The invention set forth in the appended claims relates generally to tissue treatment systems and more particularly, but without limitation, to systems, dressings, and fillers for negative-pressure tissue treatment, and methods of using systems, dressings, and fillers for negative-pressure tissue treatment.
Clinical studies and practice have shown that reducing pressure in proximity to a tissue site can augment and accelerate growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but it has proven particularly advantageous for treating wounds. Regardless of the etiology of a wound, whether trauma, surgery, or another cause, proper care of the wound is important to the outcome. Treatment of wounds or other tissue with reduced pressure may be commonly referred to as “negative-pressure therapy,” but is also known by other names, including “negative-pressure wound therapy,” “reduced-pressure therapy,” “vacuum therapy,” “vacuum-assisted closure,” and “topical negative-pressure,” for example. Negative-pressure therapy may provide a number of benefits, including migration of epithelial and subcutaneous tissues, improved blood flow, and micro-deformation of tissue at a wound site. Together, these benefits can increase development of granulation tissue and reduce healing times.
There is also widespread acceptance that cleansing a tissue site can be highly beneficial for new tissue growth. For example, a wound can be washed out with a stream of liquid solution, or a cavity can be washed out using a liquid solution for therapeutic purposes. These practices are commonly referred to as “irrigation” and “lavage” respectively. “Instillation” is another practice that generally refers to a process of slowly introducing fluid to a tissue site and leaving the fluid for a prescribed period of time before removing the fluid. For example, instillation of topical treatment solutions over a wound bed can be combined with negative-pressure therapy to further promote wound healing by loosening soluble contaminants in a wound bed and removing infectious material. As a result, soluble bacterial burden can be decreased, contaminants removed, and the wound cleansed.
While the clinical benefits of negative-pressure therapy and instillation therapy are widely known, improvements to therapy systems, components, and processes may benefit healthcare providers and patients.
New and useful systems, apparatuses, and methods for treating tissue in a negative-pressure therapy environment are set forth in the appended claims. Illustrative embodiments are also provided to enable a person skilled in the art to make and use the claimed subject matter.
For example, in some embodiments, a dressing or filler for treating a tissue site with negative-pressure may include a thin sheet of reticulated foam enclosed within at least two layers of perforated or fenestrated film. Suitable films may include, for example, polythene, polyurethane, or ethyl methyl acrylate. Some embodiments of the film may have linear perforations or fenestrations formed over the surface. The foam may be formed in sections in some embodiments. For example, the foam sections may be formed by joining the film layer around the sections. Sections may be formed in tessellating shapes in some examples, and the composite of foam and film may resemble a quilted structure in some configurations. Sections may be folded, cut, or otherwise separated to shape and size the dressing or filler for optimal placement, and exposure of the foam may be avoided or minimized by folding or separating the sections along joined film layers between sections.
More generally, in some embodiments, a dressing or filler for treating a tissue site with negative pressure may include a manifold having a first surface and a second surface opposite the first surface. The dressing may also include a first layer adjacent to the first surface and a second layer adjacent to the second surface. The first layer and the second layer may each include or consist of a polymer film in some embodiments. The dressing can also include a plurality of fluid restrictions in the polymer film adjacent to at least the first surface, and a plurality of bonds between the first layer and the second layer. The plurality of bonds generally defines separable sections of the manifold.
In some embodiments, the plurality of bonds form seams between the separable sections of the manifold. The seams between the sections generally have a width of at least 2 millimeters. The manifold may also include perforations, which may be aligned with the bonds in some examples. The manifold may additionally include sacrificial joints or bonds between the separable sections in some embodiments.
Some embodiments of a dressing may include a manifold having a first surface and a second surface opposite the first surface, a first layer adjacent to the first surface and a second layer adjacent to the second surface, the first layer and the second layer each including a polymer film, a plurality of fluid restrictions in the polymer film adjacent to at least the first surface, and a means for bonding the first layer to the second layer to form separable sections of the manifold.
A dressing may include at least two layers of manifold sections in some examples. At least one intermediate layer may be disposed between the first manifold layer and the second manifold layer. Some embodiments of the dressing may additionally include a first outer layer adjacent to the first manifold layer opposite the intermediate layer, a second outer layer adjacent to the second manifold layer opposite the intermediate layer, a plurality of fluid restrictions in the first outer layer and the second outer layer, and a plurality of bonds between the first outer layer and the intermediate layer and between the second outer layer and the intermediate layer. At least the first outer layer and the second outer layer may each comprise a polymer film. The plurality of bonds can define separable sections of the first manifold layer and the second manifold layer.
Other embodiments may relate to an apparatus for providing negative-pressure treatment to a tissue site. For example, an apparatus may include a manifold comprising a first surface and a second surface opposite the first surface, a first layer adjacent to the first surface and a second layer adjacent to the second surface, the first layer and the second layer each comprising a polymer film, a plurality of fluid restrictions in the polymer film adjacent to at least the first surface, a plurality of bonds between the first layer and the second layer, the plurality of bonds defining separable sections of the manifold, and a negative-pressure source fluidly coupled to the manifold.
Other example embodiments may relate to a method for treating a tissue site. Some methods may include excising separable sections of a dressing based upon at least one of a size and shape of a tissue site, applying the dressing to fill or cover the tissue site, sealing the dressing to epidermis adjacent to the tissue site, fluidly coupling the dressing to a negative-pressure source, and applying negative pressure from the negative-pressure source to the dressing.
Objectives, advantages, and a preferred mode of making and using the claimed subject matter may be understood best by reference to the accompanying drawings in conjunction with the following detailed description of illustrative embodiments.
The following description of example embodiments provides information that enables a person skilled in the art to make and use the subject matter set forth in the appended claims, but may omit certain details already well-known in the art. The following detailed description is, therefore, to be taken as illustrative and not limiting.
The example embodiments may also be described herein with reference to spatial relationships between various elements or to the spatial orientation of various elements depicted in the attached drawings. In general, such relationships or orientation assume a frame of reference consistent with or relative to a patient in a position to receive treatment. However, as should be recognized by those skilled in the art, this frame of reference is merely a descriptive expedient rather than a strict prescription.
