Systems, apparatuses, and methods for treating tissue and controlling stenosis

Abstract
Systems, delivery devices, and methods to treat to ablate, damage, or otherwise affect tissue. The treatment systems are capable of delivering a coolable ablation assembly that ablates targeted tissue without damaging non-targeted tissue. The coolable ablation assembly damages nerve tissue to temporarily or permanently decrease nervous system input. The system, delivery devices, and methods can damage tissue and manage scarring and stenosis.
Description
BACKGROUND
Technical Field

The present invention generally relates to systems, apparatuses, and methods for treating tissue, and more particularly, the invention relates to systems, apparatuses, and methods for eliciting a desired response while controlling stenosis.


Description of the Related Art

Pulmonary diseases may cause a wide range of problems that adversely affect performance of the lungs. Pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (“COPD”), may lead to increased airflow resistance in the lungs. Mortality, health-related costs, and the size of the population having adverse effects due to pulmonary diseases are all substantial. These diseases often adversely affect quality of life. Symptoms are varied but often include cough; breathlessness; and wheeze. In COPD, for example, breathlessness may be noticed when performing somewhat strenuous activities, such as running, jogging, brisk walking, etc. As the disease progresses, breathlessness may be noticed when performing non-strenuous activities, such as walking Over time, symptoms of COPD may occur with less and less effort until they are present all of the time, thereby severely limiting a person's ability to accomplish normal tasks.


Pulmonary diseases are often characterized by airway obstruction associated with blockage of an airway lumen, thickening of an airway wall, alteration of structures within or around the airway wall, or combinations thereof. Airway obstruction can significantly decrease the amount of gas exchanged in the lungs resulting in breathlessness. Blockage of an airway lumen can be caused by excessive intraluminal mucus or edema fluid, or both. Thickening of the airway wall may be attributable to excessive contraction of the airway smooth muscle, airway smooth muscle hypertrophy, mucous glands hypertrophy, inflammation, edema, or combinations thereof. Alteration of structures around the airway, such as destruction of the lung tissue itself, can lead to a loss of radial traction on the airway wall and subsequent narrowing of the airway.


Asthma can be characterized by contraction of airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and/or inflammation and swelling of airways. These abnormalities are the result of a complex interplay of local inflammatory cytokines (chemicals released locally by immune cells located in or near the airway wall), inhaled irritants (e.g., cold air, smoke, allergens, or other chemicals), systemic hormones (chemicals in the blood such as the anti-inflammatory cortisol and the stimulant epinephrine), local nervous system input (nerve cells contained completely within the airway wall that can produce local reflex stimulation of smooth muscle cells and mucous glands), and the central nervous system input (nervous system signals from the brain to smooth muscle cells and mucous glands carried through the vagus nerve). These conditions often cause widespread temporary tissue alterations and initially reversible airflow obstruction that may ultimately lead to permanent tissue alteration and permanent airflow obstruction that make it difficult for the asthma sufferer to breathe. Asthma can further include acute episodes or attacks of additional airway narrowing via contraction of hyper-responsive airway smooth muscle that significantly increases airflow resistance. Asthma symptoms include recurrent episodes of breathlessness (e.g., shortness of breath or dyspnea), wheezing, chest tightness, and cough.


Emphysema is a type of COPD often characterized by the alteration of lung tissue surrounding or adjacent to the airways in the lungs. Emphysema can involve destruction of lung tissue (e.g., alveoli tissue such as the alveolar sacs) that leads to reduced gas exchange and reduced radial traction applied to the airway wall by the surrounding lung tissue. The destruction of alveoli tissue leaves areas of emphysematous lung with overly large airspaces that are devoid of alveolar walls and alveolar capillaries and are thereby ineffective at gas exchange. Air becomes “trapped” in these larger airspaces. This “trapped” air may cause over-inflation of the lung, and in the confines of the chest restricts the in-flow of oxygen rich air and the proper function of healthier tissue. This results in significant breathlessness and may lead to low oxygen levels and high carbon dioxide levels in the blood. This type of lung tissue destruction occurs as part of the normal aging process, even in healthy individuals. Unfortunately, exposure to chemicals or other substances (e.g., tobacco smoke) may significantly accelerate the rate of tissue damage or destruction. Breathlessness may be further increased by airway obstruction. The reduction of radial traction may cause the airway walls to become “floppy” such that the airway walls partially or fully collapse during exhalation. An individual with emphysema may be unable to deliver air out of their lungs due to this airway collapse and airway obstructions during exhalation.


Chronic bronchitis is a type of COPD that can be characterized by contraction of the airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and inflammation of airway walls. Like asthma, these abnormalities are the result of a complex interplay of local inflammatory cytokines, inhaled irritants, systemic hormones, local nervous system, and the central nervous system. Unlike asthma where respiratory obstruction may be largely reversible, the airway obstruction in chronic bronchitis is primarily chronic and permanent. It is often difficult for a chronic bronchitis sufferer to breathe because of chronic symptoms of shortness of breath, wheezing, and chest tightness, as well as a mucus producing cough.


Different techniques can be used to assess the severity and progression of pulmonary diseases. For example, pulmonary function tests, exercise capacity, and quality of life questionnaires are often used to evaluate subjects. Pulmonary function tests involve objective and reproducible measures of basic physiologic lung parameters, such as total airflow, lung volume, and gas exchange. Indices of pulmonary function tests used for the assessment of obstructive pulmonary diseases include the forced expiratory volume in 1 second (FEV1), the forced vital capacity (FVC), the ratio of the FEV1 to FVC, the total lung capacity (TLC), airway resistance and the testing of arterial blood gases. The FEV1 is the volume of air a patient can exhale during the first second of a forceful exhalation which starts with the lungs completely filled with air. The FEV1 is also the average flow that occurs during the first second of a forceful exhalation. This parameter may be used to evaluate and determine the presence and impact of any airway obstruction. The FVC is the total volume of air a patient can exhale during a forceful exhalation that starts with the lungs completely filled with air. The FEV1/FVC is the fraction of all the air that can be exhaled during a forceful exhalation during the first second. A FEV1/FVC ratio less than 0.7 after the administration of at least one bronchodilator defines the presence of COPD. The TLC is the total amount of air within the lungs when the lungs are completely filled and may increase when air becomes trapped within the lungs of patients with obstructive lung disease. Airway resistance is defined as the pressure gradient between the alveoli and the mouth to the rate of air flow between the alveoli and the mouth. Similarly, resistance of a given airway would be defined as the ratio of the pressure gradient across the given airway to the flow through the airway. Arterial blood gases tests measure the amount of oxygen and the amount of carbon dioxide in the blood and are the most direct method for assessing the ability of the lungs and respiratory system to bring oxygen from the air into the blood and to get carbon dioxide from the blood out of the body.


Exercise capacity tests are objective and reproducible measures of a patient's ability to perform activities. A six minute walk test (6 MWT) is an exercise capacity test in which a patient walks as far as possible over a flat surface in 6 minutes. Another exercise capacity test involves measuring the maximum exercise capacity of a patient. For example, a physician can measure the amount of power the patient can produce while on a cycle ergometer. The patient can breathe 30 percent oxygen and the work load can increase by 5-10 watts every 3 minutes.


Quality of life questionnaires assess a patient's overall health and well being. The St. George's Respiratory Questionnaire is a quality of life questionnaire that includes 75 questions designed to measure the impact of obstructive lung disease on overall health, daily life, and perceived well-being. The efficacy of a treatment for pulmonary diseases can be evaluated using pulmonary function tests, exercise capacity tests, and/or questionnaires. A treatment program can be modified based on the results from these tests and/or questionnaires.


Treatments, such as bronchial thermoplasty, involve destroying smooth muscle tone by ablating the airway wall in a multitude of bronchial branches within the lung thereby eliminating both smooth muscles and nerves in the airway walls of the lung. The treated airways are unable to respond favorably to inhaled irritants, systemic hormones, and both local and central nervous system input. Unfortunately, this destruction of smooth muscle tone and nerves in the airway wall may therefore adversely affect lung performance. For example, inhaled irritants, such as smoke or other noxious substances, normally stimulate lung irritant receptors to produce coughing and contracting of airway smooth muscle. Elimination of nerves in the airway walls removes both local nerve function and central nervous input, thereby eliminating the lung's ability to expel noxious substances with a forceful cough. Elimination of airway smooth muscle tone may eliminate the airways' ability to constrict, thereby allowing deeper penetration of unwanted substances, such as noxious substances, into the lung.


Both asthma and COPD are serious diseases with growing numbers of sufferers. Current management techniques, which include prescription drugs, are neither completely successful nor free from side effects. Additionally, many patients do not comply with their drug prescription dosage regiment. Accordingly, it would be desirable to provide a treatment which improves resistance to airflow without the need for patient compliance.


BRIEF SUMMARY

At least some embodiments are directed to an intraluminal apparatus that denervates hollow organs while preventing, minimizing, or limiting the potential for stenosis. Targeted regions of an organ can be treated without unwanted stenosis that significantly affects organ function. In certain embodiments, the intraluminal apparatus ablates discrete targeted regions spaced apart from one another. Even if stenosis occurs, a continuous stenosis ring extending 360 degrees can be avoided. If the organ is an airway, lesions can be formed without any appreciable increase in airflow resistance.


In some embodiments, a system for treating a subject includes an elongate assembly dimensioned to move along a lumen of an airway. The assembly can attenuate signals transmitted by nerve tissue, such as nerve tissue of nerve trunks, while not irreversibly damaging to any significant extent an inner surface of the airway. In certain embodiments, one or more electrodes output radiofrequency energy to treat a posterior 90 degrees to 180 degrees of an airway circumference to denervate a lung. A cooling systems (e.g., cooling channels) can control the temperature of the electrodes and/or airway tissue while damaging the targeted tissue.


The tissue damage, in some procedures, may be sufficient to cause scarring, but the electrodes can be positioned to reduce, limit, or substantially eliminate appreciable narrowing of the airway lumen due to scar tissue, stenosis, etc. Lesions can be sufficiently spaced apart to prevent thickening of tissue between adjacent lesions. At least some embodiments disclosed herein can ablate substantially the entire circumference of an airway wall without forming a continuous ring of ablated tissue lying in a plane, which is perpendicular to a long axis of the airway.


In some embodiments, a method comprises damaging nerve tissue of a first main bronchus to substantially prevent nervous system signals from traveling to substantially all distal bronchial branches connected to the first main bronchus. Most or all of the bronchial branches distal to the first main bronchus do not receive nervous system signals. The nerve tissue, in certain embodiments, is positioned between a trachea and a lung through which the bronchial branches extend. The method further includes damaging nerve tissue of a second main bronchus to substantially prevent nervous system signals from traveling to substantially all distal bronchial branches connected to the second main bronchus. In certain embodiments, energy is delivered along less than 180° of the posterior airway or a desired portion of the airway circumference. This limits the amount of tissue that is exposed to the emitted energy.


Denervation, in some embodiments, involves the creation of lesions that affect the outside adventitial tissue layers where nerve trunks are anatomically located. In lung denervation, ablating nerve trunks which traverse along the outside of both the right and left main bronchi effectively disconnects airway smooth muscle which lines the inside of the lung airways and mucus producing glands located with the airways from the vagus nerve. When this occurs, airway smooth muscle relaxes and mucus production is decreased. These changes reduce airway obstruction under states of disease, such as COPD and asthma. Reduced airway obstruction makes breathing easier which improves a subject's quality of life and health status.


The nerve tissue can be thermally damaged by increasing a temperature of the nerve tissue to a first temperature (e.g., an ablation temperature) while the wall of the airway is at a second temperature that is less than the first temperature. In some embodiments, a portion of the airway wall positioned radially inward from the nerve tissue can be at the first temperature so as to prevent permanent damage to the portion of the airway wall. The first temperature can be sufficiently high to cause permanent destruction of the nerve tissue. In some embodiments, the nerve tissue is part of a nerve trunk located in connective tissue outside of the airway wall. The smooth muscle and nerve tissue in the airway wall can remain functional to maintain a desired level of smooth muscle tone. The airway can constrict/dilate in response to stimulation (e.g., stimulation caused by inhaled irritants, the local nervous system, or systemic hormones). In other embodiments, the nerve tissue is part of a nerve branch or nerve fibers in the airway wall. In yet other embodiments, both nerve tissue of the nerve trunk and nerve tissue of nerve branches/fibers are simultaneously or sequentially damaged. Various types of activatable elements, such as ablation elements, can be utilized to output the energy.


Some embodiments take advantage of large airway anatomy. Airway nerve trunks of the vagus nerve often reside along the posterior half of the main bronchial airways. The posterior area of the main airways (i.e., tracheal, right and left main bronchus) does not have cartilage. The cartilage rings of these airways are not fully circumferential and only soft tissue is present along their posterior. Further, damaging nerve tissue from airway nerve trunks which reside on the posterior half of the airways can be accomplished by creating lesions that are less (e.g., significantly less) than the 360 degrees of the airway circumference. For example, treating 180 degrees, 150 degrees, or 130 degrees of airway circumference may be all that is required to effectively denervate the airway. Since the lesion has an arc length significantly less than 360 degrees, airway stenosis can be greatly reduced or prevented.


Electrodes can have complex shapes, including arcuate shapes, polygonal shapes, or have any other shapes or configurations. The electrodes can be V-shaped, U-shaped, L-shaped, T-shaped, W-shaped, straight, curved, or combinations thereof. In some embodiments, an electrode assembly has a zigzag configuration, a serpentine configuration, a wound or coiled configuration, a corkscrew configuration, a helical configuration, z-shaped configuration, combinations thereof, or the like. A corkscrew-shaped electrode assembly can have independently operatable electrodes that form a discontinuous or continuous generally corkscrew-shaped lesion.


Another embodiment includes a continuous electrode assembly capable of creating a generally corkscrew-shaped lesion along a part or all of the airway circumference. Scars that have less surface area for the same circumferential region are less likely to generate tissue webs that can form stenosis. At least some embodiments can treat narrow target regions to form corresponding narrow lesions. A knife edge electrode assembly can perform such treatments to further reduce scar tissue.


Yet another embodiment relies on nerves, arteries, and veins tending to travel in groups throughout the human anatomy. Ultrasound or other type of energy can be used to determine the location of the bronchial arteries or veins which travel in close proximity to airway nerve trunks prior to performing airway denervation. After determining the locations of the blood vessels, the airway area in proximity to the blood vessels is treated with energy to ablate the airway nerve trunks. This technique minimizes or limits the volume of treated tissue to reduce or eliminate the risk for stenosis.


In some procedures, a catheter shapes at least one lesion at a desired depth. For example, one or more corkscrew-shaped or helical-shaped lesions can be formed in one bronchial airway wall and an arcuate lesion can be formed in another airway wall to denervate different portions of a bronchial tree. The lesions can be located along an inner surface of an airway or deep within the airway wall, or along an outer surface of the airway.


An energy delivery device, in some embodiments, comprises a catheter shaft and an ablation assembly coupled to the catheter shaft. The ablation assembly includes a cooling element movable from a collapsed state to an expanded state and an intercartilaginous energy emitter including a plurality of electrodes circumferentially offset from one another about a longitudinal axis of the ablation assembly. The electrodes are configured to delivery energy to a plurality of target regions of an airway that are spaced apart from one another with respect to the longitudinal axis of the airway. The energy emitter and the cooling element are configured to cooperate to form intercartilaginous lesions which are spaced apart from surface tissue of the airway and positioned between cartilaginous rings of the airway.


In certain embodiments, an intraluminal delivery device comprises an ablation assembly including an expandable device and a plurality of ablation elements and/or electrodes. The electrodes are spaced apart about a circumference of the expandable member and capable of outputting energy to discrete target regions to form lesions at the target regions. At least a portion of a first lesion is axially spaced apart from and circumferentially adjacent to or overlapping a second lesion.


In some embodiment, a method of treating a subject comprises positioning an ablation assembly with respect to an airway and outputting energy from the ablation assembly to axially spaced apart target regions of the airway. The profiles of the target regions overlap when viewed in a direction along a long axis of the airway.


In yet other embodiments, a method of treating a subject comprises moving an energy emitter of a delivery device along an airway. At least one electrode of the energy emitter is positioned between cartilaginous rings of the airway. Energy is delivered from the electrode to target regions at axially separated locations along a long axis of the airway to form intercartilaginous lesions.


Some methods of treating tissue comprise positioning an ablation assembly in a lumen of an airway and delivering energy to tissue of the airway using at least one electrode of the ablation assembly positioned near an inner surface of the airway. Energy is delivered to damage target regions axially separated along the airway such that portions of the target regions defining maximum cross-sectional widths of the target regions are separated from the inner surface of the airway.


A delivery device, in some embodiments, comprises a catheter shaft and an ablation assembly coupled to the catheter shaft. The ablation assembly includes a deployable element movable from a collapsed state to an expanded state. An energy emitter is capable of emitting energy to produce lesions that have ends axially displaced from one another along an axial length of a body structure when the expandable member is in the deployed state.


A delivery device can produce one or more lesions that are continuous or discontinuous. The lesions can have different shapes, including arcuate shapes, spiral shapes, helical shapes, wavy shapes, serpentine shapes, or combinations thereof. For producing continuous lesions, an ablation assembly can have electrodes spaced close together to form generally continuous lesions. Alternatively, the ablation assembly can have a long electrode or energy emitter that has corresponding spiral shapes, helical shapes, serpentine shapes, or the like. In other embodiments, electrodes can be spaced apart a sufficient distance to form discontinuous lesions. The pattern, spacing, and size of the lesions can be selected to treat target regions.


In certain embodiments, lesions can be simultaneously formed at different locations along the airway wall. In some procedures, oblique lesions can be formed at opposite sides of the airway. An entire lesion can be positioned between cartilaginous rings to avoid damaging the rings. In other embodiments, lesions can traverse tracheal or cartilaginous rings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the Figures, identical reference numbers identify similar elements or acts.



FIG. 1 is an illustration of lungs, blood vessels, and nerves near to and in the lungs.



FIG. 2 is an illustration of an intraluminal treatment system positioned within a left main bronchus according to one embodiment.



FIG. 3 is an illustration of a delivery device extending from an access apparatus positioned in the left main bronchus.



FIG. 4A is a cross-sectional view of an airway of a bronchial tree and a collapsed ablation assembly.



FIG. 4B is a cross-sectional view of an airway of a bronchial tree and an expanded ablation assembly.



FIG. 5A is a cross-sectional view of an airway surrounding the collapsed ablation assembly when smooth muscle of the airway is constricted and mucus is in an airway lumen.



FIG. 5B is a cross-sectional view of the airway surrounding the expanded ablation assembly.



FIG. 6 is a graph of the depth of tissue versus the temperature of the tissue.



FIG. 7 is a side elevational view of an ablation assembly in an airway.



FIG. 8 is an isometric view of a delivery device with an ablation assembly.



FIG. 9 is a cross-sectional view of an elongate shaft taken along a line 9-9 of FIG. 8.



FIG. 10 is a side elevational view of an ablation assembly.



FIG. 11 is a longitudinal cross-sectional view of the ablation assembly of FIG. 10.



FIG. 12 is a partial cross-sectional view of a treatment system with a delivery device extending out of an access apparatus.



FIG. 13 is a side elevational view of an ablation assembly.



FIG. 14 is a cross-sectional view of an airway surrounding a deployed ablation assembly, taken along a line 14-14 of FIG. 13.



FIG. 15 is a side elevational view of an ablation assembly.



FIG. 16 is a side elevational view of an ablation assembly for producing oblique lesions.



FIG. 17 is a side elevational view of an ablation assembly with internal passageways.



FIG. 18 is a cross-sectional view of the ablation assembly of FIG. 17 taken along a line 18-18.



FIG. 19 is a side elevational view of an ablation assembly with vents.



FIG. 20 is a cross-sectional view of the ablation assembly of FIG. 19 taken along a line 20-20.



FIG. 21 is a side elevational view of an ablation assembly with an array of V-shaped electrodes.



FIG. 22 is a side elevational view of an ablation assembly with T-shaped electrodes.



FIG. 23 is a side elevational view of a multi-tine ablation assembly.



FIG. 24 is a side elevational view of an ablation assembly with a pair of electrode assemblies.



FIG. 25 is a side elevational view of an ablation assembly with a coolable electrode assembly.



FIG. 26 is a cross-sectional view of the electrode assembly taken along a line 26-26 of FIG. 25.



FIGS. 27A-31B show isotherms and corresponding lesions.



FIG. 32 is a side elevational view of a helical ablation assembly.



FIG. 33 is a side elevational view of another helical ablation assembly.



FIG. 34 is an isometric view of an ablation assembly with spaced apart electrodes.



FIG. 35 is an isometric view of the ablation assembly of FIG. 34 positioned in airway body lumen.



FIG. 36 is an isometric view of lesions formed by the ablation assembly of FIG. 34.



FIG. 37 is an isometric view of an ablation assembly with coolant cooled electrodes.



FIG. 38 is a cross-sectional view of an ablation assembly taken along a line 38-38 of FIG. 37.



FIG. 39A is an isometric view of an ablation assembly with a curved energy emitter.



FIG. 39B is an isometric view of a vessel treated by the ablation assembly of FIG. 39A.



FIG. 40A is another isometric view of the ablation assembly of FIG. 39A.



FIG. 40B is an isometric view of the vessel treated by the ablation assembly of FIG. 40A.



FIG. 41 is an isometric view of an ablation assembly, in accordance with another embodiment.



FIG. 42 is an isometric view of an ablation assembly in a delivery configuration.



FIG. 43 is an isometric view of the ablation assembly of FIG. 42 in deployed configuration.



FIG. 43A is a side elevational view of the ablation assembly of FIG. 43.



FIG. 44 is a cross-sectional view of a distal section of the ablation assembly of FIG. 43.





DETAILED DESCRIPTION


FIG. 1 illustrates human lungs 10 having a left lung 11 and a right lung 12. A trachea 20 extends downwardly from the nose and mouth and divides into a left main bronchus 21 and a right main bronchus 22. The left main bronchus 21 and right main bronchus 22 each branch to form lobar, segmental bronchi, and sub-segmental bronchi, which have successively smaller diameters and shorter lengths in the outward direction (i.e., the distal direction). A main pulmonary artery 30 originates at a right ventricle of the heart and passes in front of a lung root 24. At the lung root 24, the artery 30 branches into a left and right pulmonary artery, which in turn branch to form a network of branching blood vessels. These blood vessels can extend alongside airways of a bronchial tree 27. The bronchial tree 27 includes the left main bronchus 21, the right main bronchus 22, bronchioles, and alveoli. Vagus nerves 41, 42 extend alongside the trachea 20 and branch to form nerve trunks 45.


The left and right vagus nerves 41, 42 originate in the brainstem, pass through the neck, and descend through the chest on either side of the trachea 20. The vagus nerves 41, 42 spread out into nerve trunks 45 that include the anterior and posterior pulmonary plexuses that wrap around the trachea 20, the left main bronchus 21, and the right main bronchus 22. The nerve trunks 45 also extend along and outside of the branching airways of the bronchial tree 27. Nerve trunks 45 are the main stem of a nerve, comprising a bundle of nerve fibers bound together by a tough sheath of connective tissue.


The primary function of the lungs 10 is to exchange oxygen from air into the blood and to exchange carbon dioxide from the blood to the air. The process of gas exchange begins when oxygen rich air is pulled into the lungs 10. Contraction of the diaphragm and intercostal chest wall muscles cooperate to decrease the pressure within the chest to cause the oxygen rich air to flow through the airways of the lungs 10. For example, air passes through the mouth and nose, the trachea 20, then through the bronchial tree 27. The air is ultimately delivered to the alveolar air sacs for the gas exchange process.


Oxygen poor blood is pumped from the right side of the heart through the pulmonary artery 30 and is ultimately delivered to alveolar capillaries. This oxygen poor blood is rich in carbon dioxide waste. Thin semi-permeable membranes separate the oxygen poor blood in capillaries from the oxygen rich air in the alveoli. These capillaries wrap around and extend between the alveoli. Oxygen from the air diffuses through the membranes into the blood, and carbon dioxide from the blood diffuses through the membranes to the air in the alveoli. The newly oxygen enriched blood then flows from the alveolar capillaries through the branching blood vessels of the pulmonary venous system to the heart. The heart pumps the oxygen rich blood throughout the body. The oxygen spent air in the lung is exhaled when the diaphragm and intercostal muscles relax and the lungs and chest wall elastically return to the normal relaxed states. In this manner, air can flow through the branching bronchioles, the bronchi 21, 22, and the trachea 20 and is ultimately expelled through the mouth and nose.



