The present disclosure relates to outboard marine engines and more particularly to systems and steering actuators for steering outboard marine engines.
The following U.S. Patent Applications are incorporated herein by reference, in entirety.
U.S. Pat. No. 7,255,616 discloses a steering system for a marine propulsion device that eliminates the need for two support pins and provides a hydraulic cylinder with a protuberance and an opening which cooperate with each other to allow a hydraulic cylinder's system to be supported by a single pin for rotation about a pivot axis. The single pin allows the hydraulic cylinder to be supported by an inner transom plate in a manner that allows it to rotate in conformance with movement of a steering arm of a marine propulsion device.
U.S. Pat. No. 7,150,664 discloses a steering actuator system for an outboard motor that connects an actuator member to guide rails which are, in turn, attached to a motive member such as a hydraulic cylinder. The hydraulic cylinder moves along a first axis with the guide rail extending in a direction perpendicular to the first axis. An actuator member is movable along the guide rail in a direction parallel to a second axis and perpendicular to the first axis. The actuator member is attached to a steering arm of the outboard motor.
U.S. Pat. No. 6,821,168 discloses an outboard motor that is provided with an internally contained cylinder and moveable piston. The piston is caused to move by changes in differential pressure between first and second cavities within the cylinder. By adding a hydraulic pump and a steering valve, the hydraulic steering system described in U.S. Pat. No. 6,402,577 is converted to a power hydraulic steering system by adding a hydraulic pump and a steering valve to a manual hydraulic steering system.
U.S. Pat. No. 6,402,577 discloses a hydraulic steering system in which a steering actuator is an integral portion of the support structure of a marine propulsion system. A steering arm is contained completely within the support structure of the marine propulsion system and disposed about its steering axis. An extension of the steering arm extends into a sliding joint which has a linear component and a rotational component which allow the extension of the steering arm to move relative to a moveable second portion of the steering actuator. The moveable second portion of the steering actuator moves linearly within a cylinder cavity formed in a first portion of the steering actuator.
U.S. Pat. No. 6,276,977 discloses a hydraulic actuator for an outboard motor system in which the cylinder and piston of the actuator are disposed within a cylindrical cavity inside a cylindrical portion of a swivel bracket. The piston within the cylinder of the actuator is attached to at least one rod that extends through clearance holes of a clamp bracket and is connectable to a steering arm of an outboard motor. The one or more rods attached to the piston are aligned coaxially with an axis of rotation about which the swivel bracket rotates when the outboard motor is trimmed. As a result, no relative movement occurs between the outboard motor, the rod attached to the piston of the actuator, and the swivel bracket during rotation of the outboard motor about the axis of rotation.
U.S. Pat. No. 6,113,444 discloses a rotary actuator used to steer a watercraft with an outboard motor. First and second brackets are attached to the outboard motor and the transom of the watercraft, respectively. The rotary actuator can be a hydraulic rotary actuator and either the rotor portion or stator portion of the rotary actuator can be attached to the outboard motor with the other portion being attached to the transom. A hydraulic pump is used to provide pressurized fluid to the actuator and a valve is used to selectively direct the pressurized fluid to one of two ports in the rotary actuator to select the directional rotation and speed between the stator portion and the rotor portion.
U.S. Pat. No. 5,392,690 discloses a marine hydraulic system for operation of a power steering assembly that includes a pressure accumulator to provide pressurized hydraulic fluid and valving that permits the transfer of hydraulic fluid within the cylinder to provide efficient use of hydraulic fluid.
U.S. Pat. No. 5,376,029 discloses a control valve for a pressurized fluid-operated system, such as a marine power steering system, which includes a housing having an inlet and at least one outlet, with one or more work ports located therebetween. Pressurized fluid is supplied to the inlet, and a spool member is mounted within the housing for controlling the supply of pressurized fluid to a work-performing system, such as the extendible and retractable rod of a hydraulic cylinder assembly. The spool member includes structure for blocking the one or more work ports when the spool member is in its neutral position, when it is desired not to operate the system. This prevents the cylinder from being exposed to reservoir fluid when the spool member is in its neutral position.
U.S. Pat. No. 5,074,193 discloses a marine hydraulic system for operation of a power steering assembly that includes a pressure accumulator to provide pressurized hydraulic fluid and valving that permits the transfer of hydraulic fluid within the cylinder to provide efficient use of hydraulic fluid.
U.S. Pat. No. 4,362,515 discloses an improved steering system having a guide tube fixed to the end of the outer casing of a steering cable. A link rod connects between the steering arm and the inner core of the steering cable. A guide means is fixed with respect to the transom support means to guide the linear movement of the inner core. A limiting means limits the range of movement of the inner core and a restoring means moves the steerable drive unit from the extreme range of the range of movement of the ram.
