Systems, apparatuses, and methods for ventricular focal ablation

Information

  • Patent Grant
  • 12150698
  • Patent Number
    12,150,698
  • Date Filed
    Friday, January 15, 2021
    3 years ago
  • Date Issued
    Tuesday, November 26, 2024
    26 days ago
Abstract
Systems, devices, and methods for electroporation ablation therapy are disclosed, with the system including a pulse waveform signal generator for medical ablation therapy, and an endocardial ablation device includes an inflatable member and at least one electrode for focal ablation pulse delivery to tissue. The signal generator may deliver voltage pulses to the ablation device in the form of a pulse waveform. The system may include a cardiac stimulator for generation of pacing signals and for sequenced delivery of pulse waveforms in synchrony with the pacing signal.
Description
BACKGROUND

The generation of pulsed electric fields for tissue therapeutics has moved from the laboratory to clinical applications over the past two decades, while the effects of brief pulses of high voltages and large electric fields on tissue have been investigated for the past forty years or more. Application of brief high DC voltages to tissue may generate locally high electric fields typically in the range of hundreds of volts per centimeter that disrupt cell membranes by generating pores in the cell membrane. While the precise mechanism of this electrically-driven pore generation or electroporation continues to be studied, it is thought that the application of relatively brief and large electric fields generates instabilities in the lipid bilayers in cell membranes, causing the occurrence of a distribution of local gaps or pores in the cell membrane. This electroporation may be irreversible if the applied electric field at the membrane is larger than a threshold value such that the pores do not close and remain open, thereby permitting exchange of biomolecular material across the membrane leading to necrosis and/or apoptosis (cell death). Subsequently, the surrounding tissue may heal naturally.


While pulsed DC voltages may drive electroporation under the right circumstances, there remains an unmet need for thin, flexible, atraumatic devices that effectively deliver high DC voltage electroporation ablation therapy selectively to endocardial tissue in regions of interest while minimizing damage to healthy tissue.


SUMMARY

Described here are systems, devices, and methods for ablating tissue through irreversible electroporation. Generally, an apparatus for delivering a pulse waveform to tissue may include a catheter shaft defining a longitudinal axis. An inflatable member may be coupled to a distal end of the catheter shaft. The inflatable member may have an outer surface including a set of electrically conductive portions. A first set of electrodes may be formed on a surface of the catheter shaft. A second set of electrodes may be formed distal to the first set of electrodes on the surface of the catheter shaft. The second set of electrodes may be electrically coupled to the outer surface of the inflatable member and electrically isolated from the first set of electrodes.


In some embodiments, an apparatus may include a catheter shaft defining a longitudinal axis. An inflatable member may be coupled to a distal end of the catheter shaft. A first set of electrodes may be formed on a surface of the catheter shaft. A second electrode may be formed on the inflatable member and electrically isolated from the first set of electrodes.


In some embodiments, an apparatus may include a catheter shaft defining a longitudinal axis. An inflatable member may be coupled to a distal end of the catheter shaft. A first set of electrodes may be formed on the inflatable member and disposed proximal to an equatorial plane of the inflatable member. A second set of electrodes may be formed on the inflatable member and disposed distal to the equatorial plane of the inflatable member. The second set of electrodes may be electrically isolated from the first set of electrodes.


In some embodiments, a system may include a signal generator configured for generating a pulse waveform. An ablation device may be coupled to the signal generator and configured for receiving the pulse waveform. The ablation device may be include a handle, a catheter shaft defining a longitudinal axis, and an inflatable member coupled to a distal end of the catheter shaft. The inflatable member may have an outer surface including a set of electrically conductive portions. A first set of electrodes may be formed on a surface of the catheter shaft. A second set of electrodes may be formed distal to the first set of electrodes on the surface of the catheter shaft. The second set of electrodes may be electrically coupled to the outer surface of the inflatable member and electrically isolated from the first set of electrodes.


In some embodiments, an apparatus may include a catheter shaft defining a longitudinal axis. An annular inflatable member may be coupled to a distal end of the catheter shaft. The inflatable member may define an annular inflatable member lumen therethrough. A first electrode may be disposed on a distal end of the annular inflatable member. The first electrode may have a substantially planar portion. A second electrode may extend from, and be distal to, the annular inflatable member lumen and be spaced apart from the first electrode.


In some embodiments, the first set of electrodes may have a polarity opposite to a polarity of the second set of electrodes during delivery of a pulse waveform. In some embodiments, the first set of electrodes may have a polarity opposite to the polarity of the second electrode during delivery of a pulse waveform. In some embodiments, the first set of electrodes may have a polarity opposite to the polarity of the second set of electrodes during delivery of the pulse waveform.


In some embodiments, the catheter shaft may include a deflectable portion formed between the first set of electrodes and the second set of electrodes. The deflectable portion may be configured for deflecting a portion of the catheter including the second set of electrodes and the inflatable member up to about 210 degrees relative to the longitudinal axis. In some embodiments, a fluid source may be coupled to the inflatable member and configured to inflate the inflatable member.


In some embodiments, one or more electrodes of the first set of electrodes and one or more electrodes of the second set of electrodes may have an insulated electrical lead associated therewith, the insulated electrical lead configured for sustaining a voltage potential of at least about 700 V without dielectric breakdown of its corresponding insulation, the insulated electrical lead disposed in a lumen of the catheter shaft. In some embodiments, one or more electrodes of the first set of electrodes and the second electrode may have an insulated electrical lead associated therewith, the insulated electrical lead configured for sustaining a voltage potential of at least about 700 V without dielectric breakdown of its corresponding insulation, the insulated electrical lead disposed in a lumen of the catheter shaft.


In some embodiments, one or more electrodes of the first set of electrodes and one or more electrodes of the second set of electrodes may be independently addressable. In some embodiments, one or more electrodes of the first set of electrodes and the second electrode may be independently addressable.


In some embodiments, a distal-most electrode of the first set of electrodes may be spaced apart from a proximal most electrode of the second set of electrodes by between about 2 mm and about 10 mm. In some embodiments, a distal-most electrode of the first set of electrodes may be spaced apart by at least about 5 mm from a proximal end of the inflatable member. In some embodiments, the first set of electrodes may be formed on a portion of the catheter shaft having a length of between about 1 mm and about 12 mm. In some embodiments, the inflatable member has a cross-sectional diameter in its equatorial plane of between about 5 mm and about 15 mm. In some embodiments, the inflatable member may have a length of up to about 22 mm. In some embodiments, each electrode of the first set of electrodes has a width of between about 1 mm and about 5 mm and wherein adjacent electrodes of the first set of electrodes are spaced apart by between about 1 mm and about 5 mm.


In some embodiments, the inflatable member may have an asymmetric shape in a proximal-to-distal direction. In some embodiments, the inflatable member may have a bulbous shape. In some embodiments, the inflatable member may have a polyhedral shape. In some embodiments, a biocompatible coating may be formed on an outer surface of the inflatable member. In some embodiments, the distal end of the catheter may extend into an inner volume of the inflatable member. In some embodiments, a set of splines may be coupled to the catheter and an inner surface of the inflatable member. The set of splines may be configured for translation along the longitudinal axis to transition between a first configuration where the set of splines are approximately parallel to the longitudinal axis and a second configuration where the set of splines bias away from the longitudinal axis.


In some embodiments, the pulse waveform may include a first level of a hierarchy of the pulse waveform in the form of a first set of pulses, each pulse having a pulse time duration, a first time interval separating successive pulses. A second level of the hierarchy of the pulse waveform includes a plurality of first sets of pulses as a second set of pulses, a second time interval separating successive first sets of pulses, the second time interval being at least three times the duration of the first time interval. A third level of the hierarchy of the pulse waveform includes a plurality of second sets of pulses as a third set of pulses, a third time interval separating successive second sets of pulses, the third time interval being at least thirty times the duration of the second level time interval. In some of these embodiments, the pulse waveform includes a fourth level of the hierarchy of the pulse waveform includes a plurality of third sets of pulses as a fourth set of pulses, a fourth time interval separating successive third sets of pulses, the fourth time interval being at least ten times the duration of the third level time interval.


In some embodiments, a distal portion of the catheter shaft further includes a radiopaque portion. In some embodiments, the catheter shaft defines a shaft lumen therethrough. In some embodiments, the first set of electrodes are formed on a distal portion of the catheter shaft.


In some embodiments, there are no electrodes formed on the outer surface of the inflatable member. In some embodiments, a conductive element may be formed on a surface of the inflatable member. In some embodiments, the conductive element may include a set of spaced apart conductive stripes extending between ends of the inflatable member. In some embodiments, the conductive element may be electrically connected to the second set of electrodes. In some embodiments, each stripe of the set of stripes may intersect at one or more of a proximal end and a distal end of the inflatable member.


In some embodiments, the conductive element may include an interlaced structure defining a set of apertures. In some embodiments, a first conductive element may be disposed on an outer surface of the inflatable member and a second conductive element may be disposed on an inner surface of the inflatable member. The first conductive element may have an opposite polarity to the second conductive element during delivery of a pulse waveform.


