |
20110140621 | Yi et al. | Jun 2011 | A1 |
20110187283 | Wang et al. | Aug 2011 | A1 |
20110227490 | Huynh | Sep 2011 | A1 |
20110260619 | Sadwick | Oct 2011 | A1 |
20110285301 | Kuang et al. | Nov 2011 | A1 |
20110291583 | Shen | Dec 2011 | A1 |
20110309759 | Shteynberg | Dec 2011 | A1 |
20120001548 | Recker et al. | Jan 2012 | A1 |
20120032604 | Hontele | Feb 2012 | A1 |
20120056553 | Koolen et al. | Mar 2012 | A1 |
20120069616 | Kitamura et al. | Mar 2012 | A1 |
20120080944 | Recker et al. | Apr 2012 | A1 |
20120081009 | Shteynberg et al. | Apr 2012 | A1 |
20120081032 | Huang | Apr 2012 | A1 |
20120146526 | Lam et al. | Jun 2012 | A1 |
20120181944 | Jacobs et al. | Jul 2012 | A1 |
20120181946 | Melanson | Jul 2012 | A1 |
20120187857 | Ulmann et al. | Jul 2012 | A1 |
20120242237 | Chen et al. | Sep 2012 | A1 |
20120262093 | Recker et al. | Oct 2012 | A1 |
20120268031 | Zhou et al. | Oct 2012 | A1 |
20120274227 | Zheng et al. | Nov 2012 | A1 |
20120286679 | Liu | Nov 2012 | A1 |
20120299500 | Sadwick | Nov 2012 | A1 |
20120299501 | Kost et al. | Nov 2012 | A1 |
20120299511 | Montante et al. | Nov 2012 | A1 |
20120319604 | Walters | Dec 2012 | A1 |
20120326616 | Sumitani et al. | Dec 2012 | A1 |
20130009561 | Briggs | Jan 2013 | A1 |
20130020965 | Kang et al. | Jan 2013 | A1 |
20130026942 | Ryan et al. | Jan 2013 | A1 |
20130026945 | Ganick et al. | Jan 2013 | A1 |
20130027528 | Staats et al. | Jan 2013 | A1 |
20130034172 | Pettler et al. | Feb 2013 | A1 |
20130043726 | Krishnamoorthy et al. | Feb 2013 | A1 |
20130049631 | Riesebosch | Feb 2013 | A1 |
20130063047 | Veskovic | Mar 2013 | A1 |
20130141001 | Datta | Jun 2013 | A1 |
20130154487 | Kuang et al. | Jun 2013 | A1 |
20130162158 | Pollischanshy | Jun 2013 | A1 |
20130175931 | Sadwick | Jul 2013 | A1 |
20130181630 | Taipale et al. | Jul 2013 | A1 |
20130193866 | Datta et al. | Aug 2013 | A1 |
20130193879 | Sadwick | Aug 2013 | A1 |
20130194848 | Bernardinis et al. | Aug 2013 | A1 |
20130215655 | Yang et al. | Aug 2013 | A1 |
20130223107 | Zhang et al. | Aug 2013 | A1 |
20130229121 | Otake et al. | Sep 2013 | A1 |
20130241427 | Kesterson et al. | Sep 2013 | A1 |
20130241428 | Takeda | Sep 2013 | A1 |
20130241441 | Myers et al. | Sep 2013 | A1 |
20130242622 | Peng | Sep 2013 | A1 |
20130249431 | Shteynberg et al. | Sep 2013 | A1 |
20130278159 | Del Carmen, Jr. et al. | Oct 2013 | A1 |
20130307430 | Blom | Nov 2013 | A1 |
20130307431 | Zhu et al. | Nov 2013 | A1 |
20130307434 | Zhang | Nov 2013 | A1 |
20130342127 | Pan et al. | Dec 2013 | A1 |
20140009082 | King et al. | Jan 2014 | A1 |
20140029315 | Zhang et al. | Jan 2014 | A1 |
20140049177 | Kulczycki et al. | Feb 2014 | A1 |
20140063857 | Peng | Mar 2014 | A1 |
20140078790 | Lin et al. | Mar 2014 | A1 |
20140103829 | Kang | Apr 2014 | A1 |
20140132172 | Zhu et al. | May 2014 | A1 |
20140160809 | Lin et al. | Jun 2014 | A1 |
20140176016 | Li et al. | Jun 2014 | A1 |
20140177280 | Yang et al. | Jun 2014 | A1 |
20140197760 | Radermacher | Jul 2014 | A1 |
20140265898 | Del Carmen, Jr. et al. | Sep 2014 | A1 |
20140265907 | Su et al. | Sep 2014 | A1 |
20140265935 | Sadwick | Sep 2014 | A1 |
20140268935 | Chiang | Sep 2014 | A1 |
20140300274 | Acatrinei | Oct 2014 | A1 |
20140320031 | Wu et al. | Oct 2014 | A1 |