FIG. 2 shows a treatment system 200 capable of performing treatments to adjust air flow during expiration or inhalation, or both. To decrease airflow resistance to increase gas exchange, the treatment system 200 can be used to enlarge (e.g., dilate) airways. In some procedures, nerve tissue (e.g., nerve tissue) of a nerve trunk (inside or outside of the lungs), can be affected to dilate airways. The nervous system provides communication between the brain and the lungs 10 using electrical and chemical signals. A network of nerve tissue of the autonomic nervous system senses and regulates activity of the respiratory system and the vasculature system. Nerve tissue includes fibers that use chemical and electrical signals to transmit sensory and motor information from one body part to another. For example, the nerve tissue can transmit motor information in the form of nervous system input, such as a signal that causes contraction of muscles or other responses. The fibers can be made up of neurons. The nerve tissue can be surrounded by connective tissue, i.e., epineurium. The autonomic nervous system includes a sympathetic system and a parasympathetic system. The sympathetic nervous system is largely involved in “excitatory” functions during periods of stress. The parasympathetic nervous system is largely involved in “vegetative” functions during periods of energy conservation. The sympathetic and parasympathetic nervous systems are simultaneously active and generally have reciprocal effects on organ systems. While innervation of the blood vessels originates from both systems, innervation of the airways is largely parasympathetic in nature and travels between the lung and the brain in the right vagus nerve 42 and the left vagus nerve 41.


Any number of procedures can be performed on one or more of these nerve trunks 45 to affect the portion of the lung associated with those nerve trunks. Because some of the nerve tissue in the network of nerve trunks 45 coalesce into other nerves (e.g., nerves connected to the esophagus, nerves though the chest and into the abdomen, and the like), specific sites can be targeted to minimize, limit, or substantially eliminate unwanted damage of non-targeted nerves or structures. Some fibers of anterior and posterior pulmonary plexuses coalesce into small nerve trunks which extend along the outer surfaces of the trachea 20 and the branching bronchi and bronchioles as they travel outward into the lungs 10. Along the branching bronchi, these small nerve trunks continually ramify with each other and send fibers into the walls of the airways.


The treatment system 200 can affect specific nerve tissue, such as vagus nerve tissue, associated with particular sites of interest. Vagus nerve tissue includes efferent fibers and afferent fibers oriented parallel to one another within a nerve branch. The efferent nerve tissue transmits signals from the brain to airway effector cells, mostly airway smooth muscle cells and mucus producing cells. The afferent nerve tissue transmits signals from airway sensory receptors, which respond to irritants, and stretch to the brain. While efferent nerve tissue innervates smooth muscle cells all the way from the trachea 20 to the terminal bronchioles, the afferent fiber innervation is largely limited to the trachea 20 and larger bronchi. There is a constant, baseline tonic activity of the efferent vagus nerve tissues to the airways which causes a baseline level of smooth muscle contraction and mucous secretion. The treatment system 200 can affect the efferent and/or the afferent tissues to control airway smooth muscle (e.g., innervate smooth muscle), mucous secretion, nervous mediated inflammation, and tissue fluid content (e.g., edema). The contraction of airway smooth muscle, excess mucous secretion, inflammation, and airway wall edema associated with pulmonary diseases often results in relatively high airflow resistance causing reduced gas exchange and decreased lung performance.


In certain procedures, nerve tissue is ablated to attenuate the transmission of signals traveling along the vagus nerves 41, 42 that cause or mediate muscle contractions, mucus production, inflammation, edema, and the like. Attenuation can include, without limitation, hindering, limiting, blocking, and/or interrupting the transmission of signals. For example, the attenuation can include decreasing signal amplitude of nerve signals or weakening the transmission of nerve signals. Decreasing or stopping nervous system input to distal airways can alter airway smooth muscle tone, airway mucus production, airway inflammation, and the like, thereby controlling airflow into and out of the lungs 10. Decreasing or stopping sensory input from the airways and lungs to local effector cells or to the central nervous system can also decrease reflex bronchoconstriction, reflex mucous production, release of inflammatory mediators, and nervous system input to other cells in the lungs or organs in the body that may cause airway wall edema. In some embodiments, the nervous system input can be decreased to correspondingly decrease airway smooth muscle tone. In some embodiments, the airway mucus production can be decreased a sufficient amount to cause a substantial decrease in coughing and/or in airflow resistance. In some embodiments, the airway inflammation can be decreased a sufficient amount to cause a substantial decrease in airflow resistance and ongoing inflammatory injury to the airway wall. Signal attenuation may allow the smooth muscles to relax, prevent, limit, or substantially eliminate mucus production by mucous producing cells, and decrease inflammation. In this manner, healthy and/or diseased airways can be altered to adjust lung function. After treatment, various types of questionnaires or tests can be used to assess the subject's response to the treatment. If needed or desired, additional procedures can be performed to reduce the frequency of coughing, decrease breathlessness, decrease wheezing, and the like.


Main bronchi 21, 22 (i.e., airway generation 1) of FIGS. 1 and 2 can be treated to affect distal portions of the bronchial tree 27. In some embodiments, the left and right main bronchi 21, 22 are treated at locations along the left and right lung roots 24 and outside of the left and right lungs 11, 12. Treatment sites can be distal to where vagus nerve branches connect to the trachea and the main bronchi 21, 22 and proximal to the lungs 11, 12. A single treatment session involving two therapy applications can be used to treat most of or the entire bronchial tree 27. Substantially all of the bronchial branches extending into the lungs 11, 12 may be affected to provide a high level of therapeutic effectiveness. Because the bronchial arteries in the main bronchi 21, 22 have relatively large diameters and high heat sinking capacities, the bronchial arteries may be protected from unintended damage due to the treatment.



FIG. 3 shows a delivery device in the form of a catheter system 204 extending through an access apparatus 206. The catheter system 204 can treat airways of the main bronchi 21, 22, as well as airways that are distal to the main bronchi 21, 22. An ablation assembly 208 can be positioned outside the lung within the right or left main bronchi, the lobar bronchii, or the intermediate bronchus. The intermediate bronchus is formed by a portion of the right main bronchus and the origin of the middle and lower lobar bronchii. The ablation assembly 208 can also be positioned in high generation airways (e.g., airway generations >2) to affect remote distal portions of the bronchial tree 27.


The catheter system 204 can be navigated through tortuous airways to perform a wide range of different procedures, such as, for example, denervation of a portion of a lobe, an entire lobe, multiple lobes, or one lung or both lungs. In some embodiments, the lobar bronchi are treated to denervate lung lobes. For example, one or more treatment sites along a lobar bronchus may be targeted to denervate an entire lobe connected to that lobar bronchus. Left lobar bronchi can be treated to affect the left superior lobe and/or the left inferior lobe. Right lobar bronchi can be treated to affect the right superior lobe, the right middle lobe, and/or the right inferior lobe. Lobes can be treated concurrently or sequentially. In some embodiments, a physician can treat one lobe. Based on the effectiveness of the treatment, the physician can concurrently or sequentially treat additional lobe(s). In this manner, different isolated regions of the bronchial tree can be treated.


Each segmental bronchus may be treated by delivering energy to a single treatment site along each segmental bronchus. For example, energy can be delivered to each segmental bronchus of the right lung. In some procedures, ten applications of energy can treat most of or substantially all of the right lung. In some procedures, most or substantially all of both lungs are treated using less than thirty-six different applications of energy. Depending on the anatomical structure of the bronchial tree, segmental bronchi can often be denervated using one or two applications of energy.


Function of other tissue or anatomical features, such as the mucous glands, cilia, smooth muscle, body vessels (e.g., blood vessels), and the like can be maintained when nerve tissue is ablated. Nerve tissue includes nerve cells, nerve fibers, dendrites, and supporting tissue, such as neuroglia. Nerve cells transmit electrical impulses, and nerve fibers are prolonged axons that conduct the impulses. The electrical impulses are converted to chemical signals to communicate with effector cells or other nerve cells. By way of example, a portion of an airway of the bronchial tree 27 can be denervated to attenuate one or more nervous system signals transmitted by nerve tissue. Denervating can include damaging all of the nerve tissue of a section of a nerve trunk along an airway to stop substantially all the signals from traveling through the damaged section of the nerve trunk to more distal locations along the bronchial tree or from the bronchial tree more proximally to the central nervous system. Additionally, signals that travel along nerve fibers that go directly from sensory receptors (e.g., cough and irritant receptors) in the airway to nearby effector cells (e.g., postganglionic nerve cells, smooth muscle cells, mucous cells, inflammatory cells, and vascular cells) will also be stopped. If a plurality of nerve trunks extends along the airway, each nerve trunk can be damaged. As such, the nerve supply along a section of the bronchial tree can be cut off. When the signals are cut off, the distal airway smooth muscle can relax leading to airway dilation, mucous cells decrease mucous production, or inflammatory cells stop producing airway wall swelling and edema. These changes reduce airflow resistance so as to increase gas exchange in the lungs 10, thereby reducing, limiting, or substantially eliminating one or more symptoms, such as breathlessness, wheezing, chest tightness, and the like. Tissue surrounding or adjacent to the targeted nerve tissue may be affected but not permanently damaged. In some embodiments, for example, the bronchial blood vessels along the treated airway can deliver a similar amount of blood to bronchial wall tissues and the pulmonary blood vessels along the treated airway can deliver a similar amount of blood to the alveolar sacs at the distal regions of the bronchial tree 27 before and after treatment. These blood vessels can continue to transport blood to maintain sufficient gas exchange. In some embodiments, airway smooth muscle is not damaged to a significant extent. For example, a relatively small section of smooth muscle in an airway wall which does not appreciably impact respiratory function may be reversibly altered. If energy is used to destroy the nerve tissue outside of the airways, a therapeutically effective amount of energy does not reach a significant portion of the non-targeted smooth muscle tissue.


One of the left and right main bronchi 21, 22 is treated to treat one side of the bronchial tree 27. The other main bronchus 21, 22 can be treated based on the effectiveness of the first treatment. For example, the left main bronchus 21 can be treated to treat the left lung 11. The right main bronchus 22 can be treated to treat the right lung 12. In some embodiments, a single treatment system can damage the nerve tissue of one of the bronchi 21, 22 and can damage the nerve tissue of the other main bronchus 21, 22 without removing the treatment system from the trachea 20. Nerve tissue positioned along the main bronchi 21, 22 can thus be damaged without removing the treatment system from the trachea 20. In some embodiments, a single procedure can be performed to conveniently treat substantially all, or at least a significant portion (e.g., at least 50%, 70%, 80%, 90% of the bronchial airways), of the patient's bronchial tree. In other procedures, the treatment system can be removed from the patient after treating one of the lungs 11, 12. If needed, the other lung 11, 12 can be treated in a subsequent procedure.



FIG. 4A is a transverse cross-sectional view of a healthy airway 100, illustrated as a bronchial tube. The inner surface 102 is defined by a folded layer of epithelium 110 surrounded by stroma 112a. A layer of smooth muscle tissue 114 surrounds the stroma 112a. A layer of stroma 112b is between the muscle tissue 114 and connective tissue 124. Mucous glands 116, cartilage plates 118, blood vessels 120, and nerve fibers 122 are within the stroma layer 112b. Bronchial artery branches 130 and nerve trunks 45 are exterior to a wall 103 of the airway 100. The illustrated arteries 130 and nerve trunks 45 are within the connective tissue 124 surrounding the airway wall 103 and can be oriented generally parallel to the airway 100. In FIG. 1, for example, the nerve trunks 45 originate from the vagus nerves 41, 42 and extend along the airway 100 towards the air sacs. The nerve fibers 122 are in the airway wall 103 and extend from the nerve trunks 45 to the muscle tissue 114. Nervous system signals are transmitted from the nerve trunks 45 to the muscle 114 and mucous glands 116 via the nerve fibers 122. Additionally, signals are transmitted from sensory receptors (e.g., cough, irritant, and stretch) through the nerve trunks 45 to the central nervous system.


Cilia can be damaged, excited, or otherwise altered to elicit a desired response along the epithelium 110 in order to control (e.g., increase or decrease) mucociliary transport. Many particles are inhaled as a person breathes, and the airways function as a filter to remove the particles from the air. The mucociliary transport system functions as a self-cleaning mechanism for all the airways throughout the lungs 10. The mucociliary transport is a primary method for mucus clearance from distal portions of the lungs 10, thereby serving as a primary immune barrier for the lungs 10. For example, the inner surface 102 of FIG. 4A can be covered with cilia and coated with mucus. As part of the mucociliary transport system, the mucus entraps many inhaled particles (e.g., unwanted contaminates such as tobacco smoke) and moves these particles towards the larynx. The ciliary beat of cilia moves a continuous carpet of mucus and entrapped particles from the distal portions of the lungs 10 past the larynx and to the pharynx for expulsion from the respiratory system. The ablation assembly 208 can damage the cilia to decrease mucociliary transport or excite the cilia to increase mucociliary transport.


The ablation assembly 208 is moved to the expanded state of FIG. 4B to selectively treat target regions inside of the airway wall 103 (e.g., anatomical features in the stromas 112a, 112b, the nerve trunk 45, etc.). For example, the mucous glands 116 can be damaged to reduce mucus production a sufficient amount to prevent the accumulation of mucus that causes increased airflow resistance while preserving enough mucus production to maintain effective mucociliary transport, if needed or desired. Nerve branches/fibers passing through the airway wall 103 or other anatomical features in the airway wall 103 can also be destroyed. The lesions are formed at specific locations to prevent stenosis or scar tissue that would significantly reduce the airflow through the airway 100.


Natural body functions can help prevent, reduce, or limit damage to tissue. Blood within the blood vessels 130 can absorb thermal energy and can then carry the thermal energy away from the heated section of the branches 130. In this manner, blood can mitigate or avoid damage to the blood vessels 130. After the treatment is performed, the bronchial artery branches 130 can continue to maintain the health of lung tissue. In some RF ablation embodiments, the ablation assembly 208 outputs a sufficient amount of RF energy to destroy an entire longitudinal section of the nerve trunk 45 without destroying the blood vessels 130.


Treatment efficacy can be evaluated based at least in part on one or more airway attributes, pulmonary function tests, exercise capacity tests, and/or questionnaires. Subjects can be evaluated to track and monitor their progress. If needed or desired, additional procedures can be performed until desired responses are achieved. Different types of instruments for evaluating airway attributes may be used. During ablation, feedback from an instrument can indicate whether the targeted tissue has been ablated. Once targeted tissue is ablated, therapy can be discontinued to minimize or limit collateral damage, if any, to healthy untargeted tissue.


Different attributes of airways can be evaluated to determine procedures to be performed. Such airway attributes include, without limitation, physical properties of airways (e.g., airway compliance, contractile properties, etc.), airway resistance, dimensions of airway lumens (e.g., shapes of airways, diameters of airways, etc.), responsiveness of airways (e.g., responsiveness to stimulation), muscle characteristics (e.g., muscle tone, muscle tension, etc.), inflammatory cells, inflammatory cytokines, or the like. In some embodiments, changes of airway muscle characteristics can be monitored by measuring pressure changes in the ablation assembly 208, which is inflated to a known pressure. Based on pressure changes, a physician determines the effects, if any, of the treatment, including, without limitation, whether targeted tissue has been stimulated, ablated, or the like.



FIGS. 5A and 5B are transverse cross-sectional views of a portion of the airway 100 that has smooth muscle tissue 114 in a contracted state, mucus 150 from hypertrophied mucous glands 116, and inflammatory swelling and edema fluid thickening the airway wall 103. The contracted muscle tissue 114, the mucus 150, and thickened airway wall 103 cooperate to partially obstruct the lumen 101 resulting in a relatively high air flow resistance. The nerve tissue 45 is damaged to relax the muscle tissue 114 to dilate the airway 100 to reduce air flow resistance, thereby allowing more air to reach the alveolar sacs for the gas exchange process. Decreases in airway resistance may indicate that passageways of airways are opening, for example in response to attenuation of nervous system input to those airways. Stenosis can be limited or minimized to ensure that airway resistance does not significantly increase after treatment. Thus, the treatment ensures that there is a permanent decrease in airway flow resistance even after a significant length of time after treatment.


The decrease of airway resistance associated with treating low generation airways (e.g., main bronchi, lobar bronchi, segmental bronchi) may be greater than the amount of decrease of airway resistance associated with treating high generation airways (e.g., subsegmental bronchioles). A physician can select appropriate airways for treatment to achieve a desired decrease in airway resistance and can be measured at a patient's mouth, a bronchial branch that is proximate to the treatment site, a trachea, or any other suitable location. The airway resistance can be measured before performing the therapy, during the therapy, and/or after the therapy. In some embodiments, airway resistance is measured at a location within the bronchial tree by, for example, using a vented treatment system that allows for respiration from areas that are more distal to the treatment site.


The ablation assembly 208 can use energy to ablate the nerves 45 to permanently dilate the airway 100. As used herein, the term “energy” is broadly construed to include, without limitation, thermal energy, cryogenic energy (e.g., cooling energy), electrical energy, acoustic energy (e.g., ultrasonic energy), radio frequency energy, pulsed high voltage energy, mechanical energy, ionizing radiation, optical energy (e.g., light energy), and combinations thereof, as well as other types of energy suitable for treating tissue. In some embodiments, the catheter system 204 delivers energy and also one or more substances (e.g., radioactive seeds, radioactive materials, etc.), treatment agents, and the like. Exemplary non-limiting treatment agents include, without limitation, one or more antibiotics, anti-inflammatory agents, pharmaceutically active substances, bronchoconstrictors, bronchodilators (e.g., beta-adrenergic agonists, anticholinergics, etc.), nerve blocking drugs, photoreactive agents, or combinations thereof. For example, long acting or short acting nerve blocking drugs (e.g., anticholinergics) can be delivered to the nerve tissue to temporarily or permanently attenuate signal transmission. Substances can also be delivered directly to the nerves 122 or the nerve trunks 45, or both, to chemically damage the nerve tissue.



FIGS. 6 and 7 show the effect produced by superficial and deep heating by RF energy and superficial cooling by circulating coolant in the ablation assembly 208. The coolant absorbs thermal energy such that the tissue touching a cooling section 209 of the ablation assembly 208 is cooled. The cooling section 209 can absorb a sufficient amount of thermal energy from the airway wall 100 to limit or prevent damage to tissue between the ablation assembly 208 and the nerve or other targeted tissue.



FIG. 6 shows a graph with a horizontal axis corresponding to the depth into the tissue of the airway wall from the point of contact with or proximate to an electrode assembly 214 in millimeters with a vertical axis corresponding to the temperature of the tissue in degrees Centigrade. Temperatures in the figures are in degrees Centigrade, unless indicated otherwise. The point “0” on the graph corresponds to the point or area of contact between the electrode assembly 214 and the tissue of the airway wall. Three curves A, B, and C are shown in the graph and correspond to three different power levels of radio frequency energy being delivered into the tissue. The temperature on the graph is up to about 100° C. The temperature of about 100° C., or slightly less, has been shown because it is considered to be an upper limit for tissue temperature during RF ablation. At approximately 90° C., tissue fluids begin to boil and tissue coagulates and chars, thereby greatly increasing its impedance and compromising its ability to transfer RF energy into the tissue of the airway wall. Thus, it may be desirable to have tissue temperatures remain below about 90° C. At about 50° C., a line 216 represents the temperature above which tissue cell death occurs and below which tissues suffer no substantial long term effects (or any long term effects).


Curve A shown in FIG. 6 represents what occurs with and without cooling of the electrode assembly 214 at a relatively low power level, for example, about 10 watts of RF energy. Curve A is divided into three segments A1, A2, and A3. The broken line segment A2 represents a continuation of the exponential curve A3 when no cooling is applied. As can be seen by curve A, the temperature of the electrode-tissue interface without cooling reaches 80° C. and decreases exponentially as the distance into the tissue of the airway 100 increases. As shown, the curve A3 crosses the 50° C. tissue cell death boundary represented by the line 216 at a depth of about 5 millimeters. Thus, without electrode cooling, the depth of cell death that would occur would be approximately 5 millimeters as represented by the distance d1. Further cell death would stop at this power level.


If active cooling is employed, the temperature drops to a much lower level, for example, about 35° C. as represented by the curve A1 at the electrode-tissue interface at 0 millimeters in distance. Since this temperature is below 50° C., cell death will not begin to occur until a distance of d2 at the point where the curve A2 crosses the cell death line at 50° C., for example, a depth of 3 millimeters from the surface. Cell death will occur at depths from 3 millimeters to 5 millimeters as represented by the distance d3. Such a cooled ablation procedure is advantageous because it permits cell death and tissue destruction to occur at a distance (or a range of distances) from the electrode-tissue interface without destroying the epithelium and the tissue immediately underlying the same. In some embodiments, the nerve tissues running along the outside of the airway can be ablated without damaging the epithelium or underlying structures, such as the stroma and smooth muscle cells.


The curve B represents what occurs with and without cooling of the electrode at a higher power level, for example, 20 watts of RF energy. Segment B2 of curve B represents a continuation of the exponential curve of the segment B3 without cooling. As can be seen, the temperature at the electrode-tissue interface approaches 100° C. which may be undesirable because that is a temperature at which boiling of tissue fluid and coagulation and charring of tissue at the tissue-electrode interface will occur, thus making significantly increasing the tissue impedance and compromising the ability to deliver additional RF energy into the airway wall. By providing active cooling, the curve B1 shows that the temperature at the electrode-tissue interface drops to approximately 40° C. and that cell death occurs at depths of two millimeters as represented by d4 to a depth of approximately 8 millimeters where the curve B3 crosses the 50° C. tissue cell death boundary. Thus, it can be seen that it is possible to provide a much deeper and larger region of cell death using the higher power level without reaching an undesirable high temperature (e.g., a temperature that would result in coagulation and charring of tissue at the electrode-tissue interface). The systems can be used to achieve cell death below the epithelial surface of the airway so that the surface need not be destroyed, thus facilitating early recovery by the patient from a treatment.


The curve C represents a still higher power level, for example, 40 watts of RF energy. The curve C includes segments C1, C2, and C3. The broken line segment C2 is a continuation of the exponential curve C3. Segment C2 shows that the temperature at the electrode-tissue interface far exceeds 100° C. and would be unsuitable without active cooling. With active cooling, the temperature at the electrode-tissue interface approaches 80° C. and gradually increases and approaches 95° C. and then drops off exponentially to cross the 50° C. cell death line 216 at a distance of about 15 millimeters from the electrode-tissue interface at the epithelial surface of the airway represented by the distance d6. Because the starting temperature is above the 50° C. cell death line 216, tissue cell death will occur from the epithelial surface to a depth of about 15 millimeters to provide large and deep regions of tissue destruction.



FIG. 7 shows a cross-sectional temperature profile in a section of the airway wall through which the RF energy is delivered to ablate tissue. The terms “ablate” or “ablation,” including derivatives thereof, include, without limitation, substantial altering of electrical properties, mechanical properties, chemical properties, or other properties of tissue. Ablation can involve destroying or permanently damaging, injuring, or traumatizing tissue. For example, ablation may include localized tissue destruction, cell lysis, cell size reduction, necrosis, or combinations thereof. In the context of pulmonary ablation applications, the term “ablation” includes sufficiently altering nerve tissue properties to substantially block transmission of electrical signals through the ablated nerve tissue.


Isothermal curves show the temperatures that are reached at the electrode assembly 214 and at different depths into the airway wall 100 from the electrode-tissue interface 215 when power is applied to the electrode assembly 214 and coolant (e.g., a room temperature saline solution or iced saline) is delivered to the balloon 212. The term “element” in the context of “expandable element” or “deployable element” includes a discrete element or a plurality of discrete elements. By way of example, an expandable element can be a single balloon or a plurality of balloons in fluid communication with one another.


By adjusting the rate of power delivery to the electrode assembly 214, the rate at which coolant is passed into the balloon 212, and the temperature of the coolant, and the size of the balloon 212, the isotherms can be modified. By selecting the proper temperature and flow rate of coolant and the rate of power delivery to the electrode assembly 214, it is possible to achieve temperatures in which isotherm A=60° C., B=55° C., C=50° C., D=45° C., E=40° C., and F=37° C. Further adjustments make it possible to achieve temperatures where isotherm A=50° C., B=47.5° C., C=45° C., D=42.5° C., E=40° C., and F=37° C. Only those areas contained within the 50° C. isotherm will be heated enough to induce cell death. In some procedures, tissue at a depth of about 2 mm to about 8 mm in the airway wall can be ablated while other non-targeted tissues at a depth less than 2 mm in the airway wall are kept at a temperature below at temperature that would cause cell death.