In some embodiments, a first conductive element may be disposed on an outer surface of the inflatable member and a second conductive element may be disposed on an inner surface of the inflatable member. The first conductive element may have an opposite polarity to the second conductive element during delivery of the pulse waveform.


In some embodiments, the first set of electrodes may be disposed on an outer surface of the catheter shaft and one or more electrodes of the second set of electrodes may be disposed on an inner surface of the catheter shaft. In some embodiments, the second electrode may be configured to receive electrophysiology data. In some embodiments, the second electrode may be a distal electrode. In some embodiments, the second electrode may be the only electrode formed on the outer surface of the inflatable member.


In some embodiments, a distal end of the inflatable member may have a concave surface facing away from a proximal end of the inflatable member. In some embodiments, the inflatable member may have a set of curved faces. In some embodiments, at least one electrode of the second set of electrodes is formed on one face of the inflatable member. In some embodiments, one or more electrodes of the second set of electrodes may be concave.


In some embodiments, the inflatable member may have a set of curved edges. In some embodiments, each electrode of the second set of electrodes may have a diameter of between about 3 mm and about 15 mm. In some embodiments, a distal-most electrode of the first set of electrodes may be spaced apart from a proximal end of the inflatable member by at least about 3 mm. In some embodiments, the inflatable member when inflated may have a cross-sectional diameter at its largest portion of between about 6 mm and about 22 mm.


In some embodiments, the annular inflatable member when inflated may have a diameter of between about 10 mm and about 15 mm. In some embodiments, the second electrode may have a length of between about 2 mm and about 10 mm. In some embodiments, the annular inflatable member lumen may have a diameter of between about 4 mm and about 15 mm.


In some embodiments, a second set of electrodes may be formed on the inflatable member between the first set of electrodes and the second electrode. In some embodiments, the second electrode may be independently addressable. In some embodiments, each electrode of the second set of electrodes may be independently addressable.


In some embodiments, the second set of electrodes may be formed on the inflatable member on an approximate plane approximately perpendicular to the longitudinal axis. In some embodiments, each electrode of the second set of electrodes may have a circular or elliptical shape. In some embodiments, a major axis of each electrode of the second set of electrodes having the elliptical shape may be substantially parallel to the longitudinal axis.


In some embodiments, the second set of electrodes may include a distal electrode formed at a distal end of the inflatable member. In some embodiments, each electrode of the second set of electrodes may have a circular or elliptical shape. In some embodiments, a major axis of each electrode of the second set of electrodes having the elliptical shape except the distal electrode is substantially parallel to the longitudinal axis.


In some embodiments, a method of focal ablation via irreversible electroporation includes the steps of advancing an ablation device towards an endocardial wall. The ablation device may include a catheter shaft defining a longitudinal axis and an inflatable member coupled to a distal end of the catheter shaft. The inflatable member may have an outer surface including a set of electrically conductive portions. A first set of electrodes may be formed on a surface of the catheter shaft. A second set of electrodes may be formed distal to the first set of electrodes on the surface of the catheter shaft. The second set of electrodes electrically may be coupled to the outer surface of the inflatable member and electrically isolated from the first set of electrodes. A pulse waveform may be generated. The pulse waveform may be delivered to the endocardial wall via the ablation device.


In some embodiments, one of the first set of electrodes and the second set of electrodes may be configured as anodes. The other of the first set of electrodes and the second set of electrodes may be configured as cathodes. In some embodiments, the inflatable member of the ablation device may be transitioned from a first configuration to a second configuration. In some embodiments, transitioning the inflatable member from the first configuration to the second configuration includes infusing the inflatable member with saline. In some embodiments, pulsed electric field ablation energy may be delivered through the first set of electrodes and the second set of electrodes of the ablation device. In some embodiments, the ablation device is configured to generate an electric field intensity of between about 200 V/cm and about 800 V/cm.


In some embodiments, the ablation device may include a handle. The method may further include the steps of deflecting a portion of the ablation device using the handle. In some embodiments, first electrophysiology data of the endocardial wall may be recorded. Second electrophysiology data of the endocardial wall may be recorded after delivering the pulse waveform. In some embodiments, the first electrophysiology data and the second electrophysiology data may include intracardiac ECG signal data of the endocardial wall. In some embodiments, a diagnostic catheter may be advanced into the endocardial wall and recording the first electrophysiology data and the second electrophysiology data using the diagnostic catheter. In some embodiments, the first electrophysiology data and the second electrophysiology data may be recorded using the ablation device in the second configuration.


In some embodiments, the method may include the steps of creating a transseptal opening into a left atrium, advancing a guidewire and a sheath into the left atrium through the transseptal opening, and advancing the ablation device into a ventricle over the guidewire. In some embodiments, the method may include the steps of creating a first access site in a patient, advancing the guidewire through the first access site and into a right atrium, advancing the dilator and a sheath over the guidewire and into the right atrium, advancing the dilator from the right atrium into the left atrium through an interatrial septum to create the transseptal opening, and dilating the transseptal opening using the dilator. In some embodiments, a second access site may be created in the patient for advancing a cardiac stimulator. In some embodiments, the method may include the steps of advancing the cardiac stimulator into a right ventricle, generating a pacing signal for cardiac stimulation of the heart using the cardiac stimulator, and applying the pacing signal to the heart using the cardiac stimulator, the pulse waveform generated in synchronization with the pacing signal.


In some embodiments, the method may include the step of fluoroscopically imaging a radiopaque portion of the ablation device during one or more steps. In some embodiments, the first access site is a femoral vein. In some embodiments, the interatrial septum includes a fossa ovalis. In some embodiments, the endocardial wall is a ventricle.


In some embodiments, the pulse waveform may include a first level of a hierarchy of the pulse waveform in the form of a first set of pulses, each pulse having a pulse time duration, a first time interval separating successive pulses. A second level of the hierarchy of the pulse waveform includes a plurality of first sets of pulses as a second set of pulses, a second time interval separating successive first sets of pulses, the second time interval being at least three times the duration of the first time interval. A third level of the hierarchy of the pulse waveform includes a plurality of second sets of pulses as a third set of pulses, a third time interval separating successive second sets of pulses, the third time interval being at least thirty times the duration of the second level time interval. In some of these embodiments, the pulse waveform includes a fourth level of the hierarchy of the pulse waveform includes a plurality of third sets of pulses as a fourth set of pulses, a fourth time interval separating successive third sets of pulses, the fourth time interval being at least ten times the duration of the third level time interval.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of an electroporation system, according to embodiments.



FIGS. 2A-2D are side views of an ablation device in various configurations, according to embodiments. FIG. 2A is a side view of an uninflated ablation device. FIG. 2B is a side view of an inflated ablation device. FIG. 2C is a side view of another embodiment of an inflated ablation device. FIG. 2D is a side view of another embodiment of an inflated ablation device.



FIG. 3 is a side view of an ablation device, according to other embodiments.



FIGS. 4A-4B illustrates a method for tissue ablation, according to embodiments.



FIGS. 5A-5J are side and perspective views of ablation devices, according to other embodiments. FIG. 5A is a side view of an ablation device. FIG. 5B is a cross-sectional side view of the ablation device depicted in FIG. 5A. FIG. 5C is a cross-sectional side view of another embodiment of an ablation device. FIG. 5D is a perspective view of the ablation device depicted in FIG. 5C. FIG. 5E is a cross-sectional side view of the ablation device depicted in FIG. 5C. FIG. 5F is a perspective view of another embodiment of an ablation device. FIG. 5G is a perspective view of the ablation device depicted in FIG. 5F. FIG. 5H is a perspective view of the ablation device depicted in FIG. 5F. FIG. 5I is a perspective view of another embodiment of an ablation device. FIG. 5J is a cross-sectional side view of the ablation device depicted in FIG. 5I.



FIG. 6 is an example waveform showing a sequence of voltage pulses with a pulse width defined for each pulse, according to embodiments.



FIG. 7 schematically illustrates a hierarchy of pulses showing pulse widths, intervals between pulses, and groupings of pulses, according to embodiments.



FIG. 8 provides a schematic illustration of a nested hierarchy of monophasic pulses displaying different levels of nested hierarchy, according to embodiments.



FIG. 9 is a schematic illustration of a nested hierarchy of biphasic pulses displaying different levels of nested hierarchy, according to embodiments.



FIG. 10 illustrates schematically a time sequence of electrocardiograms and cardiac pacing signals together with atrial and ventricular refractory time periods and indicating a time window for irreversible electroporation ablation, according to embodiments.



FIG. 11 is a side view of an ablation device, according to other embodiments.



FIG. 12 is a side view of an ablation device, according to other embodiments.



FIG. 13 is a side view of an ablation device, according to other embodiments.



FIG. 14 is a side view of an ablation device, according to other embodiments.



FIG. 15 is a side view of an ablation device, according to other embodiments.





