The present technology relates generally to laser processing of materials, and more specifically, but not by way of limitation, to systems and methods that singulate materials.
Generally speaking, singulation is a material separation process that often involves the application of chemical processes and/or mechanical forces to materials, particularly brittle materials, such as strengthened glass. Other common examples of materials that are often processed to create products via singulation include, but are not limited to, amorphous solid materials, crystalline materials, semiconducting materials, a crystalline ceramics, polymers, resins, and so forth.
According to some embodiments, the present technology may be directed to methods for material singulation. The methods may include: (a) applying a first laser output to the material, the first laser output causing a modification of a material property of the material when exposed to the first laser output; and (b) applying a second laser output to the material that was exposed to the first laser output to cause singulation of the material while substantially reducing the impartation of defects into the material.
In other embodiments, the present technology may be directed to laser devices for causing material singulation. These laser devices may include: (a) a first laser device that generates laser output for modifying one or more material properties of a material when applied to at least a portion of the material; and (b) a second laser device that generates laser output that, when applied to the material exposed to the laser output of the first laser device, produces a singulated product while substantially reducing the impartation of defects into the product.
In additional embodiments, the present technology may be directed to singulated products created by a process. In some embodiments, the process may include: (a) providing a stock of material; (b) applying a first laser output to the stock material along a beam path, the first laser output causing a modification of a material property of the stock material along the beam path; and (c) applying a second laser output along the beam path to cause separation of the singulated material from the stock material, along the beam path in such a way that surfaces of the singulated material, created by the separation, are substantially free from defects.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
The present technology relates generally to laser processing of materials, and more specifically, but not by way of limitation, to systems and methods that singulate materials, particularly brittle materials, by applying two or more types of laser output to the material, wherein the resultant singulated product is substantially free from defects.
Singulation allows for the separation of the material into individual products, or the milling of features into the material. Common singulation processes often involve numerous processing steps that are conducted slowly and iteratively in an attempt to avoid introducing defects such as micro-cracks or chips into the final product. Even with multi-step processes, current processes have low yield rates as any application of mechanical forces to the material can easily impart defects into the material.
Therefore, what is needed is a simplified process for singulating materials that does not require the use of mechanical material separation devices and/or processes.
Generally speaking, the present technology may include synchronous exposure of a material to two or more different types of laser beam output where each type of laser beam output induces a different physical mechanism of change to the material. The combination of these exposures creates a product with a clean, defect-free shape. A product with a clean, defect-free shape may also be referred to as a product having surfaces that are “substantially smooth.”
As stated above, common examples of materials that are often processed to create products via singulation include, but are not limited to, amorphous solid materials, crystalline materials, semiconducting materials, a crystalline ceramics, polymers, resins, and so forth.
For example, a sheet of strengthened glass may be subjected to two or more types of laser beam output to transform the sheet of strengthened glass into one or more touchscreen substrates that can be utilized to create touchscreen devices. Examples of strengthened glass may include glass that has been improved by high temperature exposure or by chemical treatment, such as Gorilla Glass from Corning or Dragontrail from Asahi. The sheet of strengthened glass may be especially thin—approximately 0.5 mm or thinner—which may impose increased susceptibility to defect impartation during conventional singulation methods.
Broadly speaking, the first laser output may induce a modification into the material and the second laser output may cause separation of the material at the modification. This two step process may create a singulated product having edge surfaces (as well as an overall product) that are substantially free from defects such as cracks or other surface irregularities/variations. That is, the present technology creates singulated products that have smoother singulated edges, more uniform planar surfaces, lower surface roughness, and greater mechanical strength relative to singulated products created via mechanical processes.
The present technology may be utilized to create singulated products with greatly varying geometrical configurations. Additionally, the systems and methods provided herein may be utilized to fabricate features into products with fine precision. Examples of features may include, but are not limited to slits, apertures, grooves, notches, etching, and so forth.
More specifically, a first laser beam may induce a discrete change to the molecular structure of the material along a beam path (also known as a tool path). The modification may comprise any of: a separation of molecular bonds in the material lattice, a geometrical reorientation of molecular constituents, and/or spatial movement of molecular species—just to name a few. Modifications may manifest macroscopically as a perturbation to a refractive index, an optical absorption, a variation in mechanical stress relative to the rest of the material, or a change in the physical density of the material.
In some embodiments, the second laser beam may follow the same path as the first laser beam and create a heating effect along the path that produces complete separation between sections of the substrate (along the modification) along the path traced by the laser beams. The two laser beams may be imaged onto the substrate with very little time delay. That is, there may be very little time delay between the delivery of the second beam after the delivery of the first beam (in some cases within a fraction of a second). Moreover, the two laser beams may be imaged using a single motion control and beam delivery apparatus. The exposure of the substrate to the two laser beams may occur substantially simultaneously so as to function as one laser beam with respect to time, yet the net material modification (e.g., singulation) is produced by the combined effects of two discrete laser induced mechanisms.
According to other exemplary embodiments, the present technology may utilize a short pulse laser to produce a first modification in the material and a long pulse or continuous wave laser to separate the material. The peak power associated with the short pulse laser may readily invoke any of the aformentioned molecular perturbations, while material exposed to the short pulse laser remains in a solid phase. It will be understood that these perturbation may be caused by rapid acceleration of electrons in response to application of the strong electric field of the short laser pulse to the material. The first modification may include any of a family of ionization effects, such as discontinuities in the lattice pattern (molecular level) of the material.
The second laser may generate a laser beam with a relatively high average power and low peak power. The laser beam may generate heat in the material through optical absorption. Localized heating within the second laser beam exposure area may selectively heat the modification created by the first laser beam and cause the material to separate along the lattice pattern discontinuity (e.g., the modification). Other causes for separation may include propagation of an acoustic shockwave (generated by the application of the laser beam of the second laser) through the area of material modification, and/or to severe thermal gradation of the area of material modification.
The beam delivery assembly 115 may be generally described as comprising optical and/or structural components that are utilized to focus and direct laser beams generated by the first and second laser devices 105 and 110. The construction and operation of beam delivery assemblies would be well known to one of ordinary skill in the art with the present disclosure before them. Therefore, a detailed discussion of the beam delivery assembly 115 will be omitted for the purpose of brevity.
The system 100 may also include a platform 125 positioned below the first and second laser devices 105 and 110. The platform 125 may be utilized to support a material 130, also known as a stock material.
Referring now to
Additionally, the first laser device 105 may utilize a laser pulse duration of less than or equal to about ten nanoseconds. In other embodiments, the first laser device 105 utilizes a laser pulse duration of less than or equal to about fifty picoseconds. In some embodiments, the first laser device 105 may utilize a laser pulse duration of less than or equal to about one picosecond. The laser pulse duration of the first laser device 105 may be selected based a desired electric field strength that is to be generated within the irradiated area (desired area of modification). The laser pulse duration and laser pulse strength may be varied based upon the physical properties of the material such as density and opacity.