The term “tissue site” in this context broadly refers to a wound, defect, or other treatment target located on or within tissue, including but not limited to, a surface wound, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may also refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it may be desirable to add or promote the growth of additional tissue. For example, negative pressure may be applied to a tissue site to grow additional tissue that may be harvested and transplanted. A surface wound, as used herein, is a wound on the surface of a body that is exposed to the outer surface of the body, such an injury or damage to the epidermis, dermis, and/or subcutaneous layers. Surface wounds may include ulcers or closed incisions, for example. A surface wound, as used herein, does not include wounds within an intra-abdominal cavity. A wound may include chronic, acute, traumatic, subacute, and dehisced wounds, partial-thickness burns, ulcers (such as diabetic, pressure, or venous insufficiency ulcers), flaps, and grafts, for example.
The therapy system 100 may include a source or supply of negative pressure, such as a negative-pressure source 102, a dressing 104, a fluid container, such as a container 106, and a regulator or controller, such as a controller 108, for example. Additionally, the therapy system 100 may include sensors to measure operating parameters and provide feedback signals to the controller 108 indicative of the operating parameters. As illustrated in
The therapy system 100 may also include a source of instillation solution. For example, a solution source 118 may be fluidly coupled to the dressing 104, as illustrated in the example embodiment of
Some components of the therapy system 100 may be housed within or used in conjunction with other components, such as sensors, processing units, alarm indicators, memory, databases, software, display devices, or user interfaces that further facilitate therapy. For example, in some embodiments, the negative-pressure source 102 may be combined with the solution source 118, the controller 108, and other components into a therapy unit.
In general, components of the therapy system 100 may be coupled directly or indirectly. For example, the negative-pressure source 102 may be directly coupled to the container 106, and may be indirectly coupled to the dressing 104 through the container 106. Coupling may include fluid, mechanical, thermal, electrical, or chemical coupling (such as a chemical bond), or some combination of coupling in some contexts. For example, the negative-pressure source 102 may be electrically coupled to the controller 108, and may be fluidly coupled to one or more distribution components to provide a fluid path to a tissue site. In some embodiments, components may also be coupled by virtue of physical proximity, being integral to a single structure, or being formed from the same piece of material. For example, the tissue interface 114 and the cover 116 may be discrete layers disposed adjacent to each other, and may be joined together in some embodiments.
A distribution component is preferably detachable, and may be disposable, reusable, or recyclable. The dressing 104 and the container 106 are illustrative of distribution components. A fluid conductor is another illustrative example of a distribution component. A “fluid conductor,” in this context, broadly includes a tube, pipe, hose, conduit, or other structure with one or more lumina or open pathways adapted to convey a fluid between two ends. Typically, a tube is an elongated, cylindrical structure with some flexibility, but the geometry and rigidity may vary. Moreover, some fluid conductors may be molded into or otherwise integrally combined with other components. Distribution components may also include or comprise interfaces or fluid ports to facilitate coupling and de-coupling other components. In some embodiments, for example, a dressing interface may facilitate coupling a fluid conductor to the dressing 104.
A negative-pressure supply, such as the negative-pressure source 102, may be a reservoir of air at a negative pressure, or may be a manual or electrically-powered device, such as a vacuum pump, a suction pump, a wall suction port available at many healthcare facilities, or a micro-pump, for example. “Negative pressure” generally refers to a pressure less than a local ambient pressure, such as the ambient pressure in a local environment external to a sealed therapeutic environment. In many cases, the local ambient pressure may also be the atmospheric pressure at which a tissue site is located. Alternatively, the pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. References to increases in negative pressure typically refer to a decrease in absolute pressure, while decreases in negative pressure typically refer to an increase in absolute pressure. While the amount and nature of negative pressure applied to a tissue site may vary according to therapeutic requirements, the pressure is generally a low vacuum, also commonly referred to as a rough vacuum, between −5 mm Hg (−667 Pa) and −500 mm Hg (−66.7 kPa). Common therapeutic ranges are between −50 mm Hg (−6.7 kPa) and −300 mm Hg (−39.9 kPa).
The container 106 is representative of a container, canister, pouch, or other storage component, which can be used to manage exudates and other fluids withdrawn from a tissue site. In many environments, a rigid container may be preferred or required for collecting, storing, and disposing of fluids. In other environments, fluids may be properly disposed of without rigid container storage, and a re-usable container could reduce waste and costs associated with negative-pressure therapy.
A controller, such as the controller 108, may be a microprocessor or computer programmed to operate one or more components of the therapy system 100, such as the negative-pressure source 102. In some embodiments, for example, the controller 108 may be a microcontroller, which generally comprises an integrated circuit containing a processor core and a memory programmed to directly or indirectly control one or more operating parameters of the therapy system 100. Operating parameters may include the power applied to the negative-pressure source 102, the pressure generated by the negative-pressure source 102, or the pressure distributed to the tissue interface 114, for example. The controller 108 is also preferably configured to receive one or more input signals, such as a feedback signal, and programmed to modify one or more operating parameters based on the input signals.
Sensors, such as the pressure sensor 110 or the electric sensor 112, are generally known in the art as any apparatus operable to detect or measure a physical phenomenon or property, and generally provide a signal indicative of the phenomenon or property that is detected or measured. For example, the pressure sensor 110 and the electric sensor 112 may be configured to measure one or more operating parameters of the therapy system 100. In some embodiments, the pressure sensor 110 may be a transducer configured to measure pressure in a pneumatic pathway and convert the measurement to a signal indicative of the pressure measured. In some embodiments, for example, the pressure sensor 110 may be a piezoresistive strain gauge. The electric sensor 112 may optionally measure operating parameters of the negative-pressure source 102, such as the voltage or current, in some embodiments. Preferably, the signals from the pressure sensor 110 and the electric sensor 112 are suitable as an input signal to the controller 108, but some signal conditioning may be appropriate in some embodiments. For example, the signal may need to be filtered or amplified before it can be processed by the controller 108. Typically, the signal is an electrical signal, but may be represented in other forms, such as an optical signal.
The tissue interface 114 can be generally adapted to partially or fully contact a tissue site. The tissue interface 114 may take many forms, and may have many sizes, shapes, or thicknesses depending on a variety of factors, such as the type of treatment being implemented or the nature and size of a tissue site. For example, the size and shape of the tissue interface 114 may be adapted to the contours of deep and irregular shaped tissue sites.