DETAILED DESCRIPTION

Described here are systems, devices, and methods for ablating tissue through irreversible electroporation. Generally, a system for delivering a pulse waveform to tissue may include a signal generator configured for generating a pulse waveform and an ablation device coupled to the signal generator and configured to receive the pulse waveform. The ablation device may include a conductive inflatable member (e.g., balloon) coupled to a distal end of a catheter shaft for delivering energy to ablate tissue by irreversible electroporation. A conductive metal pattern may be disposed on an outer surface of the inflatable member. One or more electrodes may be formed proximal to the inflatable member on a surface of the catheter shaft. In some embodiments, the ablation device may be configured for delivering the pulse waveform to tissue during use via one or more of the electrodes and inflatable member that forms a bipole. In some embodiments, capacitive voltage delivery may be provided using biphasic waveforms across a thickness of the inflatable member wall. Embodiments of the ablation device described herein may deliver energy to tissue sufficient for irreversible electroporation through the inflatable member of the ablation device that functions as an electrode. The inflatable member is inflatable so as to allow an electric field and corresponding focal ablation lesions to be generated. In some embodiments, the ablation device may form focal ablation lesions at a depth of between about 2 mm to about 15 mm or more that may be suitable to form wide and deep ablations in a ventricular wall.


In some embodiments, the ablation devices described herein may be useful in treating ventricular arrhythmias (e.g., re-entrant ventricular tachycardia) that may occur in the ventricle and cause arrhythmia due to the cardiac depolarization signal not completing a normal circuit, but rather, an alternative circuit such as looping back upon itself (e.g., re-entrant circuit). For example, the ablation devices described herein may be used for scar homogenization or “debulking” that may ablate one or more portions of scar tissue in order to electrically isolate and/or destroy re-entrant circuits. The systems, devices, and methods described herein may be used to create one or more focal ablation lesions using an endocardial approach, and in other embodiments, may be used in an epicardial approach.


In some embodiments, the ablation device may include one or more electrodes configured to receive ECG signals and used to generate an anatomical map of the patient. For example, an ECG recording electrode may be disposed on one or more of the inflatable member and catheter shaft. This may allow the ablation device to both map and ablate tissue, thereby reducing cost, complexity, and procedure time when a separate mapping catheter is not used.


The systems, devices, and methods described herein may be used to generate large electric field magnitudes at desired regions of interest to generate irreversible electroporation. An irreversible electroporation system as described herein may include a signal generator and a processor configured to apply one or more voltage pulse waveforms to a selected set of electrodes and an inflatable member of an ablation device to deliver energy to a region of interest (e.g., ablation energy for a set of tissue in a ventricle). The pulse waveforms disclosed herein may aid in therapeutic treatment of a variety of cardiac arrhythmias (e.g., atrial fibrillation, re-entry ventricular arrhythmia, ventricular tachycardia, and/or the like). In order to deliver the pulse waveforms generated by the signal generator, one or more electrodes of the ablation device may have an insulated electrical lead configured for sustaining a voltage potential of at least about 700 V without dielectric breakdown of its corresponding insulation. In some embodiments, at least some of the electrodes may be independently addressable such that each electrode may be controlled (e.g., deliver energy) independently of any other electrode of the device. In this manner, the electrodes may deliver different energy waveforms with different timing synergistically for electroporation of tissue.


The term “electroporation” as used herein refers to the application of an electric field to a cell membrane to change the permeability of the cell membrane to the extracellular environment. The term “reversible electroporation” as used herein refers to the application of an electric field to a cell membrane to temporarily change the permeability of the cell membrane to the extracellular environment. For example, a cell undergoing reversible electroporation can observe the temporary and/or intermittent formation of one or more pores in its cell membrane that close up upon removal of the electric field. The term “irreversible electroporation” as used herein refers to the application of an electric field to a cell membrane to permanently change the permeability of the cell membrane to the extracellular environment. For example, a cell undergoing irreversible electroporation can observe the formation of one or more pores in its cell membrane that persist upon removal of the electric field.


Pulse waveforms for electroporation energy delivery as disclosed herein may enhance the safety, efficiency and effectiveness of energy delivery to tissue by reducing the electric field threshold associated with irreversible electroporation, thus yielding more effective ablative lesions with a reduction in total energy delivered. In some embodiments, the voltage pulse waveforms disclosed herein may be hierarchical and have a nested structure. For example, the pulse waveform may include hierarchical groupings of pulses having associated timescales. In some embodiments, the methods, systems, and devices disclosed herein may comprise one or more of the methods, systems, and devices described in International Application Serial No. PCT/US2016/057664, filed on Oct. 19, 2016, and titled “SYSTEMS, APPARATUSES AND METHODS FOR DELIVERY OF ABLATIVE ENERGY TO TISSUE,” the contents of which are hereby incorporated by reference in its entirety.


In some embodiments, the systems may further include a cardiac stimulator used to synchronize the generation of the pulse waveform to a paced heartbeat. The cardiac stimulator may electrically pace the heart with a cardiac stimulator and ensure pacing capture to establish periodicity and predictability of the cardiac cycle. A time window within a refractory period of the periodic cardiac cycle may be selected for voltage pulse waveform delivery. Thus, voltage pulse waveforms may be delivered in the refractory period of the cardiac cycle so as to avoid disruption of the sinus rhythm of the heart. In some embodiments, an ablation device may include one or more catheters, guidewires, inflatable members, and electrodes. The ablation device may transform into different configurations (e.g., deflated and inflated) to position the device within an endocardial space.


Generally, to ablate tissue, one or more catheters may be advanced in a minimally invasive fashion through vasculature to a target location. The methods described here may include introducing a device into an endocardial space of the heart and disposing the device in contact with a ventricle or other cardiac surface. A pulse waveform may be generated and delivered to one or more electrodes and a conductive inflatable member of the device to ablate tissue. In some embodiments, the pulse waveform may be generated in synchronization with a pacing signal of the heart to avoid disruption of the sinus rhythm of the heart. In some embodiments, the electrodes may be configured in anode-cathode subsets. The pulse waveform may include hierarchical waveforms to aid in tissue ablation and reduce damage to healthy tissue.


I. Systems


Overview

Disclosed herein are systems and devices configured for tissue ablation via the selective and rapid application of voltage pulse waveforms to aid tissue ablation, resulting in irreversible electroporation. Generally, a system for ablating tissue described here may include a signal generator and an ablation device having one or more electrodes and an inflatable member (e.g., balloon) for the selective and rapid application of DC voltage to drive electroporation. As described herein, the systems and devices may be deployed endocardially to treat cardiac arrhythmias. Voltage pulse waveforms may be applied to a subset of the electrodes, with suitable anode/cathode electrode selections. A pacing signal for cardiac stimulation may be generated and used to generate the pulse waveform by the signal generator in synchronization with the pacing signal.


Generally, the systems and devices described herein include one or more catheters configured to ablate tissue in a ventricle of a heart. FIG. 1 illustrates an ablation system (100) configured to deliver voltage pulse waveforms. The system (100) may include an apparatus (120) including a signal generator (122), processor (124), memory (126), and cardiac stimulator (128). The apparatus (120) may be coupled to an ablation device (110), and optionally to a pacing device (130).


The signal generator (122) may be configured to generate pulse waveforms for irreversible electroporation of tissue, such as, for example, ventricular tissue, such as that of the left ventricle. For example, the signal generator (122) may be a voltage pulse waveform generator and be configured to deliver a pulse waveform to the ablation device (110). The return electrode (140) in some embodiments may be coupled to a patient (e.g., disposed on a patient's back) to allow current to pass from the ablation device (110) through the patient and then to the return electrode (140). In other embodiments, the return electrode (140) may be part of the ablation device so that the electrode bipole is on the device. The processor (124) may incorporate data received from memory (126), cardiac stimulator (128), and pacing device (130) to determine the parameters (e.g., amplitude, width, duty cycle, etc.) of the pulse waveform to be generated by the signal generator (122). The memory (126) may further store instructions to cause the signal generator (122) to execute modules, processes and/or functions associated with the system (100), such as pulse waveform generation and/or cardiac pacing synchronization. For example, the memory (126) may be configured to store pulse waveform and/or heart pacing data for pulse waveform generation and/or cardiac pacing, respectively.


In some embodiments, the ablation device (110) may include a catheter having an inflatable member (e.g., balloon) configured to deliver the pulse waveforms described in more detail below. In each of the embodiments described herein, the inflatable member may be inflated using gas, liquid, combinations thereof, and the like. For example, the ablation device (110) may be introduced into an endocardial space and positioned to align the inflatable member to a tissue surface, and then deliver the pulse waveforms to ablate tissue. The ablation device (110) may include one or more electrodes (112), which may, in some embodiments, be independently addressable electrodes. Each electrode may include an insulated electrical lead configured to sustain a voltage potential of at least about 700 V without dielectric breakdown of its corresponding insulation. In some embodiments, the insulation on each of the electrical leads may sustain an electrical potential difference of between about 200 V to about 3,000 V across its thickness without dielectric breakdown. For example, the electrodes (112) may be grouped into one or more anode-cathode subsets such as, for example, a subset including one proximal electrode and one distal electrode. In some embodiments, the distal electrode may include at least a portion of an inflatable member. As used herein, proximal is towards a handle of an ablation device and distal is towards a tip end of the ablation device.