With reference to FIG. 8, the catheter system 204 includes a control module 210 coupled to a catheter 207 having an elongate shaft 230. The balloon 212 can be inflated from a collapsed state to the illustrated expanded state. As the balloon 212 inflates, the electrode assembly 214 can be moved towards an airway wall. The inflated balloon 212 can help hold the electrode assembly 214 near (e.g., proximate to or in contact with) tissue through which energy is delivered. Coolant can absorb thermal energy to cool the balloon 212 or the electrode assembly 214, or both.


The control module 210 generally includes a controller 244 and a fluid delivery system 246. The controller 244 includes, without limitation, one or more processors, microprocessors, digital signal processors (DSPs), field programmable gate arrays (FPGA), and/or application-specific integrated circuits (ASICs), memory devices, buses, power sources, and the like. For example, the controller 244 can include a processor in communication with one or more memory devices. Buses can link an internal or external power supply to the processor. The memories may take a variety of forms, including, for example, one or more buffers, registers, random access memories (RAMs), and/or read only memories (ROMs). The controller 244 may also include a display 245, such as a screen, and an input device 250. The input device 250 can include a keyboard, touchpad, or the like and can be operated by a user to control the catheter 207.


The controller 244 can store different programs. A user can select a program that accounts for the characteristics of the tissue and desired target region. For example, an air-filled lung can have relatively high impedance, lymph nodes can have medium impedance, and blood vessels can have relatively low impedance. The controller 244 can determine an appropriate program based on the impedance. Performance can be optimized based on feedback from sensors that detect temperatures, tissue impedance, or the like. For example, the controller 244 can control operation of the ablation assembly 208 based on tissue temperatures. If the tissue surface temperature becomes excessively hot, cooling can be increased and/or electrode power decreased in order to produce deep lesions while protecting surface tissues.


An internal power supply 248 (illustrated in dashed line in FIG. 8) can be an energy generator, such as a radiofrequency (RF) electrical generator. RF energy can be outputted at a desired frequency. Example frequencies include, without limitation, frequencies in a range of about 50 KHZ to about 1,000 MHZ. When the RF energy is directed into tissue, the energy is converted within the tissue into heat causing the temperature of the tissue to be in the range of about 40° C. to about 99° C. The RF energy can be applied for about 1 second to about 120 seconds. In some embodiments, the RF generator 248 has a single channel and delivers approximately 1 to 25 watts of RF energy and possesses continuous flow capability. Other ranges of frequencies, time intervals, and power outputs can also be used. Alternatively, the internal power supply 248 can be an energy storage device, such as one or more batteries. Electrical energy can be delivered to the electrode assembly 214, which converts the electrical energy to RF energy or another suitable form of energy. Other forms of energy that may be delivered include microwave, ultrasound, direct current, or electromagnetic energy. Alternatively, cryogenic ablation may be utilized. Fluid at cryogenic temperatures can be delivered through the shaft 230 to cool a cryogenic heat exchanger on the ablation assembly 208.


The fluid delivery system 246 includes a fluid source 260 coupled to a supply line 268 and a fluid receptacle 262 coupled to a return line 272. The fluid source 260 can include a container (e.g., a bottle, a canister, a tank, or other type of vessel for holding fluid) held in a housing unit 264. In pressurizable embodiments, the fluid source 260 includes one or more pressurization devices (e.g., one or more pumps, compressors, or the like) that pressurize coolant. Temperature control devices (e.g., Peltier devices, heat exchangers, or the like) can cool or recondition the fluid. The fluid can be a coolant comprising saline, de-ionized water, refrigerant, cryogenic fluid, gas, or the like. In other embodiments, the fluid source 260 can be an insulated container that holds and delivers a chilled coolant to the supply line 268. The coolant flows distally through the elongate shaft 230 along a delivery lumen 326 and fills the ablation assembly 208. Coolant from the ablation assembly 208 flows proximally through the elongate shaft 230 via the return lumen 324 and ultimately flows into the receptacle 262.


A sensor 247 (illustrated in dashed line) is communicatively coupled to the controller 244. The controller 244 can command the catheter 207 based on signals from the sensor 247 (e.g., a pressure sensor, a temperature sensor, a thermocouple, a pressure sensor, a contact sensor, or the like). Sensors can also be positioned on the electrode assembly 214, along the elongate shaft 230, or at any other location. In a closed loop mode of operation, the electrical energy can be delivered to the electrode assembly 214 based upon feedback signals from the sensor 247, which can be configured to transmit (or send) one or more signals indicative of one or more tissue characteristics, energy distribution, tissue temperatures, or any other measurable parameters of interest. Based on those readings, the controller 244 adjusts operation of the electrode assembly 214. In an open loop mode of operation, operation of the electrode assembly 214 can be set by user input. For example, the user can observe tissue temperature or impedance readings and manually adjust the power level. Alternatively, the power can be set to a fixed power mode. In yet other embodiments, the catheter system 204 can switch between a closed loop mode of operation and an open loop mode of operation.


Referring to FIGS. 8 and 9, the elongate shaft 230 includes a power line lumens 320a-h, the delivery lumen 326, and the return lumen 324. Power lines 280a-280h (collectively “280”) extend through the power line lumens 320a-320h (collectively “320”), respectively, and couple the controller 244 to the electrode assembly 214. The elongate shaft 230 can be made, in whole or in part, of one or more metals, alloys (e.g., steel alloys such as stainless steel), plastics, polymers, and combinations thereof, as well as other biocompatible materials, and can be flexible to pass conveniently along highly branched airways.


Referring to FIGS. 10 and 11, power lines 280 deliver energy from the power supply 248 to the electrode assembly 214. In some embodiments, the power lines 280 pass through the chamber 234 and the outer wall of the balloon 212. In other embodiments, connectors for the electrode assembly 214 are positioned within the chamber 234. The power lines 280 can extend between the connectors and the elongated shaft 230 to avoid exposure to bodily fluid.


The electrode assembly 214 can include, without limitation, monopolar electrodes, bipolar electrodes, metal electrodes, wire electrodes, needle electrodes, or the like and can form an array of circumferential lesions, each extending along only a portion of a circumference of a vessel or body structure. If the body structure is an airway, each of the lesions can at least partially surround a lumen of the airway. The lesions can have an arc length of less than 360 degrees (e.g., about 25 degrees to about 45 degrees). In some embodiments, the lesions are spaced apart with respect to a longitudinal axis of the body structure. Together, the lesions cover the desired circumference. For example, the lesion can overlap circumferentially (e.g., when viewed along an axial length of the body structure) with the beginning of the next lesion while being longitudinally spaced apart from one another, thereby ensuring the entire circumference of the airway (or portion thereof) has been treated.


The electrode assembly 214 includes electrodes 229 circumferentially spaced apart about the balloon 212. Each electrode 229 has a pair of exposed electrode elements. An electrode element 231d of electrode 229d and an element 231e of an adjacent electrode 229e can cooperate to form an RF arc that ablates radially adjacent tissue. The electrodes 229 can be coupled to an exterior surface of the balloon 212. In other embodiments, the electrodes 229 can be embedded in the sidewall of the balloon 212 or otherwise fixed to the balloon 212.


Adjacent electrodes 229 may be operated in a bipolar manner, wherein one electrode is positive and the other electrode is negative, such that RF power is transmitted through the tissue. If the electrodes 229 are monopolar electrodes, the electrodes can be coupled to separate power lines 280 to allow for independent control of each electrode. Alternatively, the electrodes 229 may be coupled to the same power line so as to be operated together.


The balloon 212 can be made, in whole or in part, of polymers, plastics, silicon, rubber, polyethylene, polyvinyl chloride, chemically inert materials, non-toxic materials, electrically insulating materials, combinations thereof, or the like. To enhance heat transfer, the balloon sidewall can comprise one or more conductive materials with a high thermal conductivity. For example, conductive strips (e.g., metal strips) can help conduct thermal energy away from hot spots, if any. The balloon 212 can conform to irregularities on the airway surface (e.g., cartilaginous rings, side branches, etc.) and can be made, in whole or in part, of a distensible material, such as polyurethane (e.g., low durometer polyurethane) or other type of highly conformable material that may be transparent, semi-transparent, or opaque. The balloon 212 can have different inflated shapes, including a hot dog shape, an ovoid shape, a cylindrical shape, or the like. To treat a bronchial tree of a human, the diameter D of the inflated balloon 212 can be in a range of about 12 mm to about 18 mm. For enhanced treatment flexibility, the inflated balloon diameter may be in a range of about 5 mm to about 25 mm. The balloon 212 can be sized to treat other organs or tissue of other animals. To inflate the balloon 212, fluid is delivered along the delivery lumen 326 and through an inlet port 225, as shown in FIG. 11. The coolant circulates within the chamber 234 and then flows proximally along the return lumen 324.



FIGS. 12 and 13 show one exemplary method of using the treatment system 200. The airway 100 can be viewed to locate and evaluate the treatment site(s) and non-targeted tissues before, during, and/or after performing a therapy. The access apparatus 206 can be a guide tube, a delivery sheath, a bronchoscope, or an endoscope and can include one or more viewing devices, such as optical viewing devices (e.g., cameras), optical trains (e.g., a set of lens), and the like. Different regions about the circumference the airway can be stimulated (e.g., electrically stimulated) to locate the position of the airway nerve trunk(s) or conditions. Detection of bronchoconstriction may be accomplished by measuring airway smooth muscle contraction distal to the point along the airway length that stimulation is performed. Muscle contraction can be measured by monitoring changes in the pressure of an inflated balloon or other type of sensor that is proximate to or in contact with the airway. This technique can minimize or limit the circumferential area of the airway that is treated to reduce or eliminate the risk of airway stenosis. The nerve locations can be determined by measuring nerve electrical signals at points along the airway circumference to locate the position of the airway nerves. An airway nerve signal stimulant, such as cold air, histamine or phenyl diguanide may be used to increase the nerve signal amplitude to facilitate airway nerve signal localization around the airway circumference.


When the access apparatus 206 of FIG. 12 is moved along a body lumen, the collapsed ablation assembly 208 is held within a working channel 386. The ablation assembly 208 is moved distally out of the working lumen 386 and is inflated to move the electrode assembly 214 near (e.g., proximate to or in contact with) the airway wall. RF energy can travel through tissue to heat tissue (e.g., superficial and deep tissue) to form lesions at targeted regions. The targeted regions and associated lesion generally correspond to the dashed lines in FIGS. 13 and 14.


The term “lesion” as used herein refers to tissue which is permanently damaged, i.e., to the point of cell death. In some cases, the delivery of energy will cause temporary or non-lethal damage to cells outside the region referred to as the “lesion.” For example, epithelial or smooth muscle cells may be temporarily damaged or altered by the energy delivery described herein. However, advantageously, through the use of differential cooling, these cells can recover and remain functional and, thus, are not considered part of the “lesion.” By contrast, the ablation assembly 208 can permanently damage to nerve tissues or other targeted tissue lying deep in the airway wall or on the outside of the airway wall, thus attenuating nerve signals that are the cause of certain pulmonary conditions.


The cooling section 209 of FIG. 13 contacts the airway wall 100 so as to cool tissue while energy is outputted by the electrode assembly 214. The net effect of this superficial and deep heating by RF energy and superficial cooling by the circulating coolant is the concentration of heat in the outer layers of the airway wall 100. The temperature of the connective tissue can be higher than the temperatures of the epithelium, stroma, and/or smooth muscle. By example, the temperature of the connective tissue can be sufficiently high to cause damage to the nerve trunk tissue or other deep tissue while other non-targeted tissues of the airway are kept at a lower temperature to prevent or limit damage to the non-targeted tissues.



FIGS. 13 and 14 show eight separate lesions 237a-h (collectively “237”). Adjacent lesions 237 are axially offset from one another along a longitudinal axis 233 of the ablation assembly 208. Each lesion 237 can have an arc length of about 45 degrees such that the array of lesions extends about substantially the entire circumference of the airway wall 100, as shown in FIG. 14. The length of the exposed electrode elements corresponds to the widths of the lesions 237. The lengths of exposed electrode elements (e.g., the length of electrode elements 231d, 231e) can be selected based on the desired width of the lesions 237. Advantageously, the lesions 237 can be formed simultaneously. For example, all or a substantial portion of the lesions 237 can be formed at the same time to avoid having to move the ablation assembly between ablation treatments. In other embodiments, different electrodes 229 can be activated to sequentially form lesions. The electrode assembly 214 can be moved to different locations to ablate different tissue. As such, one or more lesions can be performed simultaneously or sequentially based on the desired treatment.


With conventional ablation catheters, the ablating process may be sufficient to cause scarring which may cause local airway narrowing or stenosis. Because lesions 237 are at different locations along the length of the airway, the effects of stenosis can be mitigated. The illustrated embodiment is well suited to denervate the airway while avoiding the formation of a continuous ring of scar tissue. A continuous ring of scar tissue extending 360 degrees about the inner circumference of the airway 100 may significantly decrease the cross-sectional area of the airway lumen, thereby significantly increasing airflow resistance. The staggered lesions 237 help mitigate the reduction of the cross-sectional area of the airway lumen.



FIG. 14 shows the location of the lesions 237. A projection of the outer profiles of the lesions 237 along a long axis of the airway 100 and onto an imaginary plane perpendicular to the long axis can define a substantially continuous closed ring, as shown in FIG. 14. Because nerve trunks 45 extend longitudinally along the airway 100, the lesions 237 can be at a depth sufficient to ensure that all of the nerve trunks are ablated. In other embodiments, the electrode assembly 214 can be used to treat only a portion of the airway circumference, e.g., 180 degrees, 150 degrees, or 130 degrees of the airway circumference. That may be all that is required to effectively denervate the airway 100. Accordingly, nervous signals can be effectively cut off without forming a lesion that extends about the entire airway wall and can further reduce the formation of stenosis.


During RF ablation, heat can be concentrated in one or more of the internal layers (e.g., the stroma) of the airway wall or in the inner lining (e.g., the epithelium) of the airway wall. Furthermore, one or more of the vessels of the bronchial artery branches may be within the lesion. The heat generated using the electrode 214 can be controlled such that blood flowing through the bronchial artery branches protects those branches from thermal injury while nerve trunk tissue is damaged, even if the nerve tissue is next to the artery branches. The catheter 207 can produce relatively small regions of cell death. For example, a 2 mm to 3 mm section of tissue in the middle of the airway wall 100 or along the outer surface of the airway wall 100 can be destroyed. By the appropriate application of power and the appropriate cooling, lesions can be created at any desired depth.


Airway cartilage rings or cartilage layers typically have a significantly larger electrical resistance than airway soft tissue (e.g., smooth muscle or connective tissue). Airway cartilage impedes energy flow (e.g., electrical radiofrequency current flow) and makes the formation of therapeutic lesions with radiofrequency electrical energy to affect airway nerve trunk(s) challenging when the electrode is next to cartilage.


The illustrated energy emitter 214 can function as an intercartilaginous energy emitter. The electrode elements 227 may be dimensioned to generally coincide with the spacing of the cartilaginous rings 235a, 235b (collectively “235”). As shown in FIG. 13, each electrode element 227 is disposed between two adjacent rings 235a, 235b such that the lesions 237 are positioned entirely within the space 333 between the cartilage rings 235.


The electrodes 229 can serve as intercartilaginous positioners that help preferentially seat the electrode elements 227 in the space 333, thus making it easy to perform the treatment or to verify correct positioning. For example, the electrode elements 227 can protrude outwardly and tend to move into and fit into the regions of softer, more compliant tissue in the space 333. The electrodes 229 can thus be used to index the ablation assembly 208.



FIG. 15 shows electrodes that are monopolar electrodes connected by a single power line. Power can be simultaneously delivered to the electrodes. Any number of electrodes can be positioned along the balloon 212. For example, one or more of the electrodes can be evenly or unevenly spaced about the circumference of the balloon.



FIG. 16 shows electrodes 310a-310c (collectively “310”) oriented at an oblique angle relatively to a longitudinal axis 312 of an ablation assembly 300. Power lines 316a-316c (collectively “316”) provide energy to the respective electrodes 310. (Although not illustrated, other electrodes are located on the non-visible backside of the ablation assembly 300.) The electrodes 310 can be bipolar electrodes. By way of example, the electrode 310a can include electrode elements 318a, 319a, which can be alternatively positive and negative to transmit RF energy between the elements 318a, 319a.


The angle α between the electrodes 310 and the direction of the longitudinal axis 312 can be selected based on the length of the lesions to be formed, desired circumferential gap between adjacent lesions, and the like. The illustrated angle α is about 45 degrees. Other angles are also possible, if needed or desired. Between adjacent electrodes 310, there can be regions of non-treated, undamaged tissue.


As shown in FIG. 16, one lesion created by an electrode or electrode pair 310a overlaps in a circumferential direction with the beginning of the next lesion created by the circumferentially adjacent electrode or electrode pair 310b to ensure that an entire circumference (or portion thereof) of a tubular body structure is treated. If an imaginary line is drawn in the longitudinal direction through one end of the lesion made by electrode 310a, the imaginary line intersects or is proximate to the near end of the adjacent lesion made by the electrode 310b. Thus, ends of adjacent lesions are axially offset along the axis 312 and overlapping in the circumferential direction.



FIG. 17 shows an ablation assembly 400 that includes an expandable basket 414 and electrodes 413, 415. The basket 414 includes hollow members through which coolant flows to cool the electrodes 413, 415. A longitudinal length of the basket 414 can be selected such that the basket 414 extends across multiple cartilaginous rings. The electrodes 413, 415 can be positioned between the rings. For example, the elongate basket 414 can extend across at least three cartilaginous rings (represented by vertical dashed lines 431, 432, 433 in FIG. 17). The electrodes 413 are positioned between cartilaginous rings 431, 432. The electrodes 415 are positioned between cartilaginous rings 432, 433. When the basket 414 is deployed, the distance D between adjacent rows of electrodes 413, 415 can generally correspond to the distance between the cartilaginous rings, thereby ensuring that the electrodes 413, 415 can be seated between the cartilaginous rings. The electrode 413a can have a first polarity and the electrode 413b can have an opposite polarity such that energy flows between the electrodes. The electrode pair 413a, 413b is angularly offset from the adjacent pair of electrodes 415a, 415b to form circumferentially overlapping and axially spaced apart lesions. The distance of overlap D can be sufficient to ensure that the entire circumference of the airway is treated.



FIG. 18 shows fluid flowing along lumens 427, 429 and through pressure reducing elements 423, 425, respectively. As used herein, the term “pressure reducing element” refers, without limitation, to a device configured to reduce the pressure of a working fluid. The pressure reducing element can reduce the pressure of the working fluid to a pressure equal to or less than a vaporization pressure of the working fluid. The working fluid can comprise a refrigerant (e.g., a cryogenic refrigerant or a non-cryogenic refrigerant). In some embodiments, the pressure reducing elements are in the form of pressure reduction or expansion valves that cause vaporization of at least a portion of the working fluid passing therethrough. The pressure reducing element vaporizes an effective amount of the working fluid (e.g., a refrigerant, cryogenic fluid, etc.) to reduce the temperature of the working fluid. In some modes, substantially all or most of the working fluid by weight passing through the elements 423, 425 is converted to a low temperature, low pressure gas. In some embodiments, the pressure reducing elements 423, 425 can be a nozzle valve, a needle valve, a Joule-Thomson throttle, a throttle element, or any other suitable valve for providing a desired pressure drop. For example, a Joule-Thomson throttle can recover work energy from the expansion of the fluid resulting in a lower downstream temperature. In some embodiments, the pressure reducing elements can be substituted with flow regulating elements (e.g., a valve system), especially if the working fluid is a non-refrigerant, such as water.


With reference to FIG. 18, high pressure gas P1 of FIG. 18 passes through the delivery lumens 427, 429. The high pressure gas P1 passes through the elements 423, 425 and enters the channels 436, 438 where the pressure drops to P2. The drop in pressure from P1 to P2 leads to a drop in temperature of the gas from T1 to T2. The magnitude of the temperature change is given by:

T1−T2=μ(P1−P2)


where

    • T is the temperature of the gas;
    • P is the pressure of the gas;
    • μ is the Joule-Thomson coefficient of the gas;
    • Subscript 1 denotes a high pressure condition; and
    • Subscript 2 denotes a low pressure condition.


A second pressure drop can occur when the gas in the channels 436, 438 exits through the vents and drops to a surround pressure, as discussed in connection with FIGS. 19 and 20. If the ablation assembly 400 is used in the respiratory system, the surrounding pressure is atmospheric pressure. This temperature drop is:

T2−T3=μ(P2−PATM)


The Joule-Thomson coefficient (μ) is specific for each gas or gas mixtures. Standard temperature values for μ are:






Carbon





Dioxide







CO
2



μ

=

1.16
×

10

-
5




K
Pa







Air











μ


air

=

0.23
×

10

-
5





K
Pa

.






These coefficients indicate that for a given pressure drop, CO2 will cause a 5 times greater drop in temperature than a similar drop in pressure experienced by air.


The use of air in the lungs can be desirable. Carbon dioxide can be used if the flow rates of coolant gas are sufficiently low so as to not overwhelm the subject's ability to ventilate this additional carbon dioxide out of the lungs. The cooling effect can be enhanced if the coolant in the coolant conduit is a high pressure liquid, such as liquid air or liquid CO2. The high pressure liquid passes through the pressure reducing elements (e.g., a throttle) and undergoes an endothermal phase change from a high pressure liquid to a high pressure gas, which causes the temperature of the gas to be lower than that of the high pressure liquid. It then goes through a Joule-Thomson expansion from P1 to P2 which causes a further drop in temperature, before being vented out via vents 441, as discussed in connection with FIGS. 19 and 20.



FIGS. 19 and 20 show an ablation assembly 437 that is generally similar to the ablation assembly 400 of FIGS. 17 and 18, except as detailed below. The ablation assembly 437 includes an array of openings or vents 439 positioned along the elongate members. Coolant flowing through the elongate members can escape out of the openings 439 to cool adjacent tissue. Additionally, openings or vents 441 positioned at the distal end 443 can discharge coolant. As shown in FIG. 20, coolant, represented by arrows, can escape out of the vents 439, 441. In this manner, coolant can cool the ablation assembly 437 and can provide direct tissue cooling. Vents 441 may optionally be configured to provide a suitable pressure drop to vaporize the coolant from Joule-Thomson expansion, as described above, thus lowering the coolant temperature.



FIG. 21 shows an ablation assembly 450 that has V-shaped electrodes circumferentially spaced apart along an expandable member 453. An electrode 455 has ends 456, 457 that overlap with a tip 459 of the adjacent electrode 455. The electrodes can output energy to V-shaped target regions, which are likewise spaced apart along the airway circumference to form V-shaped lesions. Untreated tissue between the V-shaped lesions can help ensure that the lumen airway does not significantly narrow due to scar tissue or stenosis.



FIG. 22 illustrates an ablation assembly 460 including an expandable element 462 carrying T-shaped electrodes. The electrode 463 has a free end 464 that overlaps with an end 465 of an adjacent electrode 467. The circumferentially aligned electrodes 461 can form a plurality of generally T-shaped lesions. In other embodiments, the electrodes can be U-shaped, S-shaped, W-shaped, L-shaped, or any other suitable shape. In addition, in any of these embodiments, the electrodes may be longitudinally displaced in a diagonal or helical pattern similar to that shown in FIG. 16.



FIG. 23 shows an ablation assembly 500, including a first set of elongate members 511a-511d (collectively “511”) that can position electrodes 512 between cartilaginous rings 513, 515 (illustrated in dashed lines). Elongate members 521a-521d (collectively “521”) carry electrodes 523a, 523b, 523c, 523d (collectively “523”) positioned between the cartilaginous rings 515, 518. The electrodes 512 form lesions between the rings 513, 515. The electrodes 523 form lesions between the rings 515, 518. The elongate members 511, 521 may be flexible and resilient rods or wires biased radially outwardly to position the electrodes against the airway wall and configured to position electrodes 523 in circumferentially offset positions relative to the electrodes 512 so that different circumferential regions of an airway wall are treated with each electrode pair. One end of a lesion in one inter-collagenous space can overlap circumferentially with an adjacent lesion in an adjacent inter-collagenous space. The lesions can thus be axially spaced apart from one another but circumferentially overlapping with respect to the body lumen. The elongate members 511, 521 may be retracted into a tubular sheath 510 to collapse them into a radially contracted configuration suitable for introduction into the airway.