20140333228 | Angeles et al. | Nov 2014 | A1 |
20140346973 | Zhu et al. | Nov 2014 | A1 |
20140354157 | Morales | Dec 2014 | A1 |
20140354165 | Malyna et al. | Dec 2014 | A1 |
20140354170 | Gredler | Dec 2014 | A1 |
20150015159 | Wang et al. | Jan 2015 | A1 |
20150035450 | Werner | Feb 2015 | A1 |
20150048757 | Boonen et al. | Feb 2015 | A1 |
20150062981 | Fang | Mar 2015 | A1 |
20150077009 | Kunimatsu | Mar 2015 | A1 |
20150091470 | Zhou et al. | Apr 2015 | A1 |
20150137704 | Angeles et al. | May 2015 | A1 |
20150312978 | Vaughan et al. | Oct 2015 | A1 |
20150312982 | Melanson | Oct 2015 | A1 |
20150312988 | Liao et al. | Oct 2015 | A1 |
20150318789 | Yang et al. | Nov 2015 | A1 |
20150333764 | Pastore et al. | Nov 2015 | A1 |
20150357910 | Murakami et al. | Dec 2015 | A1 |
20150359054 | Lin et al. | Dec 2015 | A1 |
20150366010 | Mao et al. | Dec 2015 | A1 |
20150382424 | Knapp et al. | Dec 2015 | A1 |
20160014861 | Zhu et al. | Jan 2016 | A1 |
20160014865 | Zhu et al. | Jan 2016 | A1 |
20160037604 | Zhu et al. | Feb 2016 | A1 |
20160119998 | Linnartz et al. | Apr 2016 | A1 |
20160277411 | Dani et al. | Sep 2016 | A1 |
20160286617 | Takahashi et al. | Sep 2016 | A1 |
20160323957 | Hu et al. | Nov 2016 | A1 |
20160338163 | Zhu et al. | Nov 2016 | A1 |
20170006684 | Tu et al. | Jan 2017 | A1 |
20170027029 | Hu et al. | Jan 2017 | A1 |
20170064787 | Liao et al. | Mar 2017 | A1 |
20170099712 | Hilgers et al. | Apr 2017 | A1 |
20170181235 | Zhu et al. | Jun 2017 | A1 |
20170196063 | Zhu et al. | Jul 2017 | A1 |
20170251532 | Wang et al. | Aug 2017 | A1 |
20170311409 | Zhu et al. | Oct 2017 | A1 |
20170354008 | Eum et al. | Dec 2017 | A1 |
20170359880 | Zhu et al. | Dec 2017 | A1 |
20180103520 | Zhu et al. | Apr 2018 | A1 |
20180110104 | Liang et al. | Apr 2018 | A1 |
20180115234 | Liu et al. | Apr 2018 | A1 |
20180139816 | Liu et al. | May 2018 | A1 |
20180288845 | Zhu et al. | Oct 2018 | A1 |
20190069364 | Zhu et al. | Feb 2019 | A1 |
20190069366 | Liao et al. | Feb 2019 | A1 |
20190082507 | Zhu et al. | Mar 2019 | A1 |
20190012473 | Zhu et al. | Apr 2019 | A1 |
20190166667 | Li et al. | May 2019 | A1 |
20190230755 | Zhu et al. | Jul 2019 | A1 |
20190327810 | Zhu et al. | Oct 2019 | A1 |
20190350060 | Li et al. | Nov 2019 | A1 |
20190380183 | Li et al. | Dec 2019 | A1 |
20200100340 | Zhu et al. | Mar 2020 | A1 |
20200146121 | Zhu et al. | May 2020 | A1 |
20200205263 | Zhu et al. | Jun 2020 | A1 |
20200205264 | Zhu et al. | Jun 2020 | A1 |
20200305247 | Li et al. | Sep 2020 | A1 |
20200375001 | Jung et al. | Nov 2020 | A1 |
20210007195 | Zhu et al. | Jan 2021 | A1 |
20210007196 | Zhu et al. | Jan 2021 | A1 |
20210045213 | Zhu et al. | Feb 2021 | A1 |
20210153313 | Li et al. | May 2021 | A1 |
20210195709 | Li et al. | Jun 2021 | A1 |
20210204375 | Li et al. | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
1448005 | Oct 2003 | CN |
101040570 | Sep 2007 | CN |
101657057 | Feb 2010 | CN |
101868090 | Oct 2010 | CN |
101896022 | Nov 2010 | CN |
101917804 | Dec 2010 | CN |
101938865 | Jan 2011 | CN |
101998734 | Mar 2011 | CN |
102014540 | Apr 2011 | CN |
102014551 | Apr 2011 | CN |
102056378 | May 2011 | CN |
102209412 | Oct 2011 | CN |
102300375 | Dec 2011 | CN |
102347607 | Feb 2012 | CN |
102387634 | Mar 2012 | CN |