The first laser device 105 may selectively apply a laser beam to the material along a beam path 140, or according to a pattern. Selective adjustments of the beam delivery assembly 115 may cause electronic energy excitation to any depth of the material (see
The electronic energy excitation of the material may cause a perturbation of molecules within the material along the beam path 140. It will be understood that in general terms, perturbation of the material may include inducing a change in one or more physical properties of the material 130. A perturbation may include, for example, a separation of the molecular bonds in molecular lattice of the material (also known as creating a lattice pattern discontinuity), a localized volume of removed material (also known as a scribe), a geometrical reorientation of molecules of the material, and/or a change in material density along the beam path—just to name a few.
Additionally, the width of the beam path 140 may be selectively adjusted by varying the optical configurations of the beam delivery assembly 115. According to some embodiments, the beam delivery assembly 115 may focus the output of the first laser device 105 to approximately 1 micrometer to 100 micrometers in width. One of ordinary skill in the art with the present disclosure before them will appreciate that the beam width may be selectively varied to vary the dimensions of the modification 305.
Modifications to material properties of the material may be evidenced by inspection of the mechanical properties of the material. For example, a modification may induce a change in the refractive index (particularly for transparent or semi-transparent materials) of the material along the modification. Therefore, upon refractive inspection of the material, the modification may appear visually distinct from the unmodified material.
It is noteworthy to mention that
The singulation of the modified material 500 may be caused by laser output of the second laser device 110 along the beam path 520. It is noteworthy to mention that the beam path 520 is shown as extending past the edges of the modified material 500 for illustrative purposes only.
The laser output of the second laser device 110 may cause a heating of the modified material 500 along the beam path 520, which results in a separation or singulation of the modified material along the modification (represented by beam path 520). It will be understood that the separation of the modified material 500 by the second laser device 110 produces a singulated product that is substantially free from defects. For example, an edge surface such as singulated edge surface 515 and corners 525 and 530 that are created during singulation are substantially free from defects such as cracking, chipping or misshaping. These defects may degrade mechanical integrity, fracture strength, and/or cosmetic value of the product. Although not shown, the second section 510 also includes a singulated edge surface that is substantially free from defects.
Although not shown, the laser beam generated by the second laser device 110 may be of sufficient width to increase the temperature of the material directly adjacent to the modified material. The increase in temperature to adjacent material aids in preventing the development of defects along the beam path 520 during singulation.
Depending upon the type of laser utilized, the second output of the second laser device 110 may generate an acoustic shockwave that propagates through the modified material 500. This acoustic shockwave may cause failure of the modified material along the beam path 520. It will be understood that a shockwave may be generated by the output of an ultrafast laser device.
In other embodiments, the laser beam of the second laser device 110 may utilize laser pulse durations that are greater than or equal to about ten picoseconds. Other embodiments may include laser pulse durations of greater than or equal to about one microsecond.
In some embodiments, the second laser output may comprise a wavelength selected from a range of approximately 0.78 to three micrometers (i.e. the near infrared light spectrum), inclusive. In other embodiments, the second laser output may comprise a wavelength selected from a range of approximately three to fifty micrometers (i.e. the mid infrared light spectrum), inclusive. In other applications, the second laser output comprises a wavelength selected from a range of approximately fifty to one thousand micrometers (i.e. the far infrared light spectrum), inclusive. In yet other embodiments, the second laser device 110 includes a continuous wave laser device.
As mentioned above, the width of the beam of the second laser device 110 may be selectively adjusted based upon the width of the modification 145. The width of the beam may be selectively adjusted by varying the optical configuration of the beam delivery assembly 115. According to some embodiments, the beam delivery assembly 115 may focus the output of the second laser device 110 to approximately 10 micrometers to 10 mm in width (based upon the width of the modification caused by the output of the first laser device, or approximately 1 to 100 micrometers).
In some embodiments, the system 100 may apply laser output from the first laser device 105 along the entire length of the beam path 140 of the material 130 before applying laser output from the second laser device 110 along the entire length of the beam path 140. In other embodiments, laser outputs of both the first and second laser devices 105 and 110 occur substantially simultaneously. That is, the application of the output of the second laser device 110 may occur after the application of the output of the first laser device 105. For example, a laser beam of the second laser device 110 may follow behind (at a predetermined distance) the laser beam of the first laser device 105, along the beam path 140.
While the above described examples contemplate separating a simple rectangular material into two separate rectangular sections, one of ordinary skill in the art will appreciate that the system 100 may be utilized to produce finely-shaped products from a stock material. For example, a sheet of strengthened glass may be processed to produce a plurality of touchscreen substrates according to the methods described above. The touchscreen substrates may have any desired geometrical configuration.
Additionally, fine details may be fabricated into the touchscreen substrates such as apertures or ports, utilizing the aforementioned processes.
In other exemplary uses, semiconductor substrates may be processed by the present technology. For example, features such as through-silicon vias may be fabricated into the semiconductor substrate with the use of the present technology.
According to some embodiments, rather than having separate first and second laser devices, the system may include a single laser generating and emitting device that can create a variety of laser output. For example, the single laser generating and emitting device can produce both short and long pulse duration laser beams. Moreover, the single laser generating and emitting device may also output laser beams that fall within any suitable wavelength.
With regard to both the first and second laser devices 105 and 110, it will be understood that these laser devices may utilize any one of a number of techniques for laser beam delivery (e.g., propagation toward, or within) a material. Non-limiting examples of laser beam delivery techniques include linear and/or non-linear optical propagation, static and/or transient waveguiding effects, optical diffraction, refraction, reflection, filamentation, self-focusing, along with any other techniques/devices for placement of laser energy relative to any of a volume, a plane, a line, or a point that would be known to one of ordinary skill in the art with the present disclosure before them.
Additionally, the combined effects of the laser devices disclosed herein may be configured for use in a wide variety of micro-fabrication applications that include, but are not limited to, shaping precious gemstones, semiconductor wafer scribing or singulation, surgical cutting of hard tissue, and marking of indicia such as serial numbers or part numbers inside transparent devices—just to name a few.
Referring back to
The executable instructions may include laser parameters for the first laser device 105 that are selected based upon the physical properties of the material 130. The physical properties of the material 130 may be input by a user or input via data gather from one or more sensors (not shown). Next, the beam delivery assembly 115 is selectively adjusted to focus the beam of the first laser device 105 to a particular depth and width relative to the material 130. The output of the first laser device 105 is applied along a beam path 140 according to a desired product profile. That is, the beam path 140 approximates an outline of the desired product profile (e.g., rectangular, circular, polygonal, irregular, and so forth).
Application of the output of the first laser device 105 causes a modification 145 of the material properties of the material 130 along the beam path 140. To cause separation or singulation of the material 130 along the beam path 140, the laser parameters for the second laser 110 are selectively adjusted, again, based upon the physical properties of the material and the modification 145 induced within the material 130.
Next, the configuration of the beam delivery apparatus 115 is selectively adjusted. For example, the width of the beam of the second laser device 110 is selected such that the beam of the second laser device 110 is directed at portions of the material adjacent to the modification 145, as well as the modification 145 itself.
Application of the output of the second laser device 110 causes singulation or separation of the product (not shown) from the stock material 130 along at the modification 145 without imparting defects into the edge surfaces of the material 130 (or any other portion of the material 130).
The components shown in
Mass storage device 630, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 610. Mass storage device 630 may store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 620.
