This disclosure relates generally to systems, apparatuses, and methods of air circulation, for example, a heating, ventilating, and air conditioning (HVAC) system. More specifically, the disclosure relates to systems, apparatuses, and methods of air circulation using compact economizers.
Air circulation is designed to improve air quality of an indoor space. An air circulation circuit may be designed to maintain the temperature of an indoor space. An air circulation circuit may also be designed to maintain oxygen/carbon dioxide compositions of the air in the indoor space. An air circulation circuit may also be designed to remove odor or disinfect the air in the indoor space. An air circulation circuit may involve exchange of indoor air with ambient air. In an air circulation circuit, mechanical forces, e.g., fans, may be used to facilitate the flow of the air stream.
This disclosure relates generally to systems, apparatuses, and methods of air circulation, for example, a heating, ventilating, and air conditioning (HVAC) system. More specifically, the disclosure relates to systems, apparatuses, and methods of air circulation using compact economizers.
In an air circulation circuit, an economizer may be used to improve the indoor air quality. An economizer may receive an air stream returned from an indoor space. The economizer may further allow a portion of the air stream returned from the indoor space to be exhausted out of the economizer. The economizer may further allow a certain amount of fresh air, e.g., ambient air, to enter the economizer and mix with the air stream. This air exchange process, e.g. the amount of return air to be exhausted and the amount of fresh air to be mixed, performed by the economizer may be controlled such that the air quality is maintained at a desired level. The control of the air exchange process may involve using fans, dampers, damper motors, controllers, sensors, etc.
In some situations, an economizer is installed on top of a building, e.g., roof top. The square footage of the roof top, in some circumstances, may be limited and a compact economizer disclosed in this disclosure may become desired to fit within the limited square footage. In some other situations, an economizer is installed in an indoor space, e.g., a mechanical room of a building. The indoor space may be limited and a compact economizer disclosed in this disclosure may become desired to fit into the limited indoor space.
The different embodiments of the compact size economizers disclosed herein may provide other benefits, for example, less labor, less time consuming, and less cost to install such compact economizers. Further, a compact size economizer may also be useful for retrofitting an existing air circulation circuit to improve the air quality control.
The embodiments disclosed in this specification include systems, apparatuses, and methods of using a compact size economizer. One example to achieve a compact size economizer may involve disposing an air return fan within an economizer plenum, wherein the air return fan is used to facilitate a flow of an air stream from an indoor space to the economizer.
Another example to construct a compact size economizer is to overlap a return chamber with an air mixing chamber in a direction of the flow of the air stream. Another example to construct a compact size economizer is to overlap an air return exhaust and a fresh air inlet such that the overall size of the economizer plenum is reduced.
In one embodiment, an economizer includes an economizer plenum. The economizer includes a partition member separating the economizer plenum into a return chamber and a mixing chamber. The return chamber and the mixing chamber are fluidically connected. The economizer includes a return air fan disposed within the return chamber. The economizer includes an air return inlet disposed within the return chamber, an air exhaust outlet disposed within the return chamber, an air supply outlet disposed within the mixing chamber, and a fresh air inlet disposed within the mixing chamber.
In another embodiment, the partition member of the economizer includes an angled section such that the return chamber and the mixing chamber overlap each other in a flow direction of an air stream.
In yet another embodiment, the air exhaust outlet and the fresh air inlet of the economizer overlap each other in the flow direction of the air stream.
In one embodiment, an air circulation circuit includes an air return connection disposed downstream of an indoor space. The air return connection is configured to deliver an air stream from the indoor space to an economizer. The economizer disposed downstream of the air return connection includes an economizer plenum. The economizer includes a partition member separating the economizer plenum into a return chamber and a mixing chamber. The return chamber and the mixing chamber are fluidically connected. The economizer includes a return air fan disposed within the return chamber. The return air fan facilitates a flow of the air stream. The economizer includes an air return inlet disposed within the return chamber, an air exhaust outlet disposed within the return chamber, an air supply outlet disposed within the mixing chamber, and a fresh air inlet disposed within the mixing chamber. The air circulation circuit further includes an air conditioning unit disposed downstream of the economizer. The air conditioning unit is configured to provide a treatment to the air stream. The air circulation circuit includes an air supply connection disposed downstream of the air conditioning unit. The air supply connection is configured to deliver the air stream from the air conditioning unit to the indoor space.
