Not Applicable.
This disclosure relates generally to techniques for controlling audiovisual apparatuses. More particularly, but not by way of limitation, this disclosure relates to systems and methods for automatic wireless activation and control of portable audiovisual devices.
Today's law enforcement officers have various means of technology at their disposal to perform their tasks. Police vehicles are typically equipped with video/audio equipment that captures on-scene information that is commonly used as evidence in legal proceedings. More recently, officers have begun to use body-worn-cameras (BWC) to capture on-scene audio and video while on patrol. However, while technology has provided law enforcement officers powerful tools to perform their jobs, it has also added a level of complexity for officers on patrol.
An officer on patrol performs a number of tasks in addition to controlling the vehicle, including addressing bulletins and communications, running checks on license plate numbers, scanning for identified suspects and vehicles, etc. The BWCs present an additional peace of gear that the officer has to contend with. In the heat of a sudden emergency, the officer may not always remember to activate his BWC. Thus, while modern technology has provided law enforcement officers better tools to perform their jobs, the tools still have to be activated and operated. In addition to law enforcement, other institutions and establishments (e.g., armored car officers, emergency responders, firemen, inspectors, interviewers, etc.) can make use of BWCs.
A need remains for techniques to improve the operation and control of audiovisual technology as used for law enforcement and other functions.
In view of the aforementioned problems and trends, embodiments of the present invention provide systems and methods for automatically controlling one or more audiovisual apparatuses such as camera devices that capture data (audio, video, and metadata).
According to an aspect of the invention, a method includes wirelessly linking a portable camera with a docking module disposed in a vehicle, wherein the camera is disposed remote from the docking module and wherein the portable camera is configured to capture image data and is configured with a buffer to temporarily hold captured image data and a memory to store captured image data; and using the docking module, sending a wireless command to the portable camera if a specified condition is met, wherein the command causes performance of one or more actions selected from the group consisting of: (a) causing image data captured by the portable camera to be temporarily held in the buffer; (b) causing image data captured by the portable camera not to be held in the buffer; (c) causing image data captured by the portable camera to be stored in the memory; and (d) causing image data captured by the portable camera not to be stored in the memory.
According to another aspect of the invention, a method includes wirelessly linking a portable camera with a docking module disposed in a vehicle, wherein the camera is disposed remote from the docking module and wherein the portable camera is configured to capture image data and temporarily hold the captured image data in a buffer in a continuous circulating stream; and using the docking module, sending a wireless command to the portable camera if a specified condition is met, wherein the command causes performance of one or more actions selected from the group consisting of: (a) causing image data captured by the portable camera not to be held in the buffer; (b) causing image data held in the buffer to be transferred to a memory in the portable camera; (c) causing image data captured by the portable camera to be stored in the memory; and (d) causing image data captured by the portable camera not to be stored in the memory.
According to another aspect of the invention, a system includes a docking module disposed in a vehicle; a portable camera disposed remote from the docking module; wherein the portable camera is wirelessly linked with the docking module and configured to capture image data and configured with a buffer to temporarily hold captured image data and a memory to store captured image data; and wherein the docking module is configured to send a wireless command to the portable camera if a specified condition is met, wherein the command is to cause performance of one or more actions selected from the group consisting of: (a) to cause image data captured by the portable camera to be temporarily held in the buffer; (b) to cause image data captured by the portable camera not to be held in the buffer; (c) to cause image data captured by the portable camera to be stored in the memory; and (d) to cause image data captured by the portable camera not to be stored in the memory.
Other aspects of the embodiments described herein will become apparent from the following description and the accompanying drawings, illustrating the principles of the embodiments by way of example only.
The following figures form part of the present specification and are included to further demonstrate certain aspects of the present claimed subject matter, and should not be used to limit or define the present claimed subject matter. The present claimed subject matter may be better understood by reference to one or more of these drawings in combination with the description of embodiments presented herein. Consequently, a more complete understanding of the present embodiments and further features and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numerals may identify like elements, wherein:
Certain terms are used throughout the following description and claims to refer to particular system components and configurations. As one skilled in the art will appreciate, the same component may be referred to by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” (and the like) and “comprising” (and the like) are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Also, the term “couple,” “coupled,” or “linked” is intended to mean either an indirect or direct electrical, mechanical, or wireless connection. Thus, if a first device couples to or is linked to a second device, that connection may be through a direct electrical, mechanical, or wireless connection, or through an indirect electrical, mechanical, or wireless connection via other devices and connections.
As used throughout this disclosure the term “computer” encompasses special purpose microprocessor-based devices such as a digital video surveillance system primarily configured for executing a limited number of applications, and general purpose computers such as laptops, workstations, or servers which may be configured by a user to run any number of off the shelf or specially designed software applications. Computer systems and computer devices will generally interact in the same way with elements and aspects of disclosed embodiments. This disclosure also refers to memory or storage devices and storage drives interchangeably. In general, memory or a storage device/drive represents a medium accessible by a computer (via wired or wireless connection) to store data and computer program instructions. It will also be appreciated that use of the term “microprocessor” in this disclosure encompasses one or more processors.