Portable storage device 640 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk, digital video disc, or USB storage device, to input and output data and code to and from the computer system 600 of
Input devices 660 provide a portion of a user interface. Input devices 660 may include an alphanumeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 600 as shown in
Display system 670 may include a liquid crystal display (LCD) or other suitable display device. Display system 670 receives textual and graphical information, and processes the information for output to the display device.
Peripherals 680 may include any type of computer support device to add additional functionality to the computer system. Peripheral device(s) 680 may include a modem or a router.
The components provided in the computer system 600 of
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the technology. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2436662 | Norgaard | Feb 1948 | A |
3459960 | Aaland et al. | Aug 1969 | A |
3599019 | Nannichi et al. | Aug 1971 | A |
3602836 | Young | Aug 1971 | A |
3604890 | Mullaney et al. | Sep 1971 | A |
3626318 | Young | Dec 1971 | A |
3646469 | Buczek et al. | Feb 1972 | A |
3654624 | Becker et al. | Apr 1972 | A |
3710798 | Bredemeier | Jan 1973 | A |
3764641 | Ash | Oct 1973 | A |
3806829 | Duston et al. | Apr 1974 | A |
3851267 | Tanner | Nov 1974 | A |
3928816 | Hartwick et al. | Dec 1975 | A |
3963953 | Thornton, Jr. | Jun 1976 | A |
4061427 | Fletcher et al. | Dec 1977 | A |
4194813 | Benjamin et al. | Mar 1980 | A |
4289378 | Remy et al. | Sep 1981 | A |
4319119 | Runge | Mar 1982 | A |
4449215 | Reno | May 1984 | A |
4590598 | O'Harra, II | May 1986 | A |
4718418 | L'Esperance, Jr. | Jan 1988 | A |
4730113 | Edwards et al. | Mar 1988 | A |
4743769 | Schwaiger et al. | May 1988 | A |
4789770 | Kasner et al. | Dec 1988 | A |
4808000 | Pasciak | Feb 1989 | A |
4815079 | Snitzer et al. | Mar 1989 | A |
4827125 | Goldstein | May 1989 | A |
4835670 | Adams et al. | May 1989 | A |
4847846 | Sone et al. | Jul 1989 | A |
4848340 | Bille et al. | Jul 1989 | A |
4856011 | Shimada et al. | Aug 1989 | A |
4877939 | Duley et al. | Oct 1989 | A |
4878127 | Zollman et al. | Oct 1989 | A |
4902127 | Byer et al. | Feb 1990 | A |
4907586 | Bille et al. | Mar 1990 | A |
4915757 | Rando | Apr 1990 | A |
4947398 | Yasuda et al. | Aug 1990 | A |
4950268 | Rink | Aug 1990 | A |
4983034 | Spillman, Jr. | Jan 1991 | A |
4985780 | Garnier et al. | Jan 1991 | A |
4994059 | Kosa et al. | Feb 1991 | A |
5010555 | Madey et al. | Apr 1991 | A |
5014290 | Moore et al. | May 1991 | A |
5022042 | Bradley | Jun 1991 | A |
5031236 | Hodgkinson et al. | Jul 1991 | A |
5043991 | Bradley | Aug 1991 | A |
5098426 | Sklar et al. | Mar 1992 | A |
5154707 | Rink et al. | Oct 1992 | A |
5159402 | Ortiz, Jr. | Oct 1992 | A |
5162643 | Currie | Nov 1992 | A |
5194713 | Egitto et al. | Mar 1993 | A |
5204517 | Cates et al. | Apr 1993 | A |
5204867 | Koschmann | Apr 1993 | A |
5206455 | Williams et al. | Apr 1993 | A |
5255117 | Cushman | Oct 1993 | A |
5265107 | Delfyett, Jr. | Nov 1993 | A |
5301347 | Kensky | Apr 1994 | A |
5302835 | Bendett et al. | Apr 1994 | A |
5309453 | Treacy | May 1994 | A |
5315436 | Lowenhar et al. | May 1994 | A |
5355383 | Lockard | Oct 1994 | A |
5418809 | August, Jr. et al. | May 1995 | A |
5428471 | McDermott | Jun 1995 | A |
5440573 | Fermann | Aug 1995 | A |
5479422 | Fermann et al. | Dec 1995 | A |
5493096 | Koh | Feb 1996 | A |
5493579 | Ressl et al. | Feb 1996 | A |
5509022 | Lowery | Apr 1996 | A |
5517043 | Ma et al. | May 1996 | A |
5533139 | Parker et al. | Jul 1996 | A |
5543365 | Wills et al. | Aug 1996 | A |
5548098 | Sugawara et al. | Aug 1996 | A |
5572335 | Stevens | Nov 1996 | A |
5572358 | Gabl et al. | Nov 1996 | A |
5585642 | Britton et al. | Dec 1996 | A |
5585652 | Kamasz et al. | Dec 1996 | A |
5585913 | Hariharan et al. | Dec 1996 | A |
5590142 | Shan | Dec 1996 | A |
5592327 | Gabl et al. | Jan 1997 | A |
5595668 | Madden et al. | Jan 1997 | A |
5624587 | Otsuki et al. | Apr 1997 | A |
5625544 | Kowshik et al. | Apr 1997 | A |
5633750 | Nogiwa et al. | May 1997 | A |
5633885 | Galvanauskas et al. | May 1997 | A |
5651018 | Mehuys et al. | Jul 1997 | A |
5656186 | Mourou et al. | Aug 1997 | A |
5663731 | Theodoras, II et al. | Sep 1997 | A |
5665942 | Williams et al. | Sep 1997 | A |
5670067 | Koide et al. | Sep 1997 | A |
5677769 | Bendett | Oct 1997 | A |
5689519 | Fermann et al. | Nov 1997 | A |
5696782 | Harter et al. | Dec 1997 | A |
5703639 | Farrier et al. | Dec 1997 | A |
5710424 | Theodoras, II et al. | Jan 1998 | A |
5720894 | Neev et al. | Feb 1998 | A |
5739933 | Dembeck et al. | Apr 1998 | A |
5770864 | Dlugos | Jun 1998 | A |
5771253 | Chang-Hasnain et al. | Jun 1998 | A |
5778016 | Sucha et al. | Jul 1998 | A |
5786117 | Hoshi et al. | Jul 1998 | A |
5788688 | Bauer et al. | Aug 1998 | A |
5790574 | Rieger et al. | Aug 1998 | A |
5815519 | Aoshima et al. | Sep 1998 | A |
5833759 | Haslow et al. | Nov 1998 | A |
5841099 | Owen et al. | Nov 1998 | A |
5862845 | Chin et al. | Jan 1999 | A |
5875408 | Bendett et al. | Feb 1999 | A |
5880823 | Lu | Mar 1999 | A |
5898485 | Nati, Jr. | Apr 1999 | A |
5903662 | DeCarlo | May 1999 | A |
5907157 | Yoshioka et al. | May 1999 | A |
5929430 | Yao et al. | Jul 1999 | A |
5936716 | Pinsukanjana et al. | Aug 1999 | A |