In another embodiment, a method to conduct an air circulation circuit includes following steps: receiving an air stream from an indoor space to an economizer plenum, facilitating a flow of the air stream with an air return fan, the air return fan being mounted within a return chamber of the economizer plenum, exhausting a portion of the air stream to be exhausted out of the economizer plenum from the return chamber, directing fresh air to mix with the air stream within a mixing chamber of the economizer plenum, delivering the air stream from the mixing chamber of the economizer to an air conditioning unit for treatment, and delivering the air stream to the indoor space, wherein the return chamber and the mixing chamber overlap with each other in a flow direction of the air stream.
As shown in
As shown in
The economizer 10 includes an air return fan 16 disposed within the return chamber 12. The air return fan 16 facilitates the flow of the air stream.
The economizer 10 further includes an air exhaust outlet 20 disposed within the return chamber 12. The economizer 10 directs a portion of the air stream to be exhausted out of the economizer plenum 11 through the air exhaust outlet 20.
The economizer 10 further includes a mixing chamber 13 disposed within the economizer plenum 11. The mixing chamber 13 is fluidically connected to the return chamber 12 and receives an air stream from the return chamber 12 through an air communicating opening 25. A fresh air inlet 35 is disposed within the mixing chamber 13. The economizer 10 directs fresh air to enter the mixing chamber 13 through the fresh air inlet 35 to mix with the air stream inside the economizer plenum 11.
The economizer further includes a partition member 40 that separates the economizer plenum 11 into the return chamber 12 and the mixing chamber 13. In one embodiment, the partition member 40 includes an angled section 41, such that the return chamber and the mixing chamber overlap to each other in a flow direction of the air stream, for example in the direction of arrows across the partition member 40 and through opening 25. In another embodiment, the angled section 41 includes an angle α. In one embodiment, the angle α can be from at or about 90° to at or about 180°. In another embodiment, the angle α can be from at or about 110° to at or about 160°. In yet another embodiment, the angle α can be: at or about 90° to at or about 110°; at or about 90° to at or about 160°; at or about 110° to at or about 180°; at or about 160° to at or about 180°. In an embodiment, the angle α can be: at or about 135°; at or about 90° to at or about 135°; at or about 135° to at or about 180°. In an embodiment, the angle α can be an obtuse angle as shown in the drawings, for example more than 90° and less than 180°.
In one embodiment, the angled section 41 may be a joint, e.g., the joint 241 shown in
In one embodiment, the air exhaust outlet 20 and the fresh air inlet 35 overlap each other in a flow direction of the air stream.
The economizer 10 directs the mixed air out of the economizer plenum 11 through an air supply outlet 30.
It is noted that the arrangement of the air exhaust outlet 20 and the fresh air inlet 35 is not limited to the left-right arrangement as shown in
For example, in one embodiment, the air exhaust outlet 20 and the fresh air inlet 35 can be arranged on the back side of the economizer plenum 11. The air exhaust outlet 20 may be disposed on a lower portion of the back side of the economizer plenum 11. The fresh air inlet 35 may be disposed on an upper portion of the back side of the economizer plenum 11. The air exhaust outlet 20 and the fresh air inlet 35 do not overlap to each other in a flow direction of the air stream. The partition member 40 includes an angled section 41. The partition member 40 separates the economizer plenum 11 in a top to bottom manner such that the return chamber 12 and the mixing chamber 13 overlap each other in a flow direction of the air stream.