The terms “video data” and “visual data” refer to still image data, moving image data, or both still and moving image data, as traditionally understood. Further, the terms “video data” and “visual data” refer to such image data alone, i.e., without audio data and without metadata. The term “image data” (in contrast to “still image data” and “moving image data”) encompasses not only video or visual data but also audio data and/or metadata. That is, image data may include visual or video data, audio data, metadata, or any combination of these three. This image data may be compressed using industry standard compression technology (e.g., Motion Picture Expert Group (MPEG) standards, Audio Video Interleave (AVI), etc.) or another proprietary compression or storage format. The terms “camera,” “camera device,” and the like are understood to encompass devices configured to record or capture visual/video data or image data. Such devices may also be referred to as video recording devices, image capture devices, or the like. Metadata may be included in the files containing the video (or audio and video) data or in separate, associated data files, that may be configured in a structured text format such as eXtensible Markup Language (XML).
As used throughout this disclosure the term “record” is interchangeable with the term “store” and refers to the retention of image data in a storage medium designed for long-term retention (e.g., solid state memory, hard disk, CD, DVD, memory card, etc.), as compared to the temporary retention offered by conventional memory means such as volatile RAM. The temporary retention of data, image data or otherwise, is referred to herein as the “holding” of data or as data being “held.”
The term “metadata” refers to information associated with the recording of video (or audio and video) data, or information included in the recording of image data, and metadata may contain information describing attributes associated with one or more acts of actual recording of video data, audio and video data, or image data. That is, the metadata may describe who (e.g., Officer ID) or what (e.g., automatic trigger) initiated or performed the recording. The metadata may also describe where the recording was made. Metadata may also include telemetry or other types of data. For example, location may be obtained using global positioning system (GPS) information or other telemetry information. The metadata may also describe why the recording was made (e.g., event tag describing the nature of the subject matter recorded). The metadata may also describe when the recording was made, using timestamp information obtained in association with GPS information or from an internal clock, for example, for the first frame of a recording or each individual frame may also have time information inserted that can be used to synchronize multiple file playback from various sources after the data has been transferred to a storage location. Metadata may also include information relating to the device(s) used to capture or process information (e.g. a unit serial number). From these types of metadata, circumstances that prompted the recording may be inferred and may provide additional information about the recorded information. This metadata may include useful information to correlate recordings from multiple distinct recording systems. This type of correlation information may assist in many different functions (e.g., query, data retention, chain of custody, and so on).
As used throughout this disclosure the term “portable” refers to the ability to be easily carried or moved. The term encompasses a wearable device (i.e. a device that can be worn or carried by a person or an animal).
The foregoing description of the figures is provided for the convenience of the reader. It should be understood, however, that the embodiments are not limited to the precise arrangements and configurations shown in the figures. Also, the figures are not necessarily drawn to scale, and certain features may be shown exaggerated in scale or in generalized or schematic form, in the interest of clarity and conciseness. The same or similar parts may be marked with the same or similar reference numerals.
While various embodiments are described herein, it should be appreciated that the present invention encompasses many inventive concepts that may be embodied in a wide variety of contexts. The following detailed description of exemplary embodiments, read in conjunction with the accompanying drawings, is merely illustrative and is not to be taken as limiting the scope of the invention, as it would be impossible or impractical to include all of the possible embodiments and contexts of the invention in this disclosure. Upon reading this disclosure, many alternative embodiments of the present invention will be apparent to persons of ordinary skill in the art. The scope of the invention is defined by the appended claims and equivalents thereof.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are necessarily described for each embodiment disclosed in this specification. In the development of any such actual embodiment, numerous implementation-specific decisions may need to be made to achieve the design-specific goals, which may vary from one implementation to another. It will be appreciated that such a development effort, while possibly complex and time-consuming, would nevertheless be a routine undertaking for persons of ordinary skill in the art having the benefit of this disclosure. It will also be appreciated that the parts and component dimensions of the embodiments disclosed herein may not be drawn to scale.
Although the embodiment depicted in
When not in use as a BWC, the camera 14 is held in the docking module 12 in the vehicle 10.
In some embodiments, the docking module 12 is configured with Bluetooth® circuitry, microprocessors, and electronics to implement the aspects and features disclosed herein. In some embodiments, the docking module 12 is configured with one or more cable connectors 38 (
Embodiments of the docking module 12 are configured to automatically send wireless commands to the portable camera 14 when certain specified conditions are met. The commands cause performance of one or more actions in the camera 14, including: (a) causing image data captured by the camera 14 to be temporarily held in the buffer 22; (b) causing image data captured by the camera 14 not to be held in the buffer 22; (c) causing image data captured by the camera 14 to be stored in memory 24; and (d) causing image data captured by the camera 14 not to be stored in memory 24. Additional description of the docking module 12 command structure is provided in the following disclosure.