In some embodiments, the cover 116 may provide a bacterial barrier and protection from physical trauma. The cover 116 may also be constructed from a material that can reduce evaporative losses and provide a fluid seal between two components or two environments, such as between a therapeutic environment and a local external environment. The cover 116 may be, for example, an elastomeric film or membrane that can provide a seal adequate to maintain a negative pressure at a tissue site for a given negative-pressure source. The cover 116 may have a high moisture-vapor transmission rate (MVTR) in some applications. For example, the MVTR may be at least 300 g/m{circumflex over ( )}2 per twenty-four hours in some embodiments. In some example embodiments, the cover 116 may be a polymer drape, such as a polyurethane film, that is permeable to water vapor but impermeable to liquid. Such drapes typically have a thickness in the range of 25-50 microns. For permeable materials, the permeability generally should be low enough that a desired negative pressure may be maintained.
The cover 116 may comprise, for example, one or more of the following materials: hydrophilic polyurethane; cellulosics; hydrophilic polyamides; polyvinyl alcohol; polyvinyl pyrrolidone; hydrophilic acrylics; hydrophilic silicone elastomers; an INSPIRE 2301 material from Coveris Advanced Coatings of Wrexham, United Kingdom having, for example, an MVTR (inverted cup technique) of 14400 g/m2/24 hours and a thickness of about 30 microns; a thin, uncoated polymer drape; natural rubbers; polyisoprene; styrene butadiene rubber; chloroprene rubber; polybutadiene; nitrile rubber; butyl rubber; ethylene propylene rubber; ethylene propylene diene monomer; chlorosulfonated polyethylene; polysulfide rubber; polyurethane (PU); EVA film; co-polyester; silicones; a silicone drape; a 3M Tegaderm® drape; a polyurethane (PU) drape such as one available from Avery Dennison Corporation of Glendale, Calif.; polyether block polyamide copolymer (PEBAX), for example, from Arkema, France; INSPIRE 2327; or other appropriate material.
An attachment device may be used to attach the cover 116 to an attachment surface, such as undamaged epidermis, a gasket, or another cover. The attachment device may take many forms. For example, an attachment device may be a medically-acceptable, pressure-sensitive adhesive configured to bond the cover 116 to epidermis around a tissue site. In some embodiments, for example, some or all of the cover 116 may be coated with an adhesive, such as an acrylic adhesive, which may have a coating weight between 25-65 grams per square meter (g.s.m.). Thicker adhesives, or combinations of adhesives, may be applied in some embodiments to improve the seal and reduce leaks. Other example embodiments of an attachment device may include a double-sided tape, paste, hydrocolloid, hydrogel, silicone gel, or organogel.
The solution source 118 may also be representative of a container, canister, pouch, bag, or other storage component, which can provide a solution for instillation therapy. Compositions of solutions may vary according to a prescribed therapy, but examples of solutions that may be suitable for some prescriptions include hypochlorite-based solutions, silver nitrate (0.5%), sulfur-based solutions, biguanides, cationic solutions, and isotonic solutions.
The fluid mechanics of using a negative-pressure source to reduce pressure in another component or location, such as within a sealed therapeutic environment, can be mathematically complex. However, the basic principles of fluid mechanics applicable to negative-pressure therapy and instillation are generally well-known to those skilled in the art, and the process of reducing pressure may be described illustratively herein as “delivering,” “distributing,” or “generating” negative pressure, for example.
In general, exudates and other fluids flow toward lower pressure along a fluid path. Thus, the term “downstream” typically implies something in a fluid path relatively closer to a source of negative pressure or further away from a source of positive pressure. Conversely, the term “upstream” implies something relatively further away from a source of negative pressure or closer to a source of positive pressure. Similarly, it may be convenient to describe certain features in terms of fluid “inlet” or “outlet” in such a frame of reference. This orientation is generally presumed for purposes of describing various features and components herein. However, the fluid path may also be reversed in some applications (such as by substituting a positive-pressure source for a negative-pressure source) and this descriptive convention should not be construed as a limiting convention.
The manifold sections 215 may comprise or consist of foam in some embodiments. For example, the foam may be open-cell foam, such as reticulated foam. The foam may also be relatively thin and hydrophobic to reduce the fluid hold capacity of the dressing, which can encourage exudate and other fluid to pass quickly to external storage. The foam layer may also be thin to reduce the dressing profile and increase flexibility, which can enable it to conform to wound beds and other tissue sites under negative pressure. In some embodiments, the manifold sections 215 may be formed of 3-dimensional textiles, non-woven wicking material, vacuum-formed texture surfaces, and composites thereof. A hydrophobic manifold having a thickness of less than 7 millimeters and a free volume of at least 90% may be suitable for many therapeutic applications. In some embodiments, the manifold sections 215 may be formed of colored material. Each of the manifold sections 215 may be a same color or a different color.
As illustrated in the example of
For example, some embodiments of the fluid restrictions 220 may comprise or consist essentially of one or more slits, slots or combinations of slits and slots. In some examples, the fluid restrictions 220 may comprise or consist of linear slots having a length less than 4 millimeters and a width less than 1 millimeter. The length may be at least 2 millimeters, and the width may be at least 0.4 millimeters in some embodiments. A length of about 3 millimeters and a width of about 0.8 millimeters may be particularly suitable for many applications, and a tolerance of about 0.1 millimeter may also be acceptable. Such dimensions and tolerances may be achieved with a laser cutter, for example. In some embodiments, the fluid restrictions 220 may be formed by ultrasonics or other heat means. Slots of such configurations may function as imperfect valves that substantially reduce liquid flow in a normally closed or resting state. For example, such slots may form a flow restriction without being completely closed or sealed. The slots can expand or open wider in response to a pressure gradient to allow increased liquid flow.
As illustrated in the example of
Each of the seams 210 may have a width W ranging from about 2 mm to about 5 mm, and may be wide enough to allow for the interface sections 205 to be separated along the seams 210 without exposing any portion of the manifold sections 215.
The first layer 405 and the second layer 410 may comprise or consist essentially of a means for controlling or managing fluid flow. In some embodiments, the first layer 405 and the second layer 410 may comprise or consist essentially of an elastomeric material that is impermeable to liquid. For example, the first layer 405 and the second layer 410 may comprise or consist essentially of a polymer film. The first layer 405 and the second layer 410 may also have a smooth or matte surface texture in some embodiments. A glossy or shiny finish better or equal to a grade B3 according to the SPI (Society of the Plastics Industry) standards may be particularly advantageous for some applications. In some embodiments, variations in surface height may be limited to acceptable tolerances. For example, the surface of the second layer may have a substantially flat surface, with height variations limited to 0.2 millimeters over a centimeter.