5977514 | Feng | Nov 1999 | A |
5994667 | Merdan et al. | Nov 1999 | A |
5998759 | Smart | Dec 1999 | A |
6034975 | Harter et al. | Mar 2000 | A |
6041020 | Caron et al. | Mar 2000 | A |
6049057 | Imai et al. | Apr 2000 | A |
6060684 | Moriike | May 2000 | A |
6061373 | Brockman et al. | May 2000 | A |
6075588 | Pinsukanjana et al. | Jun 2000 | A |
6099522 | Knopp et al. | Aug 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6156030 | Neev | Dec 2000 | A |
6168590 | Neev | Jan 2001 | B1 |
6172611 | Hussain et al. | Jan 2001 | B1 |
6179421 | Pang | Jan 2001 | B1 |
6181463 | Galvanauskas et al. | Jan 2001 | B1 |
6191382 | Damikolas | Feb 2001 | B1 |
6198568 | Galvanauskas et al. | Mar 2001 | B1 |
6208458 | Galvanauskas et al. | Mar 2001 | B1 |
6208673 | Miyake | Mar 2001 | B1 |
6211485 | Burgess | Apr 2001 | B1 |
6228748 | Anderson et al. | May 2001 | B1 |
6246816 | Moore et al. | Jun 2001 | B1 |
6249630 | Stock et al. | Jun 2001 | B1 |
6256328 | Delfyett et al. | Jul 2001 | B1 |
6271650 | Massie et al. | Aug 2001 | B1 |
6275250 | Sanders et al. | Aug 2001 | B1 |
6290910 | Chalk | Sep 2001 | B1 |
6303903 | Liu | Oct 2001 | B1 |
6314115 | Delfyett et al. | Nov 2001 | B1 |
6335821 | Suzuki et al. | Jan 2002 | B1 |
6340806 | Smart et al. | Jan 2002 | B1 |
RE37585 | Mourou et al. | Mar 2002 | E |
6355908 | Tatah et al. | Mar 2002 | B1 |
6359681 | Housand et al. | Mar 2002 | B1 |
6366395 | Drake et al. | Apr 2002 | B1 |
6370171 | Horn et al. | Apr 2002 | B1 |
6371469 | Gray | Apr 2002 | B1 |
6396317 | Roller et al. | May 2002 | B1 |
6407363 | Dunsky et al. | Jun 2002 | B2 |
6418154 | Kneip et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6433301 | Dunsky et al. | Aug 2002 | B1 |
6433760 | Vaissie et al. | Aug 2002 | B1 |
6437283 | Wiggermann et al. | Aug 2002 | B1 |
6455807 | Scott | Sep 2002 | B1 |
6463314 | Haruna | Oct 2002 | B1 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6486435 | Beyer et al. | Nov 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6501590 | Bass et al. | Dec 2002 | B2 |
6522460 | Bonnedal et al. | Feb 2003 | B2 |
6522674 | Niwano et al. | Feb 2003 | B1 |
6525873 | Gerrish et al. | Feb 2003 | B2 |
6526085 | Vogler et al. | Feb 2003 | B2 |
6529319 | Youn et al. | Mar 2003 | B2 |
6541731 | Mead et al. | Apr 2003 | B2 |
6547453 | Stummer et al. | Apr 2003 | B1 |
6549547 | Galvanauskas et al. | Apr 2003 | B2 |
6555781 | Ngoi et al. | Apr 2003 | B2 |
6562698 | Manor | May 2003 | B2 |
6570704 | Palese | May 2003 | B2 |
6574024 | Liu | Jun 2003 | B1 |
6576917 | Silfvast | Jun 2003 | B1 |
6580553 | Kim et al. | Jun 2003 | B2 |
6583381 | Duignan | Jun 2003 | B1 |
6592574 | Shimmick et al. | Jul 2003 | B1 |
6593753 | Scott et al. | Jul 2003 | B2 |
6608951 | Goldberg et al. | Aug 2003 | B1 |
6614565 | Klug et al. | Sep 2003 | B1 |
6621040 | Perry et al. | Sep 2003 | B1 |
6621045 | Liu et al. | Sep 2003 | B1 |
6653210 | Choo | Nov 2003 | B2 |
6654161 | Bass et al. | Nov 2003 | B2 |
6661568 | Hollemann et al. | Dec 2003 | B2 |
6661820 | Camilleri et al. | Dec 2003 | B1 |
6681079 | Maroney | Jan 2004 | B1 |
6690686 | Delfyett et al. | Feb 2004 | B2 |
6696008 | Brandinger | Feb 2004 | B2 |
6697402 | Crawford | Feb 2004 | B2 |
6697408 | Kennedy et al. | Feb 2004 | B2 |
6700094 | Kuntze | Mar 2004 | B1 |
6706036 | Lai | Mar 2004 | B2 |
6706998 | Cutler | Mar 2004 | B2 |
6728273 | Perry | Apr 2004 | B2 |
6728439 | Weisberg et al. | Apr 2004 | B2 |
6735229 | Delfyett et al. | May 2004 | B1 |
6738144 | Dogariu | May 2004 | B1 |
6738408 | Abedin | May 2004 | B2 |
6744009 | Xuan et al. | Jun 2004 | B1 |
6744552 | Scalora et al. | Jun 2004 | B2 |
6744555 | Galvanauskas et al. | Jun 2004 | B2 |
6774869 | Biocca et al. | Aug 2004 | B2 |
6782207 | Efimov | Aug 2004 | B1 |
6787732 | Xuan | Sep 2004 | B1 |
6787733 | Lubatschowski et al. | Sep 2004 | B2 |
6787734 | Liu | Sep 2004 | B2 |
6801551 | Delfyett et al. | Oct 2004 | B1 |
6804574 | Liu et al. | Oct 2004 | B2 |
6807375 | Dogariu | Oct 2004 | B2 |
6815638 | Liu | Nov 2004 | B2 |
6819694 | Jiang et al. | Nov 2004 | B2 |
6819837 | Li et al. | Nov 2004 | B2 |
6822187 | Hermann et al. | Nov 2004 | B1 |
6829517 | Cheng et al. | Dec 2004 | B2 |
6834134 | Brennan, III et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6838639 | Kreuter et al. | Jan 2005 | B2 |
6864459 | Chang et al. | Mar 2005 | B2 |
6878900 | Corkum et al. | Apr 2005 | B2 |
6887804 | Sun et al. | May 2005 | B2 |
6897405 | Cheng et al. | May 2005 | B2 |
6915040 | Willner et al. | Jul 2005 | B2 |
6917631 | Richardson et al. | Jul 2005 | B2 |
6928490 | Bucholz et al. | Aug 2005 | B1 |
6994703 | Wang et al. | Feb 2006 | B2 |
7001373 | Clapham et al. | Feb 2006 | B2 |
7002733 | Dagenais et al. | Feb 2006 | B2 |
7068408 | Sakai | Jun 2006 | B2 |
7078649 | Okumura | Jul 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7116688 | Sauter et al. | Oct 2006 | B2 |
7143769 | Stoltz et al. | Dec 2006 | B2 |
7157038 | Baird et al. | Jan 2007 | B2 |
7169687 | Li | Jan 2007 | B2 |
7217266 | Anderson et al. | May 2007 | B2 |
7220255 | Lai | May 2007 | B2 |
7332234 | Levinson et al. | Feb 2008 | B2 |
7349589 | Temelkuran et al. | Mar 2008 | B2 |
7367969 | Stoltz et al. | May 2008 | B2 |
7413565 | Wang et al. | Aug 2008 | B2 |
7414780 | Fermann et al. | Aug 2008 | B2 |
7505196 | Nati et al. | Mar 2009 | B2 |
7569794 | Faour et al. | Aug 2009 | B2 |
7674719 | Li et al. | Mar 2010 | B2 |