In some embodiments, the specified condition that triggers the docking module 12 to send a command to the camera 14 is an input signal received by the docking module 12 from one or more sensors 40 mounted in the vehicle (see
In some embodiments, the specified condition that triggers the docking module 12 to send a command to the camera 14 is when the distance between the location of the camera 14 and the location of the docking module 12 satisfies (i.e., meets or exceeds) a threshold (i.e., a threshold minimum distance or a threshold maximum distance). The docking module 12 and/or the camera 14 can be configured with GPS circuitry and software to automatically calculate the proximity of the camera 14 to the docking module 12. In some embodiments, the software and electronics in the camera 14 and/or the docking module 12 may be configured to use the communication signal (e.g. Bluetooth® signal) to calculate the proximity of the camera 14 to the docking module 12. Other embodiments may be configured with conventional means to calculate the proximity of the portable camera 14 to the docking module 12 as known in the art.
In some embodiments, the specified condition that triggers the docking module 12 to send a command to the camera 14 is when the velocity of the vehicle 10 satisfies (i.e., meets or exceeds) a threshold (i.e., a threshold minimum velocity or a threshold maximum velocity). Velocity data from the vehicle 10 speedometer may be sent to the docking module 12 via the CAN bus. In some embodiments, the velocity data can also be provided from the camera 14 or an onboard GPS.
As previously discussed, the docking module 12 is configured to automatically send wireless commands to the camera 14 to cause performance of one or more actions in the camera when the module is triggered by a specified condition as determined by the disclosed means. In some embodiments, the image data captured by the camera 14 is temporarily held in the buffer 22 in a continuous circulating stream to perform “pre-event” circular buffering, not storing the data to memory 24 until activated to store the data to memory 24 by a wireless command from the docking module 12. This “smart buffering” feature provides a circular buffer that temporarily holds captured image data until the docking module 12 sends a wireless command causing performance of one or more actions in the camera 14 as disclosed herein. The software of the docking module 12 can be configured to send commands to the camera 14 based on any desired configuration of the specified conditions, which configurations can include:
In some embodiments, the camera 14 is configured to bypass any commands from the docking module 12 and continue storing captured image data to memory 24 if the camera has been activated to store data when the camera is outside of the vehicle 10. For example, when an officer manually activates the camera 14 to store data to memory 24 as he is approaching the vehicle 10. In this mode, the camera 14 will continue to record to memory 24 until the officer deactivates recording manually, regardless of any sensor 40 signal inputs or the satisfaction of specified conditions.
It will be appreciated by those having the benefit of this disclosure that the docking module 12 and camera 14 embodiments can be configured to operate using commands and performing actions based on other configurations of specified conditions and using signal inputs originating from other sensors in the vehicle or outside of the vehicle (not shown). Generally speaking, any command among those described herein may be sent by the docking module 12 to the camera 14 upon any of the following conditions being satisfied: a change in distance between camera 14 and docking module 12; a change in velocity of the vehicle 10 in which the docking module 12 resides; a change in the vehicle 10 acceleration exceeding a threshold; receipt of a sensor 40 signal by the docking module 12 indicating any of the conditions mentioned above (pertaining to the light bar, gun rack, door, siren, engine, voice activation, a crash detection sensor, etc.); any combination of any two or more of the foregoing conditions.
Turning to
In light of the principles and example embodiments described and depicted herein, it will be recognized that the example embodiments can be modified in arrangement and detail without departing from such principles. Also, the foregoing discussion has focused on particular embodiments, but other configurations are also contemplated. In particular, even though expressions such as “in one embodiment,” “in another embodiment,” or the like are used herein, these phrases are meant to generally reference embodiment possibilities, and are not intended to limit the invention to particular embodiment configurations. As used herein, these terms may reference the same or different embodiments that are combinable into other embodiments. As a rule, any embodiment referenced herein is freely combinable with any one or more of the other embodiments referenced herein, and any number of features of different embodiments are combinable with one another, unless indicated otherwise.
Similarly, although example processes have been described with regard to particular operations performed in a particular sequence, numerous modifications could be applied to those processes to derive numerous alternative embodiments of the present invention. For example, alternative embodiments may include processes that use fewer than all of the disclosed operations, processes that use additional operations, and processes in which the individual operations disclosed herein are combined, subdivided, rearranged, or otherwise altered. This disclosure describes one or more embodiments wherein various operations are performed by certain systems, applications, modules, components, etc. In alternative embodiments, however, those operations could be performed by different components. Also, items such as applications, modules, components, etc., may be implemented as software constructs stored in a machine accessible storage medium, such as an optical disk, a hard disk drive, etc., and those constructs may take the form of applications, programs, subroutines, instructions, objects, methods, classes, or any other suitable form of control logic; such items may also be implemented as firmware or hardware, or as any combination of software, firmware and hardware, or any combination of any two of software, firmware and hardware.
This disclosure may include descriptions of various benefits and advantages that may be provided by various embodiments. One, some, all, or different benefits or advantages may be provided by different embodiments.
In view of the wide variety of useful permutations that may be readily derived from the example embodiments described herein, this detailed description is intended to be illustrative only, and should not be taken as limiting the scope of the invention. What is claimed as the invention, therefore, are all implementations that come within the scope of the following claims, and all equivalents to such implementations.