When used, the pacing device (130) may be suitably coupled to the patient (not shown) and configured to receive a heart pacing signal generated by the cardiac stimulator (128) of the apparatus (120) for cardiac stimulation. An indication of the pacing signal may be transmitted by the cardiac stimulator (128) to the signal generator (122). Based on the pacing signal, an indication of a voltage pulse waveform may be selected, computed, and/or otherwise identified by the processor (124) and generated by the signal generator (122). In some embodiments, the signal generator (122) may be configured to generate the pulse waveform in synchronization with the indication of the pacing signal (e.g., within a common refractory window). For example, in some embodiments, the common refractory window may start substantially immediately following a ventricular pacing signal (or after a very small delay) and last for a duration of approximately 250 ms or less thereafter. In such embodiments, an entire pulse waveform may be delivered within this duration.


The processor (124) may be any suitable processing device configured to run and/or execute a set of instructions or code. The processor may be, for example, a general purpose processor, a Field Programmable Gate Array (FPGA), an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), and/or the like. The processor may be configured to run and/or execute application processes and/or other modules, processes and/or functions associated with the system and/or a network associated therewith (not shown). The underlying device technologies may be provided in a variety of component types, e.g., metal-oxide semiconductor field-effect transistor (MOSFET) technologies like complementary metal-oxide semiconductor (CMOS), bipolar technologies like emitter-coupled logic (ECL), polymer technologies (e.g., silicon-conjugated polymer and metal-conjugated polymer-metal structures), mixed analog and digital, and/or the like.


The memory (126) may include a database (not shown) and may be, for example, a random access memory (RAM), a memory buffer, a hard drive, an erasable programmable read-only memory (EPROM), an electrically erasable read-only memory (EEPROM), a read-only memory (ROM), Flash memory, etc. The memory (126) may store instructions to cause the processor (124) to execute modules, processes and/or functions associated with the system (100), such as pulse waveform generation and/or cardiac pacing.


The system (100) may be in communication with other devices (not shown) via, for example, one or more networks, each of which may be any type of network. A wireless network may refer to any type of digital network that is not connected by cables of any kind. However, a wireless network may connect to a wireline network in order to interface with the Internet, other carrier voice and data networks, business networks, and personal networks. A wireline network is typically carried over copper twisted pair, coaxial cable or fiber optic cables. There are many different types of wireline networks including, wide area networks (WAN), metropolitan area networks (MAN), local area networks (LAN), campus area networks (CAN), global area networks (GAN), like the Internet, and virtual private networks (VPN). Hereinafter, network refers to any combination of combined wireless, wireline, public and private data networks that are typically interconnected through the Internet, to provide a unified networking and information access solution.


Ablation Device

The systems described here may include one or more multi-electrode ablation devices configured to ablate tissue in a ventricle of a heart for treating indications such as ventricular arrhythmia. FIG. 2A is a side view of an ablation device (200) (e.g., structurally and/or functionally similar to the ablation device (110)) including a catheter shaft (210) and an inflatable member (e.g., balloon) (240) coupled to a distal end of the catheter shaft (210). In some embodiments, the ablation device (200) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle, as described herein. A distal portion of the inflatable member (240) may include and/or be formed in an atraumatic shape that reduces trauma to tissue (e.g., prevents and/or reduces the possibility of tissue puncture). The catheter shaft (210) and inflatable member (240) may be sized for advancement into an endocardial space (e.g., a left ventricle). The catheter shaft (210) may be flexible so as to be deflectable, as shown and discussed in more detail with respect to FIG. 3. Any of the catheter shafts described herein may include a shaft lumen therethrough. A set of electrical leads and/or a fluid (e.g., saline) may be disposed within the shaft lumen. The inflatable member (240) may be configured to transition between a first configuration (e.g., a deflated state) and a second configuration (e.g., an inflated state). In the first configuration, the inflatable member (240) may have a diameter that is about the same as a diameter of the catheter shaft (210) to aid in advancing the ablation device (200) through vasculature. For example, the inflatable member (240) in the first configuration may be approximately parallel to a longitudinal axis (212) of the catheter shaft (210). For example, the inflatable member (240) may be in a compressed or crimped configuration. In the second configuration, the inflatable member (240) may have a cross-sectional diameter at its largest portion (e.g., at its equatorial plane) in the range of between approximately 5 mm and approximately 15 mm. For example, the inflatable member (240) when inflated may bias away from the longitudinal axis. The inflatable member (240), or a portion thereof, may include a conductive outer surface (e.g., FIG. 2C) that may be configured as an anode or cathode for delivery of pulse waveform to tissue.


As shown in FIGS. 2A-2D, one or more electrodes (220, 230) may include a series of metallic bands or rings disposed along a surface of a catheter shaft (210). For example, the ablation device (200) may comprise a first set of electrodes (220) (e.g., one or more proximal electrodes) formed on a surface of a distal portion of the catheter shaft (210). In some embodiments, one or more electrodes (220, 230) may be formed on the catheter shaft (210) along its entire circumference. In some embodiments, one or more electrodes (220, 230) may be formed on the surface of a portion of a circumference of the catheter shaft (210). For example, electrode (220) may encircle the circumference of the catheter shaft (210). In some embodiments, one or more electrodes may be fully covered by a thin layer of dielectric coating for biphasic operation.


In FIGS. 2A-2B, there are no electrodes formed on the outer surface of the inflatable member (240). In some embodiments, the ablation device (200) may comprise a second set of electrodes (230) (e.g., a single distal electrode). The second set of electrodes (230) may be formed distal to the first set of electrodes (210) on the surface of the distal portion of the catheter shaft (210). In some embodiments, the electrodes (220, 230) may be shaped to conform to the shape of the catheter shaft (210). For example, the electrodes may be press fit (e.g., crimped) to the catheter shaft (210) or attached using a conductive adhesive. The catheter shaft (210) may include flexible portions (e.g., may be deflectable) between the electrodes (220, 230) to enhance flexibility and allow the device (200) to be deflected and aid in advancement through vasculature. In other embodiments, one or more electrodes (220, 230) may include a helical winding to enhance flexibility.


Each of the electrodes of any of the ablation devices discussed herein may be connected to an insulated electrical lead (not shown) leading to a handle (not shown) coupled to a proximal portion of the catheter. The insulation on each of the electrical leads may sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown. In other embodiments, the insulation on each of the electrical leads may sustain an electrical potential difference of between about 200 V to about 3,000 V across its thickness without dielectric breakdown, including all values and sub-ranges in between. This allows the electrodes and inflatable member coupled thereto to effectively deliver electrical energy and to ablate tissue through irreversible electroporation. The electrodes (220, 230) may, for example, receive pulse waveforms generated by a signal generator (122) as discussed above with respect to FIG. 1.


The first set of electrodes (220) may be electrically coupled together using one or more electrical leads. The second set of electrodes (230) may be electrically coupled together using a different set of electrical leads. An outer surface of the inflatable member (240) may include a set of electrically conductive portions and coupled to the second set of electrodes (230) and electrically isolated from the first set of electrodes (220). In some embodiments, the first set of electrodes (220) may be configured as an anode while the second set of electrodes (230) and inflatable member (240) may be configured as a cathode. Accordingly, a bipole may be formed between the first set of electrodes (220) and the inflatable member (240) that results in an electric field capable of ablating tissue (e.g., myocardial cells on an inner surface or within a ventricle). The inflatable member (240) and the first set of electrodes (220) may be electrically isolated from each other. For example, the second set of electrodes (230) and the first set of electrodes (220) may each couple to a respective insulated electrical lead, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown. In some embodiments, the first set of electrodes (220) may have an opposite polarity to the second set of electrodes (230) during delivery of a voltage pulse waveform.


The first and second sets of electrodes (220, 230) may include an atraumatic shape to reduce trauma to tissue. For example, the electrodes (220, 230) may have an atraumatic shape including a rounded, flat, curved, and/or blunted portion. For example, the electrodes (220, 230) in FIGS. 2A-2D may be ring electrodes. In some embodiments, the first set of electrodes (220) may be located along any portion of the catheter shaft (210) proximal to the second set of electrodes (230). The second set of electrodes (230) may be disposed on a surface of the catheter shaft (240) and/or flush with the surface of the inflatable member (240) so as to be electrically coupled to the inflatable member (240). The electrodes (220, 230) may have the same or different sizes, shapes, and/or location along the catheter shaft (210). The spacing between electrodes of the first set of electrodes (220) may be configured to allow a distal portion of the catheter shaft (210) (e.g., deflectable portion) to deflect a predetermined amount (e.g., up to about 210 degrees of deflection). For example, the deflectable portion may be configured for deflecting a portion of the catheter including the second set of electrodes (230) and the inflatable member (240) up to about 210 degrees relative to the longitudinal axis.