103004290 | Mar 2012 | CN |
102474953 | May 2012 | CN |
102497706 | Jun 2012 | CN |
102612194 | Jul 2012 | CN |
202353859 | Jul 2012 | CN |
102668717 | Sep 2012 | CN |
102695330 | Sep 2012 | CN |
102791056 | Nov 2012 | CN |
102843836 | Dec 2012 | CN |
202632722 | Dec 2012 | CN |
102870497 | Jan 2013 | CN |
102946674 | Feb 2013 | CN |
103024994 | Apr 2013 | CN |
103096606 | May 2013 | CN |
103108470 | May 2013 | CN |
103260302 | Aug 2013 | CN |
103313472 | Sep 2013 | CN |
103369802 | Oct 2013 | CN |
103379712 | Oct 2013 | CN |
103428953 | Dec 2013 | CN |
103458579 | Dec 2013 | CN |
103547014 | Jan 2014 | CN |
103716934 | Apr 2014 | CN |
103858524 | Jun 2014 | CN |
203675408 | Jun 2014 | CN |
103945614 | Jul 2014 | CN |
103957634 | Jul 2014 | CN |
102612194 | Aug 2014 | CN |
104066254 | Sep 2014 | CN |
103096606 | Dec 2014 | CN |
204392621 | Jun 2015 | CN |
103648219 | Jul 2015 | CN |
104768265 | Jul 2015 | CN |
103781229 | Sep 2015 | CN |
105246218 | Jan 2016 | CN |
105265019 | Jan 2016 | CN |
105423140 | Mar 2016 | CN |
105591553 | May 2016 | CN |
105873269 | Aug 2016 | CN |
105992440 | Oct 2016 | CN |
106105395 | Nov 2016 | CN |
106163009 | Nov 2016 | CN |
205812458 | Dec 2016 | CN |
106358337 | Jan 2017 | CN |
106413189 | Feb 2017 | CN |
206042434 | Mar 2017 | CN |
106604460 | Apr 2017 | CN |
106793246 | May 2017 | CN |
106888524 | Jun 2017 | CN |
107046751 | Aug 2017 | CN |
106332374 | Nov 2017 | CN |
106888524 | Jan 2018 | CN |
106912144 | Jan 2018 | CN |
107645804 | Jan 2018 | CN |
104902653 | Apr 2018 | CN |
207460551 | Jun 2018 | CN |
108337764 | Jul 2018 | CN |
108366460 | Aug 2018 | CN |
207744191 | Aug 2018 | CN |
108834259 | Nov 2018 | CN |
109246885 | Jan 2019 | CN |
208572500 | Mar 2019 | CN |
109729621 | May 2019 | CN |
110086362 | Aug 2019 | CN |
107995747 | Nov 2019 | CN |
110493913 | Nov 2019 | CN |
2403318 | Jan 2012 | EP |
2938164 | Oct 2015 | EP |
2590477 | Apr 2018 | EP |
2008-010152 | Jan 2008 | JP |
2011-249328 | Dec 2011 | JP |
201215228 | Sep 2010 | TW |
201125441 | Jul 2011 | TW |
201132241 | Sep 2011 | TW |
201143501 | Dec 2011 | TW |
201143530 | Dec 2011 | TW |
201146087 | Dec 2011 | TW |
201204168 | Jan 2012 | TW |
201208463 | Feb 2012 | TW |
201208481 | Feb 2012 | TW |
201208486 | Feb 2012 | TW |
201233021 | Aug 2012 | TW |
201244543 | Nov 2012 | TW |
I 387396 | Feb 2013 | TW |
201315118 | Apr 2013 | TW |
201322825 | Jun 2013 | TW |
201336345 | Sep 2013 | TW |
201342987 | Oct 2013 | TW |
201348909 | Dec 2013 | TW |
I-422130 | Jan 2014 | TW |
I 423732 | Jan 2014 | TW |
201412189 | Mar 2014 | TW |
201414146 | Apr 2014 | TW |
I-434616 | Apr 2014 | TW |
M477115 | Apr 2014 | TW |
201417626 | May 2014 | TW |
201417631 | May 2014 | TW |
201422045 | Jun 2014 | TW |
201424454 | Jun 2014 | TW |
I-441428 | Jun 2014 | TW |
I 448198 | Aug 2014 | TW |
201503756 | Jan 2015 | TW |
201515514 | Apr 2015 | TW |
I 496502 | Aug 2015 | TW |
201603644 | Jan 2016 | TW |
201607368 | Feb 2016 | TW |
I-524814 | Mar 2016 | TW |
I-535175 | May 2016 | TW |
I-540809 | Jul 2016 | TW |
201630468 | Aug 2016 | TW |
201639415 | Nov 2016 | TW |
I-630842 | Jul 2018 | TW |
201909699 | Mar 2019 | TW |
201927074 | Jul 2019 | TW |
Entry |
---|
Taiwan Intellectual Property Office, Office Action dated Dec. 27, 2019, in Application No. 108116002. |