This application claims priority to U.S. Provisional Patent Application No. 62/333,818, filed on May 9, 2016, titled “Systems, Apparatuses and Methods for Creating, Identifying, Enhancing, and Distributing Evidentiary Data” and to U.S. Provisional Patent Application No. 62/286,139, filed on Jan. 22, 2016, titled “Systems, Apparatuses and Methods for Securely Attaching Wearable Devices.” The entire disclosures of Application No. 62/333,818 and Application No. 62/286,139 are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4344184 | Edwards | Aug 1982 | A |
4543665 | Sotelo et al. | Sep 1985 | A |
4590614 | Erat | May 1986 | A |
4910795 | McCowen et al. | Mar 1990 | A |
5012335 | Cohodar | Apr 1991 | A |
5111289 | Lucas et al. | May 1992 | A |
5408330 | Squicciarini et al. | Apr 1995 | A |
5477397 | Naimpally et al. | Dec 1995 | A |
5613032 | Cruz et al. | Mar 1997 | A |
5724475 | Kirsten | Mar 1998 | A |
5815093 | Kikinis | Sep 1998 | A |
5841978 | Rhoads | Nov 1998 | A |
5862260 | Rhoads | Jan 1999 | A |
5926218 | Smith | Jul 1999 | A |
5946343 | Schotz et al. | Aug 1999 | A |
5970098 | Herzberg | Oct 1999 | A |
6002326 | Turner | Dec 1999 | A |
6009229 | Kawamura | Dec 1999 | A |
6028528 | Lorenzetti et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6122403 | Rhoads | Sep 2000 | A |
6141611 | MacKey et al. | Oct 2000 | A |
6163338 | Johnson et al. | Dec 2000 | A |
6175860 | Gaucher | Jan 2001 | B1 |
6181711 | Zhang et al. | Jan 2001 | B1 |
6275773 | Lemelson et al. | Aug 2001 | B1 |
6298290 | Abe et al. | Oct 2001 | B1 |
6346965 | Toh | Feb 2002 | B1 |
6405112 | Rayner | Jun 2002 | B1 |
6411874 | Morgan et al. | Jun 2002 | B2 |
6421080 | Lambert | Jul 2002 | B1 |
6424820 | Burdick et al. | Jul 2002 | B1 |
6462778 | Abram et al. | Oct 2002 | B1 |
6505160 | Levy et al. | Jan 2003 | B1 |
6510177 | De Bonet et al. | Jan 2003 | B1 |
6518881 | Monroe | Feb 2003 | B2 |
6624611 | Kirmuss | Sep 2003 | B2 |
6778814 | Koike | Aug 2004 | B2 |
6788338 | Dinev et al. | Sep 2004 | B1 |
6788983 | Zheng | Sep 2004 | B2 |
6789030 | Coyle et al. | Sep 2004 | B1 |
6791922 | Suzuki | Sep 2004 | B2 |
6825780 | Saunders et al. | Nov 2004 | B2 |
6831556 | Boykin | Dec 2004 | B1 |
7010328 | Kawasaki et al. | Mar 2006 | B2 |
7091851 | Mason et al. | Aug 2006 | B2 |
7119832 | Blanco et al. | Oct 2006 | B2 |
7120477 | Huang | Oct 2006 | B2 |
7155615 | Silvester | Dec 2006 | B1 |
7167519 | Comaniciu et al. | Jan 2007 | B2 |
7190882 | Gammenthaler | Mar 2007 | B2 |
7231233 | Gosieski, Jr. | Jun 2007 | B2 |
7272179 | Siemens et al. | Sep 2007 | B2 |
7317837 | Yatabe et al. | Jan 2008 | B2 |
7356473 | Kates | Apr 2008 | B2 |
7386219 | Ishige | Jun 2008 | B2 |
7410371 | Shabtai et al. | Aug 2008 | B2 |
7414587 | Stanton | Aug 2008 | B2 |
7428314 | Henson | Sep 2008 | B2 |
7515760 | Sai et al. | Apr 2009 | B2 |
7542813 | Nam | Jun 2009 | B2 |
7551894 | Gerber et al. | Jun 2009 | B2 |
7554587 | Shizukuishi | Jun 2009 | B2 |
7618260 | Daniel et al. | Nov 2009 | B2 |
7631195 | Yu et al. | Dec 2009 | B1 |
7688203 | Rockefeller et al. | Mar 2010 | B2 |
7693289 | Stathem et al. | Apr 2010 | B2 |
7768548 | Silvernail et al. | Aug 2010 | B2 |
7778601 | Seshadri et al. | Aug 2010 | B2 |
7792189 | Finizio et al. | Sep 2010 | B2 |
7818078 | Iriarte | Oct 2010 | B2 |
7835530 | Avigni | Nov 2010 | B2 |
7868912 | Venetianer et al. | Jan 2011 | B2 |
7877115 | Seshadri et al. | Jan 2011 | B2 |
7974429 | Tsai | Jul 2011 | B2 |
7995652 | Washington | Aug 2011 | B2 |
8068023 | Dulin et al. | Nov 2011 | B2 |
8081214 | Vanman et al. | Dec 2011 | B2 |
8086277 | Ganley et al. | Dec 2011 | B2 |
8121306 | Cilia et al. | Feb 2012 | B2 |
8126276 | Bolle et al. | Feb 2012 | B2 |
8126968 | Rodman et al. | Feb 2012 | B2 |