This Summary is provided to introduce a selection of concepts that are further described herein below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
In certain examples, a steering actuator is for steering an outboard marine engine about a steering axis. The steering actuator comprises a housing; a piston device that is disposed in the housing, wherein hydraulic actuation of the piston device causes the outboard marine engine to pivot about the steering axis; and a valve device that is disposed in the housing. The valve device controls a flow of a hydraulic fluid to a first side of the piston device to move the piston device in a first piston direction in the housing and to an opposite, second side of the piston device to move the piston device in an opposite, second piston direction in the housing. Movement of the piston device in the first piston direction causes the outboard marine engine to pivot in a first pivot direction and movement of the piston device in the second piston direction causes the outboard marine engine to pivot in an opposite, second pivot direction. Advantageously, a rigid position reference link that rigidly connects the valve device to the piston device is entirely disposed in the housing. Corresponding systems are disclosed having the steering actuator for steering an outboard marine engine about a steering axis.
The present disclosure is described with reference to the following drawing Figures. The same numbers are used throughout the drawing Figures to reference like features and like components.
Referring now to
The housing 22 defines parallel, axially-extending first and second cavities 32, 34, which are best seen in
Referring now to
The memory can include any storage media that is readable by the processor and capable of storing software. The memory can include volatile and/or non-volatile removable and or non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. The memory can be implemented as a single storage device but may also be implemented across multiple storage devices or subsystems. The memory can further include additional elements such as a controller capable of communicating with the processor. Examples of storage media include random access memory, read only memory, magnetic discs, optical discs, flash memory discs, virtual and/or non-virtual, magnetic cassettes, magnetic tape, magnetic disc storage, or other magnetic storage devices, or any other medium which can be used to store the desired information that may be accessed by an instruction execution system, as well as any combination or variation thereof, or any other type of storage media. In some implementations, the storage media can be non-transitory storage media.
The input/output device can include any one of a variety of conventional computer input/output interfaces for receiving electrical signals for input to the processor and for sending electrical signals from the processor to various components of the control system 20. The controller 120, via the noted input/output device, communicates with components of the outboard marine engine 10 via communication links, which as mentioned herein above can be wired or wireless links. As explained further herein below, the controller 120 is capable of monitoring and controlling operational characteristics of the outboard marine engine 10 by sending and/or receiving control signals via the various links shown in
In some examples, the controller 120 is configured to receive inputs from a user input device 122, which can for example include a conventional steering wheel, joystick, touch pad, touch screen and/or the like. Such input devices for inputting operator steering commands to a controller 120 are well known in the art and therefore are not further herein described. The controller 120 is configured to output control signals to the steering actuator 16 to for example control the valve device 26, as further described herein below. In some example, the controller 120 is also or alternately configured to generate output command signals that control the valve device 26 based upon programming stored within the memory of the controller 120, such as for example in stationkeeping modes, trolling modes, waypoint tracking modes, and/or the like, all of which are well-known by those having ordinary skill the art.
Referring to
Referring to
The housing 22 has a hydraulic fluid inlet 70 to which an inlet fitting 72 is connected. The inlet fitting 72 couples an inlet line 74 to the inlet 70 for providing the flow of hydraulic fluid from the pump 36 to the valve device 26. The housing 22 also has a hydraulic fluid outlet 76 to which an outlet fitting 78 is connected. The outlet fitting 78 couples an outlet line 80 to the outlet 76 for providing the flow of hydraulic fluid from the valve device 26 to the tank 38. During assembly of the actuator 16, the valve device 26 is inserted into one end of the second cavity 34 and the end cap 66 is threaded onto an opposite end of the second cavity 34 so as to place the valve device 26 in the noted neutral position. More specifically, threading of the end cap 66 onto the second cavity 34 forces the spool 50 to axially move to the left in the second cavity 34. Unthreading the end cap 66 allows the spool 50 to move to the right in the second cavity 34. The preferred start-up position for the valve device 26 is the neutral position wherein the passages 54b are aligned with the inlet 70 and outlet 76 so that hydraulic fluid from the pump 36 is returned back to the tank 38. The housing 22 also has a grommeted wire passage 73 formed therein for passage of electrical wires for providing power to the bidirectional motor 44 and communication links for communicating position of the valve device 26 to the controller 120.