In some embodiments, the first layer 405 and the second layer 410 may comprise or consist essentially of a hydrophobic material. The hydrophobicity may vary, but may have a contact angle with water of at least ninety degrees in some embodiments. In some embodiments the hydrophobic material may have a contact angle with water of no more than 150 degrees. For example, in some embodiments, the contact angle may be in a range of at least 90 degrees to about 120 degrees, or in a range of at least 120 degrees to 150 degrees. Water contact angles can be measured using any standard apparatus. Although manual goniometers can be used to visually approximate contact angles, contact angle measuring instruments can often include an integrated system involving a level stage, liquid dropper such as a syringe, camera, and software designed to calculate contact angles more accurately and precisely, among other things. Non-limiting examples of such integrated systems may include the FTÅ125, FTÅ200, FTÅ2000, and FTÅ4000 systems, all commercially available from First Ten Angstroms, Inc., of Portsmouth, Va., and the DTA25, DTA30, and DTA100 systems, all commercially available from Kruss GmbH of Hamburg, Germany. Unless otherwise specified, water contact angles herein are measured using deionized and distilled water on a level sample surface for a sessile drop added from a height of no more than 5 cm in air at 20-25° C. and 20-50% relative humidity. Contact angles reported herein represent averages of 5-9 measured values, discarding both the highest and lowest measured values. The hydrophobicity of the first layer 405, the second layer 410, or both may be further enhanced with a hydrophobic coating of other materials, such as silicones and fluorocarbons, either as coated from a liquid, or plasma coated.
The first layer 405 and the second layer 410 may also be suitable for bonding to other layers, including each other. For example, the first layer 405, the second layer 410, or both may be adapted for welding to polyurethane foams using heat, radio frequency (RF) welding, or other methods to generate heat such as ultrasonic welding. RF welding may be particularly suitable for more polar materials, such as polyurethane, polyamides, polyesters and acrylates. Sacrificial polar interfaces may be used to facilitate RF welding of less polar film materials, such as polyethylene. The first layer 405 and the second layer 410 may include hot melt films.
The area density of the first layer 405 and the second layer 410 may vary according to a prescribed therapy or application. In some embodiments, an area density of less than 40 grams per square meter may be suitable, and an area density of about 20-30 grams per square meter may be particularly advantageous for some applications.
In some embodiments, for example, the first layer 405, the second layer 410, or both may comprise or consist essentially of a hydrophobic polymer, such as a polyethylene film. The simple and inert structure of polyethylene can provide a surface that interacts little, if any, with biological tissues and fluids, providing a surface that may encourage the free flow of liquids and low adherence, which can be particularly advantageous for many applications. Other suitable polymeric films include polyurethanes, acrylics, polyolefin (such as cyclic olefin copolymers), polyacetates, polyamides, polyesters, copolyesters, PEBAX block copolymers, thermoplastic elastomers, thermoplastic vulcanizates, polyethers, polyvinyl alcohols, polypropylene, polymethylpentene, polycarbonate, styreneics, silicones, fluoropolymers, and acetates. A thickness between 20 microns and 100 microns may be suitable for many applications. Films may be clear, colored, or printed. More polar films suitable for laminating to a polyethylene film include polyamide, co-polyesters, ionomers, and acrylics. To aid in the bond between a polyethylene and polar film, tie layers may be used, such as ethylene vinyl acetate, or modified polyurethanes. An ethyl methyl acrylate (EMA) film may also have suitable hydrophobic and welding properties for some configurations.
In some embodiments, the fluid restrictions 220 may comprise or consist essentially of perforations in at least one of the first layer 405 and the second layer 410. Perforations may be formed by removing material from the first layer 405, the second layer 410, or both. For example, perforations may be formed by cutting through the material, which may also deform the edges of the perforations in some embodiments. In the absence of a pressure gradient across the perforations, the passages may be sufficiently small to form a seal or fluid restriction, which can substantially reduce or prevent liquid flow. Additionally or alternatively, one or more of the fluid restrictions 220 may be an elastomeric valve that is normally closed when unstrained to substantially prevent liquid flow, and can open in response to a pressure gradient. A fenestration in the material may be a suitable valve for some applications. Fenestrations may also be formed by removing material, but the amount of material removed and the resulting dimensions of the fenestrations may be an order of magnitude less than perforations, and may not deform the edges. In some embodiments, the fluid restrictions 220 extend through both the first layer 405 and the second layer 410, and the fluid restrictions 220 are coextensive with at least one of the first layer 405 and the second layer 410.
Each of the manifold sections 215 has a length L1, which can be in a range from about 10 mm to about 30 mm (e.g., about 15 mm to about 25 mm or about 18 mm to about 22 mm). For example, each of the manifold sections 215 may have a length of about 20 mm. In some embodiments, the manifold sections 215 may be spaced apart by a distance D1 of about 5 mm to about 15 mm. For example, a distance D1 of about 10 mm may be particularly advantageous for some embodiments.
In some embodiments, each of the manifold sections 215 in the tissue interface 114 may be the same size. In other embodiments, one or more of the manifold sections 215 in the tissue interface 114 may have a different size.
In some embodiments, the tissue interface 114 has a thickness T1 ranging from about 5 mm to about 20 mm (e.g., about 8 mm to about 18 mm, or about 10 mm to about 15 mm). For example, the tissue interface 114 may have a thickness T1 of about 8 mm. The thickness T1 of the tissue interface 114 may vary depending upon a thickness of the manifold sections 215 used to form the tissue interface 114. For example, each of the manifold sections 215 may have a thickness ranging from about 5 mm to about 15 mm (e.g., about 8 mm to about 12 mm).
In some embodiments, the first layer 405 and the second layer 410 may be formed of a transparent polymer to aid in cutting the interface sections 205 apart along the seams 210.
In some embodiments, the tissue interface 114 can be formed by spacing the manifold sections 215 apart, placing the first layer 405 of polymer film over the manifold sections 215, placing the second layer 410 under the manifold sections 215, and bonding the first layer 405 to the second layer 410, forming the seams 210 between the manifold sections 215. Suitable means for bonding the first layer 405 to the second layer 410 may include, for example, an adhesive such as an acrylic, and welding, such as heat, radio frequency (RF), or ultrasonic welding. In some embodiments, sacrificial materials may be disposed between the first layer 405 and the second layer 410 to facilitate welding. Suitable sacrificial materials may include, for example, hot melt films supplied by Bayer (such as H2, HU2, and H5 films), Cornelius (Collano film), or Prochimir (such as TC203 or TC206 film).