Taiwan Intellectual Property Office, Office Action dated Apr. 27, 2020, in Application No. 108116002. |
United States Patent and Trademark Office, Notice of Allowance dated Jun. 5, 2020, in U.S. Appl. No. 16/661,897. |
Taiwan Intellectual Property Office, Office Action dated Aug. 27, 2020, in Application No. 107107508. |
United States Patent and Trademark Office, Notice of Allowanced dated Jun. 22, 2020, in U.S. Appl. No. 16/226,424. |
United States Patent and Trademark Office, Office Action dated Jun. 18, 2020, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Office Action dated Jun. 30, 2020, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Notice of Allowance dated Jun. 18, 2020, in U.S. Appl. No. 16/385,309. |
United States Patent and Trademark Office, Office Action dated Jul. 16, 2020, in U.S. Appl. No. 16/566,701. |
United States Patent and Trademark Office, Office Action dated Jul. 2, 2020, in U.S. Appl. No. 16/661,897. |
United States Patent and Trademark Office, Office Action dated Jul. 23, 2020, in U.S. Appl. No. 16/804,918. |
United States Patent and Trademark Office, Office Action dated Jun. 30, 2020, in U.S. Appl. No. 16/809,447. |
China Patent Office, Office Action dated Aug. 28, 2015, in Application No. 201410322602.9. |
China Patent Office, Office Action dated Aug. 8, 2015, in Application No. 201410172086.6. |
China Patent Office, Office Action dated Mar. 2, 2016, in Application No. 201410172086.6. |
China Patent Office, Office Action dated Dec. 14, 2015, in Application No. 201210166672.0. |
China Patent Office, Office Action dated Sep. 2, 2016, in Application No. 201510103579.9. |
China Patent Office, Office Action dated Jul. 7, 2014, in Application No. 201210468505.1. |
China Patent Office, Office Action dated Jun. 3, 2014, in Application No. 201110103130.4. |
China Patent Office, Office Action dated Jun. 30, 2015, in Application No. 201410171893.6. |
China Patent Office, Office Action dated Nov. 15, 2014, in Application No. 201210166672.0. |
China Patent Office, Office Action dated Oct. 19, 2015, in Application No. 201410322612.2. |
China Patent Office, Office Action dated Mar. 22, 2016, in Application No. 201410322612.2. |
China Patent Office, Office Action dated Nov. 29, 2018, in Application No. 201710828263.5. |
China Patent Office, Office Action dated Dec. 3, 2018, in Application No. 201710557179.4. |
China Patent Office, Office Action dated Mar. 22, 2019, in Application No. 201711464007.9. |
China Patent Office, Office Action dated Jan. 9, 2020, in Application No. 201710828263.5. |
Taiwan Intellectual Property Office, Office Action dated Jan. 7, 2014, in Application No. 100119272. |
Taiwan Intellectual Property Office, Office Action dated Jun. 9, 2014, in Application No. 101124982. |
Taiwan Intellectual Property Office, Office Action dated Nov. 13, 2015, in Application No. 103141628. |
Taiwan Intellectual Property Office, Office Action dated Sep. 17, 2015, in Application No. 103127108. |
Taiwan Intellectual Property Office, Office Action dated Sep. 17, 2015, in Application No. 103127620. |
Taiwan Intellectual Property Office, Office Action dated Sep. 25, 2014, in Application No. 101148716. |
Taiwan Intellectual Property Office, Office Action dated Feb. 27, 2018, in Application No. 106136242. |