In some embodiments, the first set of electrodes (220) may include electrodes disposed along a portion of the catheter shaft (210) having a length between about 1 mm and about 12 mm from a proximal end to a distal end of the first set of electrodes (220). The first set of electrodes (220) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode) while allowing the catheter shaft (210) to remain flexible and facilitate deflection. In some embodiments, the first set of electrodes (220) may be spaced apart from the second set of electrodes (230) by a length of between about 2 mm and about 10 mm.


For each of the ablation devices discussed herein, the electrodes (220, 230) may include biocompatible metals such as titanium, palladium, gold, silver, platinum or a platinum alloy. For example, the electrode may preferably include platinum or a platinum alloy. In some embodiments, the proximal electrodes may have a biocompatible coating that permits capacitive voltage delivery with biphasic waveforms. Each electrode (220, 230) may include an electrical lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown. In other embodiments, the insulation on each of the electrical leads may sustain an electrical potential difference of between about 200 V to about 3,000 V across its thickness without dielectric breakdown, including all values and sub-ranges in between. The insulated electrical leads may run to the proximal handle portion of the ablation device (200) from where they may be connected to a suitable electrical connector. The catheter shaft (210) may be made of a flexible polymeric material such as Teflon, Nylon, Pebax, etc.


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (220, 230) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. Electrophysiology data may be used to generate an anatomical map that may be used to compare electrophysiology data recorded after energy delivery. The electrophysiology data may include intracardiac ECG signal data. The ablation device (200) may include one or more ECG signal electrodes. For example, one or more electrodes of the first set of electrodes (220) may be configured to receive an ECG signal. In some embodiments, an ECG signal electrode may be disposed on a surface of a distal end of an inflatable member (240) (not shown). The ECG signal electrode may be coupled to its own insulated electrical lead. The ECG signal electrode may be electrically isolated from the inflatable member (240) using, for example, a ring of insulation around the ECG signal electrode electrically isolating the ECG signal electrode from the conductive inflatable member. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation. In some embodiments, the ablation device (200) may include a location sensor that may generate location data of the ablation device disposed within vasculature. The electrophysiology data and location data may be used to generate an anatomical map of the electrophysiology data. In some embodiments, the location sensor may include an electromagnetic coil disposed at a distal end of the inflatable member (240). In other embodiments, the location sensor may be disposed within a lumen of the catheter shaft (210).


In some embodiments, the inflatable member (240) may be coupled to the second set of electrodes (230), and configured to deliver a pulse waveform from a signal generator to tissue during use. The inflatable member (240) may be coupled to a distal portion of the catheter shaft (210) and configured to be conductive so as to function as one half of an anode-cathode pair for delivery of irreversible electroporation energy to tissue. The inflatable member (240) may be configured to transition between a first configuration (e.g., deflated inflatable member in FIG. 2A) and a second configuration (e.g., inflated inflatable member in FIGS. 2B-2D). The inflatable member (240) in the first configuration may be in a compact, deflated state suitable for advancement through vasculature. For example, the inflatable member (240) in the first configuration may be substantially empty of fluid, such as saline. The inflatable member (240) in the second configuration may hold a predetermined volume of saline that fills and inflates the inflatable member (240) to a predetermined size and shape (e.g., having a diameter to contact a diameter of a ventricle). The inflatable member (240) may transition to an intermediate configuration between the first and second configuration as necessary, for example, to conform to a lumen or advance the device through vasculature.


In some embodiments, the inflatable members as described herein may have an expandable structure and may be composed of materials including, but not limited to polyvinyl chloride (PVC), polyethylene (PE), cross-linked polyethylene, polyolefins, polyolefin copolymer (POC), polyethylene terephthalate (PET), nylon, polymer blends, polyester, polyimide, polyamides, polyurethane, silicone, polydimethylsiloxane (PDMS), and the like. The inflatable member may be embedded with other materials including, but not limited to metals, insulation, Kevlar, nylon fibers, and the like.


The distal portion of the inflatable member (240) disposed in a lumen (e.g., ventricle) may serve as a backstop to advancement of a distal portion of the catheter (200). By modifying a size of the inflatable member (240) and manipulating the deflection of the catheter shaft (210), the inflatable member (240) may be positioned at a target tissue site, such as, for example, near or in contact with the wall of a left ventricle. The distal portion of the catheter shaft (210) may include a set of electrodes (220, 230) (e.g., structurally and/or functionally similar to the electrode(s) (112)) where the inflatable member (240) may be configured to contact an inner radial surface of a tissue lumen (e.g., ventricle). In some embodiments, a cross-sectional diameter of the inflatable member (240) at is largest portion (e.g., equatorial plane) when inflated may be between about 5 mm and about 15 mm. A length of the inflatable member (240) when inflated may be up to about 22 mm. In some embodiments, the length of the inflatable member (240) may be substantially the same between the first and second configurations.


A proximal end of the inflatable member (240) may be coupled to a suitable electrical lead (e.g., via a second set of electrodes (230)) and connected to the signal generator (122) of FIG. 1. The inflatable member (240) may be configured as a cathode and the first set of electrodes (220) may be configured as an anode, or vice versa. In some embodiments, as described in detail herein, a set of proximal electrodes (220) and the inflatable member (240) may form a bipole. In this manner, the inflatable member (240) in the second configuration may be placed against, for example, an inner wall of the left ventricle in order to directly generate localized or focal lesions thereupon by activation of the first and second set of electrodes (220, 230) using any suitable combination of polarities. For example, the first and second set of electrodes (230, 240) may be configured with opposite polarities. In some embodiments, the ablation device may be configured to generate an electric field having an intensity of at least about 200 V/cm.


One or more of a biphasic signal may be applied to the bipole such that tissue may be ablated between the inflatable member (240) and the first set of electrodes (220) at a desired location in the ventricle. For example, a biphasic pulse waveform may be delivered between the sets of electrodes of opposed polarities, resulting in a zone of irreversible electroporation ablation in the region around the inflatable member.


In some embodiments, the inflatable member (240) when inflated may be configured to contact endocardial tissue while the second set of electrodes (220) (also sometimes referred to as “proximal electrodes”) in the second configuration may not contact endocardial tissue. The electric field generated by the ablation device (200) due to conduction between the inflatable member (240) and proximal electrodes (220) through the blood pool and through tissue may result in focal ablation of tissue via irreversible electroporation.


In general, the inflatable member (240) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (240) is more bulbous than the other end (for example the proximal end) of the inflatable member (240). The inflatable member (240) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (210). Such a bulbous distal portion can aid in positioning the device (200) in a ventricle as well as further controlling a size and depth of focal ablation. In this manner, the inflatable member (240) when inflated may be placed against, for example, an endocardial surface such as the inner surface of a ventricle in order to directly generate lesions thereupon by activation of appropriate electrodes (220, 230) using any suitable combination of polarities. For example, the inflatable member (240) may be placed at an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion).


In some embodiments, an outer surface of the inflatable member (240) may include a set of conductive (e.g., metallized) portions. In this configuration, a bipole may be formed between the outer surface of the inflatable member (240) and the first set of electrodes (220) (e.g., proximal electrodes). For example, the outer surface of the inflatable member (240) may include a deposition of a biocompatible metal material (e.g., gold, silver, platinum), metal plating, printed metal nanoparticle ink, and/or the like. A portion of the inflatable member may include metal foil. The density of the metal material disposed on the outer surface of the inflatable member (240) may be such as to ensure electrical coupling with the second set of electrodes (230) (e.g., a distal ring electrode). The second set of electrodes (230) may be electrically coupled to a set of electrically conductive portions of the outer surface of the inflatable member (240) such that the inflatable member (240) is electrically coupled to a respective electrical lead. The electrode leads may be configured with sufficient insulation and high dielectric strength to be suitable for delivery of irreversible electroporation energy as described herein.


As shown in FIG. 2C, an ablation device (200′) may include a catheter shaft (210′) coupled at a distal end to an inflatable member (e.g., balloon) (240′). A first set of electrodes (220′) and a second set of electrodes (230′) may be disposed on a surface of the catheter shaft (210′) and/or flush with the surface. In some embodiments, one or more portions of the inflatable member (240′) may be conductive. For example, the entire outer surface of the inflatable member (240′) may be conductive or predetermined portions of the inflatable member (240′) may be conductive and coupled to the second set of electrodes (230′). As shown in FIG. 2C, the outer surface of the inflatable member may include one more conductive elements (e.g., pattern) (242′) having a set of spaced apart conductive stripes extending in a proximal-to-distal direction between the ends of the inflatable member (240′). The one or more conductive elements (242′) may be electrically isolated from each other. The conductive stripes may be formed by techniques such as masked electrodeposition. In some embodiments, the conductive element (242′) may be disposed symmetrically on the inflatable member (240′). Each of the stripes of the conductive element (242′) may be electrically coupled to the distal electrode (230′). The stripes may intersect each other at proximal and distal ends of the inflatable member (240′) and/or between the ends of the inflatable member (240′). The inflatable member (240′) may be flexible and/or expandable between the metal stripes of the conductive element (242′). The conductive element (242′) may be disposed (e.g., deposited) on the inflatable member (240′) in a manner that maintains electrical coupling with an electrical lead in the first configuration, second configuration, and configurations in-between. The conductive element (242′) may provide rigidity and/or stiffness to the inflatable member (240′) and aid in advancement of the inflatable member (240′) through vasculature. In some embodiments, the conductive element (242′) may include one or more spiral shaped metal portions. In some embodiments, the conductive element (242′) may include an interlaced structure (e.g., mesh shape). For example, the interlaced structure may form a set of polygonal apertures (e.g., openings) including one or more of a circular shape, parallelogram, hexagonal, and the like.