In some embodiments, the manifold sections may be formed from an integral manifold material, such as foam. In some embodiments, for example, bonds between the first layer 405 and the second layer 410 may extend through a layer of manifold material to define the manifold sections 215. For example, some embodiments of a manifold layer may have a thickness ranging from about 5 mm to about 8 mm, and at least one of the first layer 405 and the second layer 410 may melt through the manifold layer during welding to form the seams 210.
Additionally or alternatively, a unitary manifold material can be perforated and cut to define the manifold sections 215 in a variety of suitable shapes and patterns. In some embodiments, the seams 210 may align with perforations between the manifold sections 215. In some examples, sacrificial joints may be left between the manifold sections 215 to maintain the manifold sections 215 together as a single unit. Maintaining the manifold sections 215 as a single unit can allow for easier assembly of the tissue interface 114. In some embodiments, either or both of the first layer 405 and the second layer 410 may also be bonded to the manifold sections 215 for additional stability.
In some example embodiments, the tissue interface 114 may have a generally hexagonal shape. One or more sides of the tissue interface 114 may have a same length or a different length.
The tissue interface 114 may include eight interface sections 205, as illustrated in the example of
In other embodiments, the tissue interface 114 may include more or fewer of the interface sections 205. Each of the interface sections 205 may have a different size or a same size. Each of the interface sections 205 may have a same shape or a different shape. For example, the interface sections 205 may be in the form of equilateral polygons, which may have sides not exceeding about 20 millimeters and having an area less than about 400 square millimeters.
The third layer 802, the fourth layer 804, or both may comprise or consist essentially of a soft, pliable material suitable for providing a fluid seal with a tissue site, and may have a substantially flat surface. The third layer 802, the fourth layer 804, or both may be a sealing layer. In some embodiments, the third layer 802, the fourth layer 804, or both may also be adhesive. For example, the third layer 802 may comprise, without limitation, a silicone gel, a soft silicone, hydrocolloid, hydrogel, polyurethane gel, polyolefin gel, hydrogenated styrenic copolymer gel, a foamed gel, a soft closed cell foam such as polyurethanes and polyolefins coated with an adhesive, polyurethane, polyolefin, or hydrogenated styrenic copolymers. A silicone gel having a coating weight of about 100 g.s.m. to about 150 g.s.m. may be suitable for some applications. In some embodiments, the third layer 802, the fourth layer 804, or both may have a thickness between about 200 microns (μm) and about 1000 microns (μm). In some embodiments, the third layer 802, the fourth layer 804, or both may have a hardness between about 5 Shore OO and about 80 Shore OO. Further, the third layer 802, the fourth layer 804, or both may be comprised of hydrophobic or hydrophilic materials.
In some embodiments, the third layer 802, the fourth layer 804, or both may be a hydrophobic-coated material. For example, either or both may be formed by coating a spaced material, such as, for example, woven, nonwoven, molded, or extruded mesh with a hydrophobic material. The hydrophobic material for the coating may be a soft silicone, for example.
The third layer 802, the fourth layer 804, or both may have a periphery 806 surrounding or around an interior portion 808, and apertures 810 disposed through the periphery 806 and/or the interior portion 808. The interior portion 808 may correspond to a surface area of the first layer 405 or the second layer 410 in some examples. An interior border 812 may be disposed around the interior portion 808, between the interior portion 808 and the periphery 806. The interior border 812 may be substantially free of the apertures 810, as illustrated in the example of
The apertures 810 may be formed by cutting or by application of local RF or ultrasonic energy, for example, or by other suitable techniques for forming an opening. The apertures 810 may have a uniform distribution pattern, or may be randomly distributed on the third layer 802, the fourth layer 804, or both. The apertures 810 may have many shapes, including circles, squares, stars, ovals, polygons, slits, complex curves, rectilinear shapes, triangles, for example, or may have some combination of such shapes.
Each of the apertures 810 may have uniform or similar geometric properties. For example, in some embodiments, each of the apertures 810 may be circular apertures, having substantially the same diameter. In some embodiments, the diameter of each of the apertures 810 may range from about 1 millimeter to about 50 millimeters. In other embodiments, the diameter of each of the apertures 810 may range from about 1 millimeter to about 20 millimeters.
In other embodiments, geometric properties of the apertures 810 may vary. For example, the diameter of the apertures 810 may vary depending on the position of the apertures 810. In some embodiments, the diameter of the apertures 810 in the periphery 806 may be larger than the diameter of the apertures 810 in the interior portion 808. For example, in some embodiments, the apertures 810 disposed in the periphery 806 may have a diameter ranging from about 9.8 millimeters to about 10.2 millimeters. In some embodiments, the apertures 810 disposed in the corners may have a diameter ranging from about 7.75 millimeters to about 8.75 millimeters. In some embodiments, the apertures 810 disposed in the interior portion 808 may have a diameter ranging from about 1.8 millimeters to about 2.2 millimeters.
At least one of the apertures 810 in the periphery 806 may be positioned at an edge of the periphery 806, and may have an interior cut open or exposed at the edge that is in fluid communication in a lateral direction with the edge. As shown in the example of
In some embodiments, the apertures 810 may be arranged in rows, columns, or a grid of rows and columns. The apertures 810 may be offset in some embodiments. For example, as illustrated in
In some embodiments, a method for treating a tissue site may include excising separable sections of a dressing based upon at least one of a size and shape of the tissue site being treated. The method may also include applying the dressing to fill and/or cover the tissue site, and sealing the dressing to epidermis adjacent to the tissue site. The method may further include fluidly coupling the dressing to a negative-pressure source, and applying negative pressure from the negative-pressure source to the dressing.
In some embodiments, excising separable sections may comprise cutting a seam or a seal between the separable sections. In some configurations, the separable sections may be excised without exposing a manifold section inside the dressing.
The systems, apparatuses, and methods described herein may provide significant advantages. For example, in some embodiments, the seams 210 may be wide enough to allow the interface sections 205 to be cut apart or otherwise separated so as to obtain a tissue interface 114 having a desired size and shape. For example, tissue interface 114 can be sized and shaped to fill deep and/or irregular wounds by separating the interface sections 205. Moreover, some embodiments of the dressing 104 may be worn for about 3 to about 10 days (e.g., about 7 days).