Rotation of the output shaft 46 in the first rotational direction unthreads the output shaft 46 from the output sleeve 48 and thus causes axial, linear travel of the output sleeve 48 along the output shaft 46, away from the bidirectional motor 44. Rotation of the output shaft 46 in the first rotational direction thus moves the valve device 26 (including the spool 50) into the noted first valve position (shown in
Rotation of the output shaft 46 in the opposite, second rotational direction threads the output shaft 46 into the output sleeve 48 and thus causes axial, linear travel of the output sleeve 48 along the output shaft 46, towards the bidirectional motor 44. Rotation of the output shaft in the second rotational direction thus moves the valve device 26 (including the spool 50) into the second valve position (shown in
When the output shaft 46 is not rotating, the natural resiliency of the springs 58 and Belleville washer springs 60 biases the valve device (including the spool 50) into the neutral position (shown in
With continued reference to
Referring to
Referring to
A rigid position reference link 112 rigidly connects that valve device 26 to the piston device 24. The rigid position reference link 112 is entirely disposed in the housing 22. In this example, the rigid position reference link 112 is an elongated bar that has a first end 114 that is threaded to the trunnion 92 and a second end 116 that is threaded a link bracket 118 that is affixed to the end of the spool 50. As such, the trunnion 92 and spool 50 are fixed together, maintaining constant position reference between these respective components.
Operation of the steering actuator 16 will now be described with reference to
Through research and development, the present inventors have determined that enclosing the steering actuator 16 in a housing 22, including for example enclosing the piston device 24, valve device 26, and rigid positional reference link 112 in the housing 22 avoids improper installation and functionality instigated by boat builders and/or customers. Enclosing the electrical components and steering actuator 16 in the housing 22 protects the electrical components and steering actuator 16 from exposure to the elements, which can undesirably lead to water infiltration into the piston device 24, valve device 26 and related hydraulic components. The examples shown in the figures is also much shorter in length than current steering actuators, which lessens packaging issues associated with assembly of the apparatus on the marine vessel.
In the above description, certain terms have been used for brevity, clarity, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different systems and method steps described herein may be used alone or in combination with other systems and methods. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2871830 | Wirth | Feb 1959 | A |
3310284 | Inaba | Mar 1967 | A |
3645296 | Adams | Feb 1972 | A |
3712582 | Moesta | Jan 1973 | A |
3892164 | Magor | Jul 1975 | A |
3939938 | Inoue | Feb 1976 | A |
4146244 | Presley | Mar 1979 | A |
4200030 | Elser | Apr 1980 | A |
4362515 | Ginnow | Dec 1982 | A |
4593780 | Saito | Jun 1986 | A |
4841790 | Williston et al. | Jun 1989 | A |
5074193 | Hundertmark | Dec 1991 | A |
5129273 | Fukui et al. | Jul 1992 | A |
5224888 | Fujimoto et al. | Jul 1993 | A |
5376029 | Entringer | Dec 1994 | A |
5392690 | Hundertmark | Feb 1995 | A |
5447456 | Nakayasu | Sep 1995 | A |
5471907 | Kobelt | Dec 1995 | A |
5603279 | Hundertmark et al. | Feb 1997 | A |
5775102 | Frye | Jul 1998 | A |
5881991 | Bonin | Mar 1999 | A |
5947155 | Miki et al. | Sep 1999 | A |
6065451 | Lebrun | May 2000 | A |
6113444 | Ritger | Sep 2000 | A |
6234853 | Lanyi et al. | May 2001 | B1 |
6276977 | Treinen et al. | Aug 2001 | B1 |
6354184 | Hansen et al. | Mar 2002 | B1 |
6402577 | Treinen | Jun 2002 | B1 |
6755703 | Erickson | Jun 2004 | B1 |
6821168 | Fisher | Nov 2004 | B1 |
RE39032 | Gonring et al. | Mar 2006 | E |
7131385 | Ehlers et al. | Nov 2006 | B1 |
7150664 | Uppgard et al. | Dec 2006 | B1 |
7168360 | Massaccesi et al. | Jan 2007 | B2 |
7255616 | Caldwell | Aug 2007 | B1 |
7284634 | Tatewaki et al. | Oct 2007 | B2 |
7311572 | Yamashita et al. | Dec 2007 | B2 |
7699674 | Wald et al. | Apr 2010 | B1 |
8246398 | Inaba | Aug 2012 | B2 |
20030150367 | Hundertmark | Aug 2003 | A1 |
20050170712 | Okuyama | Aug 2005 | A1 |
20070137327 | Heitzer | Jun 2007 | A1 |
20080113571 | Zelm et al. | May 2008 | A1 |
20150367924 | Davis | Dec 2015 | A1 |
Entry |
---|
Joy Piloting System Installation Manual, 90-8M0093151 May 2014, particularly Section 5. |