As shown in FIG. 2D, an ablation device (200″) may include a catheter shaft (210″) coupled at a distal end to an inflatable member (e.g., balloon) (240″). A first set of electrodes (220″) may be disposed on an outer surface of the catheter shaft (210″). A second set of electrodes (235″) may be disposed on an inner surface of the catheter shaft (210″). In some embodiments, one or more portions of the inflatable member (240″) may include a metal electrode portion (245″) (e.g., second electrode). In some embodiments, the second electrode (245″) is the only electrode formed on the outer surface of the inflatable member. A portion (245″) of the inflatable member surface (240″) may be metal. For example, a portion (245″) of the inflatable member (240″) may be a distal portion. In some embodiments, the inflatable member (240″) may define an inflatable member lumen (237″) extending along a first longitudinal axis of the catheter shaft (210″) to a distal end of the inflatable member (240″). A proximal end of an electrical lead (239″) may couple to the distal electrode (235″) and extend through the inflatable member lumen (237″) to couple to the electrode portion (245″) at a distal end of the inflatable member (240″). Accordingly, the electrode portion (245″) may be configured to deliver irreversible electroporation voltage pulses. In some embodiments, the portion (245″) (e.g., formed of metal) of the inflatable member (240″) may be configured as an electrode of one polarity while the first set of electrodes (220″) (e.g., proximal electrode(s)) may be configured as electrode(s) of the opposite polarity.


In some embodiments, a metallized outer surface of the inflatable member as discussed herein may be further covered by a layer of biocompatible material. The biocompatible coating may help prevent fibrin deposition due to high voltage energy delivery to tissue by the ablation device. In this configuration, a bipole may be formed between the outer surface of the inflatable member and the first set of electrodes (e.g., proximal electrode). However, the ablation device may be configured to deliver energy using one or more biphasic waveforms capacitively across the biocompatible coating on the inflatable member.


In some embodiments, the ablation device (200) may not include a second set of electrodes (230) (e.g., distal electrode) disposed on an outer surface of the catheter shaft (210). Instead, the inflatable member (240) may be configured to include an inner and outer metallized surface that sandwiches the inflatable member (240). The inner and outer metallized surface may include any combination of conductive elements (242) described herein. An electrical lead may be directly connected to the inner metallized surface of the inflatable member (240). In this configuration, a bipole may be formed between the inflatable member (240) and the first set of electrodes (220).


Activation of the first and second sets of electrodes using a predetermined configuration of the inflatable member may provide targeted and precise focal ablation by controlling a focal ablation spot size based on the expansion of the inflatable member. As described herein, focal ablation of tissue may be used to treat ventricular arrhythmia. For example, when the inflatable member of the ablation device is partially filled with saline, a high intensity electric field having a relatively smaller/more focused diameter results in a focal ablation lesion that is relatively smaller in diameter and shallower in depth. When the inflatable member of the ablation device is in the second configuration (e.g., full inflation state), a relatively larger and more dispersed electric field is generated, resulting in a focal ablation lesion that is relatively wider and deeper. In this manner, by varying the extent of expansion of the inflatable member, the depth and/or size of the lesion may be controlled with a single ablation device. Such aspects are useful for creating multiple lesions of varying sizes and/or depths using the same ablation device. Saline may be used to inflate the inflatable member and is not used for conduction. If the inflatable member (which is non-porous) is punctured or otherwise breaks, the saline may safely leak out of the inflatable member.


In some embodiments, a distal end of the catheter shaft (210) may extend into an internal cavity of the inflatable member (240) to provide rigidity and support to a distal end of the ablation device (200) that may aid in advancement of the ablation device (200) through vasculature. The added rigidity may further provide additional tactile feedback to an operator. For example, a distal end of the catheter shaft (210) coupled to a distal end of the inflatable member (240) may provide sufficient support and rigidity in advancing the inflatable member (240) through a transseptal puncture. In some embodiments, the distal end of the catheter shaft (210) may include a set of splines within the inflatable member that bias away from a longitudinal axis of the catheter shaft (210) and connect together at a distal end of the inflatable member (240). For example, the set of splines may be coupled to the catheter shaft (210) and an inner surface of the inflatable member (240) and configured for translation along the longitudinal axis to transition between a first configuration where the set of splines are approximately parallel to the longitudinal axis and a second configuration where the set of splines bias away from the longitudinal axis. The set of splines may form a basket-like shape to provide rigidity and support to the inflatable member. In some embodiments, the distal end of the catheter shaft (210) may be configured with a predetermined stiffness different from the stiffness of the catheter shaft (210) proximal to the inflatable member (240). For example, the distal end of the catheter shaft (210) within the inflatable member (240) may be stiffer than deflectable portions of the catheter shaft (210).


In some embodiments, one or more distal portions of the catheter shaft (210) may include a radiopaque portion. For example, the distal portion of the catheter shaft (210) may include a radiopaque platinum coil within a cavity of the inflatable member (240). The radiopaque portion may be fluoroscopically imaged to aid an operator in locating and positioning the ablation device (200) within one or more body cavities of the patient. The radiopaque portion may include a set of marker bands. In some embodiments, one or more splines of the distal portion (e.g., distal end) of the catheter shaft (210) may include a radiopaque portion (not shown) formed on a surface of that spline. Additionally or alternatively, a location sensor may be coupled to the distal end of the catheter shaft (210) within the inflatable member (240).



FIG. 3 is a side view of another embodiment of an ablation device (300) (e.g., structurally and/or functionally similar to the ablation device (110, 200)) including a catheter shaft (310) having a first set of electrodes (320) provided proximal to a second set of electrodes (330) and an inflatable member (e.g., balloon) (340). The first set of electrodes may be formed on a surface of a distal portion of the catheter shaft (310). During use, the electrodes (320, 330) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue (350), as described in more detail herein.


In some embodiments, a handle (not shown) may be coupled to a proximal portion of the ablation device (300) and may include a bending mechanism (e.g., one or more pull wires (not shown)) configured to modify the shape of the distal portion of the catheter shaft (310). For example, operation of a pull wire of the handle may increase or decrease a curvature in a deflectable portion (312) (e.g., bend in the catheter shaft (310)) in the distal portion of the catheter shaft (310). In some embodiments, the catheter (300) may have a deflectable portion (312) proximal to the second set of electrodes (330) and/or the first set of electrodes (320). The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (310). The curvature in the deflectable portion (312) of the catheter shaft (310) may be modified to allow the electrodes (320, 330) and inflatable member (340) to be disposed near and/or in contact with a tissue surface (350) (e.g., in contact with an inner radial surface of a ventricle). In this manner, apposition of the ablation device (300) to tissue may be provided at a desired position and orientation (e.g., the inflatable member may be perpendicular, angled, or parallel to the tissue surface).


In some embodiments, the pulse waveform may be applied between the first set of electrodes (320) and the inflatable member (340) configured in anode and cathode sets. It should be appreciated that any of the pulse waveforms disclosed herein may be progressively or sequentially applied to the set of anode-cathode pairs. In some embodiments, the first set of electrodes (320) may have an opposite polarity to the second set of electrodes (330) during delivery of a voltage pulse waveform. The electrodes (320, 330) may include a series of metallic bands or rings and in some embodiments may be independently addressable. In some embodiments, the electrical leads of at least two electrodes of the first set of electrodes (320) may be electrically coupled at or near a proximal portion of the ablation device, such as, for example, within the handle.



FIG. 5A is a side view of an ablation device (500) (e.g., structurally and/or functionally similar to the ablation device (110)) including a catheter shaft (510) and an inflatable member (e.g., balloon) (540) coupled to a distal end of the catheter shaft (510). In some embodiments, the ablation device (500) is useful for forming lesions on endocardial surfaces (555) via focal ablation. FIG. 5B illustrates spatial zones (530, 532) that may correspond to tissue ablation zones of sufficiently high electric field intensities to generate focal ablation lesions on a tissue surface (555). As shown in FIG. 5A, the inflatable member (540) may generally have a portion (545) that may be configured as a second electrode and which may be at least partly metallic. In some embodiments, the first set of electrodes (520) of the ablation device (500) may be configured as cathodes and the second electrode (545) may be configured as an anode, or vice versa. In some embodiments, the first set of electrodes (520) may have an opposite polarity to the second electrode (545) during delivery of a voltage pulse waveform. The first set of electrodes (520) may be formed on a surface of a distal portion of the catheter shaft (510). The flat distal second electrode (545) of the inflatable member (540) may be disposed against a tissue surface, such as a ventricular wall (555). The inflatable member (540) in the second configuration may have a circular cross-section. For example, the inflatable member (545) may have a diameter of about 12 mm and a voltage potential difference of about 2,000 V may be applied between the anode (520) and cathode (545) electrodes. In some embodiments, the first set of electrodes (520) may have a width of about 3 mm each and a separation of about 3 mm between adjacent electrodes. In some embodiments, the most distal electrode of the first set of electrodes (520) may be separated from the inflatable member (540) by at least about 5 mm.