FIG. 24 shows an ablation assembly 600 with an expandable energy emitter assembly 610. An expandable electrode assembly 623 can encircle all or a major part of an expandable member 620, illustrated as a balloon. An insulator 625 extends between the ends over a portion of the electrode assembly 623. The electrode 623 can have a zigzag configuration (illustrated), serpentine configuration, or wavy configuration to allow expansion and can extend about 90 degrees to about 360 degrees around the balloon 620. During use, the exposed electrode 623 can face a region of an airway to be treated, e.g., the posterior side where the nerve trunks are often located. Alternatively, the emitter assembly 610 can include a plurality of exposed electrodes separated by insulated portions to create discrete lesions.


Optionally, a second energy emitter 618 is positioned distally of the energy emitter 610. The energy emitter 618 has an exposed electrode 621 and an insulator 623. The electrode 621 can cooperate with the electrode 623 to form circumferentially offset and axially spaced-apart complementary (e.g., overlapping) lesions. For example, the electrode 623 can form a lesion having an arc length of about 180 degrees along an upper portion of an airway wall. The electrode 621 can form a lesion having an arc length of about 180 degrees along a lower portion of an airway wall. Together, the two lesions extend about the entire circumference of the airway wall. The lesions can be created simultaneously or sequentially.



FIG. 25 shows an ablation assembly 700 that includes an energy emitter in the form of an electrode assembly 710 wrapped about an expandable element 712. The electrode assembly 710 includes a conduit 731 and a plurality of electrodes 715a-h (collectively “715”). The electrodes 715 can simultaneously or sequentially form lesions.


Referring to FIG. 26, the electrode 715a can be a hollow tubular metallic member which, when the balloon 712 is inflated, is oriented in the general circumferential direction. The conduit 731 delivers coolant (saline or other coolant) serially through the electrodes 716.


Different coolants can be delivered through the balloon 712 and the conduit 731. Coolant can flow through a delivery lumen 761 through the conduit 731 to cool the electrodes 715. Another coolant can flow through a delivery lumen 751 and into the balloon 712. Coolant in the balloon 712 and the conduit 731 can flow proximally via a return lumen 739. In other embodiments, coolant flows serially through the electrode assembly 710 and the balloon 712.


Separate wire pairs can be electrically coupled to each electrode 715. Each electrode 715 can be operated independently. In other embodiments, the electrodes 715 are bipolar and arranged in pairs of opposite polarity. As discussed with respect to previous embodiments, the electrodes 715 can be oriented and positioned with respect to one another to form lesions within inter-collagenous spaces. U.S. patent application Ser. No. 12/463,304, filed May 8, 2009, and U.S. patent application Ser. No. 12/913,702 filed, Oct. 27, 2010, are incorporated by reference in their entireties and disclose techniques, materials, catheters, and components that can be used with the ablation assembly 700.


Electrodes 715a-h are arranged along the helical conduit 731 such that they create lesions which are circumferentially offset from one another, albeit with some overlap, and which are axially offset from one another. An imaginary line drawn in the axial direction (parallel to axis 719) through each of electrodes 715a-h will intersect another of electrodes 715a-h to ensure that the entire circumference of the airway is treated. Advantageously, the electrodes are spaced apart along the helical conduit 731 such that the lesions they create are longitudinally separated along the airway, thus reducing the chance that stenosis will result.


Lesion shapes can be controlled by adjusting the temperature of the coolant, coolant flow rates, heat carrying capacity of coolants, thermal characteristics of the balloon (e.g., the heat transfer properties of the balloon), or the amount of delivered power. FIGS. 27A-31B show temperature profiles and corresponding lesions formed by progressively increased cooling by a balloon. The cooling capacity of the balloon can be increased by decreasing the coolant temperature or by increasing the coolant flow rate, or both. Lesion shaping can also be achieved by holding the cooling capacity of the balloon generally constant while varying the coolant capacity of the electrode or by increasing or decreasing the power delivered to the tissue. By way of example, the ablation assembly 700 in FIG. 25 can be used to form the lesions of FIGS. 27B, 27C, 28B, 29B, 30B, and 31B. Because the balloon 712 has a larger diameter than an electrode channel 753, there is a relatively low flow velocity along the balloon surface as compared to the high velocity flow through the electrode 715a. This results in differential cooling. If the electrode 715a and the balloon 712 have independent flows, the coolants can be at different temperatures and/or flow velocities for differential cooling.



FIG. 27A shows isotherms 80° C., 60° C., and 40° C. and temperature distributions in tissue. FIG. 27B shows a lesion 804 corresponding to the isotherms of FIG. 27A. The coolant in a cooling channel 753 is the only coolant that absorbs a significant amount of heat. The balloon 712 does not absorb a significant amount of thermal energy and can be filled with fluid at a temperature that is generally equal to room temperature or within a range of about 20° C.-30° C. In some embodiments, the balloon 712 is inflated with ambient air and can hold the electrode 715a against the tissue 825. In other embodiments, the balloon 712 is inflated with warm saline. The lesion 804 has a generally semicircular shape. The radius r and depth D can be increased or decreased by decreasing or increasing, respectively, the temperature of the coolant in the cooling channel 753. Additionally or alternatively, the radius r and depth D can be increased or decreased by decreasing or increasing, respectively, the flow rate of the coolant.


Chilled coolant can be delivered through the balloon 712 to reduce the cross-sectional width of the lesion at the tissue surface 825. FIGS. 28A and 28B show isotherms and a corresponding generally elliptical shaped lesion 804 when a coolant cools the electrode 715a and when a low temperature coolant flows at a low velocity through the balloon 712. The coolant in the balloon 712 absorbs a sufficient amount of thermal energy to protect tissue that contacts or is proximate to the balloon-tissue interface. In some embodiments, including the illustrated embodiment of FIG. 28B, the cross-sectional width of the lesion 804 at the surface 825 is less than a cross-sectional width of the lesion 804 of FIG. 27B at the surface 825. The cross-sectional width of the lesion 804 of FIG. 28B increases with depth to a maximum width WMax and then decreases to the deepest region 830. The maximum width WMax is less than the depth D of the lesion 804. FIG. 28B shows the lesion 804 at the surface 825 having a width that is no more than about 150% of the electrode width.



FIGS. 29A and 29B show isotherms and the lesion 804 when a low temperature coolant flows at a high velocity through the balloon 712 or a very low temperature coolant flows at a low velocity through the balloon 712. The somewhat teardrop shaped lesion 804 extends from the tissue surface 825. The width of a shallow or narrowed region 834 of the lesion 804 is about equal to the cross-sectional width WE of the electrode 715a. Thus, the lesion 804 at the surface 825 has a maximum cross-sectional width that is no more than about 150% of an electrode-tissue interface. This ensures that a minimal amount of surface tissue is damaged. The lesion 804 tapers outwardly from the shallow portion 834 to an enlarged region 835. The lesion cross-sectional width gradually increases with depth to a maximum width WMax. The maximum width WMax can be more than about 1 to about 5 times the cross-sectional width at the surface 825. The deepest region 830 of the lesion 804 has a partially circular shape.



FIGS. 30A and 30B show isotherms and a teardrop shaped lesion 804 that can be formed when a very low temperature coolant flows at a high velocity through the balloon 712. The lesion 804 extends from the tissue surface 825 and has a narrow shallow region 834 that rapidly expands outwardly to a wide deep region 852. The width of the shallow region 834 is less than a width We of the electrode 715a. The cross-sectional width rapidly increases with depth to a maximum width WMax. Thus, most of the volume of the lesion 804 is deep in the tissue.



FIGS. 31A and 31B show isotherms and a corresponding circular shaped lesion 804 that can be formed when a very low temperature coolant flows at a very high velocity through the balloon 712. The lesion 804 is disposed at a depth D from the tissue surface 825. The maximum cross-section a width WMax of the lesion 804 is at a depth DWidth Max. The lesion 804 is spaced apart from the electrode-tissue interface and can have different shapes depending on the flow rates and the temperatures of the coolants. Differential cooling can be used to achieve other buried lesion shapes, such as generally elliptical shapes, elongated shapes, or the like.


The DWidth Max can be selected based on the location of the target region. To damage nerve tissue, the DWidth Max can be at least about 2 mm to ensure that the lesion includes the nerve tissue and to mitigate or avoid a significant amount of damage to smooth muscle tissue. Such embodiments are well suited for treating an airway wall because the smooth muscle tissue is typically not below a depth of 2 mm. In this manner, the cross-sectional width of the target region can be maximized at a depth deeper than the smooth muscle tissue. The majority, and in some embodiments substantially all, of the lesion will be in tissue which is not smooth muscle tissue, typically lying deeper in the airway wall than the region of smooth muscle tissue. Further, any damage to smooth muscle cells in the airway wall can be less than the amount of damage that, in the absence of damaging nerve tissue, would be required to substantially alter the responsiveness or constriction of the airway, e.g., as a result of asthma, COPD, or other pulmonary disease.


The lesion can be separated from the tissue surface by a protected region in which a significant amount of the tissue is not permanently damaged. FIGS. 31B and 32B show a protected region 861 having a depth DP. Advantageously, because a significant amount of tissue in the protected region 861 is not permanently damaged, tissue functioning can be preserved. The depth DP can be at least about 1 mm to about 2 mm to ablate nerve tissue.



FIG. 32 shows a helical ablation assembly 900 that includes a curved (illustrated as helical-shaped) main body 910 (shown tapered to match an airway taper) and electrodes 912a, 912b, 912c (collectively “912”). Optionally, one or more pressure reducing elements can be positioned within the body 910 to act as Joule-Thomson throttle to reduce the temperature of the coolant.


The electrodes 912 can be generally similar to each other and, accordingly, the description of one electrode applies equally to the others, unless indicated otherwise. The electrode 912a includes a plurality of vents 916, 918. Coolant, represented by arrows, can flow out of the vents 916, 918. The electrode 912a can be coupled to an exterior surface of the main body 910. This allows the electrodes 912 to protrude outwardly a sufficient distance to physically contact with tissue. Electrodes 912 are arranged to create lesions which are circumferentially offset from one another, but which have some circumferential overlaps at their edges, i.e., an imaginary line drawn longitudinally down the airway through the end of one lesion will intersect the end of the next lesion. Because electrodes 912 are spaced apart along the helical body 910, the lesions they create are also spaced apart axially in the airway, thus reducing the possibility of stenosis.


The main body 910 may comprise a flexible and electrically conductible material, such as Nitinol, that can be shaped into a helical or corkscrew shape when activated. A warm fluid can be delivered through the main body 910, causing the body 910 to move from a delivery configuration (e.g., a straight configuration) to a deployed configuration (e.g., a corkscrew configuration or a helical configuration). In other embodiments, the main body 910 can be biased towards the deployed configuration and can be delivered out of a sleeve or working lumen to assume the deployed configuration. The ablation assembly 900 can be pulled proximally into the sleeve or working lumen to return the ablation assembly 900 to a delivery configuration. In other embodiments, tensioners, pull wires, pull rods, or the like can be used to cause the main body 910 to assume different configurations.


Optionally, a balloon can be positioned through an interior region 920. A generally conically-shaped balloon, cylindrical balloon, hot dog shaped balloon, or other suitably shaped balloon may be insertable into the interior region 920.



FIG. 33 shows a helical ablation assembly 952 made of a tubular conductive inner member having with series of spaced-apart exposed sections forming electrodes 960a, 960b, 960c (collectively “960”) with an insulative cover over the intervening sections to create insulated regions 962a, 962b, 962c. A coolant can be circulated through the ablation assembly 520 to cool electrodes 960. To provide additional tissue cooling, the coolant can optionally be delivered out of vents (not shown) in the inner tubular member and/or the insulative cover.



FIG. 34 shows an ablation assembly 1000 that includes an array of spaced apart bipolar electrodes 1010a-f (collectively “1010”). The electrodes are arranged in pairs of opposite polarity, such that lesions are created diagonally between each bipolar pair. The electrodes 1010 can form oblique lesions that traverse cartilaginous rings. As shown in FIG. 35, the ablation assembly 1000 is positioned within an airway 1012. The electrodes 1010 are positioned between the rings. Electrodes 1010a-c can create a lesion 1030 of FIG. 36. An end 1032 of the lesion 1030 is proximate to a ring 1034. An opposing end 1036 is adjacent to a ring 1038. The ends 1032, 1036 are displaced from one another axially along the airway 1012. As shown in FIG. 36, the axial displacement of the ends 1032, 1036 is significantly greater than the circumferential distance between the ends 1032, 1036. In certain procedures, the distance between the ends 1032, 1036 is at least one millimeter, 5 millimeters, 10 millimeters. In some embodiments, the axial distance between the ends 1032, 1036 is greater than the distance between adjacent cartilaginous rings. This ensures that the lesions traverse the rings.


A central section of the lesion 1030 of FIG. 36 traverses a ring 1040 between the rings 1034, 1038. Electrodes 1010d, 1010e, 1010f on the back side of the ablation assembly 1000 form a lesion 1041. The illustrated lesions 1041, 1030 are on opposite sides and at different axial locations along the airway.


The electrodes 1010 can protrude outwardly a sufficient distance to interact with the airway tissue to keep the electrodes 1010 located between cartilaginous rings. When operating in bipolar mode, lesions are formed and traverse the rings. After forming the lesions, the catheter can be pulled proximally or pushed distally and used to form axially offset lesions. Additionally or alternatively, the catheter can be rotated to form oblique lesions at different angular positions along the airway 1012. The lesions of FIG. 36 are illustrated as continuous lesions. In other embodiments, lesions can comprise a plurality of discrete spaced-apart lesions. For example, the lesion 1030 can comprise an array of spaced-apart lesions.



FIGS. 37 and 38 show circumferentially offset and axially spaced-apart electrodes 1050a, 1050b cooled by an internal jet. A coolant flows through a delivery lumen 1052 and exits a port 1054. The jet of coolant flows along an open cooling channel 1056 to cool the electrode 1050a. The coolant exits a chamber 1060 via outlet ports 1062a, 1062b. The coolant flows along a return lumen 1072. The electrodes 1050a, 1050b can be operated either in a monopolar mode or in bipolar mode while being cooled.



FIGS. 39A-40B show an ablation assembly 1080 that includes an energy emitter in the form of an electrode assembly 1082. The electrode assembly 1082 includes an array of electrodes 1084a-f (collectively “1084”) that can form a lesion 1083 (FIGS. 39B and 40B). A wide range of different types of serpentine, curved, zigzag, z-shaped, or other various configurations. The illustrated lesion 1083 has a generally helical shape and traverses multiple cartilaginous rings. The ablation assembly 1080 can have any number of these types of electrode assemblies 1082. For example, a pair of helical ablation assemblies 1082 can be positioned on the outside of the ablation assembly 1080.


The illustrated lesion 1083 is continuous and has ends 1085, 1087 that are spaced axially apart along a long axis 1089 of the airway. The ends 1085, 1087 are also angularly offset from one another. As shown in FIGS. 39B and 40B, the distance between the ends 1085, 1087 along the axis 1089 is greater than the distance between adjacent rings. As such, the lesion 1083 traverses multiple rings.


The electrodes 1084 can be close together to form the generally contiguous lesion 1083. In other embodiments, the distance between the electrodes 1084 can be increased to provide a plurality of spaced-apart lesions. The spaced-apart lesions can be arranged to have a shape similar to the lesion 1083 but other shapes and lesion patterns are possible.



FIG. 41 shows an ablation assembly 1100 with an electrode assembly 1110 that wraps around a balloon 1111. The electrode assembly 1110 comprises a tube 1113 suitable for containing a coolant and has a distal end 1115 in communication with the interior of the balloon 1111. Electrodes are mounted, adhered, painted, or otherwise coupled to the exterior of the tube 1113. In this way, coolant may be delivered through the catheter to the interior of the balloon 1111 to inflate the balloon 1111, from which the coolant flows through the tube 1113 to cool the electrodes. Alternatively, the coolant can cool the electrodes and subsequently the balloon 1111. The electrode assembly 1110 and balloon 1111 can provide differential cooling to form shaped lesions.



FIGS. 42-44 show an ablation assembly 1200 movable from a delivery configuration (FIG. 42) to a deployed configuration (FIGS. 43 and 44). In the delivery configuration, a distal portion 1211 of ablation assembly 1200 is linearized with the proximal portion of the catheter shaft 1213 so as to be generally aligned with a longitudinal axis of the airway or other body lumen into which it is being inserted. In the deployed configuration, the distal portion 1211 of the ablation assembly 1200 is deflected or deformed such that it forms a loop 1215 which lies in a plane which is transverse to the longitudinal axis of the proximal extremity of the catheter shaft 1213. In this way, the loop 1215 may extend around the inner wall of the airway to position electrodes 1220 at a series of circumferentially spaced-apart locations thereon.


In the deployed configuration, the loop may be helical or may lie in a plane disposed at an oblique angle relative to the longitudinal axis of the catheter shaft 1213 such that electrodes 1220 are positioned at axially separated locations along the airway wall. Loop 1215 may be deployed using a variety of well known mechanisms. For example, a pull wire may extend slidably through a lumen in the catheter shaft and be fixed at a point near the distal end such that tension on the pull wire deploys the loop 1215 in the desired configuration. Alternatively, the distal portion of the catheter may be preformed in the deployed configuration and may be resilient such that the distal portion may be constrained within a sheath during delivery, then released by retracting the sheath such that the distal portion resumes the deployed configuration.


Vents 1210a-1210c (collectively “1210”) provide direct coolant cooling of tissue. Electrodes 1220a-c (collectively “1120”) are operated independently to form discrete lesions or operated together to form one aggregate electrode for forming a continuous lesion. The electrodes 1220 can be positioned between two cartilage rings in the proximal main stem bronchii to treat about one-third of the circumference of the airway (e.g., anterior medial or anterior lateral region of the airway). The electrodes 1220 are then repositioned distally between two distal cartilaginous rings to treat the other third anterior lateral or anterior medial portion of the airway wall. The electrodes 120 are moved again to treat the posterior third of the airway, such as membrane portion. Coolant can be delivered through the vents 1210 to cool the tissue. The ablation assembly 1200 can be used to sequentially ablate different sections of vessels and can be moved distally and proximally to provide sufficient spacing between lesions to mitigate scar tissue or stenosis, if any.


The delivery devices disclosed herein can treat the digestive system, nervous system, vascular system, or other systems. For example, the elongate assemblies, intra-luminal catheters, and delivery devices disclosed herein can be delivered through blood vessels to treat the vascular system. The treatment systems and its components disclosed herein can used as an adjunct during another medical procedure, such as minimally invasive procedures, open procedures, semi-open procedures, or other surgical procedures (e.g., lung volume reduction surgery) that provide access to a desired target site. Various surgical procedures on the chest may provide access to lung tissue. Access techniques and procedures used to provide access to a target region can be performed by a surgeon and/or a robotic system. Those skilled in the art recognize that there are many different ways that a target region can be accessed.


Guidewires, delivery sheaths, optical instruments, introducers, trocars, biopsy needles, or other suitable medical equipment can be used to steer the delivery apparatuses. If the target treatment site is at a distant location in the patient (e.g., a treatment site near the lung root 24 of FIG. 1), a wide range of instruments and techniques can be used to access the site. The flexible elongated assemblies can be easily positioned within the subject using, for example, steerable delivery devices, such as endoscopes and bronchoscopes, as discussed above.


Semi-rigid or rigid elongated assemblies can be delivered using trocars, access ports, rigid delivery sheaths using semi-open procedures, open procedures, or other delivery tools/procedures that provide a somewhat straight delivery path. Advantageously, the semi-rigid or rigid elongated assemblies can be sufficiently rigid to access and treat remote tissue, such as the vagus nerve, nerve branches, nerve fibers, and/or nerve trunks along the airways, without delivering the elongated assemblies through the airways. The embodiments and techniques disclosed herein can be used with other procedures, such as bronchial thermoplasty.


Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including but not limited to.”


The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. The embodiments, features, systems, devices, materials, methods and techniques described herein may, in some embodiments, be similar to any one or more of the embodiments, features, systems, devices, materials, methods and techniques described in patent application Ser. No. 12/463,304 filed on May 8, 2009; U.S. patent application Ser. No. 12/913,702 filed on Oct. 27, 2010; U.S. Provisional Patent Application No. 61/255,367 filed Oct. 27, 2009; and U.S. Provisional Patent Application No. 61/260,348 filed Nov. 11, 2009. Each of these applications is incorporated herein by reference in its entirety. In addition, the embodiments, features, systems, devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in the above-mentioned U.S. patent application Ser. No. 12/463,304 and U.S. patent application Ser. No. 12/913,702 filed on Oct. 27, 2010. For example, the apparatuses of disclosed in U.S. patent application Ser. No. 12/463,304 and U.S. patent application Ser. No. 12/913,702 filed on Oct. 27, 2010 may incorporate the electrodes or other features disclosed herein.


In addition, the embodiments, features, systems, delivery devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in the above-mentioned of patent application Ser. No. 12/463,304 filed on May 8, 2009; U.S. patent application Ser. No. 12/913,702 filed on Oct. 27, 2010; U.S. Provisional Patent Application No. 61/255,367 filed Oct. 27, 2009; and U.S. Provisional Patent Application No. 61/260,348 filed Nov. 11, 2009.


In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.


The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.


These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. An energy delivery device, comprising: a catheter shaft; andan energy delivery assembly coupled to the catheter shaft and including a cooling element movable from a collapsed state to an expanded state, andan energy emitter assembly including a conduit for flowing fluid therethrough between the shaft and the cooling element, the conduit extending about an external surface of the cooling element, and a plurality of energy emitters coupled to and positioned along the conduit, the energy emitters being circumferentially offset from one another about a longitudinal axis of the energy delivery assembly when the cooling element is in the expanded state, the energy emitters being configured to deliver energy to a plurality of target regions of a lumen that are spaced apart from one another with respect to a longitudinal axis of the energy delivery assembly while fluid is flowed through the conduit to form lesions which are spaced apart from surface tissue of the lumen.
  • 2. The energy delivery device of claim 1, wherein the energy delivery assembly is configured to produce lesions spaced apart from one another along a long axis of the lumen.
  • 3. The energy delivery device of claim 1, wherein a projection of the target regions in a direction along a long axis of the lumen onto an imaginary plane orthogonal to the long axis of the lumen defines a substantially closed ring.
  • 4. The energy delivery device of claim 1, wherein the energy delivery assembly has a spiral shape or a helical shape.
  • 5. The energy delivery device of claim 1, wherein the plurality of energy emitters are coupled to and positioned along the conduit such that the device is configured to form at least two lesions that at least partially overlap when viewed down the lumen.
  • 6. The energy delivery device of claim 1, wherein the catheter shaft has a delivery lumen for delivering cryogenic fluid to the energy emitter assembly.
  • 7. The energy delivery device of claim 1, wherein at least one of the energy delivery elements is configured to output a sufficient amount of cooling energy to ablate a portion of a nerve trunk extending along a bronchial tree to attenuate nervous system signals transmitted to a portion of the bronchial tree.
  • 8. The energy delivery device of claim 1, wherein the energy delivery elements are configured to form one set of the lesions that is axially separated from a second set of the lesions along a longitudinal axis of the energy delivery assembly.
  • 9. The energy delivery device of claim 1, wherein the energy delivery elements are positionable such that a projection of the target regions in a direction along a longitudinal axis of the energy delivery assembly onto an imaginary plane orthogonal to the longitudinal axis defines a substantially closed ring.
  • 10. The energy delivery device of claim 1, wherein the energy delivery elements are positionable such that a projection of the target regions in a direction along a longitudinal axis of the energy delivery assembly onto an imaginary plane orthogonal to the longitudinal axis defines an arcuate treatment region.
  • 11. The energy delivery device of claim 1, wherein the energy delivery elements comprise heat exchanger elements or electrodes.
  • 12. The energy delivery device of claim 1, wherein the cooling element is configured to move between the collapsed state and the expanded state via introduction and circulation of a coolant within the cooling element.
  • 13. The energy deliver device of claim 12, wherein the coolant is introduced into the cooling element at a first temperature and a first flow velocity, wherein a second coolant is introduced into the conduit independently from the coolant, and at a second temperature and a second flow velocity, and wherein at least one of the first and second temperatures and the first and second flow velocities is different.
  • 14. The energy delivery device of claim 12, wherein a first end of the conduit is fluidly coupled to the catheter shaft, and a second end of the conduit is fluidly coupled to the cooling element such that the device is configured to have coolant flow serially through the conduit and the cooling element.
RELATED APPLICATIONS

This application is a continuation of application Ser. No. 15/607,918 filed May 30, 2017, which in turn is a continuation of application Ser. No. 14/872,212 filed Oct. 1, 2015, now U.S. Pat. No. 9,662,171 issued May 30, 2017, which in turn is a continuation of application Ser. No. 13/509,581 filed Aug. 14, 2012, now U.S. Pat. No. 9,149,328 issued Oct. 6, 2015, which is a 371 of PCT/US10/56424 filed Nov. 11, 2010 which claims the benefit of U.S. Provisional Application No. 61/260,349 filed Nov. 11, 2009, each of which is hereby fully incorporated herein by reference.