Optionally, an air conditioning unit 4 is disposed downstream and receives an air stream from the economizer 10. The air conditioning unit 4 may further deliver a conditioned air stream to the indoor space 2.
It is noted, in an air circulation circuit application, the economizer 10 can be installed in any space suitable, e.g. outdoor and/or indoor. In one embodiment, the economizer 10 is installed outdoor, e.g., see
Arrows shown in
An indoor space 117 is disposed upstream of an economizer 110. The economizer 110 is disposed upstream of an air conditioning unit 150. The air conditioning unit 150 is disposed upstream of the indoor space 117, forming an air circulation circuit 100.
As shown in
The economizer plenum 111 includes a fresh air inlet 140 disposed within the mixing chamber 113. The fresh air inlet 140 is configured to allow fresh air to enter the economizer 110 and mix with the air stream inside the economizer 110. The economizer plenum 111 includes an air exhaust outlet 135 disposed within the return chamber 112. The air exhaust outlet 135 allows a portion or the entire air stream returned from the indoor space 117 to exit the economizer 110.
An air return fan 126 is disposed within the return chamber 112 to facilitate a flow of the air stream.
As shown in
As shown in
In the embodiment shown in
As shown in the embodiment of
As shown in the embodiment of
In
In
As shown in
The air conditioning unit 150 may provide the following treatments to the air stream, including but not limited to, cooling, heating, dehumidifying, filtering, disinfecting, etc. In one embodiment, the air conditioning unit 150 may include an air supply fan, which generates a negative pressure in the economizer 110 and facilitates a flow of the air stream.
As shown in
As shown in
As shown in
The economizer 200 further includes a partition member. In one embodiment, as shown in
As shown in
As shown in
As shown in
The economizer 200 includes a fresh air inlet 221. The fresh air inlet 221 allows fresh air to enter into the mixing chamber 243 and mix with the air stream inside of the economizer plenum 200. As shown, in an embodiment the amount of the air entering the mixing chamber 243 through the fresh air inlet 221 is regulated by the fresh air inlet damper 222. The fresh air inlet damper 222 is actuated by a fresh air inlet damper motor 223. The fresh air inlet damper motor 223 may be further controlled by a controller (not shown). In some embodiments, the economizer 200 includes a fresh air inlet housing 220 attached to the economizer plenum 205 and aligned to the fresh air inlet 221.
As shown in
As shown in
In the embodiment shown in
It is noted the air return inlet 211 is not limited to be disposed at the bottom of the economizer plenum 205. The economizer is typically upstream of the air conditioning unit and depending on the direction of airflow, the air return inlet 211 of the economizer can be disposed at any side of the economizer plenum 205, e.g., the back side, right side, left side, top side, and the front side with the air return fan 210 aligned inside of the economizer plenum 205. It is noted that in some embodiment, more than one air return fan 210 is disposed within the economizer plenum 205.
In
For example, in another embodiment, the air return inlet 211 can be disposed at the right or left side of the economizer plenum 205. In this embodiment, the air return fan 210 can be mounted at the right or left side of the economizer plenum 205 and aligned inside of the economizer plenum 205 to the air return inlet 211.
For example, in another embodiment, the air return inlet 211 can be disposed at the top side of the economizer plenum 205. In this embodiment, the air return fan 210 can be mounted at the top side of the economizer plenum 205 and aligned inside of the economizer plenum 205 to the air return inlet 211.
In the embodiment shown in
In another embodiment, the economizer 200 may include one or more air exhaust outlets and air exhaust fans to facilitate the exit of air from the return chamber 242 to the ambient. The air exhaust fans may be disposed inside and/or outside of the economizer plenum 200 and may be aligned to the air exhaust outlets 216. In one embodiment, the one or more air exhaust fans may be disposed in the air exhaust outlet housing 215.