Taiwan Intellectual Property Office, Office Action dated Jan. 14, 2019, in Application No. 107107508. |
Taiwan Intellectual Property Office, Office Action dated Oct. 31, 2019, in Application No. 107107508. |
Taiwan Intellectual Property Office, Office Action dated Feb. 11, 2020, in Application No. 107107508. |
Taiwan Intellectual Property Office, Office Action dated Feb. 6, 2018, in Application No. 106130686. |
Taiwan Intellectual Property Office, Office Action dated Apr. 18, 2016, in Application No. 103140989. |
Taiwan Intellectual Property Office, Office Action dated Aug. 23, 2017, in Application No. 106103535. |
Taiwan Intellectual Property Office, Office Action dated May 28, 2019, in Application No. 107112306. |
United States Patent and Trademark Office, Office Action dated Sep. 16, 2019, in U.S. Appl. No. 16/226,424. |
United States Patent and Trademark Office, Notice of Allowance dated Mar. 10, 2020, in U.S. Appl. No. 16/226,424. |
United States Patent and Trademark Office, Office Action dated Jul. 12, 2019, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Notice of Allowance dated Dec. 16, 2019, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Office Action dated Aug. 8, 2019, in U.S. Appl. No. 16/270,416. |
United States Patent and Trademark Office, Notice of Allowance dated Feb. 11, 2020, in U.S. Appl. No. 16/270,416. |
United States Patent and Trademark Office, Office Action dated Oct. 4, 2019, in U.S. Appl. No. 16/385,309. |
United States Patent and Trademark Office, Notice of Allowance dated Apr. 16, 2020, in U.S. Appl. No. 16/385,309. |
United States Patent and Trademark Office, Office Action dated Sep. 4, 2019, in U.S. Appl. No. 16/385,327. |
United States Patent and Trademark Office, Notice of Allowance dated Dec. 4, 2019, in U.S. Appl. No. 16/385,327. |
United States Patent and Trademark Office, Notice of Allowance dated Mar. 26, 2020, in U.S. Appl. No. 16/566,701. |
United States Patent and Trademark Office, Office Action dated Apr. 17, 2019, in U.S. Appl. No. 16/119,952. |
United States Patent and Trademark Office, Office Action dated Oct. 10, 2019, in U.S. Appl. No. 16/119,952. |
United States Patent and Trademark Office, Office Action dated Mar. 24, 2020, in U.S. Appl. No. 16/119,952. |
China Patent Office, Office Action dated Apr. 15, 2021, in Application No. 201911371960.8. |
China Patent Office, Office Action dated Apr. 30, 2021, in Application No. 201910719931.X. |
China Patent Office, Office Action dated Feb. 1, 2021, in Application No. 201911140844.5. |
China Patent Office, Office Action dated Feb. 3, 2021, in Application No. 201911316902.5. |
China Patent Office, Office Action dated May 26, 2021, in Application No. 201910124049.0. |
Qi et al., “Sine Wave Dimming Circuit Based on PIC16 MCU,” Electronic Technology Application in 2014, vol. 10, (2014). |
Taiwan Intellectual Property Office, Office Action dated Nov. 30, 2020, in Application No. 107107508. |
Taiwan Intellectual Property Office, Office Action dated Jan. 4, 2021, in Application No. 109111042. |
Taiwan Intellectual Property Office, Office Action dated Apr. 7, 2021, in Application No. 109111042. |
Taiwan Intellectual Property Office, Office Action dated Jan. 21, 2021, in Application No. 109108798. |