US Referenced Citations (1527)
Number Name Date Kind
612724 Hamilton Oct 1898 A
1155169 John Sep 1915 A
1207479 Holger Dec 1916 A
1216183 Swingle Feb 1917 A
1695107 Kahl Dec 1928 A
2072346 Smith Mar 1937 A
2279714 Meyerhof et al. Apr 1942 A
3320957 Sokolik May 1967 A
3568659 Karnegis Mar 1971 A
3667476 Muller Jun 1972 A
3692029 Adair Sep 1972 A
3918449 Pistor Nov 1975 A
3946745 Hsiang-Lai et al. Mar 1976 A
3949743 Shanbrom Apr 1976 A
3995617 Watkins et al. Dec 1976 A
4078864 Howell Mar 1978 A
4095602 Leveen Jun 1978 A
4116589 Rishton Sep 1978 A
4129129 Amrine Dec 1978 A
4154246 LeVeen May 1979 A
4277168 Oku Jul 1981 A
4305402 Katims Dec 1981 A
4351330 Scarberry Sep 1982 A
4461283 Doi Jul 1984 A
4502490 Evans et al. Mar 1985 A
4503855 Maslanka Mar 1985 A
4503863 Katims Mar 1985 A
4512762 Spears Apr 1985 A
4522212 Gelinas et al. Jun 1985 A
4557272 Carr Dec 1985 A
4565200 Cosman Jan 1986 A
4567882 Heller Feb 1986 A
4573481 Bullara Mar 1986 A
4584998 McGrail Apr 1986 A
4612934 Borkan Sep 1986 A
4621642 Chen Nov 1986 A
4621882 Krumme Nov 1986 A
4625712 Wampler Dec 1986 A
4643186 Rosen et al. Feb 1987 A
4646737 Hussein et al. Mar 1987 A
4649924 Taccardi Mar 1987 A
4649935 Charmillot et al. Mar 1987 A
4658836 Turner Apr 1987 A
4674497 Ogasawara Jun 1987 A
4683890 Hewson Aug 1987 A
4704121 Moise Nov 1987 A
4706688 Don Michael et al. Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4739759 Rexroth et al. Apr 1988 A
4754065 Levenson et al. Jun 1988 A
4754752 Ginsburg et al. Jul 1988 A
4765322 Charmillot et al. Aug 1988 A
4765959 Fukasawa Aug 1988 A
4767402 Kost et al. Aug 1988 A
4772112 Zider et al. Sep 1988 A
4773899 Spears Sep 1988 A
4779614 Moise Oct 1988 A
4784135 Blum et al. Nov 1988 A
4790305 Zoltan et al. Dec 1988 A
4799479 Spears Jan 1989 A
4802492 Grunstein Feb 1989 A
4808164 Hess Feb 1989 A
4817586 Wampler Apr 1989 A
4825871 Cansell May 1989 A
4827935 Geddes et al. May 1989 A
4846152 Wampler et al. Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4881542 Schmidt et al. Nov 1989 A
4895557 Moise et al. Jan 1990 A
4902129 Siegmund et al. Feb 1990 A
4904472 Belardinelli et al. Feb 1990 A
4906229 Wampler Mar 1990 A
4907589 Cosman Mar 1990 A
4908012 Moise et al. Mar 1990 A
4920978 Colvin May 1990 A
4944722 Carriker et al. Jul 1990 A
4945910 Budyko et al. Aug 1990 A
4955377 Lennox et al. Sep 1990 A
4967765 Turner et al. Nov 1990 A
4969865 Hwang et al. Nov 1990 A
4976709 Sand Dec 1990 A
4976710 Mackin Dec 1990 A
4985014 Orejola Jan 1991 A
4989604 Fang Feb 1991 A
4991603 Cohen et al. Feb 1991 A
4992474 Skidmore et al. Feb 1991 A
5005559 Blanco et al. Apr 1991 A
5007908 Rydell Apr 1991 A
5009636 Wortley et al. Apr 1991 A
5009936 Yamanaka et al. Apr 1991 A
5010892 Colvin et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5027829 Larsen Jul 1991 A
5030645 Kollonitsch Jul 1991 A
5036848 Hewson Aug 1991 A
5053033 Clarke Oct 1991 A
5054486 Yamada Oct 1991 A
5056519 Vince Oct 1991 A
5056529 De Groot Oct 1991 A
5057107 Parins et al. Oct 1991 A
5074860 Gregory et al. Dec 1991 A
5078716 Doll Jan 1992 A
5084044 Quint Jan 1992 A
5096916 Skupin Mar 1992 A
5100388 Behl et al. Mar 1992 A
5100423 Fearnot Mar 1992 A
5103804 Abele et al. Apr 1992 A
5105826 Smits et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5107830 Younes Apr 1992 A
5107835 Thomas Apr 1992 A
5109846 Thomas May 1992 A
5114423 Kasprzyk et al. May 1992 A
5116864 March et al. May 1992 A
5117828 Metzger et al. Jun 1992 A
5123413 Hasegawa et al. Jun 1992 A
5126375 Skidmore et al. Jun 1992 A
5135480 Bannon et al. Aug 1992 A
5135517 McCoy Aug 1992 A
5139029 Fishman et al. Aug 1992 A
5151100 Abele et al. Sep 1992 A
5152286 Sitko et al. Oct 1992 A
5158536 Sekins et al. Oct 1992 A
5165420 Strickland Nov 1992 A
5167223 Koros et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5170803 Hewson et al. Dec 1992 A
5174288 Bardy et al. Dec 1992 A
5188602 Nichols Feb 1993 A
5190540 Lee Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5213576 Abiuso et al. May 1993 A
5215103 Desai Jun 1993 A
5224491 Mehra Jul 1993 A
5225445 Skidmore et al. Jul 1993 A
5231996 Bardy et al. Aug 1993 A
5232444 Just et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5239982 Trauthen Aug 1993 A
5254088 Lundquist et al. Oct 1993 A
5255678 Deslauriers et al. Oct 1993 A
5255679 Imran Oct 1993 A
5265604 Vince Nov 1993 A
5269758 Taheri Dec 1993 A
5271383 Wilk Dec 1993 A
5281218 Imran Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5292331 Boneau Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5311866 Kagan et al. May 1994 A
5313943 Houser et al. May 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5331947 Shturman Jul 1994 A
5343936 Beatenbough et al. Sep 1994 A
5344398 Hara Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5348554 Imran et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5372603 Acker et al. Dec 1994 A
5374287 Rubin Dec 1994 A
5379765 Kajiwara et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5393207 Maher et al. Feb 1995 A
5394880 Atlee, III Mar 1995 A
5396887 Imran Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5405362 Kramer et al. Apr 1995 A
5405366 Fox et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5409710 Leonard Apr 1995 A
5411025 Webster, Jr. May 1995 A
5415166 Imran May 1995 A
5415656 Tihon et al. May 1995 A
5417687 Nardella et al. May 1995 A
5422362 Vincent et al. Jun 1995 A
5423744 Gencheff et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425023 Haraguchi et al. Jun 1995 A
5425703 Feiring Jun 1995 A
5425811 Mashita Jun 1995 A
5431696 Atlee, III Jul 1995 A
5433730 Alt Jul 1995 A
5437665 Munro Aug 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5454840 Krakovsky et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5470352 Rappaport Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478578 Arnold et al. Dec 1995 A
5496271 Burton et al. Mar 1996 A
5496304 Chasan Mar 1996 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5500011 Desai Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507791 Sit'ko Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5545161 Imran Aug 1996 A
5545193 Fleischman et al. Aug 1996 A
5547469 Rowland et al. Aug 1996 A
5549559 Eshel Aug 1996 A
5549655 Erickson Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5553611 Budd et al. Sep 1996 A
5558073 Pomeranz et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5571074 Buckman, Jr. et al. Nov 1996 A
5571088 Lennox et al. Nov 1996 A
5574059 Regunathan et al. Nov 1996 A
5578072 Barone et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5588812 Taylor et al. Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5601088 Swanson et al. Feb 1997 A
5605157 Panescu et al. Feb 1997 A
5607419 Amplatz et al. Mar 1997 A
5607462 Imran Mar 1997 A
5620438 Amplatz et al. Apr 1997 A
5620463 Drolet Apr 1997 A
5623940 Daikuzono Apr 1997 A
5624392 Saab Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5626618 Ward et al. May 1997 A
5630425 Panescu et al. May 1997 A
5630794 Lax et al. May 1997 A
5630813 Kieturakis May 1997 A
5634471 Fairfax et al. Jun 1997 A
5641326 Adams Jun 1997 A
5647870 Kordis et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5658322 Fleming Aug 1997 A
5658549 Akehurst et al. Aug 1997 A
5660175 Dayal Aug 1997 A
5662108 Budd et al. Sep 1997 A
5669930 Igarashi Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5674472 Akehurst et al. Oct 1997 A
5678535 DiMarco Oct 1997 A
5680860 Imran Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690692 Fleming Nov 1997 A
5693078 Desai et al. Dec 1997 A
5694934 Edelman Dec 1997 A
5695471 Wampler Dec 1997 A
5699799 Xu et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5707218 Maher et al. Jan 1998 A
5707336 Rubin Jan 1998 A
5707352 Sekins et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 McGee et al. Mar 1998 A
5722416 Swanson et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5727569 Benetti et al. Mar 1998 A
5728094 Edwards Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5730704 Avitall Mar 1998 A
5730726 Klingenstein Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5733316 Tierney et al. Mar 1998 A
5733319 Neilson et al. Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5746224 Edwards May 1998 A
5752518 McGee et al. May 1998 A
5755714 Murphy-Chutorian May 1998 A
5755753 Knowlton May 1998 A
5759158 Swanson Jun 1998 A
5765568 Sweezer, Jr. et al. Jun 1998 A
5766605 Sanders et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5772590 Webster, Jr. Jun 1998 A
5779669 Haissaguerre et al. Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782239 Webster, Jr. Jul 1998 A
5782797 Schweich, Jr. et al. Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782848 Lennox Jul 1998 A
5782899 Imran Jul 1998 A
5792064 Panescu et al. Aug 1998 A
5795303 Swanson et al. Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5800486 Thome et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810757 Sweezer, Jr. et al. Sep 1998 A
5810807 Ganz et al. Sep 1998 A
5814078 Zhou et al. Sep 1998 A
5817028 Anderson Oct 1998 A
5817073 Krespi Oct 1998 A
5820554 Davis et al. Oct 1998 A
5820589 Torgerson et al. Oct 1998 A
5823189 Kordis Oct 1998 A
5827277 Edwards Oct 1998 A
5833651 Donovan et al. Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5843075 Taylor Dec 1998 A
5843077 Edwards Dec 1998 A
5843088 Barra et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5849026 Zhou et al. Dec 1998 A
5855577 Murphy-Chutorian et al. Jan 1999 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871443 Edwards et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5873852 Vigil et al. Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5876399 Chia et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5891027 Tu et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5891182 Fleming Apr 1999 A
5893847 Kordis Apr 1999 A
5893887 Jayaraman Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5902268 Saab May 1999 A
5904651 Swanson et al. May 1999 A
5904711 Flom et al. May 1999 A
5906636 Casscells, III et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5908446 Imran Jun 1999 A
5908839 Levitt et al. Jun 1999 A
5911218 DiMarco Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919147 Jain Jul 1999 A
5919172 Golba, Jr. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5931806 Shimada Aug 1999 A
5931835 Mackey Aug 1999 A
5935079 Swanson et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5951494 Wang et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5954662 Swanson et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5956501 Brown Sep 1999 A
5957919 Laufer Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5964223 Baran Oct 1999 A
5964753 Edwards Oct 1999 A
5964796 Imran Oct 1999 A
5971983 Lesh Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5976175 Hirano et al. Nov 1999 A
5976709 Kageyama et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5980563 Tu et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
5989545 Foster et al. Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992419 Sterzer et al. Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5995873 Rhodes Nov 1999 A
5997534 Tu et al. Dec 1999 A
5999855 DiMarco Dec 1999 A
6001054 Regulla et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6008211 Robinson et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010500 Sherman et al. Jan 2000 A
6012457 Lesh Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6029091 De La Rama et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6043273 Duhaylongsod Mar 2000 A
6045549 Smethers et al. Apr 2000 A
6045550 Simpson et al. Apr 2000 A
6050992 Nichols Apr 2000 A
6052607 Edwards et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056769 Epstein et al. May 2000 A
6060454 Duhaylongsod May 2000 A
6063078 Wittkampf May 2000 A
6063768 First May 2000 A
6071280 Edwards et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6083255 Laufer et al. Jul 2000 A
6087394 Duhaylongsod Jul 2000 A
6090104 Webster, Jr. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6092528 Edwards Jul 2000 A
6097985 Kasevich et al. Aug 2000 A
6101412 Duhaylongsod Aug 2000 A
6102886 Lundquist et al. Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6125301 Capel Sep 2000 A
6127410 Duhaylongsod Oct 2000 A
6129726 Edwards et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6139571 Fuller et al. Oct 2000 A
6139845 Donovan Oct 2000 A
6141589 Duhaylongsod Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6143013 Samson et al. Nov 2000 A
6143277 Ashurst et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152143 Edwards Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152953 Hipskind Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6163716 Edwards et al. Dec 2000 A
6174323 Biggs et al. Jan 2001 B1
6179833 Taylor Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6197013 Reed et al. Mar 2001 B1
6198970 Freed et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200332 Del Giglio Mar 2001 B1
6200333 Laufer Mar 2001 B1
6203562 Ohkubo Mar 2001 B1
6210013 Bousfield Apr 2001 B1
6210355 Edwards et al. Apr 2001 B1
6210367 Carr Apr 2001 B1
6212432 Matsuura Apr 2001 B1
6212433 Behl Apr 2001 B1
6214002 Fleischman et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6226543 Gilboa et al. May 2001 B1
6230052 Wolff et al. May 2001 B1
6231595 Dobak, III May 2001 B1
6235024 Tu May 2001 B1
6238392 Long May 2001 B1
6240307 Beatty et al. May 2001 B1
6241727 Tu et al. Jun 2001 B1
6245040 Inderbitzen et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251368 Akehurst et al. Jun 2001 B1
6253762 Britto Jul 2001 B1
6254598 Edwards et al. Jul 2001 B1
6254599 Lesh et al. Jul 2001 B1
6258083 Daniel et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264653 Falwell Jul 2001 B1
6265379 Donovan Jul 2001 B1
6269813 Fitzgerald et al. Aug 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6273907 Laufer Aug 2001 B1
6283987 Laird et al. Sep 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6302870 Jacobsen et al. Oct 2001 B1
6303509 Chen et al. Oct 2001 B1
6306423 Donovan et al. Oct 2001 B1
6315173 Di Giovanni et al. Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6317615 Kenknight et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6325798 Edwards et al. Dec 2001 B1
6327503 Familoni Dec 2001 B1
6338727 Noda et al. Jan 2002 B1
6338836 Kuth et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6346104 Daly et al. Feb 2002 B2
6355031 Edwards et al. Mar 2002 B1
6356786 Rezai et al. Mar 2002 B1
6356787 Rezai et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6358245 Edwards et al. Mar 2002 B1
6358926 Donovan Mar 2002 B2
6361554 Brisken Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6366814 Boveja et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6383509 Donovan et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6402744 Edwards et al. Jun 2002 B2
6405732 Edwards et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6414018 Duhaylongsod Jul 2002 B1
6416511 Lesh et al. Jul 2002 B1
6416740 Unger Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6423105 Iijima et al. Jul 2002 B1
6424864 Matsuura Jul 2002 B1
6425877 Edwards Jul 2002 B1
6425887 McGuckin et al. Jul 2002 B1
6425895 Swanson et al. Jul 2002 B1
6432092 Miller Aug 2002 B2
6436130 Philips et al. Aug 2002 B1
6438423 Rezai et al. Aug 2002 B1
6440128 Edwards et al. Aug 2002 B1
6440129 Simpson Aug 2002 B1
6442435 King et al. Aug 2002 B2
6447505 McGovern et al. Sep 2002 B2
6447785 Donovan Sep 2002 B1
6448231 Graham Sep 2002 B2
6451013 Bays et al. Sep 2002 B1
6458121 Rosenstock et al. Oct 2002 B1
6460545 Kordis Oct 2002 B2
6464680 Brisken et al. Oct 2002 B1
6464697 Edwards et al. Oct 2002 B1
6475160 Sher Nov 2002 B1
6480746 Ingle et al. Nov 2002 B1
6485416 Platt et al. Nov 2002 B1
6488673 Laufer et al. Dec 2002 B1
6488679 Swanson et al. Dec 2002 B1
6491710 Satake Dec 2002 B2
6493589 Medhkour et al. Dec 2002 B1
6494880 Swanson et al. Dec 2002 B1
6496737 Rudie et al. Dec 2002 B2
6496738 Carr Dec 2002 B2
6506399 Donovan Jan 2003 B2
6510969 Di Giovanni et al. Jan 2003 B2
6514246 Swanson et al. Feb 2003 B1
6514290 Loomas Feb 2003 B1
6519488 Kenknight et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6524555 Ashurst et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6526976 Baran Mar 2003 B1
6529756 Phan et al. Mar 2003 B1
6532388 Hill et al. Mar 2003 B1
6533780 Laird et al. Mar 2003 B1
6536427 Davies et al. Mar 2003 B2
6544226 Gaiser et al. Apr 2003 B1
6544262 Fleischman Apr 2003 B2
6546928 Ashurst et al. Apr 2003 B1
6546932 Nahon et al. Apr 2003 B1
6546934 Ingle et al. Apr 2003 B1
6547776 Gaiser et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549808 Gisel et al. Apr 2003 B1
6551274 Heiner Apr 2003 B2
6551310 Ganz et al. Apr 2003 B1
6558333 Gilboa et al. May 2003 B2
6558378 Sherman et al. May 2003 B2
6558381 Ingle et al. May 2003 B2
6562034 Edwards et al. May 2003 B2
6572612 Stewart et al. Jun 2003 B2
6575623 Werneth Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582430 Hall Jun 2003 B2
6587718 Talpade Jul 2003 B2
6587719 Barrett et al. Jul 2003 B1
6587731 Ingle et al. Jul 2003 B1
6589235 Wong et al. Jul 2003 B2
6589238 Edwards et al. Jul 2003 B2
6593130 Sen et al. Jul 2003 B1
6599311 Biggs et al. Jul 2003 B1
6601581 Babaev Aug 2003 B1
6603996 Beatty et al. Aug 2003 B1
6610054 Edwards et al. Aug 2003 B1
6610083 Keller et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6613002 Clark et al. Sep 2003 B1
6613045 Laufer et al. Sep 2003 B1
6620159 Hegde Sep 2003 B2
6620415 Donovan Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6623742 Voet Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6626903 McGuckin, Jr. et al. Sep 2003 B2
6629535 Ingle et al. Oct 2003 B2
6629951 Laufer et al. Oct 2003 B2
6632440 Quinn et al. Oct 2003 B1
6633779 Schuler et al. Oct 2003 B1
6634363 Danek et al. Oct 2003 B1
6635054 Fjield et al. Oct 2003 B2
6635056 Kadhiresan et al. Oct 2003 B2
6638273 Farley et al. Oct 2003 B1
6640119 Budd et al. Oct 2003 B1
6640120 Swanson et al. Oct 2003 B1
6645200 Koblish et al. Nov 2003 B1
6645496 Aoki et al. Nov 2003 B2
6647617 Beatty et al. Nov 2003 B1
6648881 Kenknight et al. Nov 2003 B2
6649161 Donovan Nov 2003 B1
6652517 Hall et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6656960 Puskas Dec 2003 B2
6658279 Swanson et al. Dec 2003 B2
6663622 Foley et al. Dec 2003 B1
6666858 Lafontaine Dec 2003 B2
6669693 Friedman Dec 2003 B2
6671533 Chen et al. Dec 2003 B2
6673068 Berube Jan 2004 B1
6673070 Edwards et al. Jan 2004 B2
6675047 Konoplev et al. Jan 2004 B1
6676686 Naganuma Jan 2004 B2
6681136 Schuler et al. Jan 2004 B2
6692492 Simpson et al. Feb 2004 B2
6692494 Cooper et al. Feb 2004 B1
6699180 Kobayashi Mar 2004 B2
6699243 West et al. Mar 2004 B2
6708064 Rezai Mar 2004 B2
6711436 Duhaylongsod Mar 2004 B1
6712074 Edwards et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6712814 Edwards et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6719685 Fujikura et al. Apr 2004 B2
6719694 Weng et al. Apr 2004 B2
6723053 Ackerman et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6728562 Budd et al. Apr 2004 B1
6735471 Hill et al. May 2004 B2
6735475 Whitehurst et al. May 2004 B1
6740321 Donovan May 2004 B1
6743197 Edwards Jun 2004 B1
6743413 Schultz et al. Jun 2004 B1
6749604 Eggers et al. Jun 2004 B1
6749606 Keast et al. Jun 2004 B2
6752765 Jensen et al. Jun 2004 B1
6755026 Wallach Jun 2004 B2
6755849 Gowda et al. Jun 2004 B1
6767347 Sharkey et al. Jul 2004 B2
6767544 Brooks et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6772013 Frank et al. Aug 2004 B1
6773711 Voet et al. Aug 2004 B2
6776991 Naumann Aug 2004 B2
6777423 Banholzer et al. Aug 2004 B2
6778854 Puskas Aug 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6786889 Musbach et al. Sep 2004 B1
6802843 Truckai et al. Oct 2004 B2
6805131 Kordis Oct 2004 B2
6819956 DiLorenzo Nov 2004 B2
6826420 Beatty et al. Nov 2004 B1
6826421 Beatty et al. Nov 2004 B1
6827931 Donovan Dec 2004 B1
6836688 Ingle et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6838429 Paslin Jan 2005 B2
6838434 Voet Jan 2005 B2
6838471 Tracey Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6841156 Aoki et al. Jan 2005 B2
6843998 Steward et al. Jan 2005 B1
6846312 Edwards et al. Jan 2005 B2
6847849 Mamo et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6852110 Roy et al. Feb 2005 B2
6861058 Aoki et al. Mar 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6871092 Piccone Mar 2005 B2
6872206 Edwards et al. Mar 2005 B2
6872397 Aoki et al. Mar 2005 B2
6878156 Noda Apr 2005 B1
6881213 Ryan et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6890347 Machold et al. May 2005 B2
6893436 Woodard et al. May 2005 B2
6893438 Hall et al. May 2005 B2
6893439 Fleischman May 2005 B2
6895267 Panescu et al. May 2005 B2
6904303 Phan et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6908928 Banholzer et al. Jun 2005 B2
6913616 Hamilton et al. Jul 2005 B2
6917834 Koblish et al. Jul 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6937896 Kroll Aug 2005 B1
6937903 Schuler et al. Aug 2005 B2
6939309 Beatty et al. Sep 2005 B1
6939345 Kenknight et al. Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6947785 Beatty et al. Sep 2005 B1
6954977 Maguire et al. Oct 2005 B2
6957106 Schuler et al. Oct 2005 B2
6961622 Gilbert Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
RE38912 Walz et al. Dec 2005 E