In another embodiment, the economizer 200 may include one or more fresh air inlets and fresh air fans to facilitate the inlet of fresh air from the ambient to the mixing chamber 243. The fresh air fans may be disposed inside and/or outside of the economizer plenum 200 and may be aligned to the fresh air inlets 221. In one embodiment, the fresh air fan may be disposed in the fresh air inlet housing 220.
It is noted that the air return fan 210, the air exhaust fan, the fresh air fan, and the supply air fan can be fix speed fans and/or variable speed fans. Each of the air return fan 210, the air exhaust fan, the fresh air fan, and the supply air fan can be controlled by a controller to turn on/off or change the speed of the fan. Such controls of the fans may be able to provide precise control of the air stream, e.g., the flow rate of air to be exhausted, the flow rate of the air supply, the flow rate of the fresh air to take in, etc.
In another embodiment, to facilitate the mixing of the fresh air (from ambient to the mixing chamber 243) and the air stream (from the return chamber 242 to the mixing chamber 243), the economizer 200 may include some mechanical structures in the mixing chamber 243 that facilitate the mixing, e.g. mesh-like structures, array-like tubes, etc. In yet another embodiment, to facilitate the mixing of the fresh air (from ambient to the mixing chamber 243) and the air stream (from the return chamber 242 to the mixing chamber 243), first separating member damper 227 and the fresh air inlet damper 222 may direct the flow of fresh air and the flow of the air stream at an angle. In yet another embodiment, to facilitate the mixing of the fresh air (from ambient to the mixing chamber 243) and the air stream (from the return chamber 242 to the mixing chamber 243), the angle α of the joint 241 may be set at a certain degree that facilitates the mixing.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
It is noted that any of aspects 1-12 can be combined with any of aspects 13-20 and 21-27. Further, any of aspects 13-20 can be combined with any of aspects 21-27.
Aspect 1. An economizer, comprising
an economizer plenum,
a partition member separating the economizer plenum into a return chamber and a mixing chamber, the return chamber and the mixing chamber being fluidically connected,
a return air fan disposed within the return chamber,
an air return inlet disposed within the return chamber,
an air exhaust outlet disposed within the return chamber,
an air supply outlet disposed within the mixing chamber, and
a fresh air inlet disposed within the mixing chamber.
Aspect 2. The economizer according to aspect 1, wherein
the partition member includes an angled section such that the return chamber and the mixing chamber overlap to each other in a flow direction of an air stream.
Aspect 3. The economizer according to any one of aspects 1-2, wherein
the air exhaust outlet and the fresh air inlet overlap to each other in the flow direction of the air stream.
Aspect 4. The economizer according to any one of aspects 2, wherein the partition member further includes
a first separating member disposed inside of the economizer plenum, and
a second separating member disposed inside of the economizer plenum,
wherein the first separating member and the second separating member joined together at the angled section.
Aspect 5. The economizer according to any one of aspects 2-4, wherein
the angled section includes an angle from ˜90 degree to ˜180 degree.
Aspect 6. The economizer according to any one of aspects 1-5, further comprising
an air exhaust outlet damper, the air exhaust outlet damper being aligned to the air exhaust outlet to regulate the air stream flowing through the air exhaust outlet, and
an air exhaust outlet damper motor, the air exhaust outlet damper motor being configured to control a movement of the air exhaust outlet damper.
Aspect 7. The economizer according to any one of aspects 1-6, further comprising
an air exhaust outlet housing, the air exhaust outlet housing being aligned to the air exhaust outlet, the air exhaust outlet housing being configured to attach to an outside surface of the economizer plenum.
Aspect 8. The economizer according to any one of aspects 1-7, further comprising
a fresh air inlet damper, the fresh air inlet damper being aligned to the fresh air inlet to regulate the air stream flowing through the fresh air inlet, and
a fresh air inlet damper motor, the fresh air inlet damper motor being configured to control a movement of the fresh air inlet damper.
Aspect 9. The economizer according to any one of aspects 1-8, further comprising
a fresh air inlet housing, the fresh air inlet housing being aligned to the fresh air inlet, the fresh air inlet housing being configured to attach to an outside surface of the economizer plenum.