United States Patent and Trademark Office, Notice of Allowance dated May 5, 2021, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Notice of Allowance dated Aug. 18, 2021, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Notice of Allowance dated Apr. 8, 2021, in U.S. Appl. No. 16/809,405. |
United States Patent and Trademark Office, Notice of Allowance dated Jul. 20, 2021, in U.S. Appl. No. 16/809,405. |
United States Patent and Trademark Office, Office Action dated Jan. 22, 2021, in U.S. Appl. No. 16/809,447. |
United States Patent and Trademark Office, Notice of Allowance dated May 26, 2021, in U.S. Appl. No. 16/809,447. |
United States Patent and Trademark Office, Notice of Allowance dated Jun. 9, 2021, in U.S. Appl. No. 17/074,303. |
United States Patent and Trademark Office, Office Action dated Dec. 14, 2020, in U.S. Appl. No. 16/944,665. |
United States Patent and Trademark Office, Notice of Allowance dated Aug. 2, 2021, in U.S. Appl. No. 16/944,665. |
United States Patent and Trademark Office, Notice of Allowance dated Jul. 7, 2021, in U.S. Appl. No. 17/127,711. |
United States Patent and Trademark Office, Notice of Allowance dated Mar. 10, 2021, in U.S. Appl. No. 16/119,952. |
United States Patent and Trademark Office, Notice of Allowance dated May 20, 2021, in U.S. Appl. No. 16/119,952. |
China Patent Office, Office Action dated Nov. 2, 2020, in Application No. 201910124049.0. |
Taiwan Intellectual Property Office, Office Action dated Jun. 16, 2020, in Application No. 108136083. |
Taiwan Intellectual Property Office, Office Action dated Sep. 9, 2020, in Application No. 108148566. |
United States Patent and Trademark Office, Office Action dated Nov. 23, 2020, in U.S. Appl. No. 16/124,739. |
United States Patent and Trademark Office, Notice of Allowance dated Nov. 18, 2020, in U.S. Appl. No. 16/566,701. |
United States Patent and Trademark Office, Notice of Allowance dated Dec. 2, 2020, in U.S. Appl. No. 16/661,897. |
United States Patent and Trademark Office, Office Action dated Oct. 30, 2020, in U.S. Appl. No. 16/809,405. |
United States Patent and Trademark Office, Office Action dated Dec. 2, 2020, in U.S. Appl. No. 17/074,303. |
United States Patent and Trademark Office, Office Action dated Oct. 2020, in U.S. Appl. No. 16/119,952. |
China Patent Office, Notice of Allowance dated Sep. 1, 2021, in Application No. 201911371960.8. |
United States Patent and Trademark Office, Notice of Allowance dated Aug. 25, 2021, in U.S. Appl. No. 16/809,447. |
United States Patent and Trademark Office, Notice of Allowance dated Sep. 9, 2021, in U.S. Appl. No. 17/074,303. |
United States Patent and Trademark Office, Notice of Allowance dated Oct. 4, 2021, in U.S. Appl. No. 17/096,741. |
United States Patent and Trademark Office, Notice of Allowance dated Oct. 20, 2021, in U.S. Appl. No. 16/944,665. |
United States Patent and Trademark Office, Notice of Allowance dated Sep. 22, 2021, in U.S. Appl. No. 17/127,711. |
United States Patent and Trademark Office, Office Action dated Oct. 5, 2021, in U.S. Appl. No. 17/023,615. |
United States Patent and Trademark Office, Notice of Allowance dated Aug. 27, 2021, in U.S. Appl. No. 16/119,952. |
Number | Date | Country | |
---|---|---|---|
20200267817 A1 | Aug 2020 | US |