FIG. 5B illustrates first and second spatial zones (530, 532) corresponding to an electric field intensity of magnitude of at least about 460 V/cm when a potential difference of about 2,000 V is applied between the anode (520) and cathode (545) electrodes with the distal flat electrode (545) disposed against the tissue wall (555). The second spatial zone (532) overlapping the tissue wall (555) may have a depth of about 7 mm and a width of about 20 mm.


In some embodiments, an ablation device (500′) may include an inflatable member (540′) having a distal portion having a concave surface facing away from a proximal end of the inflatable member (540′). As shown in FIGS. 5C and 5D, an inflatable member (540′) may include a first curved portion (544′) and a second curved portion (545′). The first curved portion (544′) may include a portion of the inflatable member (540′) configured to be in contact with an endocardial surface (555′) as shown in FIG. 5E.


In some embodiments, for example as shown in FIG. 5C, the inflatable member (540′) may include an inflatable member lumen (537′) extending along a first longitudinal axis of the catheter shaft (510′) from a distal end of the catheter shaft (510′) to a distal end of the inflatable member (540′). A proximal end of an electrical lead (539′) may couple to a second set of electrodes (535′) (e.g., distal electrode) and extend through the inflatable member lumen (537′) to couple to the electrode portion (545′) at a distal end of the inflatable member (540′). Accordingly, the electrode portion (545′) may be configured to deliver irreversible electroporation voltage pulses. The first set of electrodes (520′) and the portion (545′) may be configured with opposite polarities.



FIG. 5D is a perspective view of the inflatable member (540′) of FIG. 5C having a metallic concave portion (545′) covering substantially an entire distal surface of the inflatable member (540′). For example, the inflatable member (545′) may have a diameter of about 12 mm and, for example, a voltage potential difference of about 2,000 V may be applied between the inflatable member (545′) (e.g., anode) and the first set of electrodes (520′) (e.g., cathodes). In some embodiments, the first set of electrodes (520′) may have a width of about 3 mm and a separation of about 3 mm between them. The distal-most electrode of the first set of electrodes (520′) may be separated from the inflatable member (540′) by about 5 mm. The first set of electrodes (520′) have a width of about 3 mm and a separation of about 3 mm between them. The most distal electrode of the first set of electrodes (520′) may have a separation of about 7 mm from the inflatable member (540′). These dimensions are provided as examples for illustrative purposes only and other values may be chosen for these as found convenient for the clinical application.



FIG. 5E illustrates first and second spatial zones (530′, 532′) corresponding to an electric field intensity sufficient to generate focal ablation lesions. The second ablation zone (532′) may correspond to a tissue ablation zone when the inflatable member (540′) is disposed against the tissue wall (555′). In some embodiments, the second set of electrodes (535′) and portion (545′) (e.g., comprising metal) of the inflatable member (540′) may be configured as an electrode of one polarity while the first set of electrodes (520′) (e.g., proximal electrode(s)) may be configured as electrode(s) of the opposite polarity. FIG. 5E illustrates first and second spatial zones (530′, 532′) corresponding to an electric field intensity having a magnitude of at least about 460 V/cm when a potential difference of about 2,000 V is applied between the anode (520′) and cathode (545′) electrodes with the distal curved electrode portion (545′) (e.g., concave) disposed against the tissue wall (555′). The second spatial zone (532′) overlapping the tissue wall (555′) may have a depth of about 5 mm and a width of about 21 mm. In some variations, the second spatial zone (532′) may have a depth of up to about 10 mm and a width of up to about 30 mm.



FIGS. 5F and 5G illustrate an ablation device (500″) (e.g., structurally and/or functionally similar to the ablation device (110)) including a catheter shaft (510″) and an inflatable member (540″) coupled to a distal end of the catheter shaft (510″). In some embodiments, the ablation device (500″) is useful for forming lesions on endocardial surfaces via focal ablations. In some embodiments, the inflatable member (540″) may have a multi-faceted shape. In some embodiments, the multi-faceted shape may generally be a polyhedral shape with one or more second electrodes (504″) disposed on portions of one or more faces (511″) of the polyhedron. A first set of electrodes (520″) may be disposed on the catheter shaft (510″). The inflatable member (540″) may generally have one or more second electrode portions (504″) that may be configured as an electrode of the second set of electrodes and which may include metal. The inflatable member (540″) in the second configuration may have a polyhedron shape with one or more faces (511″). The second electrode portions (504″) may be electrically wired together to function as a single electrode or wired separately as independent electrodes. FIG. 5F illustrates a dodecahedron-shaped inflatable member (540″) having second electrode portions (504″) on six of the faces (511″). In some embodiments, the first set of electrodes (520″) may have an opposite polarity to the second electrode portions (504″) during delivery of a voltage pulse waveform. In some embodiments, one or more faces (511″) of the polyhedron may have a curved face.


In some embodiments, one or more of the second electrode portions (504″) of the second set of electrodes may be configured to receive ECG signals, as described herein. The strength and/or pattern of the ECG signal received by the one or more second electrode portions (504″) may be used to determine a level of contact each of the second electrode portions (504″) has with tissue (e.g., cardiac chamber wall). A set of the second electrode portions (504″) may be selected using the ECG signals to be configured as an anode or cathode. Thus, one or more second electrode portions (504″) disposed on corresponding faces (511″) of the inflatable member (540″) may be used for tissue ablation based on an ECG signal strength corresponding to tissue contact. In some embodiments, the edges of the faces (511″) (e.g., polyhedral surfaces) may be rounded so as to form a “soft” face.


In some embodiments, one or more of the second set of electrodes (504″) disposed on a face (511″) may include a concave curved shape (e.g., the electrodes may be indented) such that those faces (511″) may form a pocket configured to contact a tissue surface. The edges (515″) of these faces (511″) may have a higher stiffness than the faces (511″) themselves such that the inflatable member (540″) in the second configuration may form a polyhedron shape having one or more indented faces (511″).



FIG. 5G is another perspective view of the ablation device (500″) having an inflatable member (540″) having a generally polyhedron shape with metallized electrodes (504″) disposed on a portion of one or more faces (511″, 512″, 513″, 514″) of the inflatable member (540″). In some embodiments, a catheter shaft (510″) may define a catheter shaft lumen (not shown) configured for saline infusion to inflate the inflatable member (540″). Electrical leads may also be disposed within the catheter shaft lumen and configured to connect to the one or more electrodes (504″). Edges (515″) of the faces (511″, 512″, 513″, 514″) may be rounded and have a higher stiffness than a surface of the face so as to form an indented face surface when in the second configuration. In some embodiments, the diameter of the inflatable member (540″) in the second configuration may be between about 6 mm and about 22 mm. The first set of electrodes (520″) may be separated by at least about 3 mm or more from a proximal end of the inflatable member (540″). The metallized electrode portions (504″) may have a diameter between about 6 mm and about 15 mm. In some embodiments, the edges (522′″) of one or more faces (511′″) of the inflatable member (540′″) may be curved. As shown in FIG. 5H, one or more electrode portions (504′″) of the second set of electrodes may be disposed on a face (511′″) of the inflatable member (540′″). The curved edges (522′″) (e.g., polyhedral surface) may form a soft face (511′″).



FIG. 5I illustrates an ablation device (500″″) (e.g., structurally and/or functionally similar to the ablation device (110)) including a catheter shaft (510″″) and an inflatable member (e.g., balloon) (540″″) coupled to a distal end of the catheter shaft (510″″). In some embodiments, the ablation device (500″″) is useful for forming lesions on endocardial surfaces via focal ablation. In some embodiments, the inflatable member (540″″) may define an annular inflatable member lumen (533″″) (e.g., having an annular shape) and include a distal face (545″″) with a first electrode portion. The distal face (545″″) may have a substantially planar portion. A second electrode (535″″) (e.g. needle) may be disposed within the inflatable member lumen (533″″) and may extend out from, and distal to, the inflatable member lumen (533″″) along a longitudinal axis of the inflatable member (540″″). The inflatable member (540″″) may have a flat distal face (545″″) that may be metallized and configured as the first electrode. The annular space defined by the inflatable member lumen (533″″) may separate the second electrode (535″″) from the annular inflatable member (540″″) to prevent flash arcing when the second electrode (535″″) and the first electrode portion (545″″) are polarized with opposite electrical polarities. For example, the needle may have a length between about 8 mm and about 10 mm. The inflatable member (540″″) may have a diameter of about 12 mm. The inflatable member lumen (533″″) may have a diameter between about 4 mm and about 8 mm.