While shown in a few illustrative embodiments, a person having ordinary skill in the art will recognize that the systems, apparatuses, and methods described herein are susceptible to various changes and modifications that fall within the scope of the appended claims. Moreover, descriptions of various alternatives using terms such as “or” do not require mutual exclusivity unless clearly required by the context, and the indefinite articles “a” or “an” do not limit the subject to a single instance unless clearly required by the context. Components may be also be combined or eliminated in various configurations for purposes of sale, manufacture, assembly, or use. For example, in some configurations the dressing 102, the container 112, or both may be eliminated or separated from other components for manufacture or sale. In other example configurations, the controller 108 may also be manufactured, configured, assembled, or sold independently of other components.
The appended claims set forth novel and inventive aspects of the subject matter described above, but the claims may also encompass additional subject matter not specifically recited in detail. For example, certain features, elements, or aspects may be omitted from the claims if not necessary to distinguish the novel and inventive features from what is already known to a person having ordinary skill in the art. Features, elements, and aspects described in the context of some embodiments may also be omitted, combined, or replaced by alternative features serving the same, equivalent, or similar purpose without departing from the scope of the invention defined by the appended claims.
This application claims the benefit, under 35 U.S.C. § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 62/576,498, entitled “SYSTEMS, APPARATUSES, AND METHODS FOR NEGATIVE-PRESSURE TREATMENT WITH REDUCED TISSUE IN-GROWTH,” filed Oct. 24, 2017; U.S. Provisional Patent Application Ser. No. 62/565,754, entitled “COMPOSITE DRESSINGS FOR IMPROVED GRANULATION AND REDUCED MACERATION WITH NEGATIVE-PRESSURE TREATMENT,” filed Sep. 29, 2017; U.S. Provisional Patent Application Ser. No. 62/516,540, entitled “TISSUE CONTACT INTERFACE,” filed Jun. 7, 2017; U.S. Provisional Patent Application Ser. No. 62/516,550, entitled “COMPOSITE DRESSINGS FOR IMPROVED GRANULATION AND REDUCED MACERATION WITH NEGATIVE-PRESSURE TREATMENT” filed Jun. 7, 2017; and U.S. Provisional Patent Application Ser. No. 62/516,566, entitled “COMPOSITE DRESSINGS FOR IMPROVED GRANULATION AND REDUCED MACERATION WITH NEGATIVE-PRESSURE TREATMENT” filed Jun. 7, 2017, each of which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3654060 | Goldman | Apr 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
3930096 | Gilpatrick | Dec 1975 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4173046 | Gallagher | Nov 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4541426 | Webster | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4983173 | Patience et al. | Jan 1991 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5308313 | Karami et al. | May 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5449352 | Nishino et al. | Sep 1995 | A |
5466231 | Cercone et al. | Nov 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5635201 | Fabo | Jun 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5720714 | Penrose | Feb 1998 | A |
5842503 | Foley | Dec 1998 | A |
5951505 | Gilman et al. | Sep 1999 | A |
5981822 | Addison | Nov 1999 | A |
5998694 | Jensen | Dec 1999 | A |
6019511 | Thomas et al. | Feb 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6278036 | Anhauser et al. | Aug 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6468626 | Takai et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6623681 | Taguchi et al. | Sep 2003 | B1 |
6653523 | McCormack et al. | Nov 2003 | B1 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
7135606 | Dozier | Nov 2006 | B1 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7534927 | Lockwood et al. | May 2009 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7867206 | Lockwood et al. | Jan 2011 | B2 |
7880050 | Robinson et al. | Feb 2011 | B2 |
7896864 | Lockwood et al. | Mar 2011 | B2 |
7951100 | Hunt et al. | May 2011 | B2 |
7988680 | Lockwood et al. | Aug 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8148595 | Robinson et al. | Apr 2012 | B2 |
8168848 | Lockwood et al. | May 2012 | B2 |
8187210 | Hunt et al. | May 2012 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8246592 | Lockwood et al. | Aug 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8350116 | Lockwood et al. | Jan 2013 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8454580 | Locke | Jun 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8672903 | Hunt et al. | Mar 2014 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8680359 | Robinson et al. | Mar 2014 | B2 |
8690844 | Locke et al. | Apr 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8884094 | Lockwood et al. | Nov 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9168179 | Robinson et al. | Oct 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9198802 | Robinson et al. | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
9352075 | Robinson et al. | May 2016 | B2 |
9445947 | Hunt et al. | Sep 2016 | B2 |
9526660 | Robinson et al. | Dec 2016 | B2 |
9844471 | Lockwood et al. | Dec 2017 | B2 |
10016544 | Coulthard et al. | Jul 2018 | B2 |
10045886 | Lockwood et al. | Aug 2018 | B2 |
20010043943 | Coffey | Nov 2001 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020082567 | Lockwood et al. | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20030203011 | Abuelyaman et al. | Oct 2003 | A1 |
20040030304 | Hunt | Feb 2004 | A1 |
20040126413 | Sigurjonsson et al. | Jul 2004 | A1 |
20040138604 | Sigurjonsson et al. | Jul 2004 | A1 |
20040148756 | Pommer | Aug 2004 | A1 |
20040261295 | Meschter | Dec 2004 | A1 |