7675674 | Bullington et al. | Mar 2010 | B2 |
7728967 | Ochiai et al. | Jun 2010 | B2 |
7751118 | Di Teodoro et al. | Jul 2010 | B1 |
7759607 | Chism, II | Jul 2010 | B2 |
7773216 | Cheng et al. | Aug 2010 | B2 |
7792408 | Varming | Sep 2010 | B2 |
7822347 | Brennan, III et al. | Oct 2010 | B1 |
7847213 | Anikitchev | Dec 2010 | B1 |
7943533 | Mizuno | May 2011 | B2 |
7963958 | Stoltz et al. | Jun 2011 | B2 |
7998404 | Huang et al. | Aug 2011 | B2 |
RE43605 | O'Brien et al. | Aug 2012 | E |
8338746 | Sun et al. | Dec 2012 | B2 |
8373090 | Gale et al. | Feb 2013 | B2 |
8943855 | Gomez | Feb 2015 | B2 |
8946590 | Li | Feb 2015 | B2 |
20010009250 | Herman et al. | Jul 2001 | A1 |
20010021294 | Cai et al. | Sep 2001 | A1 |
20010046243 | Schie | Nov 2001 | A1 |
20020071454 | Lin | Jun 2002 | A1 |
20020091325 | Ostrovsky | Jul 2002 | A1 |
20020097468 | Mecherle et al. | Jul 2002 | A1 |
20020097761 | Sucha et al. | Jul 2002 | A1 |
20020115273 | Chandra et al. | Aug 2002 | A1 |
20020118934 | Danziger et al. | Aug 2002 | A1 |
20020153500 | Fordahl et al. | Oct 2002 | A1 |
20020162973 | Cordingley et al. | Nov 2002 | A1 |
20020167581 | Cordingley et al. | Nov 2002 | A1 |
20020167974 | Kennedy et al. | Nov 2002 | A1 |
20020170896 | Choo et al. | Nov 2002 | A1 |
20020191901 | Jensen | Dec 2002 | A1 |
20030011782 | Tanno | Jan 2003 | A1 |
20030031410 | Schnitzer | Feb 2003 | A1 |
20030055413 | Altshuler et al. | Mar 2003 | A1 |
20030060808 | Wilk | Mar 2003 | A1 |
20030086647 | Willner et al. | May 2003 | A1 |
20030122550 | Kanamaru et al. | Jul 2003 | A1 |
20030123496 | Broutin et al. | Jul 2003 | A1 |
20030129423 | Mastromatteo et al. | Jul 2003 | A1 |
20030142705 | Hackel et al. | Jul 2003 | A1 |
20030152115 | Jiang et al. | Aug 2003 | A1 |
20030156605 | Richardson et al. | Aug 2003 | A1 |
20030160034 | Filgas | Aug 2003 | A1 |
20030178396 | Naumov et al. | Sep 2003 | A1 |
20030189959 | Erbert et al. | Oct 2003 | A1 |
20030205561 | Iso | Nov 2003 | A1 |
20030219094 | Basting | Nov 2003 | A1 |
20030223689 | Koch et al. | Dec 2003 | A1 |
20030235381 | Hunt | Dec 2003 | A1 |
20040002199 | Fukuyo | Jan 2004 | A1 |
20040022695 | Simon et al. | Feb 2004 | A1 |
20040042061 | Islam et al. | Mar 2004 | A1 |
20040049552 | Motoyama et al. | Mar 2004 | A1 |
20040089644 | Sekiya | May 2004 | A1 |
20040101001 | Bergmann et al. | May 2004 | A1 |
20040108811 | Klausmann et al. | Jun 2004 | A1 |
20040128081 | Rabitz et al. | Jul 2004 | A1 |
20040134894 | Gu et al. | Jul 2004 | A1 |
20040160995 | Sauter et al. | Aug 2004 | A1 |
20040226922 | Flanagan | Nov 2004 | A1 |
20040226925 | Gu et al. | Nov 2004 | A1 |
20040263950 | Fermann et al. | Dec 2004 | A1 |
20050021243 | Dantus et al. | Jan 2005 | A1 |
20050035097 | Stoltz | Feb 2005 | A1 |
20050036527 | Khazaei et al. | Feb 2005 | A1 |
20050038487 | Stoltz | Feb 2005 | A1 |
20050065502 | Stoltz | Mar 2005 | A1 |
20050077275 | Stoltz | Apr 2005 | A1 |
20050111073 | Pan et al. | May 2005 | A1 |
20050122525 | Borden et al. | Jun 2005 | A1 |
20050150882 | Mori | Jul 2005 | A1 |
20050154380 | DeBenedictis et al. | Jul 2005 | A1 |
20050163426 | Fermann et al. | Jul 2005 | A1 |
20050171518 | Stoltz et al. | Aug 2005 | A1 |
20050177143 | Bullington et al. | Aug 2005 | A1 |
20050213630 | Mielke et al. | Sep 2005 | A1 |
20050215985 | Mielke et al. | Sep 2005 | A1 |
20050218122 | Yamamoto et al. | Oct 2005 | A1 |
20050225846 | Nati et al. | Oct 2005 | A1 |
20050226286 | Liu et al. | Oct 2005 | A1 |
20050226287 | Shah et al. | Oct 2005 | A1 |
20050253482 | Kapps et al. | Nov 2005 | A1 |
20050255715 | Cheng et al. | Nov 2005 | A1 |
20050265407 | Braun et al. | Dec 2005 | A1 |
20050271094 | Miller et al. | Dec 2005 | A1 |
20050274702 | Deshi | Dec 2005 | A1 |
20060016891 | Giebel et al. | Jan 2006 | A1 |
20060030951 | Davlin et al. | Feb 2006 | A1 |
20060056480 | Mielke et al. | Mar 2006 | A1 |
20060067604 | Bull et al. | Mar 2006 | A1 |
20060081101 | Hayashi et al. | Apr 2006 | A1 |
20060084957 | Delfyett et al. | Apr 2006 | A1 |
20060091125 | Li et al. | May 2006 | A1 |
20060093265 | Jia et al. | May 2006 | A1 |
20060096426 | Park | May 2006 | A1 |
20060096962 | Park | May 2006 | A1 |
20060131284 | Sun | Jun 2006 | A1 |
20060131288 | Sun et al. | Jun 2006 | A1 |
20060159137 | Shah | Jul 2006 | A1 |
20060187974 | Dantus | Aug 2006 | A1 |
20060201983 | Kusama et al. | Sep 2006 | A1 |
20060237397 | Yamazaki et al. | Oct 2006 | A1 |
20060249816 | Li et al. | Nov 2006 | A1 |
20060250025 | Kitagawa et al. | Nov 2006 | A1 |
20060268949 | Gohle et al. | Nov 2006 | A1 |
20070047965 | Liu et al. | Mar 2007 | A1 |
20070051706 | Bovatsek | Mar 2007 | A1 |
20070098025 | Hong et al. | May 2007 | A1 |
20070106416 | Griffiths et al. | May 2007 | A1 |
20070151961 | Kleine et al. | Jul 2007 | A1 |
20070166965 | Tanaka et al. | Jul 2007 | A1 |
20070199927 | Gu | Aug 2007 | A1 |
20070215581 | Kato et al. | Sep 2007 | A1 |
20070229939 | Brown et al. | Oct 2007 | A1 |
20070253455 | Stadler et al. | Nov 2007 | A1 |
20080029152 | Milshtein et al. | Feb 2008 | A1 |
20080050078 | Digonnet et al. | Feb 2008 | A1 |
20080050888 | Garner et al. | Feb 2008 | A1 |
20080058781 | Langeweyde et al. | Mar 2008 | A1 |
20080240184 | Cho et al. | Oct 2008 | A1 |
20080264910 | Kashyap et al. | Oct 2008 | A1 |
20090020511 | Kommera et al. | Jan 2009 | A1 |
20090045176 | Wawers et al. | Feb 2009 | A1 |