Aspect 10. The economizer according to any one of aspects 1-9, further comprising
an air supply outlet rack disposed in the mixing chamber, and
an air filtering member disposed on the air supply outlet rack.
Aspect 11. The economizer according to any one of aspects 4-10, further comprising
a first separating member opening disposed on the first separating member, the first separating member opening allows the air stream to flow from the return chamber to the mixing chamber,
a first separating member damper aligned to the first separating member opening, the first separating member damper configured to regulate the air stream flowing through the first separating member opening.
Aspect 12. The economizer according to aspect 11, wherein
the first separating member damper is connected to the fresh air inlet damper through a connecting member, such that the first separating member damper and the fresh air inlet damper moves simultaneously.
Aspect 13. An air circulation circuit, comprising
an air return connection disposed downstream of an indoor space, the air return connection being configured to deliver an air stream from the indoor space to an economizer,
the economizer disposed downstream of the air return connection, the economizer further including,
an air conditioning unit disposed downstream of the economizer, the air conditioning unit being configured to provide a treatment to the air stream, and
an air supply connection disposed downstream of the air conditioning unit, the air supply connection being configured to deliver the air stream from the air conditioning unit to the indoor space.
Aspect 14. The air circulation circuit according to aspect 13, wherein
the partition member includes an angled section such that the return chamber and the mixing chamber overlap to each other in a flow direction of the air stream.
Aspect 15. The air circulation circuit according to any one of aspects 13-14, wherein
the air exhaust outlet and the fresh air inlet overlap to each other in the flow direction of the air stream.
Aspect 16. The air circulation circuit according to any one of aspects 14-15, wherein the partition member further includes
a first separating member disposed inside of the economizer plenum, and
a second separating member disposed inside of the economizer plenum,
wherein the first separating member and the second separating member joined together at the angled section.
Aspect 17. The air circulation circuit according to any one of aspects 14-16, wherein
the angled section includes an angle from ˜90 degree to ˜180 degree.
Aspect 18. The air circulation circuit according to any one of aspects 13-17, wherein
the air return connection further includes an indoor air return opening, the indoor air return opening is configured to allow the air stream to flow from the indoor space to the air return connection.
Aspect 19. The air circulation circuit according to any one of aspects 13-18, wherein
the treatment is one selected from heating, cooling, dehumidifying, filtering, and disinfecting the air stream.
Aspect 20. The air circulation circuit according to any one of aspects 13-19, wherein
the air supply connection further includes an indoor air supply opening, the indoor air supply opening allows the air stream to flow from the air supply connection to the indoor space.
Aspect 21. A method to conduct air circulation, comprising following steps:
receiving an air stream from an indoor space to an economizer plenum,
facilitating a flow of the air stream with an air return fan, the air return fan being disposed in a return chamber of the economizer plenum,
exhausting a portion of the air stream out of the economizer plenum from the return chamber,
directing fresh air to mix with the air stream within a mixing chamber the economizer plenum,
delivering the air stream from the mixing chamber of the economizer to an air conditioning unit for treatment, and
delivering the air stream to the indoor space,
wherein the return chamber and the mixing chamber overlap with each other within the economizer plenum in a flow direction of the air stream.
Aspect 22. The method to conduct the air circulation according to aspect 21,
wherein the air return fan being mounted at the bottom of the economizer plenum.
Aspect 23. The method to conduct the air circulation according to aspect 21-22,
wherein the air return fan being mounted at the back side of the economizer plenum.
Aspect 24. The method to conduct the air circulation according to aspect 21-23,
wherein the step of exhausting a portion of the air stream out of the economizer plenum from the return chamber includes,
wherein the step of directing fresh air to mix with the air stream within the mixing chamber the economizer plenum further includes,
separating the economizer plenum into a return chamber and a mixing chamber with a partitioning member that includes an angled section, the return chamber and the mixing chamber being fluidically connected, and
disposing a fresh air inlet within the mixing chamber, the fresh air inlet being configured to allow the fresh air to enter the mixing chamber and mix with the air stream within the mixing chamber.