8139796 | Nakashima et al. | Mar 2012 | B2 |
8144892 | Shemesh et al. | Mar 2012 | B2 |
8145134 | Henry et al. | Mar 2012 | B2 |
8150089 | Segawa et al. | Apr 2012 | B2 |
8154666 | Mody | Apr 2012 | B2 |
8166220 | Ben-Yacov et al. | Apr 2012 | B2 |
8174577 | Chou | May 2012 | B2 |
8195145 | Angelhag | Jun 2012 | B2 |
8208024 | Dischinger | Jun 2012 | B2 |
8228364 | Cilia | Jul 2012 | B2 |
8230149 | Long et al. | Jul 2012 | B1 |
8253796 | Renkis | Aug 2012 | B2 |
8254844 | Kuffner et al. | Aug 2012 | B2 |
8260217 | Chang et al. | Sep 2012 | B2 |
8264540 | Chang et al. | Sep 2012 | B2 |
8270647 | Crawford et al. | Sep 2012 | B2 |
8289370 | Civanlar et al. | Oct 2012 | B2 |
8300863 | Knudsen et al. | Oct 2012 | B2 |
8311549 | Chang et al. | Nov 2012 | B2 |
8311983 | Guzik | Nov 2012 | B2 |
8358980 | Tajima et al. | Jan 2013 | B2 |
8380131 | Chiang | Feb 2013 | B2 |
8422944 | Flygh et al. | Apr 2013 | B2 |
8446469 | Blanco et al. | May 2013 | B2 |
8457827 | Ferguson et al. | Jun 2013 | B1 |
8489065 | Green et al. | Jul 2013 | B2 |
8489151 | Engelen et al. | Jul 2013 | B2 |
8497940 | Green et al. | Jul 2013 | B2 |
8554145 | Fehr | Oct 2013 | B2 |
8612708 | Drosch | Dec 2013 | B2 |
8630908 | Forster | Jan 2014 | B2 |
8661507 | Hesselink et al. | Feb 2014 | B1 |
8707392 | Birtwhistle et al. | Apr 2014 | B2 |
8731742 | Zagorski et al. | May 2014 | B2 |
8780199 | Mimar | Jul 2014 | B2 |
8781292 | Ross et al. | Jul 2014 | B1 |
8849557 | Levandowski et al. | Sep 2014 | B1 |
9041803 | Chen et al. | May 2015 | B2 |
9070289 | Saund et al. | Jun 2015 | B2 |
9159371 | Ross et al. | Oct 2015 | B2 |
9201842 | Plante | Dec 2015 | B2 |
9225527 | Chang | Dec 2015 | B1 |
9253452 | Ross et al. | Feb 2016 | B2 |
9307317 | Chang et al. | Apr 2016 | B2 |
9325950 | Haler | Apr 2016 | B2 |
9471059 | Wilkins | Oct 2016 | B1 |
9589448 | Schneider et al. | Mar 2017 | B1 |
9665094 | Russell | May 2017 | B1 |
10074394 | Ross et al. | Sep 2018 | B2 |
20020003571 | Schofield et al. | Jan 2002 | A1 |
20020051061 | Peters et al. | May 2002 | A1 |
20020135679 | Scaman | Sep 2002 | A1 |
20030052970 | Dodds et al. | Mar 2003 | A1 |
20030080878 | Kirmuss | May 2003 | A1 |
20030081122 | Kirmuss | May 2003 | A1 |
20030081127 | Kirmuss | May 2003 | A1 |
20030081128 | Kirmuss | May 2003 | A1 |
20030081934 | Kirmuss | May 2003 | A1 |
20030081935 | Kirmuss | May 2003 | A1 |
20030095688 | Kirmuss | May 2003 | A1 |
20030103140 | Watkins | Jun 2003 | A1 |
20030151663 | Lorenzetti et al. | Aug 2003 | A1 |
20030197629 | Saunders et al. | Oct 2003 | A1 |
20040008255 | Lewellen | Jan 2004 | A1 |
20040051793 | Tecu et al. | Mar 2004 | A1 |
20040107030 | Nishira et al. | Jun 2004 | A1 |
20040146272 | Kessel et al. | Jul 2004 | A1 |
20040177253 | Wu et al. | Sep 2004 | A1 |
20050007458 | Benattou | Jan 2005 | A1 |
20050078195 | VanWagner | Apr 2005 | A1 |
20050083404 | Pierce et al. | Apr 2005 | A1 |
20050088521 | Blanco et al. | Apr 2005 | A1 |
20050122397 | Henson et al. | Jun 2005 | A1 |
20050154907 | Han et al. | Jul 2005 | A1 |
20050158031 | David | Jul 2005 | A1 |
20050185936 | Lao et al. | Aug 2005 | A9 |
20050243171 | Ross, Sr. et al. | Nov 2005 | A1 |
20050286476 | Crosswy et al. | Dec 2005 | A1 |
20060055521 | Blanco et al. | Mar 2006 | A1 |
20060072672 | Holcomb et al. | Apr 2006 | A1 |
20060077256 | Silvemail et al. | Apr 2006 | A1 |
20060078046 | Lu | Apr 2006 | A1 |
20060130129 | Dai et al. | Jun 2006 | A1 |
20060133476 | Page et al. | Jun 2006 | A1 |
20060165386 | Garoutte | Jul 2006 | A1 |
20060270465 | Lee et al. | Nov 2006 | A1 |
20060274116 | Wu | Dec 2006 | A1 |
20070005609 | Breed | Jan 2007 | A1 |
20070064108 | Haler | Mar 2007 | A1 |
20070086601 | Mitchler | Apr 2007 | A1 |