20090061724 | Cok et al. | Mar 2009 | A1 |
20090189159 | Enicks et al. | Jul 2009 | A1 |
20090223942 | Heyl | Sep 2009 | A1 |
20090242522 | Baird | Oct 2009 | A1 |
20090244695 | Marcinkevicius et al. | Oct 2009 | A1 |
20090245302 | Baird et al. | Oct 2009 | A1 |
20090257464 | Dantus | Oct 2009 | A1 |
20090273828 | Waarts et al. | Nov 2009 | A1 |
20090290151 | Agrawal et al. | Nov 2009 | A1 |
20090297155 | Weiner et al. | Dec 2009 | A1 |
20090314751 | Manens | Dec 2009 | A1 |
20100013036 | Carey | Jan 2010 | A1 |
20100025387 | Arai | Feb 2010 | A1 |
20100032416 | Jeong et al. | Feb 2010 | A1 |
20100040095 | Mielke et al. | Feb 2010 | A1 |
20100072183 | Park | Mar 2010 | A1 |
20100089882 | Tamura | Apr 2010 | A1 |
20100118899 | Peng et al. | May 2010 | A1 |
20100154549 | Fomitchov | Jun 2010 | A1 |
20100157418 | Dong et al. | Jun 2010 | A1 |
20100181284 | Lee et al. | Jul 2010 | A1 |
20100276405 | Cho et al. | Nov 2010 | A1 |
20100294745 | Cattaneo | Nov 2010 | A1 |
20110049765 | Li et al. | Mar 2011 | A1 |
20110069723 | Dong et al. | Mar 2011 | A1 |
20110100967 | Yoo et al. | May 2011 | A1 |
20110207328 | Speakman | Aug 2011 | A1 |
20110284510 | Reeves-Hall et al. | Nov 2011 | A1 |
20110287607 | Osako et al. | Nov 2011 | A1 |
20120000893 | Broude et al. | Jan 2012 | A1 |
20120037603 | Venturini | Feb 2012 | A1 |
20120152915 | Srinivas et al. | Jun 2012 | A1 |
20120156875 | Srinivas et al. | Jun 2012 | A1 |
20120160814 | Osako | Jun 2012 | A1 |
20140044139 | Dong et al. | Feb 2014 | A1 |
20140140361 | Jiang | May 2014 | A1 |
Number | Date | Country |
---|---|---|
1386606 | Dec 2002 | CN |
101767283 | Jul 2010 | CN |
WO2007000194 | Apr 2007 | DE |
0214100 | Mar 1987 | EP |
554398 | Jun 1993 | EP |
0691563 | Jan 1996 | EP |
1462831 | Sep 2004 | EP |
2331038 | Dec 1999 | GB |
405104276 | Apr 1993 | JP |
8171103 | Jul 1996 | JP |
11189472 | Jul 1999 | JP |
2002-346782 | Dec 2002 | JP |
2003181661 | Jul 2003 | JP |
2003344883 | Dec 2003 | JP |
2004066322 | Mar 2004 | JP |
2005174993 | Jun 2005 | JP |
2005-178288 | Jul 2005 | JP |
2006-35710 | Feb 2006 | JP |
2006263771 | Oct 2006 | JP |
10-2001-0027677 | Nov 2002 | KR |
WO9428972 | Dec 1994 | WO |
0229853 | Apr 2002 | WO |
WO2004105100 | Dec 2004 | WO |
WO2004114473 | Dec 2004 | WO |
WO2005018060 | Feb 2005 | WO |
WO2005018061 | Feb 2005 | WO |
WO2005018062 | Feb 2005 | WO |
WO2005018063 | Feb 2005 | WO |
WO2007034317 | Mar 2007 | WO |
Entry |
---|
Hiroyuki Daido, et al, Review of laser-driven ion sources and their applications, published Apr. 17, 2012, Report On Progress in Physics, 75 (2012) 056401 (71 pp), IOP Publishing, doi: 10.1088/0034-4885/75/5/056401. |
Agostinelli, J. et al., “Optical Pulse Shaping with a Grating Pair,” Applied Optics, vol. 18, No. 14, pp. 2500-2504, Jul. 15, 1979. |
Anastassiou et al., “Photonic Bandgap Fibers Exploiting Omnidirectional Reflectivity Enable Flexible Delivery of Infrared Lasers for Tissue Cutting,” Proceedings of the SPIE—the International Society for Optical Engineering, SPIE, US, vol. 5317, No. 1, Jan. 1, 2004, pp. 29-38, XP002425586 ISSN: 0277-786X. |
Benoit, G. et al., “Dynamic All-optical Tuning of Transverse Resonant Cavity Modes in Photonic Bandgap Fibers,” Optics Letters, vol. 30, No. 13, Jul. 1, 2005, pp. 1620-1622. |
Chen, L. et al., “Ultrashort Optical Pulse Interaction with Fibre Gratings and Device Applications,” 1997, Canaga, located at http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29402.pfd. |
Chen, X. et al., “Highly Birefringent Hollow-core Photonic Bandgap Fiber,” Optics Express, vol. 12, No. 16, Aug. 9, 2004, pp. 3888-3893. |
Chen, Y. et al., “Dispersion-Managed Mode Locking”, Journal of the Optical Society of America B, Nov. 1999, pp. 1999-2004, vol. 16, No. 11, Optical Society of America. |
Dasgupta, S. et al., “Design of Dispersion-Compensating Bragg Fiber with an Ultrahigh Figure of Merit,” Optics Letters, Aug. 1, 2005, vol. 30, No. 15, Optical Society of America. |
De Matos et al., “Multi-kilowatt, Picosecond Pulses from an All-fiber Chirped Pulse Amplification System Using Air-core Photonic Bandgalp Fiber”, Lasers and Electro-optics, 2004, (CLEO), Conference on San Francisco, CA USA, May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. May 17, 2004, pp. 973-974, XP010745448 ISBN: 978-1-55752-777-6. |
De Matos, C.J.S. et al., “All-fiber Chirped Pulse Amplification using Highly-dispersive Air-core Photonic Bandgap Fiber,” Nov. 3, 2003, Optics Express, pp. 2832-2837, vol. 11, No. 22. |
Delfyett, P. et al., “Ultrafast Semiconductor Laser-Diode-Seeded Cr:LiSAF Rengerative Amplifier System”, Applied Optics, May 20, 1997, pp. 3375-3380, vol. 36, No. 15, Octoical Society of America. |
Eggleton, et al., “Electrically Tunable Power Efficient Dispersion Compensating Fiber Bragg Grating,” IEEE Photonics Technology Letters, vol. 11, No. 7, pp. 854-856, Jul. 1999. |
Engeness et al., “Dispersion Tailoring and Compensation by Modal Interations in Omniguide Fibers,” Optics Express, May 19, 2003, pp. 1175-1196, vol. 11, No. 10. |
Fink et al., “Guiding Optical Light in Air Using an All-Dielectric Structure,” Journal of Lightwave Technology, Nov. 1999, pp. 2039-2041, vol. 17, No. 11. |
Folkenberg, J.R., et al., “Broadband Single-polarization Photonic Crystal Fiber,” Optics Letters, vol. 30, No. 12, Jun. 15, 2005, pp. 1446-1448. |
Folkenberg, J.R., et al., “Polarization Maintaining Large Mode Area Photonic Crystal Fiber,” Optics Express vol. 12, No. 5, Mar. 8, 2004, pp. 956-960. |