Aspect 26. The method to conduct the air circulation according to any one of aspects 21-25,
wherein the treatment is at least one selected from the following: cooling, heating, dehumidifying, filtering, and disinfecting.
Aspect 27. The method to conduct the air circulation according to any one of aspects 21-26,
wherein the step of delivering the air stream to the indoor space further includes,
facilitating a flow of the air stream with an air supply fan disposed downstream of the economizer plenum.
Number | Name | Date | Kind |
---|---|---|---|
41993 | Harvey | Mar 1864 | A |
273589 | Ormsby | Mar 1883 | A |
568954 | Marble | Oct 1896 | A |
574619 | Miller | Jan 1897 | A |
2266219 | Larriva | Dec 1941 | A |
2566366 | Pennington | Sep 1951 | A |
2700537 | Pennington | Jan 1955 | A |
2723837 | Pennington | Nov 1955 | A |
2792071 | Pennington | May 1957 | A |
2807258 | Pennington | Sep 1957 | A |
3398510 | Pennington | Aug 1968 | A |
4048811 | Ito | Sep 1977 | A |
4100763 | Brody | Jul 1978 | A |
4139052 | Lackey | Feb 1979 | A |
4210278 | Obler | Jul 1980 | A |
4389853 | Hile | Jun 1983 | A |
4404815 | Gilson | Sep 1983 | A |
4519539 | Bussjager | May 1985 | A |
4537035 | Stiles | Aug 1985 | A |
4911234 | Heberer | Mar 1990 | A |
5024263 | Laine | Jun 1991 | A |
5324229 | Weisbecker | Jun 1994 | A |
5348077 | Hillman | Sep 1994 | A |
5372182 | Gore | Dec 1994 | A |
5423187 | Fournier | Jun 1995 | A |
5447037 | Bishop | Sep 1995 | A |
5490557 | Taylor | Feb 1996 | A |
5515909 | Tanaka | May 1996 | A |
5533348 | Baldwin | Jul 1996 | A |
5548970 | Cunningham, Jr. | Aug 1996 | A |
5632954 | Coellner | May 1997 | A |
5752323 | Hashimoto | May 1998 | A |
5826641 | Bierwirth | Oct 1998 | A |
6004384 | Caudle | Dec 1999 | A |
6006142 | Seem | Dec 1999 | A |
6209622 | Lagace | Apr 2001 | B1 |
6346041 | Desmond | Feb 2002 | B1 |
6347527 | Bailey | Feb 2002 | B1 |
6574975 | Bourne | Jun 2003 | B2 |
6629886 | Estepp | Oct 2003 | B1 |
6684653 | Des Champs | Feb 2004 | B2 |
6751964 | Fischer | Jun 2004 | B2 |
6779735 | Onstott | Aug 2004 | B1 |
6889750 | Lagace | May 2005 | B2 |
7073566 | Lagace | Jul 2006 | B2 |
7331853 | Lee | Feb 2008 | B2 |
7841381 | Chagnot | Nov 2010 | B2 |
8360834 | Semmes | Jan 2013 | B1 |
8364318 | Grabinger | Jan 2013 | B2 |
8621884 | Stammer | Jan 2014 | B2 |
8746327 | Mooij | Jun 2014 | B2 |
8939827 | Boudreau | Jan 2015 | B2 |
8943848 | Phannavong | Feb 2015 | B2 |
9021821 | Dunnavant | May 2015 | B2 |
9057553 | Metzger | Jun 2015 | B1 |
9175872 | McKie | Nov 2015 | B2 |
9255720 | Thomle | Feb 2016 | B2 |
9261290 | Storm | Feb 2016 | B2 |