6971395 Edwards et al. Dec 2005 B2
6974224 Thomas-Benedict Dec 2005 B2
6974456 Edwards et al. Dec 2005 B2
6974578 Aoki et al. Dec 2005 B1
6978168 Beatty et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6990370 Beatty et al. Jan 2006 B1
6994706 Chornenky et al. Feb 2006 B2
6997189 Biggs et al. Feb 2006 B2
7004942 Laird et al. Feb 2006 B2
7022088 Keast et al. Apr 2006 B2
7022105 Edwards Apr 2006 B1
7027869 Danek et al. Apr 2006 B2
7043307 Zelickson et al. May 2006 B1
7070800 Bechtold-Peters et al. Jul 2006 B2
7072720 Puskas Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7101368 Lafontaine Sep 2006 B2
7101387 Garabedian et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7104990 Jenkins et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7118568 Hassett et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7122033 Wood Oct 2006 B2
7125407 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7142910 Puskas Nov 2006 B2
7150745 Stern et al. Dec 2006 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7167757 Ingle et al. Jan 2007 B2
7175644 Cooper et al. Feb 2007 B2
7179257 West et al. Feb 2007 B2
7186251 Malecki et al. Mar 2007 B2
7187964 Khoury Mar 2007 B2
7187973 Hauck Mar 2007 B2
7189208 Beatty et al. Mar 2007 B1
7198635 Danek et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7229469 Witzel et al. Jun 2007 B1
7238357 Barron Jul 2007 B2
7241295 Maguire Jul 2007 B2
7255693 Johnston et al. Aug 2007 B1
RE39820 Banholzer et al. Sep 2007 E
7264002 Danek et al. Sep 2007 B2
7266414 Cornelius et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7289843 Beatty et al. Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7292890 Whitehurst et al. Nov 2007 B2
7309707 Bender et al. Dec 2007 B2
7310552 Puskas Dec 2007 B2
RE40045 Palmer Feb 2008 E
7326207 Edwards Feb 2008 B2
7344535 Stern et al. Mar 2008 B2
7371231 Rioux et al. May 2008 B2
7393330 Keast et al. Jul 2008 B2
7393350 Maurice Jul 2008 B2
7394976 Entenman et al. Jul 2008 B2
7402172 Chin et al. Jul 2008 B2
7422563 Roschak et al. Sep 2008 B2
7422584 Loomas et al. Sep 2008 B2
7425212 Danek et al. Sep 2008 B1
7430449 Aldrich et al. Sep 2008 B2
7462162 Phan et al. Dec 2008 B2
7462179 Edwards et al. Dec 2008 B2
7473273 Campbell Jan 2009 B2
7477945 Rezai et al. Jan 2009 B2
7483755 Ingle et al. Jan 2009 B2
7493160 Weber et al. Feb 2009 B2
7494661 Sanders Feb 2009 B2
7507234 Utley et al. Mar 2009 B2
7507238 Edwards et al. Mar 2009 B2
7517320 Wibowo et al. Apr 2009 B2
7530979 Ganz et al. May 2009 B2
7532938 Machado et al. May 2009 B2
7542802 Danek et al. Jun 2009 B2
7553307 Bleich et al. Jun 2009 B2
7556624 Laufer et al. Jul 2009 B2
7559890 Wallace et al. Jul 2009 B2
7572245 Herweck et al. Aug 2009 B2
7585296 Edwards et al. Sep 2009 B2
7588549 Eccleston Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7608275 Deem et al. Oct 2009 B2
7613515 Knudson et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7628789 Soltesz et al. Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7641632 Noda et al. Jan 2010 B2
7641633 Laufer et al. Jan 2010 B2
7648500 Edwards et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7684865 Aldrich et al. Mar 2010 B2
7689290 Ingle et al. Mar 2010 B2
7691079 Gobel et al. Apr 2010 B2
RE41334 Beatty et al. May 2010 E
7708712 Phan et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7711430 Errico et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722538 Khoury May 2010 B2
7725188 Errico et al. May 2010 B2
7734355 Cohen et al. Jun 2010 B2
7734535 Burns Jun 2010 B1
7740017 Danek et al. Jun 2010 B2
7740631 Bleich et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7747324 Errico et al. Jun 2010 B2
7756583 Demarais et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7770584 Danek et al. Aug 2010 B2
7783358 Aldrich et al. Aug 2010 B2
7815590 Cooper Oct 2010 B2
7826881 Beatty et al. Nov 2010 B1
7831288 Beatty et al. Nov 2010 B1
7837676 Sinelnikov et al. Nov 2010 B2
7837679 Biggs et al. Nov 2010 B2
7841986 He et al. Nov 2010 B2
7844338 Knudson et al. Nov 2010 B2
7853331 Kaplan et al. Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7854740 Carney Dec 2010 B2
7869879 Errico et al. Jan 2011 B2
7869880 Errico et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7877146 Rezai et al. Jan 2011 B2
7904159 Errico et al. Mar 2011 B2
7906124 Laufer et al. Mar 2011 B2
7914448 Bob et al. Mar 2011 B2
7921855 Danek et al. Apr 2011 B2
7930012 Beatty et al. Apr 2011 B2
7931647 Wizeman et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938123 Danek et al. May 2011 B2
7949407 Kaplan et al. May 2011 B2
7967782 Laufer et al. Jun 2011 B2
7985187 Wibowo et al. Jul 2011 B2
7992572 Danek et al. Aug 2011 B2
7993336 Jackson et al. Aug 2011 B2
8002740 Willink et al. Aug 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8010197 Errico et al. Aug 2011 B2
8012149 Jackson et al. Sep 2011 B2
8041428 Errico et al. Oct 2011 B2
8046085 Knudson et al. Oct 2011 B2
8052668 Sih Nov 2011 B2
8088127 Mayse et al. Jan 2012 B2
8099167 Errico et al. Jan 2012 B1
8105817 Deem et al. Jan 2012 B2
8128595 Walker et al. Mar 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarais et al. Mar 2012 B2
8133497 Deem et al. Mar 2012 B2
8152803 Edwards et al. Apr 2012 B2
8172827 Deem et al. May 2012 B2
8204598 Errico et al. Jun 2012 B2
8208998 Beatty et al. Jun 2012 B2
8209034 Simon et al. Jun 2012 B2
8216216 Warnking et al. Jul 2012 B2
8226638 Mayse et al. Jul 2012 B2
8229564 Rezai Jul 2012 B2
8231621 Hutchins et al. Jul 2012 B2
8233988 Errico et al. Jul 2012 B2
8251992 Utley et al. Aug 2012 B2
8267094 Danek et al. Sep 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8313484 Edwards et al. Nov 2012 B2
8328798 Witzel et al. Dec 2012 B2
8338164 Deem et al. Dec 2012 B2
8347891 Demarais et al. Jan 2013 B2
8357118 Orr Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8371303 Schaner et al. Feb 2013 B2
8377055 Jackson et al. Feb 2013 B2
8454594 Demarais Jun 2013 B2
8483831 Hlvaka et al. Jul 2013 B1
8489192 Hlvaka et al. Jul 2013 B1
8660647 Parnis et al. Feb 2014 B2
8731672 Hlvaka et al. May 2014 B2
8740895 Mayse et al. Jun 2014 B2
8777943 Mayse et al. Jul 2014 B2
8808280 Mayse et al. Aug 2014 B2
8821489 Mayse et al. Sep 2014 B2
8911439 Mayse et al. Dec 2014 B2
8932289 Mayse et al. Jan 2015 B2
8961391 Deem et al. Feb 2015 B2
8961507 Mayse et al. Feb 2015 B2
8961508 Mayse et al. Feb 2015 B2
9005195 Mayse et al. Apr 2015 B2
9017324 Mayse et al. Apr 2015 B2
9125643 Hlvaka et al. Sep 2015 B2
9149328 Dimmer et al. Oct 2015 B2
9192435 Jenson Nov 2015 B2
9339618 Deem et al. May 2016 B2
9398933 Mayse Jul 2016 B2
9498283 Deem et al. Nov 2016 B2
9539048 Hlvaka et al. Jan 2017 B2
9649153 Mayse et al. May 2017 B2
9649154 Mayse et al. May 2017 B2
9662171 Dimmer et al. May 2017 B2
9668809 Mayse et al. Jun 2017 B2
9675412 Mayse et al. Jun 2017 B2
9867986 Hlvaka et al. Jan 2018 B2
9931162 Mayse et al. Apr 2018 B2
10022529 Deem et al. Jul 2018 B2
10149714 Mayse et al. Dec 2018 B2
10201386 Mayse et al. Feb 2019 B2
10206735 Kaveckis et al. Feb 2019 B2
10252057 Hlvaka et al. Apr 2019 B2
10363091 Dimmer et al. Jul 2019 B2
10368937 Kaveckis et al. Aug 2019 B2
10575893 Mayse Mar 2020 B2
10610283 Mayse et al. Apr 2020 B2
10729897 Deem et al. Aug 2020 B2
10869997 Mayse Dec 2020 B2
20010020151 Reed et al. Sep 2001 A1
20010044596 Jaafar Nov 2001 A1
20020002387 Naganuma Jan 2002 A1
20020010495 Freed et al. Jan 2002 A1
20020013581 Edwards et al. Jan 2002 A1
20020016344 Tracey Feb 2002 A1
20020042564 Cooper et al. Apr 2002 A1
20020042565 Cooper et al. Apr 2002 A1
20020049370 Laufer et al. Apr 2002 A1
20020072738 Edwards et al. Jun 2002 A1
20020082197 Aoki et al. Jun 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020091379 Danek et al. Jul 2002 A1
20020107512 Edwards Aug 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020111386 Sekins et al. Aug 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020115991 Edwards Aug 2002 A1
20020116030 Rezai Aug 2002 A1
20020143302 Hinchliffe et al. Oct 2002 A1
20020143326 Foley et al. Oct 2002 A1
20020143373 Courtnage et al. Oct 2002 A1
20020151888 Edwards et al. Oct 2002 A1
20020183682 Darvish Dec 2002 A1
20020198512 Seward Dec 2002 A1
20020198570 Puskas Dec 2002 A1
20020198574 Gumpert Dec 2002 A1
20030018344 Kaji et al. Jan 2003 A1
20030023287 Edwards et al. Jan 2003 A1
20030027752 Steward et al. Feb 2003 A1
20030050591 Patrick McHale Mar 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030070676 Cooper et al. Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030093069 Panescu et al. May 2003 A1
20030093128 Freed et al. May 2003 A1
20030100895 Simpson et al. May 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030130657 Tom et al. Jul 2003 A1
20030144572 Oschman et al. Jul 2003 A1
20030153905 Edwards et al. Aug 2003 A1
20030159700 Laufer et al. Aug 2003 A1
20030181949 Whale Sep 2003 A1
20030187430 Vorisek Oct 2003 A1
20030195593 Ingle et al. Oct 2003 A1
20030195604 Ingle et al. Oct 2003 A1
20030202990 Donovan et al. Oct 2003 A1
20030208103 Sonnenschein et al. Nov 2003 A1
20030211121 Donovan Nov 2003 A1
20030216791 Schuler et al. Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030216891 Wegener Nov 2003 A1
20030225443 Kiran et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20030236455 Swanson et al. Dec 2003 A1
20040006268 Gilboa et al. Jan 2004 A1
20040009180 Donovan Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040010290 Schroeppel et al. Jan 2004 A1
20040028676 Klein et al. Feb 2004 A1
20040029849 Schatzberg et al. Feb 2004 A1
20040030368 Kemeny et al. Feb 2004 A1
20040031494 Danek et al. Feb 2004 A1
20040044390 Szeles Mar 2004 A1
20040059383 Puskas Mar 2004 A1
20040073201 Cooper et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040073278 Pachys Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040086531 Barron May 2004 A1
20040087936 Stern et al. May 2004 A1
20040088030 Jung, Jr. May 2004 A1
20040088036 Gilbert May 2004 A1
20040091880 Wiebusch et al. May 2004 A1
20040106954 Whitehurst et al. Jun 2004 A1
20040116981 Mazar Jun 2004 A1
20040122488 Mazar et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040127942 Yomtov et al. Jul 2004 A1
20040127958 Mazar et al. Jul 2004 A1
20040142005 Brooks et al. Jul 2004 A1
20040147921 Stuart et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147988 Stephens Jul 2004 A1
20040151741 Borodic Aug 2004 A1
20040153056 Muller et al. Aug 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040162584 Hill et al. Aug 2004 A1
20040162597 Hamilton et al. Aug 2004 A1
20040167509 Taimisto Aug 2004 A1
20040167580 Mann et al. Aug 2004 A1
20040172075 Shafer et al. Sep 2004 A1
20040172080 Stadler et al. Sep 2004 A1
20040172084 Knudson et al. Sep 2004 A1
20040175399 Schiffman Sep 2004 A1
20040176803 Whelan et al. Sep 2004 A1
20040176805 Whelan et al. Sep 2004 A1
20040182399 Danek et al. Sep 2004 A1
20040186435 Seward Sep 2004 A1
20040204747 Kemeny et al. Oct 2004 A1
20040213813 Ackerman Oct 2004 A1
20040213814 Ackerman Oct 2004 A1
20040215235 Jackson et al. Oct 2004 A1
20040215289 Fukui Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040220621 Zhou et al. Nov 2004 A1
20040226556 Deem et al. Nov 2004 A1
20040230251 Schuler et al. Nov 2004 A1
20040230252 Kullok et al. Nov 2004 A1
20040243118 Ayers et al. Dec 2004 A1
20040243182 Cohen et al. Dec 2004 A1
20040248188 Sanders Dec 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040253274 Voet Dec 2004 A1
20050004609 Stahmann et al. Jan 2005 A1
20050004631 Benedict Jan 2005 A1
20050010263 Schauerte Jan 2005 A1
20050010270 Laufer Jan 2005 A1
20050015117 Gerber Jan 2005 A1
20050019346 Boulis Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050049615 Cooper et al. Mar 2005 A1
20050055020 Skarda Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050059153 George et al. Mar 2005 A1
20050060041 Phan et al. Mar 2005 A1
20050060042 Phan et al. Mar 2005 A1
20050060044 Roschak et al. Mar 2005 A1
20050065553 Ben Ezra et al. Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065567 Lee et al. Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050065584 Schiff et al. Mar 2005 A1
20050074461 Donovan Apr 2005 A1
20050076909 Stahmann et al. Apr 2005 A1
20050080461 Stahmann et al. Apr 2005 A1
20050085801 Cooper et al. Apr 2005 A1
20050090722 Perez Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050096644 Hall et al. May 2005 A1
20050107783 Tom et al. May 2005 A1
20050107829 Edwards et al. May 2005 A1
20050107853 Krespi et al. May 2005 A1
20050125044 Tracey Jun 2005 A1
20050137518 Biggs et al. Jun 2005 A1
20050137611 Escudero et al. Jun 2005 A1
20050137715 Phan et al. Jun 2005 A1
20050143788 Yun et al. Jun 2005 A1
20050149146 Boveja et al. Jul 2005 A1
20050152924 Voet Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050159736 Danek et al. Jul 2005 A9
20050165456 Mann et al. Jul 2005 A1
20050171396 Pankratov et al. Aug 2005 A1
20050177144 Phan et al. Aug 2005 A1
20050177192 Rezai et al. Aug 2005 A1
20050182288 Zabara Aug 2005 A1
20050182393 Abboud et al. Aug 2005 A1
20050183732 Edwards Aug 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050193279 Daners Sep 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050222628 Krakousky Oct 2005 A1
20050222635 Krakovsky Oct 2005 A1
20050222651 Jung, Jr. Oct 2005 A1
20050228054 Tatton Oct 2005 A1
20050228459 Levin et al. Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050234523 Levin et al. Oct 2005 A1
20050238693 Whyte Oct 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050245926 Edwards et al. Nov 2005 A1
20050245992 Persen et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050251213 Freeman Nov 2005 A1
20050255317 Bavaro et al. Nov 2005 A1
20050256028 Yun et al. Nov 2005 A1
20050261747 Schuler et al. Nov 2005 A1
20050267536 Freeman et al. Dec 2005 A1
20050277993 Mower Dec 2005 A1
20050283197 Daum et al. Dec 2005 A1
20060009758 Edwards et al. Jan 2006 A1
20060015151 Aldrich Jan 2006 A1
20060058692 Beatty et al. Mar 2006 A1
20060058693 Beatty et al. Mar 2006 A1
20060058780 Edwards et al. Mar 2006 A1
20060062808 Laufer et al. Mar 2006 A1
20060079887 Buysse et al. Apr 2006 A1
20060084884 Beatty et al. Apr 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060084970 Bea, I et al. Apr 2006 A1
20060084971 Beatty et al. Apr 2006 A1
20060084972 Beatty et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060095032 Jackson et al. May 2006 A1
20060100495 Santoianni May 2006 A1
20060100666 Wilkinson et al. May 2006 A1
20060106361 Muni et al. May 2006 A1
20060111755 Stone et al. May 2006 A1
20060116749 Willink et al. Jun 2006 A1
20060118127 Chinn Jun 2006 A1
20060135953 Kania et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060137698 Danek et al. Jun 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060178703 Huston et al. Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060222667 Deem et al. Oct 2006 A1
20060225742 Deem et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060241523 Sinelnikov et al. Oct 2006 A1
20060247617 Danek et al. Nov 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247683 Danek et al. Nov 2006 A1
20060247726 Biggs et al. Nov 2006 A1
20060247727 Biggs et al. Nov 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060254600 Danek et al. Nov 2006 A1
20060259028 Utley et al. Nov 2006 A1
20060259029 Utley et al. Nov 2006 A1
20060259030 Utley et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060276807 Keast et al. Dec 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20060278243 Danek et al. Dec 2006 A1
20060278244 Danek et al. Dec 2006 A1
20060280772 Roschak et al. Dec 2006 A1
20060280773 Roschak et al. Dec 2006 A1
20060282071 Utley et al. Dec 2006 A1
20060287679 Stone Dec 2006 A1
20070021803 Deem et al. Jan 2007 A1
20070025919 Deem et al. Feb 2007 A1
20070027496 Parnis et al. Feb 2007 A1
20070032788 Edwards et al. Feb 2007 A1
20070043342 Kleinberger Feb 2007 A1
20070043350 Soltesz et al. Feb 2007 A1
20070055328 Mayse et al. Mar 2007 A1
20070060954 Cameron et al. Mar 2007 A1
20070060990 Satake Mar 2007 A1
20070062545 Danek et al. Mar 2007 A1
20070066957 Demarais et al. Mar 2007 A1
20070074719 Danek et al. Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070083197 Danek et al. Apr 2007 A1
20070083239 Demarais et al. Apr 2007 A1
20070093802 Danek et al. Apr 2007 A1
20070093809 Edwards et al. Apr 2007 A1
20070100390 Danaek et al. May 2007 A1
20070102011 Danek et al. May 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106296 Laufer et al. May 2007 A1
20070106337 Errico et al. May 2007 A1
20070106338 Errico May 2007 A1
20070106339 Errico et al. May 2007 A1
20070106348 Laufer May 2007 A1
20070112349 Danek et al. May 2007 A1
20070118184 Danek et al. May 2007 A1
20070118190 Danek et al. May 2007 A1
20070123922 Cooper et al. May 2007 A1
20070123958 Laufer May 2007 A1
20070123961 Danek et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070156185 Swanson et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070191902 Errico et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070225768 Dobak, III Sep 2007 A1
20070232896 Gilboa et al. Oct 2007 A1
20070239256 Weber et al. Oct 2007 A1
20070244479 Beatty et al. Oct 2007 A1
20070250050 Lafontaine Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070255304 Roschak et al. Nov 2007 A1
20070265639 Danek et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070267011 Deem et al. Nov 2007 A1
20070270794 Anderson et al. Nov 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080021274 Bayer et al. Jan 2008 A1
20080021369 Deem et al. Jan 2008 A1
20080051839 Libbus et al. Feb 2008 A1
20080086107 Roschak Apr 2008 A1
20080097422 Edwards et al. Apr 2008 A1
20080097424 Wizeman et al. Apr 2008 A1
20080125772 Stone et al. May 2008 A1
20080147137 Cohen et al. Jun 2008 A1
20080154258 Chang et al. Jun 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080183248 Rezai et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080194956 Aldrich et al. Aug 2008 A1
20080208305 Rezai et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080234564 Beatty et al. Sep 2008 A1
20080243112 De Neve Oct 2008 A1
20080255449 Warnking et al. Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275445 Kelly et al. Nov 2008 A1
20080302359 Loomas et al. Dec 2008 A1
20080306570 Rezai et al. Dec 2008 A1
20080312543 Laufer et al. Dec 2008 A1
20080312725 Penner Dec 2008 A1
20080319350 Wallace et al. Dec 2008 A1
20090018473 Aldrich et al. Jan 2009 A1
20090018538 Webster et al. Jan 2009 A1
20090022197 Hisa et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043301 Jarrard et al. Feb 2009 A1
20090043302 Ford et al. Feb 2009 A1
20090048593 Ganz et al. Feb 2009 A1
20090060953 San Mar 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069797 Danek et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090076491 Roschak et al. Mar 2009 A1
20090112203 Danek et al. Apr 2009 A1
20090124883 Wibowo et al. May 2009 A1
20090131765 Roschak et al. May 2009 A1
20090131928 Edwards et al. May 2009 A1
20090131930 Gelbart et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090143776 Danek et al. Jun 2009 A1
20090143831 Huston et al. Jun 2009 A1
20090155336 Rezai Jun 2009 A1
20090177192 Rioux et al. Jul 2009 A1
20090192505 Askew et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090204005 Keast et al. Aug 2009 A1
20090204119 Bleich et al. Aug 2009 A1
20090221997 Arnold et al. Sep 2009 A1
20090227885 Lowery et al. Sep 2009 A1
20090227980 Kangas et al. Sep 2009 A1
20090232850 Manack et al. Sep 2009 A1
20090248011 Hlavka et al. Oct 2009 A1
20090254079 Edwards et al. Oct 2009 A1
20090254142 Edwards et al. Oct 2009 A1
20090259274 Simon et al. Oct 2009 A1
20090275840 Roschak et al. Nov 2009 A1
20090275878 Cambier et al. Nov 2009 A1
20090281593 Errico et al. Nov 2009 A9
20090287087 Gwerder et al. Nov 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20090318904 Cooper et al. Dec 2009 A9
20090319002 Simon et al. Dec 2009 A1
20100003282 Deem et al. Jan 2010 A1
20100004648 Edwards et al. Jan 2010 A1
20100010564 Simon et al. Jan 2010 A1
20100016709 Gilboa et al. Jan 2010 A1
20100042089 Soltesz et al. Feb 2010 A1
20100049031 Fruland et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100057178 Simon Mar 2010 A1
20100063495 Edwards et al. Mar 2010 A1
20100070004 Hlavka et al. Mar 2010 A1
20100076518 Hlavka et al. Mar 2010 A1
20100087783 Weber et al. Apr 2010 A1
20100087809 Edwards et al. Apr 2010 A1
20100094231 Bleich et al. Apr 2010 A1
20100114087 Edwards et al. May 2010 A1
20100116279 Cooper May 2010 A9
20100125239 Perry et al. May 2010 A1
20100130892 Warnking May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100145427 Gliner et al. Jun 2010 A1
20100152835 Orr Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100160996 Simon et al. Jun 2010 A1
20100174340 Simon Jul 2010 A1
20100179424 Warnking et al. Jul 2010 A1
20100185190 Danek et al. Jul 2010 A1
20100191089 Stebler et al. Jul 2010 A1
20100204689 Danek et al. Aug 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100228318 Errico et al. Sep 2010 A1
20100241188 Errico et al. Sep 2010 A1
20100249873 Errico Sep 2010 A1
20100256629 Wylie et al. Oct 2010 A1
20100256630 Hamilton, Jr. et al. Oct 2010 A1
20100268222 Danek et al. Oct 2010 A1
20100298905 Simon Nov 2010 A1
20100305463 Macklem et al. Dec 2010 A1
20100318020 Atanasoska et al. Dec 2010 A1
20100331776 Salahieh et al. Dec 2010 A1