20070111754 | Marshall et al. | May 2007 | A1 |
20070124292 | Kirshenbaum et al. | May 2007 | A1 |
20070217761 | Chen et al. | Sep 2007 | A1 |
20070219685 | Plante | Sep 2007 | A1 |
20080005472 | Khalidi et al. | Jan 2008 | A1 |
20080030782 | Watanabe | Feb 2008 | A1 |
20080129825 | DeAngelis et al. | Jun 2008 | A1 |
20080165250 | Ekdahl et al. | Jul 2008 | A1 |
20080186129 | Fitzgibbon | Aug 2008 | A1 |
20080208755 | Malcolm | Aug 2008 | A1 |
20080294315 | Breed | Nov 2008 | A1 |
20080303903 | Bentley et al. | Dec 2008 | A1 |
20090017881 | Madrigal | Jan 2009 | A1 |
20090022362 | Gagvani et al. | Jan 2009 | A1 |
20090074216 | Bradford et al. | Mar 2009 | A1 |
20090076636 | Bradford et al. | Mar 2009 | A1 |
20090118896 | Gustafsson | May 2009 | A1 |
20090195651 | Leonard et al. | Aug 2009 | A1 |
20090195655 | Pandey | Aug 2009 | A1 |
20090213902 | Jeng | Aug 2009 | A1 |
20100026809 | Curry | Feb 2010 | A1 |
20100030929 | Ben-Yacov et al. | Feb 2010 | A1 |
20100057444 | Cilia | Mar 2010 | A1 |
20100081466 | Mao | Apr 2010 | A1 |
20100131748 | Lin | May 2010 | A1 |
20100136944 | Taylor et al. | Jun 2010 | A1 |
20100180051 | Harris | Jul 2010 | A1 |
20100238009 | Cook et al. | Sep 2010 | A1 |
20100274816 | Guzik | Oct 2010 | A1 |
20100287545 | Corbefin | Nov 2010 | A1 |
20100289648 | Ree | Nov 2010 | A1 |
20100302979 | Reunamaki | Dec 2010 | A1 |
20100309971 | Vanman et al. | Dec 2010 | A1 |
20110016256 | Hatada | Jan 2011 | A1 |
20110044605 | Vanman et al. | Feb 2011 | A1 |
20110092248 | Evanitsky | Apr 2011 | A1 |
20110142156 | Haartsen | Jun 2011 | A1 |
20110233078 | Monaco et al. | Sep 2011 | A1 |
20110234379 | Lee | Sep 2011 | A1 |
20110280143 | Li et al. | Nov 2011 | A1 |
20110280413 | Wu et al. | Nov 2011 | A1 |
20110299457 | Green, III et al. | Dec 2011 | A1 |
20120014534 | Bodley et al. | Jan 2012 | A1 |
20120078397 | Lee et al. | Mar 2012 | A1 |
20120083960 | Zhu et al. | Apr 2012 | A1 |
20120163309 | Ma et al. | Jun 2012 | A1 |
20120173577 | Millar et al. | Jul 2012 | A1 |
20120266251 | Birtwhistle et al. | Oct 2012 | A1 |
20120300081 | Kim | Nov 2012 | A1 |
20120307070 | Pierce | Dec 2012 | A1 |
20120310394 | El-Hoiydi | Dec 2012 | A1 |
20120310395 | El-Hoiydi | Dec 2012 | A1 |
20130114849 | Pengelly et al. | May 2013 | A1 |
20130135472 | Wu et al. | May 2013 | A1 |
20130163822 | Chigos et al. | Jun 2013 | A1 |
20130201884 | Freda et al. | Aug 2013 | A1 |
20130218427 | Mukhopadhyay et al. | Aug 2013 | A1 |
20130223653 | Chang | Aug 2013 | A1 |
20130236160 | Gentile et al. | Sep 2013 | A1 |
20130242262 | Lewis | Sep 2013 | A1 |
20130251173 | Ejima et al. | Sep 2013 | A1 |
20130268357 | Heath | Oct 2013 | A1 |
20130287261 | Lee et al. | Oct 2013 | A1 |
20130302758 | Wright | Nov 2013 | A1 |
20130339447 | Ervine | Dec 2013 | A1 |
20130346660 | Kwidzinski et al. | Dec 2013 | A1 |
20140037142 | Bhanu et al. | Feb 2014 | A1 |
20140038668 | Vasavada et al. | Feb 2014 | A1 |
20140078304 | Othmer | Mar 2014 | A1 |
20140085475 | Bhanu et al. | Mar 2014 | A1 |
20140092251 | Troxel | Apr 2014 | A1 |
20140100891 | Turner et al. | Apr 2014 | A1 |
20140114691 | Pearce | Apr 2014 | A1 |
20140143545 | McKeeman et al. | May 2014 | A1 |
20140162598 | Villa-Real | Jun 2014 | A1 |
20140184796 | Klein et al. | Jul 2014 | A1 |
20140236414 | Droz et al. | Aug 2014 | A1 |
20140236472 | Rosario | Aug 2014 | A1 |
20140278052 | Slavin et al. | Sep 2014 | A1 |
20140280584 | Ervine | Sep 2014 | A1 |
20140281498 | Bransom et al. | Sep 2014 | A1 |
20140297687 | Lin | Oct 2014 | A1 |
20140309849 | Ricci | Oct 2014 | A1 |
20140321702 | Schmalstieg | Oct 2014 | A1 |
20140355951 | Tabak | Dec 2014 | A1 |
20140375807 | Muetzel et al. | Dec 2014 | A1 |
20150012825 | Rezvani et al. | Jan 2015 | A1 |