20050226917 | Burton | Oct 2005 | A1 |
20060241542 | Gudnason et al. | Oct 2006 | A1 |
20070038172 | Zamierowski | Feb 2007 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20080300555 | Olson et al. | Dec 2008 | A1 |
20090047495 | Hubbs | Feb 2009 | A1 |
20090082746 | Thomas | Mar 2009 | A1 |
20090221979 | Huang et al. | Sep 2009 | A1 |
20090234307 | Vitaris | Sep 2009 | A1 |
20090293887 | Wilkes et al. | Dec 2009 | A1 |
20100030170 | Keller et al. | Feb 2010 | A1 |
20100030178 | MacMeccan et al. | Feb 2010 | A1 |
20100036334 | Heagle | Feb 2010 | A1 |
20100063484 | Heagle | Mar 2010 | A1 |
20100069863 | Olson | Mar 2010 | A1 |
20100069885 | Stevenson | Mar 2010 | A1 |
20100106115 | Hardman et al. | Apr 2010 | A1 |
20100159192 | Cotton | Jun 2010 | A1 |
20100291184 | Clark | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20110054422 | Locke et al. | Mar 2011 | A1 |
20110117178 | Junginger | May 2011 | A1 |
20110160686 | Ueda et al. | Jun 2011 | A1 |
20110178451 | Robinson | Jul 2011 | A1 |
20110213287 | Lattimore | Sep 2011 | A1 |
20110224631 | Simmons et al. | Sep 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20110313374 | Lockwood et al. | Dec 2011 | A1 |
20120046603 | Vinton | Feb 2012 | A1 |
20120157945 | Robinson et al. | Jun 2012 | A1 |
20120209226 | Simmons et al. | Aug 2012 | A1 |
20120238932 | Atteia et al. | Sep 2012 | A1 |
20130053748 | Cotton | Feb 2013 | A1 |
20130152945 | Locke et al. | Jun 2013 | A1 |
20130261534 | Niezgoda et al. | Oct 2013 | A1 |
20140031771 | Locke et al. | Jan 2014 | A1 |
20140052041 | Barberio | Feb 2014 | A1 |
20140058309 | Addison et al. | Feb 2014 | A1 |
20140081192 | Wenske et al. | Mar 2014 | A1 |
20140094730 | Greener et al. | Apr 2014 | A1 |
20140107562 | Dorian et al. | Apr 2014 | A1 |
20140163447 | Wieland et al. | Jun 2014 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20140188059 | Robinson et al. | Jul 2014 | A1 |
20140200532 | Robinson et al. | Jul 2014 | A1 |
20140228787 | Croizat et al. | Aug 2014 | A1 |
20140236112 | Von Wolff et al. | Aug 2014 | A1 |
20140350494 | Hartwell et al. | Nov 2014 | A1 |
20140364819 | VanDelden | Dec 2014 | A1 |
20150038933 | Day et al. | Feb 2015 | A1 |
20150057624 | Simmons et al. | Feb 2015 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
20150119830 | Luckemeyer et al. | Apr 2015 | A1 |
20150119831 | Robinson et al. | Apr 2015 | A1 |
20150141941 | Allen et al. | May 2015 | A1 |
20150150729 | Dagger et al. | Jun 2015 | A1 |
20150174291 | Zimnitsky et al. | Jun 2015 | A1 |
20150174304 | Askem et al. | Jun 2015 | A1 |
20150290042 | Freer et al. | Oct 2015 | A1 |
20150290050 | Wada | Oct 2015 | A1 |
20150320434 | Ingram et al. | Nov 2015 | A1 |
20150320602 | Locke et al. | Nov 2015 | A1 |
20150320603 | Locke et al. | Nov 2015 | A1 |
20160000610 | Riesinger | Jan 2016 | A1 |
20160015571 | Robinson et al. | Jan 2016 | A1 |
20160022885 | Dunn et al. | Jan 2016 | A1 |
20160030646 | Hartwell et al. | Feb 2016 | A1 |
20160095754 | Andrews et al. | Apr 2016 | A1 |
20160144084 | Collinson et al. | May 2016 | A1 |
20160144085 | Melin et al. | May 2016 | A1 |
20160166744 | Hartwell | Jun 2016 | A1 |
20160175156 | Locke et al. | Jun 2016 | A1 |
20160199546 | Chao | Jul 2016 | A1 |
20160199550 | Seddon et al. | Jul 2016 | A1 |
20160220742 | Robinson et al. | Aug 2016 | A1 |
20160262672 | Hammond et al. | Sep 2016 | A1 |
20160354253 | Hunt et al. | Dec 2016 | A1 |
20170014273 | Woodroof | Jan 2017 | A1 |
20170079846 | Locke et al. | Mar 2017 | A1 |
20170095374 | Lauer | Apr 2017 | A1 |
20170172807 | Robinson et al. | Jun 2017 | A1 |
20170174852 | Hanschen et al. | Jun 2017 | A1 |
20170209312 | Kanchagar et al. | Jul 2017 | A1 |
20170258640 | Ahsani Ghahreman et al. | Sep 2017 | A1 |
20170312406 | Svensby | Nov 2017 | A1 |
20170348154 | Robinson et al. | Dec 2017 | A1 |
20170348158 | You et al. | Dec 2017 | A1 |
20180071148 | Lockwood et al. | Mar 2018 | A1 |
20180289872 | Coulthard et al. | Oct 2018 | A1 |
20180296394 | Barberio | Oct 2018 | A1 |
20190184075 | Roos | Jun 2019 | A1 |
20210393443 | Steven | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
106390213 | Feb 2017 | CN |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0174803 | Mar 1986 | EP |
0358302 | Mar 1990 | EP |
1018967 | Jul 2000 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
2468905 | Sep 2010 | GB |
2008073187 | Apr 2008 | JP |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
9319709 | Oct 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
0185248 | Nov 2001 | WO |
2007113597 | Oct 2007 | WO |
2009002260 | Dec 2008 | WO |
2010061228 | Jun 2010 | WO |
2011008497 | Jan 2011 | WO |
2011121127 | Oct 2011 | WO |
2011127188 | Oct 2011 | WO |
2011135286 | Nov 2011 | WO |
2012063725 | May 2012 | WO |
2014140608 | Sep 2014 | WO |
2015098373 | Jul 2015 | WO |
2015168681 | Nov 2015 | WO |
2015173547 | Nov 2015 | WO |
2015193257 | Dec 2015 | WO |
2016014645 | Jan 2016 | WO |
2016015001 | Jan 2016 | WO |
2017040045 | Mar 2017 | WO |
2017119996 | Jul 2017 | WO |
Entry |
---|
3M™ Medical Tape 9830, Single Sided Transparent Polyethylene, 63# Liner, Configurable. Retrieved on May 21, 2019. Retrieved from the Internet: <www.3m.com/3M/en_US/company-us/all-3m-products/˜/3M-9830-Transparent-Polyethylene-Single-Sided-Medical-Tape-63-Liner/?N=5002385+8729793+3294739632&rt=rud; accessed May 21, 2019>. |
3M™ Medical Tape 9948, Single Sided Thermoplastic Elastomer Medical Tape, 63# liner, Configurable. Retrieved May 21, 2019. Retrieved from the Internet: <www.3m.com/3M/en_US/company-us/all-3m-products/˜/3M-9948-Single-Sided-Thermoplastic-Elastomer-TPE-Medical-Incise-Tape/?N=5002385+4294834151&rt=d; accessed May 21, 2019>. |