20110004148 Ishii Jan 2011 A1
20110015548 Aldrich et al. Jan 2011 A1
20110028898 Clark, III et al. Feb 2011 A1
20110046432 Simon et al. Feb 2011 A1
20110060380 Gelfand et al. Mar 2011 A1
20110079230 Danek et al. Apr 2011 A1
20110093032 Boggs, II et al. Apr 2011 A1
20110098762 Rezai Apr 2011 A1
20110112400 Emery et al. May 2011 A1
20110112521 DeLonzor et al. May 2011 A1
20110118725 Mayse et al. May 2011 A1
20110125203 Simon et al. May 2011 A1
20110125213 Simon et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137284 Arora et al. Jun 2011 A1
20110144630 Loeb Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110146674 Roschak Jun 2011 A1
20110152855 Mayse et al. Jun 2011 A1
20110152967 Simon et al. Jun 2011 A1
20110152974 Rezai et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110166565 Wizeman et al. Jul 2011 A1
20110172654 Barry et al. Jul 2011 A1
20110172655 Biggs et al. Jul 2011 A1
20110172658 Gelbart et al. Jul 2011 A1
20110178569 Parnis et al. Jul 2011 A1
20110184330 Laufer et al. Jul 2011 A1
20110190569 Simon et al. Aug 2011 A1
20110196288 Kaplan et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110224768 Edwards Sep 2011 A1
20110230701 Simon et al. Sep 2011 A1
20110230938 Simon et al. Sep 2011 A1
20110245756 Arora et al. Oct 2011 A1
20110251592 Biggs et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257647 Mayse et al. Oct 2011 A1
20110263960 Mitchell Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110270249 Utley et al. Nov 2011 A1
20110276107 Simon et al. Nov 2011 A1
20110276112 Simon et al. Nov 2011 A1
20110282229 Danek et al. Nov 2011 A1
20110282418 Saunders et al. Nov 2011 A1
20110301587 Deem et al. Dec 2011 A1
20110301664 Rezai Dec 2011 A1
20110301679 Rezai et al. Dec 2011 A1
20110306851 Wang Dec 2011 A1
20110306904 Jacobson et al. Dec 2011 A1
20110306997 Roschak et al. Dec 2011 A9
20110319958 Simon et al. Dec 2011 A1
20120004656 Jackson et al. Jan 2012 A1
20120015019 Pacetti et al. Jan 2012 A1
20120016256 Mabary et al. Jan 2012 A1
20120016358 Mayse et al. Jan 2012 A1
20120016363 Mayse et al. Jan 2012 A1
20120016364 Mayse et al. Jan 2012 A1
20120029261 Deem et al. Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029591 Simon et al. Feb 2012 A1
20120029601 Simon et al. Feb 2012 A1
20120041412 Roth et al. Feb 2012 A1
20120041509 Knudson et al. Feb 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120078096 Krolik et al. Mar 2012 A1
20120083734 Ayres et al. Apr 2012 A1
20120089078 Deem et al. Apr 2012 A1
20120089138 Edwards et al. Apr 2012 A1
20120101326 Simon et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120109278 Sih May 2012 A1
20120143132 Orlowski Jun 2012 A1
20120143177 Avitall Jun 2012 A1
20120143179 Avitall Jun 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120165803 Bencini et al. Jun 2012 A1
20120172680 Gelfand et al. Jul 2012 A1
20120184801 Simon et al. Jul 2012 A1
20120185020 Simon et al. Jul 2012 A1
20120191081 Markowitz Jul 2012 A1
20120191082 Markowitz Jul 2012 A1
20120197100 Razavi et al. Aug 2012 A1
20120197246 Mauch Aug 2012 A1
20120197251 Edwards et al. Aug 2012 A1
20120203067 Higgins et al. Aug 2012 A1
20120203216 Mayse et al. Aug 2012 A1
20120203222 Mayse et al. Aug 2012 A1
20120209118 Warnking Aug 2012 A1
20120209259 Danek et al. Aug 2012 A1
20120209261 Mayse et al. Aug 2012 A1
20120209296 Mayse et al. Aug 2012 A1
20120221087 Parnis et al. Aug 2012 A1
20120232436 Warnking Sep 2012 A1
20120245415 Emura et al. Sep 2012 A1
20120253336 Littrup et al. Oct 2012 A1
20120253442 Gliner et al. Oct 2012 A1
20120259263 Celermajer et al. Oct 2012 A1
20120259269 Meyer Oct 2012 A1
20120259326 Brannan et al. Oct 2012 A1
20120265280 Errico et al. Oct 2012 A1
20120289952 Utley et al. Nov 2012 A1
20120290035 Levine et al. Nov 2012 A1
20120294424 Chin et al. Nov 2012 A1
20120296329 Ng Nov 2012 A1
20120302909 Mayse et al. Nov 2012 A1
20120310233 Dimmer et al. Dec 2012 A1
20120316552 Mayse et al. Dec 2012 A1
20120316559 Mayse et al. Dec 2012 A1
20120330298 Ganz et al. Dec 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130035576 O'Grady et al. Feb 2013 A1
20130123751 Deem et al. May 2013 A1
20130289555 Mayse et al. Oct 2013 A1
20130289556 Mayse et al. Oct 2013 A1
20130296647 Mayse et al. Nov 2013 A1
20130303948 Deem et al. Nov 2013 A1
20130310822 Mayse et al. Nov 2013 A1
20130345700 Hlavka et al. Dec 2013 A1
20140018789 Kaplan et al. Jan 2014 A1
20140018790 Kaplan et al. Jan 2014 A1
20140025063 Kaplan et al. Jan 2014 A1
20140186341 Mayse Jul 2014 A1
20140236148 Hlavka et al. Aug 2014 A1
20140257271 Mayse et al. Sep 2014 A1
20140276792 Kaveckis et al. Sep 2014 A1
20140316398 Kelly et al. Oct 2014 A1
20140358136 Kelly et al. Dec 2014 A1
20140371809 Parnis et al. Dec 2014 A1
20150051597 Mayse et al. Feb 2015 A1
20150126986 Kelly et al. May 2015 A1
20150141985 Mayse et al. May 2015 A1
20150150625 Deem et al. Jun 2015 A1
20150190193 Mayse et al. Jul 2015 A1
20150366603 Hlavka et al. Dec 2015 A1
20160022351 Kaveckis et al. Jan 2016 A1
20160038725 Mayse et al. Feb 2016 A1
20160192981 Dimmer et al. Jul 2016 A1
20160220851 Mayse et al. Aug 2016 A1
20160310210 Harshman et al. Oct 2016 A1
20170014571 Deem et al. Jan 2017 A1
20170050008 Mayse Feb 2017 A1
20170143421 Mayse et al. May 2017 A1
20170245911 Mayse et al. Aug 2017 A1
20180028748 Deem et al. Feb 2018 A1
20180199993 Mayse et al. Jul 2018 A1
20190105102 Mayse et al. Apr 2019 A1
20190142510 Mayse et al. May 2019 A1
20190142511 Wahr et al. May 2019 A1
20190151018 Mayse et al. May 2019 A1
20200001081 Hlvaka et al. Jan 2020 A1
20200060750 Kaveckis et al. Feb 2020 A1
20200222114 Johnson et al. Jul 2020 A1
20200268436 Mayse Aug 2020 A1
20200360677 Deem et al. Nov 2020 A1
Foreign Referenced Citations (129)
Number Date Country
2419228 Aug 2004 CA
1700880 Nov 2005 CN
1777396 May 2006 CN
101115448 Jan 2008 CN
101209217 Jul 2008 CN
101292897 Oct 2008 CN
101411645 Apr 2009 CN
101437477 May 2009 CN
101448466 Jun 2009 CN
101522106 Sep 2009 CN
201431510 Mar 2010 CN
101115448 May 2010 CN
19529634 Feb 1997 DE
19952505 May 2001 DE
0189329 Jun 1987 EP
0286145 Oct 1988 EP
0280225 Mar 1989 EP
0286145 Oct 1990 EP
0282225 Jun 1992 EP
0643982 Mar 1995 EP
0908713 Apr 1999 EP
1064886 Jan 2001 EP
1143864 Oct 2001 EP
1169972 Jan 2002 EP
1271384 Jan 2003 EP
1281366 Feb 2003 EP
0908150 May 2003 EP
0768091 Jul 2003 EP
1326548 Jul 2003 EP
1326549 Jul 2003 EP
1400204 Mar 2004 EP
1297795 Aug 2005 EP
1588662 Oct 2005 EP
2320821 Oct 2012 EP
2659240 Jul 1997 FR
2233293 Jan 1991 GB
2233293 Feb 1994 GB
S59167707 Sep 1984 JP
H06339453 Dec 1994 JP
H07289557 Nov 1995 JP
H0947518 Feb 1997 JP
H09243837 Sep 1997 JP
H1026709 Jan 1998 JP
2000271235 Oct 2000 JP
2001037773 Feb 2001 JP
2002503512 Feb 2002 JP
2002508989 Mar 2002 JP
2002541905 Dec 2002 JP
2003510126 Mar 2003 JP
2003533265 Nov 2003 JP
2011519699 Jul 2011 JP
2053814 Feb 1996 RU
2091054 Sep 1997 RU
545358 Feb 1977 SU
WO-8911311 Nov 1989 WO
WO-9301862 Feb 1993 WO
WO-9304734 Mar 1993 WO
WO-9316632 Sep 1993 WO
WO-9407446 Apr 1994 WO
WO-9501075 Jan 1995 WO
WO-9502370 Jan 1995 WO
WO-9510322 Apr 1995 WO
WO-9604860 Feb 1996 WO
WO-9610961 Apr 1996 WO
WO-9725917 Jul 1997 WO
WO-9732532 Sep 1997 WO
WO-9733715 Sep 1997 WO
WO-9737715 Oct 1997 WO
WO-9740751 Nov 1997 WO
WO-9818391 May 1998 WO
WO-9844854 Oct 1998 WO
WO-9852480 Nov 1998 WO
WO-9856234 Dec 1998 WO
WO-9856324 Dec 1998 WO
WO-9903413 Jan 1999 WO
WO-9858681 Mar 1999 WO
WO-9913779 Mar 1999 WO
WO-9932040 Jul 1999 WO
WO-9935986 Jul 1999 WO
WO-9935988 Jul 1999 WO
WO-9942044 Aug 1999 WO
WO-9942047 Aug 1999 WO
WO-9964109 Dec 1999 WO
WO-0010598 Mar 2000 WO
WO-0051510 Sep 2000 WO
WO-0062699 Oct 2000 WO
WO-0066017 Nov 2000 WO
WO-0100114 Jan 2001 WO
WO-0103642 Jan 2001 WO
WO-0122897 Apr 2001 WO
WO-0170114 Sep 2001 WO
WO-0187169 Nov 2001 WO
WO-0189526 Nov 2001 WO
WO-0205720 Jan 2002 WO
WO-0205868 Jan 2002 WO
WO-0232333 Apr 2002 WO
WO-0232334 Apr 2002 WO
WO-03073358 Sep 2003 WO
WO-03086524 Oct 2003 WO
WO-03088820 Oct 2003 WO
WO-2004078252 Sep 2004 WO
WO-2004082736 Sep 2004 WO
WO-2004101028 Nov 2004 WO
WO-2005006963 Jan 2005 WO
WO-2005006964 Jan 2005 WO
WO-2005074829 Aug 2005 WO
WO-2006053308 May 2006 WO
WO-2006053309 May 2006 WO
WO-2006116198 Nov 2006 WO
WO-2007001981 Jan 2007 WO
WO-2007058780 May 2007 WO
WO-2007061982 May 2007 WO
WO-2007092062 Aug 2007 WO
WO-2007094828 Aug 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008005953 Jan 2008 WO
WO-2008024220 Feb 2008 WO
WO-2008051706 May 2008 WO
WO-2008063935 May 2008 WO
WO-2008071914 Jun 2008 WO
WO-2009009236 Jan 2009 WO
WO-2009015278 Jan 2009 WO
WO-2009082433 Jul 2009 WO
WO-2009126383 Oct 2009 WO
WO-2009137819 Nov 2009 WO
WO-2010110785 Sep 2010 WO
WO-2011056684 May 2011 WO
WO-2011060200 May 2011 WO
WO-2011127216 Oct 2011 WO
Non-Patent Literature Citations (223)
Entry
Abbott., “Present Concepts Relative to Autonomic Nerve Surgery in the Treatment of Pulmonary Disease,” American Journal of Surgery, 1955, vol. 90, pp. 479-489.
Accad M., “Single-Step Renal Denervation with the OneShotTM Ablation System,” Presentation at the Leipzig Interventional Course 2012 in Leipzig, Germany, Jan. 26, 2012, 11 pages.
Ackrad Labs., “Adult Esophageal Balloon Catheter Set,” Device Description Pamphlet, Manufactured by Cooper Surgical, Trumbull, CT, 2 pages.
Ahnert-Hilger., et al., “Introduction of Macromolecules into Bovine Adrenal-Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Teanus Toxin on Catecholamine Secretion,” J. Neurochem, Jun. 1989, vol. 52 (6), pp. 1751-1758.
An S S., et al., “Airway Smooth Muscle Dynamics; A Common Pathway of Airway Obstruction in Asthma,” European Respiratory Journal, 2007, vol. 29 (5), pp. 834-860.
Application and File History for European Patent Application No. 10779422.4, filed Nov. 11, 2010, 372 pages.
Application and File History for U.S. Appl. No. 12/463,304, filed May 8, 2009, Issued as U.S. Pat. No. 8,088,127 on Jan. 3, 2012, Inventor: Martin L. Mayse, et al.
Application and File History for U.S. Appl. No. 12/913,702, filed Oct. 27, 2010, Inventor: Martin L. Mayse, et al.
Application and File History for U.S. Appl. No. 13/168,893, filed Jun. 24, 2011, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/245,522, filed Sep. 26, 2011, issued as U.S. Pat. No. 8,226,638 on Jul. 24, 2012, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/245,529, filed Sep. 26, 2011, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/245,537, filed Sep. 26, 2011, issued as U.S. Pat. No. 8,932,289 on Jan. 13, 2015, inventors Mayse et al.
Application and File History for U.S. Appl. No. 16/207,810, filed Apr. 11, 2019, inventors Mayse et al.
Application and File History for U.S. Appl. No. 15/427,685, filed May 25, 2017, issued as U.S. Pat. No. 10,149,714 on Dec. 11, 2018, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/452,648, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,961,507 on Feb. 24, 2015, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/452,655, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,961,508 on Feb. 24, 2015, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/452,660, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,821,489 on Sep. 2, 2014, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/452,664, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,808,280 on Aug. 19, 2014, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/509,581, filed Aug. 14, 2012, now U.S. Pat. No. 9,149,328 issued Oct. 6, 2015, inventors Dimmer et al.
Application and File History for U.S. Appl. No. 13/584,142, filed Aug. 13, 2012, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/592,075, filed Aug. 22, 2012, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/930,825, filed Jun. 28, 2013, issued as U.S. Pat. No. 8,740,895 on Jun. 3, 2014, inventors Mayse et al.
Application and File History for U.S. Appl. No. 13/931,208, filed Jun. 28, 2013, issued as U.S. Pat. No. 8,777,943 on Jul. 15, 2014, inventors Mayse et a.
Application and File History for U.S. Appl. No. 13/931,246, filed Jun. 28, 2013, inventors Mayse et al.
Application and File History for U.S. Appl. No. 14/529,335, filed Oct. 31, 2014, inventors Mayse et al.
Application and File History for U.S. Appl. No. 14/601,717, filed Jan. 21, 2015, inventors Mayse et al.
Application and File History for U.S. Appl. No. 15/922,485, filed Jul. 19, 2018, inventors Mayse et al.
Application and File history for U.S. Appl. No. 14/872,212, filed Oct. 1, 2015. Inventors: Dimmer et al.
Application and File history for U.S. Appl. No. 15/607,918, filed May 30, 2017. Inventors: Dimmer et al.
Awadh N., et al., “Airway Wall Thickness in Patients with Near Fatal Asthma and Control Groups: Assessment with High Resolution Computed Tomographic Scanning,” Thorax, 1998, vol. 53, pp. 248-253.
Babichev., et al., “Clinico-Morphological Comparisons in Patients with Bronchial Asthma after Denervation of the Lungs,” Sov Med, 1985, vol. 12, pp. 13-16.
Babichev., et al., “Long-term Results of Surgical Treatment of Bronchial Asthma Based on Adaptive Response,” Khirurgiia (Mosk), 1993, vol. 4, pp. 5-11.
Babichev., et al., “Partial Deneration of the Lungs in Bronchial Asthma,” Khirurgiia (Mosk), 1985, vol. 4, pp. 31-35.
Barlaw., “Surgical Treatment of Asthma,” Postgrad Med. Journal, 1949, vol. 25, pp. 193-196.
Bel E H., “Hot Stuff: Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 941-942.
Bertog S., “Covidien-Maya: OneShot.TM.,” presentation at the 2012 Congenital & Structural Interventions Congress in Frankfurt, Germany, Jun. 28, 2012, 25 pages.
Bester., et al., “Recovery of C-Fiber-lnduced Extravasation Following Peripheral Nerve Injury in the Rat,” Experimental Neurology, 1998, vol. 154, pp. 628-636.
Bigalke., et al., “Clostridial Neurotoxins,” Handbook of Experimental Pharmacology (Aktories, K., and Just, I., eds), 2000, vol. 145, pp. 407-443.
Bittner., et al., “Isolated Light Chains of Botulinum Neurotoxins Inhibit Exocytosis,” The Journal of Biological Chemistry, 1989, vol. 264(18), pp. 10354-10360.
Blindt., et al., “Development of a New Biodegradable Intravascular Polymer Stent with Simultaneous Incorporation of Bioactive Substances,” The International Journal of Artificial Organs, 1999, vol. 22 (12), pp. 843-853.
Boxem V TJM., et al., “Tissue Effects of Bronchoscopic Electrocautery,” Chest, Mar. 2000, vol. 117(3), pp. 887-891.
Bradley., et al., “Effect of Vagotomy on the Breathing Pattern and Exercise Ability in Emphysematous Patients,” Clinical Science, 1982, vol. 62, pp. 311-319.
Breekveldt-Postma., et al., “Enhanced Persistence with Tiotropium Compared with Other Respiratory Drugs in COPD,” Respiratory Medicine, 2007, vol. 101, pp. 1398-1405.
Brody., et al., “Mucociliary Clearance After Lung Denervation and Bronchial Transection,” J Applied Physiology, 1972, vol. 32 (2), pp. 160-164.
Brown R H., et al., “Effect of Bronchial Thermoplasty on Airway Distensibility,” European Respiratory Journal, Aug. 2005, vol. 26 (2), pp. 277-282.
Brown R H., et al., “In Vivo Evaluation of the Effectiveness of Bronchial Thermoplasty with Computed Tomography,” Journal of Applied Physiology, 2005, vol. 98, pp. 1603-1606.
Buzzi., “Diphtheria Toxin Treatment of Human Advanced Cancer,” Cancer Research, 1982, vol. 42, pp. 2054-2058.
Canning., et al., “Reflex Mechanisms in Gastroesophageal Reflux Disease and Asthma,” The American Journal of Medicine, 2003, vol. 115 (3A), p. 45S-48S.
Canning., “Reflex Regulation of Airway Smooth Muscle Tone,” J Appl. Physiol, 2006, vol. 101, pp. 971-985.
Castro M., et al., “Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: a Multicenter, Randomized, Double-Blind, Sham-Controlled Clinical Trial,” American Journal of Respiratory and Critical Care Medicine, 2010, vol. 181, pp. 116-124.
Chaddock., et al., “Expression and Purification of Catalytically Active, Non-Toxic Endopeptidase Derivatives of Clostridium Botulinum Toxin Type A,” Protein Expression and Purification, Jul. 2002, vol. 25 (2), pp. 219-228.
Chang., “Cell Poration and Cell Fusion Using an Oscillating Electric Field,” Biophys. J, 1989, vol. 56 (4), pp. 641-652.
Chernyshova., et al., “The Effect of Low-Energy Laser Radiation in the Infrared Spectrum on Bronchial Patency in Children with Bronchial Asthma,” Vopr Kurortol Fizioter Lech Fiz Kult, 1995, vol. 2, pp. 11-14, (6 pages of English translation).
Chhajed P., “Will There be a Role for Bronchoscopic Radiofrequency Ablation,” J Bronchol, 2005, vol. 12(3), p. 184.
Chumakov., et al., “Morphologic Studies of Bronchial Biopsies in Chronic Bronchitis Before and After Treatment,” Arkh Patol, 1995, vol. 57 (6), pp. 21-25.(English Abstract and Translation, 8 pages).
Cox G., et al., “Asthma Control During the Year After Bronchial Thermoplasty,” The New England Journal of Medicine, Mar. 29, 2007, vol. 356 (13), pp. 1327-1337.
Cox G., et al., “Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 965-969.
Cox G., et al., “Bronchial Thermoplasty: Long-Term Follow-up and Patient Satisfaction,” 2004, 1 page.
Cox G., et al., “Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting,” 2004, 1 page.
Cox G., et al., “Clinical Experience with Bronchial Thermoplasty forthe Treatment of Asthma,” Chest 124, 2003, p. 106S.
Cox G., et al., “Development of a Novel Bronchoscope Therapy for Asthma,” Journal of Allergy and Clinical Immunology, 2003, 1 page.
Cox G., et al., “Early Clinical Experience With Bronchial Thermoplasty forthe Treatment of Asthma,” 2002, p. 1068.
Cox G., et al., “Impact of Bronchial Thermoplasty on Asthma Status: Interim Results From the AIR Trial,” European Respiratory Society Annual Meeting, Munich, Germany, 2006, 1 page.
Cox G., et al., “Radiofrequency Ablation of Airway Smooth Muscle for Sustained Treatment of Asthma: Preliminary Investigations,” European Respiratory Journal, 2004, vol. 24, pp. 659-663.
Crimi., et al., “Protective Effects of Inhaled Ipratropium Bromide on Bronchoconstriction Induced by Adenosine and Methacholine in Asthma,” Eur Respir J, 1992, vol. 5, pp. 560-565.
Danek C J., et al., “Asthma Intervention Research (AIR) Trial Evaluating Bronchial Hermoplasty.TM.; Early Results,” American Thoracic Society Annual Meeting, 2002, 1 page.
Danek C J., et al., “Bronchial Thermoplasty Reduces Canine Airway Responsiveness to Local Methacholine Challenge,” American Thoracic Society Annual Meeting, 2002, 1 page.
Danek C J., et al., “Reduction in Airway Hyperesponsiveness to Methacholine by the Application of RF Energy in Dogs,” J Appl Physiol, 2004, vol. 97, pp. 1946-1953.
De Paiva., et al., “Light Chain of Botulinum Neurotoxin is Active in Mammalian Motor Nerve Terminals When Delivered via Liposomes,” FEBS Lett, Dec. 1990, vol. 17:277(1-2), pp. 171-174.
Dierkesmann., et al., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, vol. 168, pp. 1095-1102.
Dimitrov-Szokodi., et al., “Lung Denervation in the Therapy of Intractable Bronchial Asthma,” J. Thoracic Surg, Feb. 1957, vol. 33 (2), pp. 166-184.
Donohue., et al., “A 6-Month, Placebo-Controlled Study Comparing Lung Function and Health Status Changes in COPD Patients Treated With Tiotropium or Salmeterol,” Chest, 2002, vol. 122, pp. 47-55.
English Translation of Office Action dated Jul. 13, 2014 for Japanese Application No. JP 2012-538992, filing date Nov. 11, 2010, 2 pages.
“Evis Exera Bronchovideoscope Brochure,” Olympus Bf-XT160, Olympus, Jun. 15, 2007, 2 pages.
Extended European Search Reportfor Application No. 14188819.8, dated Jan. 29, 2015, 7 pages.
Feshenko., et al., “Clinico-Morphological Comparisons in the Laser Therapy of Chronic Bronchitis Patients,” LikSprava, 1993, vol. 10-12, pp. 75-79.(English abstract, 1 Page).
EP Application No. 14188819.8 filed Nov. 11, 2010 (Publication No. 2842510), 135 pages.
Final Office Action dated Feb. 27, 2018 for Japanese Application No. 2016- 051983, 7 pages.
Friedman., et al., “Healthcare Costs with Tiotropium Plus Usual Care versus Usual Care Alone Following 1 Year of Treatment in Patients with Chronic Obstructive Pulmonary Disorder (COPD),” Pharmacoeconomics, 2004, vol. 22 (11), pp. 741-749.
Gaude., G.S., “Pulmonary Manifestations of Gastroesophageal Reflux Disease,” Annals of Thoracic Medicine, Jul.-Sep. 2009, vol. 4 (3), pp. 115-123.
Gelb., et al., “Laser in Treatment of Lung Cancer,” American College of Chest Physicians, Nov. 1984, vol. 86 (5), pp. 662-666.
George., et al., “Factors Associated With Medication Nonadherence in Patients With COPD,” Chest, 2005, vol. 128, pp. 3198-3204.
Gerasin., et al., “Endobronchial Electrosurgery,” Chest, 1988, vol. 93, pp. 270-274.
Gibson., et al., “Gastroesophageal Reflux Treatment for Asthma in Adults and Children,” Cochrane Database Syst. Rev. 2:CD001496, 2003. (Abstract only).
Glanville., et al., “Bronchial Responsiveness after Human Heart-Lung Transplantation,” Chest, 1990, vol. 97 (6), pp. 1360-1366.
Glanville., et al., “Bronchial Responsiveness to Exercise after Human Cardiopulmonary Transplantation,” Chest, 1989, vol. 96 (2), pp. 281-286.
“Global Strategy for Asthma Management and Prevention,” 2002, 192 pages.
Gosens., et al., “Muscarinic Receptor Signaling in the Pathophysiology of Asthma and COPD,” Respiratory Research, 2006, vol. 7 (73), pp. 1-15.
Grey H., “Anatomy of the Human Body, Lea and Febiger,” Philadelphia, 1918, sections 1b and 1e. (Abstract only).