9441843 | McKie | Sep 2016 | B2 |
9470432 | Stenfors | Oct 2016 | B2 |
9551502 | Kim | Jan 2017 | B2 |
9664454 | Stenfors | May 2017 | B2 |
9765986 | Thomle | Sep 2017 | B2 |
9816724 | Phannavong | Nov 2017 | B2 |
9976767 | Roos | May 2018 | B2 |
10041743 | Heberer | Aug 2018 | B2 |
10203122 | Hasegawa | Feb 2019 | B2 |
10337759 | McKie | Jul 2019 | B2 |
10495341 | Hashino | Dec 2019 | B2 |
10502445 | Matambo | Dec 2019 | B2 |
10670288 | Thomle | Jun 2020 | B2 |
20020017107 | Bailey | Feb 2002 | A1 |
20020073720 | Bourne | Jun 2002 | A1 |
20030181158 | Schell | Sep 2003 | A1 |
20040000152 | Fischer | Jan 2004 | A1 |
20050236150 | Chagnot | Oct 2005 | A1 |
20060199512 | Lee | Sep 2006 | A1 |
20060201182 | Moon | Sep 2006 | A1 |
20060273183 | Cavanagh | Dec 2006 | A1 |
20070205297 | Finkam | Sep 2007 | A1 |
20090029642 | Martel | Jan 2009 | A1 |
20100101764 | Yang | Apr 2010 | A1 |
20100122794 | Mooij | May 2010 | A1 |
20100286831 | Boudreau | Nov 2010 | A1 |
20110076933 | Stenfors | Mar 2011 | A1 |
20110076934 | Stenfors | Mar 2011 | A1 |
20110097988 | Lord | Apr 2011 | A1 |
20110264275 | Thomle | Oct 2011 | A1 |
20110308265 | Phannavong | Dec 2011 | A1 |
20120253526 | Storm | Oct 2012 | A1 |
20130040549 | Douglas | Feb 2013 | A1 |
20130092344 | McKie | Apr 2013 | A1 |
20130092346 | McKie | Apr 2013 | A1 |
20130161403 | Douglas | Jun 2013 | A1 |
20130282186 | Douglas | Oct 2013 | A1 |
20140041401 | Douglas | Feb 2014 | A1 |
20140190037 | Erb | Jul 2014 | A1 |
20140190656 | Heberer | Jul 2014 | A1 |
20140199938 | Badenhorst | Jul 2014 | A1 |
20140213169 | Rasmussen | Jul 2014 | A1 |
20140248831 | Kim | Sep 2014 | A1 |
20140371918 | Douglas | Dec 2014 | A1 |
20150198350 | Phannavong | Jul 2015 | A1 |
20150253024 | Murakami | Sep 2015 | A1 |
20150354845 | Brown | Dec 2015 | A1 |
20150377507 | Thomple | Dec 2015 | A1 |
20160161139 | Asmus | Jun 2016 | A1 |
20160231016 | Roos | Aug 2016 | A1 |
20160290675 | Hashino | Oct 2016 | A1 |
20160348938 | Simon | Dec 2016 | A1 |
20160377315 | McKie | Dec 2016 | A1 |
20170108231 | Hasegawa | Apr 2017 | A1 |
20170336150 | Stenfors | Nov 2017 | A1 |
20170356661 | Fischer | Dec 2017 | A1 |
20180010820 | Hirsch | Jan 2018 | A1 |
20180017276 | Thomle | Jan 2018 | A1 |
20180051903 | Monk | Feb 2018 | A1 |
20180119981 | Phannavong | May 2018 | A1 |
20180313614 | Heberer | Nov 2018 | A1 |
20180335220 | Matambo | Nov 2018 | A1 |
20200064008 | Matambo | Feb 2020 | A1 |
20200064012 | Hashino | Feb 2020 | A1 |
Number | Date | Country | |
---|---|---|---|
20170010017 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62190691 | Jul 2015 | US |