Futami, F., et al., “Wideband Fibre Dispersion Equalisation up to Fourth-order for Long-distance Sub-picosecond Optical Pulse Transmission,” Electronics Letters, vol. 35, No. 25, Dec. 9, 1999. |
Galvanauskas, A. et al., “Chirped-pulse-amplification Circuits for Fiber Amplifiers, Based on Chirped-period Quasi-phase, matching gratings”, Optics Letters, Nov. 1, 1998, p. 1695-1697, vol. 23, No. 21, Optical Society of America. |
Hartl et al., “In-line high energy Yb Fiber Laser Based Chirped Pulse Amplifier System”, Laser and Electro-Optics, 2004, (CLEO) Conference of San Francisco, CA USA May 20-21, 2004, Piscataway, NJ, USA, IEEE, vol. 1, May 17, 2004, pp. 563-565, XP010745382, ISBN: 978-1-55752-777-6. |
Hellstrom, E. et al., “Third-order Dispersion Compensation Using a Phase Modulator”, Journal of Lightwave Technology, vol. 21, No. 5, pp. 1188-1197, May 2003. |
Heritage, J. P. et al., “Picosecond Pulse Shaping by Spectral Phase and Amplitude Manipulation,” Optics Letters, vol. 10, No. 12, pp. 609-611, Dec. 1985. |
Heritage, J.P. et al., “Spectral Windowing of Frequency-Modulated Optical Pulses in a Grating Compressor,” Applied Physics Letters, vol. 47, No. 2, pp. 87-89, Jul. 15, 1985. |
Hill, K. et al., “Fiber Bragg Grating Technology Fundamentals and Overview,” Journal of Lightwave Technology, Aug. 1997, vol. 15, No. 8, pp. 1263-1276. |
Ibanescu et al., “Analysis of Mode Structure in Hollow Dielctric Waveguide Fibers,” Physical Review E 67, 2003, The American Physical Society. |
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Optics Letters, vol. 30, No. 12, pp. 1449-1451, Jun. 15, 2005. |
Jiang, et al., “Fully Dispersion Compensated ˜500 fs Pulse Transmission Over 50 km Single Mode Fiber,” Purdue University ECE Annual Research Summary, Jul. 1, 2004-Jun. 30, 2005. |
Killey, et al., “Electronic Dispersion Compensation by Signal Predistortion Using Digital Processing and a Dual-Drive Mach-Zehnder Modulator,” IEEE Photonics Technology Letters, vol. 17, No. 3, pp. 714-716, Mar. 2005. |
Kim, K. et al., “1.4kW High Peak Power Generation from an All Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12. |
Koechner, “Solid State Laser Engineering”, Oct. 29, 1999, Section 5.5, pp. 270-277, 5th Edition, Springer. |
Kwon, et al., “Tunable Dispersion Slope Compensator Using a Chirped Fiber Bragg Grating Tuned by a Fan-shaped Thin Metallic Heat Channel,” IEEE Photonics Technology Letters, vol. 18, No. 1, pp. 118-120, Jan. 1, 2006. |
Kyungbum, Kim et al., “1.4kW High Peak Power Generation from an all Semiconductor Mode-locked Master Oscillator Power Amplifier System Based on eXtreme Chirped Pulse Amplification (X-CPA)”, Optics Express, Jun. 2, 2005, pp. 4600-4606, vol. 13, No. 12. |
Levy et al., “Engineering Space-Variant Inhomogeneous Media for Polarization Control,” Optics Letters, Aug. 1, 2004, pp. 1718-1720, vol. 29, No. 15, Optical Society of America. |
Liao, Kai-Hsiu et al., “Large-aperture Chirped Volume Bragg Grating Based Fiber CPA System,” Optics Express, Apr. 16, 2007, vol. 15, No. 8, pp. 4876-4882. |
Limpert et al., “All Fiber Chiped-Pulse Amplification System Based on Compression in Air-Guiding Photonic Bandgap Fiber”, Optics Express, Dec. 1, 2003, vol. 11, No. 24, pp. 3332-3337. |
Lo, S. et al., “Semiconductor Hollow Optical Waveguides Formed by Omni-directional Reflectors”, Optics Express, vol. 12, No. 26, Dec. 27, 2004, pp. 6589-6593. |
Malinowski A. et al., “Short Pulse High Power Fiber Laser Systems,” Proceedings of the 2005 Conference on Lasers and Electro-Optics (CLEO), Paper No. CThG3, pp. 1647-1649, May 26, 2005. |
Mehier-Humbert, S. et al., “Physical Methods for Gene Transfer: Improving the Kinetics of Gene Delivery Into Cells,” Advanced Drug Delivery Reviews, vol. 57, pp. 733-753, 2005. |
Mohammed, W. et al., “Selective Excitation of the TE01 Mode in Hollow-Glass Waveguide Using a Subwavelength Grating,” IEEE Photonics Technology Letters, Jul. 2005, vol. 17, No. 7, IEEE. |
Nibbering, E.T.J., et al. “Spectral Determination of the Amplitude and the Phase of Intense Ultrashort Optical Pulses,” Journal Optical Society of America B, vol. 13, No. 2, pp. 317-329, Feb. 1996. |
Nicholson, J. et al., “Propagation of Femotsecond Pulses in Large-mode-area, Higher-order-mode Fiber,” Optics Letters, vol. 31, No. 21, 2005, pp. 3191-3193. |
Nishimura et al., “In Vivo Manipulation of Biological Systems with Femtosecond Laser Pulses,” Proc. SPIE 6261, 62611J, pp. 1-10, 2006. |
Noda, J. et al., “Polarization-maintaining Fibers and Their Applications”, Journal of Lightwave Technology, vol. Lt-4, No. 8 Aug. 1986, pp. 1071-1089. |
Palfrey et al., “Generation of 16-FSEC Frequency-tunable Pulses by Optical Pulse compression” Optics Letters, OSA, Optical Society of america, Washington, DC, USA, vol. 10, No. 11, Nov. 1, 1985, pp. 562-564, XP000710358 ISSN: 0146-9592. |
Pelusi, M. et al., “Electrooptic Phase Modulation of Stretched 250-fs Pulses for Suppression of Third-Order Fiber Disperson in Transmission”, IEEE Photonics Technology Letters, vol. 11, No. 11, Nov. 1999, pp. 1461-1463. |
Pelusi, M. D. et al., “Phase Modulation of Stretched Optical Pulses for Suppression of Third-order Dispersion Effects in fibre Transmission,” Electronics Letters, vol. 34, No. 17, pp. 1675-1677, Aug. 20, 1998. |