Groeben., et al., “High Thoracic Epidural Anesthesia Does Not Alter Airway Resistance and Attenuates the Response to an Inhalational Provocation Test in Patients with Bronchial Hyperreactivity,” Anesthesiology, 1994, vol. 81 (4), pp. 868-874.
Guarini., et al., “Efferent Vagal Fibre Stimulation Blunts Nuclear Factor-kB Activation and Protects Against Hypovolemic Hemmorrhagic Shock,” Circulation, 2003, vol. 107, pp. 1189-1194.
Guzman., et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius,” Ultrasound in medicine & biology, 2003, vol. 29 (8), pp. 1211-1222.
Hainsworth., et al., “Afferent Lung Denervation by Brief Inhalation of Steam,” Journal of Applied Physiology, May 1972, vol. 34 (5), pp. 708-714.
Harding., “Pulmonary Manifestations of GERD: Pathophysiology and Management,” Division of Pulmonary, Allergy, and Critical Care Medicine—University of Alabama at Birmingham: 4 pages.
Harding., “Recent Clinical Investigations Examining the Association of Asthma and Gastroesophageal Reflux,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), p. 39S-44S. (Abstract only).
Hiraga., “Experimental surgical therapy of bronchial asthma. The effect of denervation in dogs,” Nihon Kyobu Shikkan Gakkai Zasshi, 1981, vol. 19 (1), pp. 46-56.
Hoffmann., et al., “Inhibition of Histamine-Induced Bronchoconstriction in Guinea Pig and Swine by Pulsed Electrical Vagus Nerve Stimulation,” Neuromodulation: Technology at the Neural Interface, 2009, pp. 1-9.
Hogg J.C., et a., “The Pathology of Asthma,” APMIS, Oct. 1997, vol. 105 (10), pp. 735-745.
Hooper., et al., “Endobronchial Electrocautery,” Chest, 1985, vol. 87 (6), pp. 712-714.
International Preliminary Report on PatentabilityNo. PCT/US2010/056424, dated May 24, 2012, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/056424, dated Apr. 14, 2011, 18 pages.
Ivanyuta O M., et al., “Effect of Low-Power Laser Irradiation of Bronchia Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, vol. 6, pp. 26-29.
James., et al., “The Mechanics of Airway Narrowing in Asthma,” The American Review of Respiratory Disease, 1989, vol. 139, pp. 242-246.
Jammes., et al., “Assessment of the Pulmonary Origin of Bronchoconstrictor Vagal Tone,” The Journal of physiology, 1979, vol. 291, pp. 305-316.
Janssen L. J., “Asthma therapy: how far have we come, why did we fail and where should we go next?,” European Respiratory Journal, 2009, vol. 33, pp. 11-20.
Jiang., et al., “Effects of Antireflux Treatment on Bronchial Hyper-responsiveness and Lung Function in Asthmatic Patients with Gastroesophageal Reflux Disease,” World Journal of Gastroenterology, 2003, vol. 9, pp. 1123-1125. (Abstract only).
Johnson S R., et al., “Synthetic Functions of Airway Smooth Muscle in Asthma,” Trends in Pharmacological Sciences, Aug. 1997, vol. 18 (8), pp. 288-292.
Karashurov., et al., “Electrostimulation in the Therapy of Bronchial Asthma,” Klin Med (Mosk), 2001, vol. 79 (11), pp. 39-41.
Karashurov., et al., “Radiofrequency Electrostimulation of Carotid Sinus Nerves forthe treatment of Bronchial Asthma,” Khirurgiia (Mosk), 1999, vol. 12, pp. 4-6.
Khmel'Kova et al., “Does laser irridation affect bronchial obstruction?,” Probl Tuberk, 1995, vol. 3, pp. 41-42 (Abstract only).
Khoshoo., et al., “Role of Gastroesophageal Reflux in Older Children with Persistent Asthma,” Chest, 2003, vol. 123, pp. 1008-1013. (Abstract only).
Kiljander., “The Role of Proton Pump Inhibitors in the Management of Gastroesophageal Reflux Disease-Related Asthma and Chronic Cough,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), p. 65S-71S. (Abstract only.).
Kistner., et al., “Reductive Cleavage of Tetanus Toxin and Botulinum Neurotoxin A by the Thioredoxin System from Brain,” Naunyn-Schmiedebergs Arch Pharmacal, Feb. 1992, vol. 345 (2), pp. 227-234.
Kitamura S., “Color Atlas of Clinical Application of Fiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, p. 17.
Kletskin., et al., “Value of Assessing the Autonomic Nervous System in Bronchial Asthma in Selecting the Surgical Treatment Method,” Khirurgiia (Mosk), 1987, vol. 7, pp. 91-95.
Kliachkin., et al., “Bronchoscopy in the Treatment of Bronchial Asthma of Infectious Allergic Origin,” Terapevticheskil arkhiv, 1982, vol. 54 (4), pp. 76-79.
Korochkin., et al., “Use of a Helium-Neon Laser in Combined Treatment of Bronchial Asthma,” New Developments in Diagnostics and Treatment, 1990, 9 pages.
Korochkin et al., “Use of the Helium-Neon Laser in the Multimodal Treatment of Bronchial Asthma,” Sov Med, 1990, vol. 6, pp. 18-20.
Korpela., et al., “Comparison of Tissue Reactions in the Tracheal Mucosa Surrounding a Bioabsorbable and Silicone Airway Stents,” Annals of Thoracic Surgery, 1998, vol. 66, pp. 1772-1776.
Kozaki., et al., “New Surgical Treatment of Bronchial Asthma-Denervation of the Hilus Pulmonis (2),” Nippon Kyobu Geka Gakkai Zasshi, 1974, vol. 22 (5), pp. 465-466.
Kraft M., “The Distal Airways: Are they Important in Asthma?,” European Respiratory, 1999, pp. 1403-1417.
Kreitman., “Taming Ricin Toxin,” Nature Biotechnology, 2003, vol. 21, pp. 372-374.
Kuntz., “The Autonomic Nervous System in Relation to the Thoracic Viscera,” Chest, 1944, vol. 10, pp. 1-18.
Lavioletts et al., “Asthma Intervention Research (AIR) Trial: Early Safety Assessment of Bronchial Thermoplasty,” 2004, 1 page.
Leff., et al., “Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs; A Possible Procedure for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1 page.
Lennerz., et al., “Electrophysiological Characterization of Vagal Afferents Relevant to Mucosal Nociception in the Rat Upper Oesophagus,” The Journal of physiology, 2007, vol. 582 (1), pp. 229-242.
Levin., “The Treatment of Bronchial Asthma by Dorsal Sympathectomy,” Annals of Surgery, 1935, vol. 102 (2), pp. 161-170.
Lim E E., et al., “Botulinum Toxin: A Novel Therapeutic Option for Bronchial Asthma?,” Medical Hypotheses, 2006, vol. 66, pp. 915-919.
Liou., et al., “Causative and Contributive Factors to Asthmas Severity and Patterns of Medication Use in Patients Seeking Specialized Asthma Care,” Chest, 2003, vol. 124, pp. 1781-1788. (Abstract only).
Lokke., et al., “Developing COPD: A 25 Year Follow Up Study of the General Population,” Thorax, 2006, vol. 61, pp. 935-939.
Lombard., et al., “Histologic Effects of Bronchial Thermoplasty of Canine and Human Airways,” American Thoracic Society Annual Meeting, 2002, 1 page.
Macklem P T., “Mechanical Factors Determining Maximum Bronchoconstriction, European Respiratory Journal,” Jun. 1989, vol. 6, p. 516s-519s.
Maesen., et al., “Tiotropium Bromide, A New Long-Acting Antimuscarinic Bronchodilator: A Pharmacodynamic Study in Patients with Chronic Obstructive Pulmonary Disease (COPD),” The European Respiratory Journal, 1995, vol. 8, pp. 1506-1513.
Magnussen., et al., “Effect of Inhaled Ipratropium Bromide on the Airway Response to Methacholine, Histamine, and Exercise in Patients with Mild Bronchial Asthma,” Respiration, 1992, vol. 59, pp. 42-47.
Maltais., et al., “Improvements in Symptom-Limited Exercise Performance Over 8 h With Once-Daily Tiotropium in Patients With COPD,” Chest, 2005, vol. 128, pp. 1168-1178.
Martin N., et al., “Bronchial Thermoplasty for the Treatment of Asthma,” Current Allergy and Asthma Reports, Jan. 2009, vol. 9 (1), pp. 88-95.
Mathew., et al., “Gastro-Oesophageal Reflux and Bronchial Asthma: Current Status and Future Directions,” Postgraduate Medical Journal, 2004, vol. 80, pp. 701-705.
Matthias O., et al., “Fisherman's Pulmonary Diseases and Disorders,” Functional Design of the Human Lung for Gas Exchange, McGraw Hill Medical, New York, Edition 4, 2008, Chapter 2(Abstract only).
Mayse M., et al., “Clinical Pearls for Bronchial Thermoplasty,” J Bronchol, Apr. 2007, vol. 14 (2), pp. 115-123.
McEvoy C E., et al., “Changing the Landscape: Bronchial Thermoplasty Offers a Novel Approach to Asthma Treatment,” Advance for Managers of Respiratory Care, Oct. 24-25, 2007, pp. 22-25.
McKay., et al., “Autocrine Regulation of Asthmatic Airway Inflammation: Role of Airway Smooth Muscle,” Respiratory Research, 2002, vol. 3 (11), pp. 1-13.
Mehta., et al., “Effect of Endobronchial Radiation therapy on Malignant Bronchial Obstruction,” Chest, Mar. 1990, vol. 97 (3), pp. 662-665.
Meshalkin., et al., “Partial Denervation of the Pulmonary Hilus as One of the Methods of Surgical Treatment of Bronchial Asthma,” Grudnaia Khirurgiia, 1975, vol. 1, pp. 109-111.
Michaud G., et al., “Positioned for Success: Interest in Diagnostic and Therapeutic Bronchoscopy is Growing,” Advance for Managers of Respiratory Care, Jul.-Aug. 2008, pp. 40, 42-43.
Miller J D., et al., “A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway,” 2005, vol. 127 (6), pp. 1999-2006.
Miller J D., et al., “Bronchial Thermoplasty is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy,” American Thoracic Society Annual Meeting, 2002, 1 page.
Mitzner W., “Airway Smooth Muscle the appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, vol. 169, pp. 787-790.
Mitzner W., “Bronchial Thermoplasty in Asthma,” Allergology International, 2006, vol. 55, pp. 225-234.
Montaudon M., et al., “Assessment of Bronchial Wall Thickness and Lumen Diameter in Human Adults Using Multi-Detector Computed Tomography: Comparison with Theoretical Models,” Journal of Anatomy, 2007, vol. 211, pp. 579-588.
Moore K.L., “Clinically Oriented Anatomy,” Williams & Wilkins, Baltimore, 1985, 2nd edition, pp. 85 and 87(Abstract only).
Netter F H., Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases, In The CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jersey, 1979, vol. 7, pp. 119-135.
Netter F H., “The Ciba Collection of Medical Illustrations,” Respiratory System, CIBA-GEIGY Corporation, West Caldwell, 1979, vol. 7, p. 23, section 1. (Abstract only).
O'Connor., et al., “Prolonged Effect of Tiotropium Bromide on Methacholine-induced Bronchoconstriction in Asthma,” American Journal of Respiratory and Critical Care Medicine, 1996, vol. 154, pp. 876-880.
Office Action dated May 14, 2015 for Chinese Application No. 201080060627.6 filed Nov. 11, 2010, 7 pages.
Office Action dated Mar. 24, 2015 for Japanese Application No. 2012-538992 filed Nov. 11, 2010, 5 pages.
Office Action dated Apr. 4, 2017 for Japanese Application No. 2016-051983, 6 pages.
Office Action dated Aug. 28, 2018 for Chinese Application No. 201611095404.9, 8 pages.
Office Action dated May 1, 2017 for Korean Application No. 0-2012-7013100 14 pages.
Office Action dated Oct. 14, 2016 for Canadian Application No. 2,780,608 filed Nov. 11, 2010, 4 pages.
Office Action dated Feb. 15, 2016 from Chinese Application CN 201080060627.6, filed Nov. 11, 2010, 6 pages. (No English translation available).
Office Action dated Feb. 16, 2016 from Japanese Application JP 2012-538992 filed Nov. 11, 2010, 2 pages. (No English translation available).
O'Sullivan M P., et al., “Apoptosis in the Airways: Another Balancing Act in the Epithelial Program,” American Journal of Respiratory Cell and Molecular Biology, 2003, vol. 29, pp. 3-7.
Ovcharenko., et al., “Endobronchial Use of Low-Frequency Ultrasound and Ultraviolet Laser Radiation in the Complex Treatment of Patients With Suppurative Bronchial Diseases,” Problemy Tuberkuleza, 1997, vol. 3, pp. 40-42. (Abstract only).
Overholt., “Glomectomy for Asthma,” Diseases of the Chest, 1961, vol. 40, pp. 605-610.
Pavord I D., et al., “Safety and Efficacy of Bronchial Thermoplasty in Symptomatic, Severe Asthma,” American Journal of Respiratory and Critical Care Medicine, 2007, vol. 176, pp. 1185-1191.
Peter K. Jeffery, “Remodeling in Asthma and Chronic Obstructive Lung Disease,” American Journal of Respiratory and Critical Care Medicine, 2001, vol. 164 (10), pp. S28-S38.
Peters, et al., “Tiotropium Bromide Step-Up Therapy for Adults with Uncontrolled Asthma,” New England Journal of Medicine, Oct. 28, 2010, vol. 363 (18), pp. 1715-1726.
Petrou et al., “Bronchoscopic Diathermy Resection and Stent Insertion: a Cost Effective Treatment for Tracheobronchial Obstruction,” Thorax, 1993, vol. 48, pp. 1156-1159.
Polosukhin., “Dynamics of the Ultrastructural Changes in Blood and Lymphatic Capillaries of Bronchi in Inflammation and Following Endobronchial Laser Therapy,” Virchows Arch, 1997, vol. 431, pp. 283-290.
Polosukhin., “Regeneration of Bronchial Epithelium of Chronic Inflammatory Changes Under Laser Treatment,” Pathology, Research and Practice, 1996, vol. 192 (9), pp. 909-918.
Polosukhin., “Ultrastructural Study of the Destructive and Repair Processes in Pulmonary Inflammation and Following Endobronchial Laser Therapy,” Virchows Arch, 1999, vol. 435, pp. 13-19.
Polosukhin., “Ultrastructure of the Blood and Lymphatic Capillaries of the Respiratory Tissue During Inflammation and Endobronchial Laser Therapy,” Ultrastructural Pathology, 2000, vol. 24, pp. 183-189.
Printout of a Selected List of Reference for Respiratory Development from PubMed Aug. 1999; UNSW Embryo-Respiratory System http://embryology.med.unsw.edu.au/Refer/respire/select.htm; 12 pages, printout dated Oct. 12, 2007.
Provotorov V M., et al., “Clinical Efficacy of Treatment of Patients with Non-Specific Pulmonary Diseases by Using Low-Power Laser Irradiation and Performing Intrapulmonary Drug Administration,” Terapevichesky Arkhiv, 1991, vol. 62, pp. 18-23.
Raj., “Editorial,” Pain Practice, 2004, vol. 4 (1S), pp. S1-S3.
Ramirez et al., “Sympathetomy in Bronchial Asthma,” J. A. M. A., 1925, vol. 84 (26), pp. 2002-2003.
Rienhoff., et al., “Treatment of Intractable Bronchial Asthma by Bilateral Resection of the Posterior Pulmonary Plexus,” Arch Surg, 1938, vol. 37 (3), pp. 456-469.
Rocha-Singh K J., “Renal Artery Denervation: A Brave New Frontier,” Endovascular Today, Feb. 2012, pp. 45-53.
Rubin., et al., “Bronchial Thermoplasty Improves Asthma Status of Moderate to Severe Persistent Asthmatics Over and Above Current Standard-of-Care,” American College of Chest Physicians, 2006, 2 pages.
Savchenko., et al., “Adaptation of Regulatory Physiological Systems in Surgical Treatment of Patients with Bronchial Asthma,” Klin Med (Mask), 1996, vol. 74 (7), pp. 38-39.
Sengupta., “Part 1 Oral Cavity, Pharynx and Esophagus—Esophageal Sensory Physiology,” GI Motility online, 2006, 17 pages.
Seow C Y., et al., “Signal Transduction in Smooth Muscle Historical Perspective on Airway Smooth Muscle: The Saga of a Frustrated Cell,” Journal of applied physiology, 2001, vol. 91, pp. 938-952.
Sepulveda., et al., “Treatment of Asthmatic Bronchoconstriction by Percutaneous Low Voltage Vagal Nerve Stimulation: Case Report,” Internet Journal of Asthma, Allergy, and Immunology, 2009, vol. 7 (2), 3 pages.
Shaari., et al., “Rhinorrhea is Decreased in Dogs After Nasal Application of Botulinum Toxin,” Otolaryngol Head Neck Surgery, Apr. 1995, vol. 112 (4), pp. 566-571.
Sheski F D., et al., “Cryotherapy, Electrocautery, and Brachytherapy,” Clinics in Chest Medicine, Mar. 1999, vol. 20 (1), pp. 123-138.
Shesterina M V., et al., “Effect of laser therapy on immunity in patients with bronchial asthma and pulmonary tuberculosis,” 1993, pp. 23-26.
Shore S A., “Airway Smooth Muscle in Asthma—Not Just More of the Same,” The New England Journal of Medicine, 2004, vol. 351 (6), pp. 531-532.
Sil'Vestrov., et al., “The Clinico-Pathogenetic Validation and Efficacy of the Use of Low-Energy Laser Irradiation and Glucocorticoids in the Treatment of Bronchial Asthma Patients,” Department of Therapy of the Pediatric and Stomatological Faculties of the N.N. Burdenko Voronezh Medical Institute, vol. 63(11), 1991, pp. 87-92.
Simonsson., et al., “Role of Autonomic Nervous System and the Cough Reflex in the Increased Responsiveness of Airways in Patients with Obstructive Airway Disease,” The Journal of Clinical Investigation, 1967, vol. 46 (11), pp. 1812-1818.
Simpson., et al., “Isolation and Characterization of the botulinum Neurotoxins,” Methods Enzymol, 1988, vol. 165, pp. 76-85.
Smakov., “Denervation of the Lung in the Treatment of Bronchial Asthma,” Khirurgiia (Mosk), 1982, vol. 9, pp. 117-120.
Smakov., “Pathogenetic Substantiation of Lung Denervation in Bronchial Asthma and it's Indications,” Khirurgiia (Mosk), 1999, vol. 2, pp. 67-69.
Smakov., “Prognostication of the Effect of Therapeutic Bronchoscopy in Patients with Bronchial Asthma According to the State of Local Immunity,” Klin Med (Mask), 1995, vol. 73 (5), pp. 76-77.
Solway J., et al., “Airway Smooth Muscle as a Target for Asthma Therapy,” The New England Journal of Medicine, Mar. 29, 2007, vol. 356 (13), pp. 1367-1369.
Sontag., et al., “Asthmatics with Gastroesophageal Reflux: Long-term Results of a Randomized Trial of Medical and Surgical Antireflux Therapies,” The American Journal of Gastroenterology, 2003, vol. 98, pp. 987-999. (Abstract only.).
Stein., “Possible Mechanisms of Influence of Esophageal Acid on Airway Hyperresponsiveness,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), p. 55S-59S. (Abstract only.).
Sterk P J., “Heterogeneity of Airway Hyperresponsiveness: Time for Unconventional, but Traditional Studies,” The American Pshychoiogical Society, 2004, pp. 2017-2018.
Sundaram, et al., “An Experimental and Theoretical Analysis of Ultrasound-Induced Permeabilization of Cell Membranes,” Biophysical Journal, May 2003, vol. 84 (5), pp. 3087-3101.
Takino., et al., “Surgical Removal of the Carotid Body and its Relation to the Carotid Chemoreceptor and Baroreceptor Reflex in Asthmatics,” Dis Chest, 1965, vol. 47, pp. 129-138.
Tashkin., et al., “Long-term Treatment Benefits With Tiotropium in COPD Patients With and Without Short-term Bronchodilator Responses,” Chest, 2003, vol. 123, pp. 1441-1449.
Toma T P., “Brave New World for Interventional Bronchoscopy,” Thorax, 2005, vol. 60, pp. 180-181.
Trow T., “Clinical Year in Review I, proceedings of the American Thoracic Society,” 2006, vol. 3, pp. 553-556.
Tschumperlin D J., et al., “Chronic Effects of Mechanical Force on Airways,” Annual Review of Physiology, 2006, vol. 68, pp. 563-583.
Tschumperlin D J., et al., “Mechanical Stimuli to Airway Remodeling,” American Journal of Respiratory and Critical Care Medicine, 2001, vol. 164, pp. S90-S94.
Tsugeno., et al., “A Proton-Pump Inhibitor, Rabeprazole, Improves Ventilatory Function in Patients with Asthma Associated with Gastroesophageal Reflux,” Scand J Gastroenterol, 2003, vol. (38), pp. 456-461. (Abstract only).
Tsuji., et al., “Biodegradable Stents as a Platform to Drug Loading,” International Journal of Cardiovascular Interventions, 2003, vol. 5(1), pp. 13-16.
Unal., et al., “Effect of Botulinum Toxin Type A on Nasal Symptoms in Patients with Allergic Rhinitis: A Double-blind, Placebo-controlled Clinical Trial,” Acta Oto-Laryngologica, Dec. 2003, vol. 123 (9), pp. 1060-1063.
Urologix inc., “Cooled ThermoTherapy™” retrieved on Mar. 5, 2013, from http://www.urologix.com/cliinicians/cooled-thermotherapy.php, 2012, 2 pages.
Urologix, Inc, “CTC Advance.TM. Instructions for Use,” Targis.RTM. System Manual, 2010, 8 pages.
Vasilotta P I., et al., “I-R Laser: A New Therapy in Rhino-Sino-Nasal Bronchial Syndrome with Asthmatic Component,” American Society for Laser medicine and Surgery abstracts, facsimile copy dated, Feb. 8, 2007, p. 74.
Velden V D., et al., “Autonomic Innervation of Human Airways: Structure, Function, and Pathophysiology in Asthma,” Neuroimmunomodulation, 1999, vol. 6, pp. 145-159.
Verhein., et al., “Neural Control of Airway Inflammation,” Current Allergy and Asthma Reports, 2009, vol. 9, pp. 484-490.
Vincken., et al., “Improved health outcomes in patients with COPD during 1 yr's treatment with tiotropium,” Eur. Respir. J., 2002, vol. 19, pp. 209-216.
Vorotnev., et al., “Treatment of Patients with Chronic Obstructive Bronchitis Using Low Energy Laser at a General Rehabilitation Center,” Therapeutic Archive, 1997, vol. 3, pp. 17-19.
Wagner., et al., “Methacholine causes reflex bronchoconstriction,” J. Appi. Physiol, 1999, vol. 86, pp. 294-297.
Wahidi., et al., “State of the Art: Interventional Pulmonology,” American College of Chest Physicians, Jan. 2007, vol. 131 (1), pp. 261-274.
Weaver, “Electroporation: A General Phenomenon for Manipulating Cells and Tissues,” Journal of Cellular Biochemistry, Apr. 1993, vol. 51(4), pp. 426-435.
Wechsler M E., “Bronchial Thermoplasty for Asthma: A Critical Review of a New Therapy,” Allergy and Asthma Proceedings, Jul.-Aug. 2008, vol. 29 (4), pp. 1-6.
Wiggs B R., et al., On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways, J. Appl. Physiol, Dec. 1997, vol. 83 (6), pp. 1814-1821.
Wilson K C., et al., “Flexible Bronchoscopy: Indications and contraindications,” UptoDate, Nov. 12, 2010 (retrieved Sep. 30, 2012 from www.uptodate.com), 15 pages.
Wilson S R., et al., “Global assessment after bronchial thermoplasty: the patient's perspective,” Journal of Outcomes Research, 2006, vol. 10, pp. 37-46.
Wirtz., et al., “Bilateral Lung Transplantation for Severe Persistent and Difficult Asthma,” The Journal of Heart and Lung Transplantation, 2005, vol. 24 (10), pp. 1700-1703.
Wizeman., et al., “A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery,” American Thoracic Society Annual Meeting, 2007, 1 page.
Related Publications (1)
Number Date Country
20200085495 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
61260349 Nov 2009 US
Continuations (3)
Number Date Country
Parent 15607918 May 2017 US
Child 16524971 US
Parent 14872212 Oct 2015 US
Child 15607918 US
Parent 13509581 US
Child 14872212 US