20150032535 | Li et al. | Jan 2015 | A1 |
20150066349 | Chan et al. | Mar 2015 | A1 |
20150084790 | Arpin et al. | Mar 2015 | A1 |
20150086175 | Lorenzetti | Mar 2015 | A1 |
20150088335 | Lambert et al. | Mar 2015 | A1 |
20150103159 | Shashua et al. | Apr 2015 | A1 |
20150161483 | Allen et al. | Jun 2015 | A1 |
20150211868 | Matsushita et al. | Jul 2015 | A1 |
20150266575 | Borko | Sep 2015 | A1 |
20150294174 | Karkowski et al. | Oct 2015 | A1 |
20160023762 | Wang | Jan 2016 | A1 |
20160035391 | Ross et al. | Feb 2016 | A1 |
20160042767 | Araya | Feb 2016 | A1 |
20160062762 | Chen et al. | Mar 2016 | A1 |
20160062992 | Chen et al. | Mar 2016 | A1 |
20160063642 | Luciani et al. | Mar 2016 | A1 |
20160064036 | Chen et al. | Mar 2016 | A1 |
20160065908 | Chang et al. | Mar 2016 | A1 |
20160144788 | Perrin et al. | May 2016 | A1 |
20160148638 | Ross et al. | May 2016 | A1 |
20160285492 | Vembar | Sep 2016 | A1 |
20160332747 | Bradlow et al. | Nov 2016 | A1 |
20170032673 | Scofield et al. | Feb 2017 | A1 |
20170053169 | Cuban et al. | Feb 2017 | A1 |
20170053674 | Fisher et al. | Feb 2017 | A1 |
20170059265 | Winter | Mar 2017 | A1 |
20170066374 | Hoye | Mar 2017 | A1 |
20170076396 | Sudak | Mar 2017 | A1 |
20170085829 | Waniguchi | Mar 2017 | A1 |
20170113664 | Nix | Apr 2017 | A1 |
20170178422 | Wright | Jun 2017 | A1 |
20170178423 | Wright | Jun 2017 | A1 |
20170193828 | Holtzman et al. | Jul 2017 | A1 |
20170253330 | Saigh et al. | Sep 2017 | A1 |
20170324897 | Swaminathan et al. | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
2907145 | May 2007 | CN |
101309088 | Nov 2008 | CN |
102355618 | Feb 2012 | CN |
102932703 | Feb 2013 | CN |
202957973 | May 2013 | CN |
103617005 | Mar 2014 | CN |
1148726 | Oct 2001 | EP |
1655855 | May 2006 | EP |
2107837 | Oct 2009 | EP |
2391687 | Nov 2004 | GB |
2003150450 | May 2003 | JP |
2005266934 | Sep 2005 | JP |
2009169922 | Jul 2009 | JP |
2012058832 | Mar 2012 | JP |
1997038526 | Oct 1997 | WO |
2000013410 | Mar 2000 | WO |
2000021258 | Apr 2000 | WO |
2000045587 | Aug 2000 | WO |
2000072186 | Nov 2000 | WO |
2002061955 | Aug 2002 | WO |
2004066590 | Aug 2004 | WO |
2004111851 | Dec 2004 | WO |
2005053325 | Jun 2005 | WO |
2005054997 | Jun 2005 | WO |
2007114988 | Oct 2007 | WO |
2009058611 | May 2009 | WO |
2009148374 | Dec 2009 | WO |
2012001143 | Jan 2012 | WO |
2012100114 | Jul 2012 | WO |
2012116123 | Aug 2012 | WO |
2013020588 | Feb 2013 | WO |
2013074947 | May 2013 | WO |
2013106740 | Jul 2013 | WO |
2013107516 | Jul 2013 | WO |
2013150326 | Oct 2013 | WO |
2014057496 | Apr 2014 | WO |
2016033523 | Mar 2016 | WO |
2016061516 | Apr 2016 | WO |
2016061525 | Apr 2016 | WO |
2016061533 | Apr 2016 | WO |
Entry |
---|
Office Action issued in U.S. Appl. No. 11/369,502 dated Mar. 16, 2010, 10 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Sep. 30, 2010, 12 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Jul. 14, 2011, 17 pages. |
Office Action issued in U.S. Appl. No. 11/369,502 dated Jan. 31, 2012, 18 pages. |
Examiner's Answer (to Appeal Brief) issued in U.S. Appl. No. 11/369,502 dated Oct. 24, 2012, 20 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Mar. 22, 2013, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Jun. 26, 2013, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Sep. 10, 2013, 7 pages. |
Advisory Action issued in U.S. Appl. No. 13/723,747 dated Feb. 24, 2014, 4 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Mar. 20, 2014, 6 pages. |
Office Action issued in U.S. Appl. No. 13/723,747 dated Nov. 10, 2014, 9 pages. |
Notice of Allowance and Fees Due issued in U.S. Appl. No. 13/723,747 dated Mar. 30, 2015, 6 pages. |