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Photonics West 2005, San Jose, California, Jan. 2005, pp. 5709-3720. |
Price et al., “Advances in High Power, Short Pulse, Fiber Laser Systems and Technology”, Proceedings of SPIE—vol. 5709, Fiber Lasers II: Technology, Systems, and Applications, Apr. 2005, pp. 184-192. |
Ramachandran, S., et al., “High-power Amplification in a 2040-μm2 Higher Order Mode,” SPIE Photonics West 2007, Post-deadline. |
Resan et al., “Dispersion-Managed Semiconductor Mode-Locked Ring Laser”, Optics Letters, Aug. 1, 2003, pp. 1371-1373, vol. 28, No. 15, Optical Society of America. |
Schreiber, T., et al., “Design and High Power Operation of a Stress-induced single Polarization Single-transverse Mode LMA Yb-doped Photonic Crystal Fiber,” Fiber Lasers III: Technology, Systems, and Applications, Andrew J.W. Brown, Johan Nilsson, Donald J. Harter, Andreas Tünnermann, eds., Proc. of SPIE, vol. 6102, pp. 61020C-1-61020C-9, 2006. |
Schreiber, T., et al., “Stress-induced Single-polarization Single-transverse Mode Photonic Crystal Fiber with Low Nonlinearity,” Optics Express, vol. 13, No. 19, Sep. 19, 2005, pp. 7621-7630. |
Siegman, “Unstable Optical Resonators”, Applied Optics, Feb. 1974, pp. 353-367, vol. 13, No. 2. |
Stevenson et al., Femtosecond Optical Transfection of Cells: Viability and Efficiency, Optics Express, vol. 14, No. 16, pp. 7125-7133, Aug. 7, 2006. |
Stock et al., “Chirped Pulse Amplification in an Erbium-doped fiber Oscillator/Erbium-doped Fiber Amplifier System”, Optics Communications, North-Holland Publishing Co., Amsterdam, NL, vol. 106, No. 4/5/06, Mar. 15, 1994, pp. 249-252, XP000429901, ISSN: 0030-4018. |
Strickland et al., “Compression of Amplified Chirped Optical Pulses”, Optics Communications, North-Holland Publishing Co., Amersterdam, NL, vol. 56, No. 3, Dec. 1, 1985, pp. 219-221, XP024444933 ISSN: 0030-4018 (retrieved on 1985-12-011. |
Temelkuran, B. et al., “Wavelength-scalable Hollow Optical Fibres with Large Photonic Bandgaps for CO2 Laser Transmission,” Nature, Dec. 12, 2002, pp. 650-653. |
Thurston, R.N. et al., “Analysis of Picosecond Pulse Shape Synthesis by Spectral Masking in a Grating Pulse Compressor,” IEEE Journal of Quantum Electronics, vol. EQ-22, No. 5, pp. 682-696, May 1986. |
Tirlapur et al., “Targeted Transfection by Femtosecond Laser,” Nature Publishing Group, vol. 418, pp. 290-291, Jul. 18, 2002. |
Tsai et al., “Ultrashort Pulsed Laser Light,” Optics & Photonics News, pp. 25-29, Jul. 2004. |
Vaissie et al., “Desktop Ultra-Short Pulse Laser at 1552 nm,”Ultrashort Pulse Laser Materials Interaction Workshop (Raydiance)—Directed Energy Professional Society (DEPS), Sep. 28, 2006. |
Weiner, A.M. et al., “Synthesis of Phase-coherent, Picosecond Optical Square Pulses,” Optics Letters, vol. 11, No. 3, pp. 153-155, Mar. 1986. |
Weiner, A.M., “Femtosecond Optical Pulse Shaping and Processing,” Prog. Quant. Electr. 1995, vol. 19, pp. 161-237, 1995. |
Weiner, A.M., “High-resolution femtosecond Pulse Shaping,” Journal of the Optical Society of America B. vol. 5, No. 8, pp. 1563-1572, Aug. 1988. |
Wells, D.J., “Gene Therapy Progress and Prospects: electroporation and Other Physical Methods,” Gene Therapy, Nature Publishing Group, vol. 11, pp. 1363-1369, Aug. 5, 2004, (http://www.nature.com/gt). |
White, W.E., et al., “Compensation of Higher-order Frequency-dependent Phase Terms in Chirped-pulse Amplification Systems,” Optics Letters, vol. 18, No. 16, pp. 1343-1345, Aug. 15, 1993. |
Yamakawa et al., “1 Hz, 1 ps, terawatt Nd: glass laser”, Optics Communications, North-Holland Publishing Co. Amsterdam, NL, vol. 112, No. 1-2, Nov. 1, 1994, pp. 37-42, XP024424285. |
Yan et al., Ultrashort Pulse Measurement Using Interferometric Autocorrelator Based on Two-photon-absorbtion Detector at 1.55 μm Wavelength Region., 2005, Proceedings of SPIE vol. 5633, Advanced Materials and Devices for Sensing and Imaging II, pp. 424-429. |
Yeh, et al. “Theory of Bragg Fiber”, Journal of the Optical Society America, Sep. 1978, pp. 1196, vol. 68, No. 9., pp. 1196-1201. |
Yi, Y. et al., “Sharp Bending of On-Chip silicon Bragg Cladding Waveguide With Light Guiding on Low Index Core Materials”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, Nov./Dec. 2006, pp. 1345-1348. |
Yi, Y., et al., “On-chip Si-based Bragg Cladding Waveguide with High Index Contrast Bilayers”, Optics Express, vol. 12, No. 20, Oct. 4, 2004, pp. 4775-4780. |
Yin, D. et al., “Integrated ARROW Waveguides with Hollow Cores”, Optics Express, vol. 12, No. 12, Jun. 14, 2004, pp. 2710-2715. |
Zhou, S. et al., “Compensation of nonlinear Phase Shifts with Third-order Dispersion in Short-pulse Fiber Amplifiers,” Optics Express, vol. 13, No. 13, pp. 4869-2877, Jun. 27, 2005. |
Office Action received for Japanese Patent Application No. 2014-531770, dated Jun. 30, 2015, 12 pages (6 pages of English Translation and 6 pages of Official copy). |
Office Action received for Chinese Patent Application No. 201180073591.X, dated Dec. 2, 2015, 22 pages (12 pages of English Translation and 10 pages of Official copy). |
International Preliminary Report on Patentability received for PCT Patent Application No. PCT/US2011/052659, dated Apr. 3, 2014, 6 pages. |
International Search Report and Written Opinion received for PCT Patent Application No. PCT/US2011/052659, dated Jan. 18, 2012, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20130068736 A1 | Mar 2013 | US |