International Search Report and Written Opinion for related application PCT/US2018/036013, dated Aug. 7, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/035945, dated Aug. 24, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036074, dated Aug. 24, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/035957, dated Sep. 28, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/035995, dated Oct. 1, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036021, dated Aug. 24, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036019, dated Oct. 18, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036054, dated Aug. 24, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036049, dated Aug. 29, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036077, dated Aug. 24, 2018. |
International Search Report and Written Opinion for related application PCT/US2018/036129, dated Oct. 8, 2018. |
Heit, et al., “Foam Pore Size Is a Critical Interface Parameter of Suction-Based Wound Healing Devices,” copyright 2012 by the American Society of Plastic Surgeons (www.PRSJoumal.com) (Year: 2011). |
Office Action for related U.S. Appl. No. 16/000,284, dated Sep. 23, 2019. |
Office Action for related U.S. Appl. No. 16/000,284, dated Jun. 8, 2020. |
Office Action for related U.S. Appl. No. 15/997,833, dated Jun. 19, 2020. |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture” Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
Definition of “bonded,” Merriam-Webster, www.https://www.merriam-webster.com/dictionary/bonded, retrieved Dec. 11, 2020. |
Burkitt et al., “New Technologies in Silicone Adhesives: Silicone-based film adhesives, PSAs and tacky gels each offer unique advantages”; ASI (Adhesives & Sealants Industry), Aug. 1, 2012; https://www.adhesivesmag.com/articles/91217-new-technologies-in-silicone-adhesives. |
Office Action for related U.S. Appl. No. 16/000,284, dated Nov. 25, 2020. |
Office Action for related U.S. Appl. No. 16/000,411, dated Dec. 7, 2020. |
Office Action for related U.S. Appl. No. 16/000,383, dated Jul. 8, 2020. |
Bastarrachea et al. Engineering Properties of Polymeric-Based Antimicrobial Films for Food Packaging: A Review. Food Engineering Reviews. 3. 2011. pp. 79-93. |
Selke et al. Packaging: Polymers for Containers, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 6646-6652. |
Office Action for related U.S. Appl. No. 16/000,368, dated Dec. 14, 2020. |
Office Action for related U.S. Appl. No. 15/997,809, dated Aug. 5, 2020. |
Law, Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right, The Journal of Physical Chemistry Letters, Feb. 20, 2014, 686-688. |
Office Action for related U.S. Appl. No. 15/997,841, dated Aug. 5, 2020. |
Office Action for related U.S. Appl. No. 15/997,818, dated Sep. 3, 2020. |
Office Action for related U.S. Appl. No. 15/997,761, dated Sep. 14, 2020. |
Office Action for related U.S. Appl. No. 16/000,737, dated Sep. 29, 2020. |
Office Action for related U.S. Appl. No. 16/000,002, dated Oct. 28, 2020. |
Singaporean Office Action for related application 11201909383P, dated Oct. 5, 2020. |
Singaporean Office Action for related application 11201909371P, dated Oct. 13, 2020. |
Office Action for related U.S. Appl. No. 15/997,818, dated Jan. 27, 2021. |
Office Action for related U.S. Appl. No. 15/997,841, dated Jan. 27, 2021. |
Office Action for related U.S. Appl. No. 15/997,809, dated Jan. 28, 2021. |
Office Action for related U.S. Appl. No. 15/997,833, dated Mar. 26, 2021. |
Office Action for related U.S. Appl. No. 16/000,215, dated Apr. 12, 2021. |
Chinese Office Action for related application 2018800367248, dated Apr. 28, 2021. |
Office Action for related U.S. Appl. No. 15/997,833, dated Jun. 7, 2021. |
Office Action for related U.S. Appl. No. 15/997,841, dated Jun. 8, 2021. |
Chinese Office Action for related application 201880048393X, dated May 26, 2021. |
Office Action for related U.S. Appl. No. 15/997,809, dated Jul. 8, 2021. |
Chinese Office Action for related application 2018800436430, dated Jun. 8, 2021. |
Office Action for related U.S. Appl. No. 15/997,818, dated Aug. 10, 2021. |
Office Action for related U.S. Appl. No. 16/684,060, dated Aug. 27, 2021. |
Office Action for related U.S. Appl. No. 16/000,411, dated Aug. 27, 2021. |
Office action for related U.S. Appl. No. 15/997,833, dated Sep. 7, 2021. |
Office action for related U.S. Appl. No. 16/000,002, dated Oct. 4, 2021. |
Office Action for related U.S. Appl. No. 16/000,411, dated Jan. 31, 2022. |
Office Action for related U.S. Appl. No. 16/959,651, dated Feb. 15, 2022. |
Japanese Office Action for related application 2019-566886, dated Mar. 29, 2022. |
Office Action for related U.S. Appl. No. 16/000,383, dated Mar. 31, 2022. |
Pappas et al, “Wettability Tests of Polymer Films and Fabrics and Determination of Their Surface Energy by Contact-Angle Methods,” Army Research Laboratory, ARL-TR-4056, Mar. 2007, p. 5. |
Baltex, Technical Fabrics & Technical Textile Products, https://www.baltex.co.uk/products/xd-spacer-fabrics/, accessed Apr. 20, 2022. |
Yimin Qin, Applications of Advanced Technologies in the Development of Functional Medical Textile Materials, Medical Textile Materials, 2016, pp. 55-70, Woodhead Publishing. |
Baltex, Technical Fabrics & Technical Textile Products http://web.archive.org/web/20150118084138/http://www.baltex.co.uk/products/Healthcarefabrics/, 2015. |
Office Action for related U.S. Appl. No. 17/204,548, dated Apr. 19, 2022. |
Office Action for related U.S. Appl. No. 15/997,818, dated Jun. 9, 2022. |
Japanese Office Action for related application 2019-567267, dated Jun. 7, 2022. |
Japanese Office Action for related application 2019-566969, dated Jun. 7, 2022. |
Japanese Office Action for related application 2019-567266, dated Jun. 7, 2022. |
Japanese Office Action for related application 2019-566908, dated Aug. 2, 2022. |
Number | Date | Country | |
---|---|---|---|
20190231600 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62576498 | Oct 2017 | US | |
62565754 | Sep 2017 | US | |
62516550 | Jun 2017 | US | |
62516540 | Jun 2017 | US | |
62516566 | Jun 2017 | US |