First Action Interview Pilot Program Pre-Interview Communication issued in U.S. Appl. No. 14/588,139 dated May 14, 2015, 4 pages. |
Office Action issued in U.S. Appl. No. 14/593,853 dated Apr. 20, 2015, 30 pages. |
Office Action issued in U.S. Appl. No. 14/593,956 dated May 6, 2015, 10 pages. |
PCT International Search Report and Written Opinion issued in Application No. PCT/US07/63485 dated Feb. 8, 2008, 10 pages. |
Chapter 5: “Main Memory,” Introduction to Computer Science course, 2004, 20 pages, available at http://www2.cs.ucy.ac.cy/˜nicolast/courses/lectures/MainMemory.pdf. |
Sony Corporation, Digital Still Camera (MVC-CD200/CD300), Operation Manual, 2001, 108 pages, Sony, Japan. |
Steve's Digicams, Kodak Professional DCS 620 Digital Camera, 1999, 11 pages, United States, available at: http://www.steves-digicams.com/dcs620.html. |
Gregory J. Allen, “The Feasibility of Implementing Video Teleconferencing Systems Aboard Afloat Naval Units” (Master's Thesis, Naval Postgraduate School, Monterey, California), Mar. 1990, 143 pages. |
Bell-Northern Research Ltd., “A Multi-Bid Rate Interframe Movement Compensated Multimode Coder for Video Conferencing” (Final Report prepared for DARPA), Apr. 1982, 92 pages, Ottawa, Ontario, Canada. |
Xiaoqing Zhu, Eric Setton, Bernd Girod, “Rate Allocation for Multi-Camera Surveillance Over an Ad Hoc Wireless Network,” 2004, 6 pages, available at http://msw3.stanford.edu/˜zhuxq/papers/pcs2004.pdf. |
Office Action issued in U.S. Appl. No. 14/593,722 dated Sep. 25, 2015, 39 pages. |
Office Action issued in U.S. Appl. No. 14/593,853 dated Sep. 11, 2015 (including Summary of Interview conducted on May 9, 2015), 45 pages. |
Notice of Allowance issued in U.S. Appl. No. 14/593,956 dated Oct. 26, 2015, 10 pages. |
“IEEE 802.1X,” Wikipedia, Aug. 23, 2013, 8 pages, available at: http://en.wikipedia.org/w/index.php?title=IEEE_802.1X&oldid=569887090. |
Notice of Allowance issued in U.S. Appl. No. 14/588,139 dated Aug. 14, 2015, 19 pages. |
“Near Field Communication,” Wikipedia, Jul. 19, 2014, 8 pages, available at: hilps://en.wikipedia.org/w/index.php?title=near_field_communication&oldid=617538619. |
PCT International Search Report and Written Opinion issued in Application No. PCT/US15/47532 dated Jan. 8, 2016, 22 pages. |
Office Action issued in U.S. Appl. No. 14/686,192 dated Apr. 8, 2016, 19 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Aug. 21, 2015, 13 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Mar. 11, 2016, 14 pages. |
Office Action issued in U.S. Appl. No. 14/593,722 dated Apr. 10, 2015, 28 pages. |
Office Action issued in U.S. Appl. No. 14/686,192 dated Dec. 24, 2015, 12 pages. |
“Portable Application,” Wikipedia, Jun. 26, 2014, 4 pages, available at: http://en.wikipedia.org/w/index.php?title=Portable_application&oldid=614543759. |
“Radio-Frequency Identification,” Wikipedia, Oct. 18, 2013, 31 pages, available at: http://en.wikipedia.org/w/index.php?title=Radio-frequency_identification&oldid=577711262. |
Advisory Action issued in U.S. Appl. No. 14/715,742 dated May 20, 2016 (including Summary of Interview conducted on May 12, 2016), 4 pages. |
Advisory Action issued in U.S. Appl. No. 14/715,742 dated Jun. 14, 2016, 3 pages. |
Office Action issued in U.S. Appl. No. 14/715,742 dated Sep. 23, 2016, 17 pages. |
Office Action issued in U.S. Appl. No. 15/413,205 dated Mar. 17, 2017, 7 pages. |
Office Action issued in U.S. Appl. No. 15/438,166 dated Apr. 21, 2017, 17 pages. |
U.S. Appl. No. 62/197,493 (Fisher et al.), filed Jul. 27, 2015, 12 pages. |
Office Action issued in U.S. Appl. No. 15/467,924 dated May 8, 2017, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20170214843 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
62333818 | May 2016 | US | |
62286139 | Jan 2016 | US |