FIG. 5J illustrates a spatial zone (532″″) corresponding to an electric field intensity of magnitude of at least about 460 V/cm when a potential difference of about 2,000 V is applied between the electrode (535″″) and electrode portions (545″″) with the flat distal electrode (545″″) disposed against the tissue wall (555″″). The spatial zone (532″″) overlapping the tissue wall (555″″) may have a depth of about 10 mm and a width of about 14 mm.



FIG. 11 is a side view of another embodiment of an ablation device (1100) (e.g., structurally and/or functionally similar to the ablation device (110, 200, 300, 500, 500′, 500″, 500″″) including a catheter shaft (1110) having a first set of electrodes (1120) provided proximal to a second set of electrodes (1130, 1132) and an inflatable member (e.g., balloon) (1140). The first set of electrodes (1120) may be formed on a surface of a distal portion of the catheter shaft (1110). That is, the first set of electrodes (1120) may be formed on a surface of the distal end of the catheter shaft (1110). The second set of electrodes (1130, 1132) may be formed on a surface of a distal end of the inflatable member (1140) and may be electrically isolated from the first set of electrodes (1120). In some embodiments, a major axis (e.g., longitudinal axis) of the second electrodes (1132) may be substantially parallel to the longitudinal axis of the catheter shaft (1110) and/or inflatable member (1140).


In some embodiments, the ablation device (1100) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle. During use, the electrodes (1120, 1130, 1132) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue, as described in more detail herein. A distal portion of the inflatable member (1140) may include and/or be formed in an atraumatic shape that reduces trauma to tissue (e.g., prevents and/or reduces the possibility of tissue puncture). The catheter shaft (1110) and inflatable member (1140) may be sized for advancement into an endocardial space (e.g., left ventricle). The catheter shaft (1110) may be flexible so as to be deflectable. For example, a deflectable portion of the catheter shaft (1110) may be configured for deflecting a portion of the catheter (1100) including the second set of electrodes (1130, 1132) and the inflatable member (1140) up to about 210 degrees relative to the longitudinal axis. The inflatable member (1140) may be configured to transition between a first configuration (e.g., deflated state) and a second configuration (e.g., inflated state). In the first configuration, the inflatable member (1140) may have a diameter that is about the same as a diameter of the catheter shaft (1110) to aid in advancing the ablation device (1100) through vasculature. For example, the inflatable member (1140) in the first configuration may be approximately parallel to a longitudinal axis of the catheter shaft (1110). The inflatable member (1140) in the second configuration may bias away from the longitudinal axis. The first set of electrodes (1120) may be structurally and/or functionally similar to the electrodes (220, 230) described with respect to FIGS. 2A-2D.


The first set of electrodes (1120) may be electrically coupled together using one or more electrical leads. The second set of electrodes (1130, 1132) may be electrically coupled together using a different set of electrical leads. In some embodiments, the inflatable member (1140) may be electrically coupled to the second set of electrodes (1130, 1132). A voltage pulse waveform delivered between the first set of electrodes (1120) and the inflatable member (1140) electrically coupled to the second set of electrodes (1130, 1132) may be used to form a lesion via focal ablation (e.g., a spot lesion) of a predetermined size and shape. In some embodiments, the first set of electrodes (1120) may be configured as an anode while the second set of electrodes (1130, 1132) and inflatable member (240) may be configured as a cathode, or vice versa. Accordingly, a bipole may be formed between the first set of electrodes (1120) and the inflatable member (1140) that results in an electric field capable of ablating tissue (e.g., myocardial cells on an inner surface or within a ventricle). The inflatable member (1140) and the first set of electrodes (1120) may be electrically isolated from each other. For example, the second set of electrodes (1130, 1132) and the first set of electrodes (1120) may each couple to a respective insulated electrical lead, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown.


The first and second sets of electrodes (1120, 1130, 1132) may include an atraumatic shape to reduce trauma to tissue. For example, the first set of electrodes (1120) may be ring electrodes. In some embodiments, the first set of electrodes (1120) may be located along any portion of the catheter shaft (1110) proximal to the second set of electrodes (1130, 1132). The first set of electrodes (1120) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode) while allowing the catheter shaft (1110) to remain flexible and facilitate deflection. The second set of electrodes (1130, 1132) may be disposed on a surface of the inflatable member (1140) and/or flush with the surface of the inflatable member (1140) so as to be electrically coupled to the inflatable member (1140). The second set of electrodes (1130, 1132) may have the same or different sizes, shapes, and/or location along the inflatable member (1140).


For example, the second set of electrodes (1130, 1132) may include a distal tip electrode (1130) and a set of generally circular or elliptically-shaped electrodes (1132) disposed around a circumference of the inflatable member (1140). For example, the second set of electrodes (1130) may be formed on the inflatable member (1140) on an approximate plane approximately perpendicular to the longitudinal axis. In some embodiments, each electrode of the second set of electrodes (1130, 1132) may be wired together. In other embodiments, subsets of the electrodes of the second set of electrodes (1130, 1132) may be electrically wired together while other subsets may be independently addressable. In some embodiments, the distal tip electrode (1132) may be electrically isolated from the first set of electrodes (1120). In some embodiments, each electrode of the second set of electrodes (1130, 1132) may be independently addressable. The distal tip electrode (1132) may be formed at a distal portion of the inflatable member (1440) and electrically isolated from the first set of electrodes (1120). The distal tip electrode (1132) may have a diameter in the range between about 3 mm and about 10 mm


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (1120, 1132) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. The ablation device (1100) may include one or more ECG signal electrodes. For example, one or more electrodes of the second set of electrodes (1130, 1132) may be configured to receive an ECG signal. These ECG signal electrodes, such as the distal tip electrode (1130), may be coupled to its own insulated electrical lead. The ECG signal electrode may be electrically isolated from the inflatable member (1140) using, for example, a ring of insulation around the ECG signal electrode. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation.


One or more of a biphasic signal may be applied to the bipole such that tissue may be ablated between the inflatable member (1140) and the first set of electrodes (1120) at a desired location in the ventricle. In some embodiments, the inflatable member (1140) in the second configuration may be configured to contact endocardial tissue while the first set of electrodes (1130) in the second configuration may not contact endocardial tissue. The electric field generated by the ablation device (1100) due to conduction between the inflatable member (1140) and first set of electrodes (1120) through the blood pool and through tissue may result in focal ablation of tissue via irreversible electroporation. The inflatable member (1140) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (1140) is more bulbous than the other end (for example the proximal end) of the inflatable member (1140). The inflatable member (1140) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (1110). In this configuration, the inflatable member (1140) may be contacting an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion).


In some embodiments, the catheter shaft (1110) may include a deflectable portion between the first set of electrodes (1120) and the second set of electrodes (1130) in the same manner as illustrated in FIG. 3. The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (1110). In some embodiments, an actuator (e.g., fluid source) may be coupled to the inflatable member and configured to transition the inflatable member between the first configuration (e.g., deflated state) and the second configuration (e.g., inflated state) by, for example, using pressurized saline.



FIG. 12 is a side view of another embodiment of an ablation device (1200) (e.g., structurally and/or functionally similar to the ablation device (110, 200, 300, 500, 500′, 500″, 500″″, 1100) including a catheter shaft (1210) having a first set of electrodes (1220) provided proximal to a second set of electrodes (1230) and an inflatable member (e.g., balloon) (1240). The first set of electrodes (1220) may be formed on a surface of a distal portion of the catheter shaft (1210). That is, the first set of electrodes (1220) may be formed on a surface of the distal end of the catheter shaft (1210). The second set of electrodes (1230) may be formed on a surface of a distal end of the inflatable member (1240) and may be electrically isolated from the first set of electrodes (1220). In some embodiments, the ablation device (1200) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle. During use, the electrodes (1220, 1230) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue, as described in more detail herein. A distal portion of the inflatable member (1240) may include and/or be formed in an atraumatic shape that reduces trauma to tissue. The catheter shaft (1210) and inflatable member (1240) may be sized for advancement into an endocardial space (e.g., left ventricle). The catheter shaft (1210) may be flexible so as to be deflectable. For example, a deflectable portion of the catheter shaft (1210) may be configured for deflecting a portion of the catheter (1200) including the second set of electrodes (1230) and the inflatable member (1240) up to about 210 degrees relative to the longitudinal axis. The inflatable member (1240) may be configured to transition between a first configuration (e.g., deflated state) and a second configuration (e.g., inflated state). In the first configuration, the inflatable member (1240) may have a diameter that is about the same as a diameter of the catheter shaft (1210) to aid in advancing the ablation device (1200) through vasculature. For example, the inflatable member (1240) in the first configuration may be approximately parallel to a longitudinal axis of the catheter shaft (1210). The inflatable member (1240) when inflated may bias away from the longitudinal axis. The first set of electrodes (1220) may be structurally and/or functionally similar to the electrodes (220, 230) described with respect to FIGS. 2A-2D.


The first set of electrodes (1220) may be electrically coupled together using one or more electrical leads. One or more of the second set of electrodes (1230) may be electrically coupled together using a different set of electrical leads. A voltage pulse waveform delivered between the first set of electrodes (1220) and the second set of electrodes (1230) may be used to form a lesion via focal ablation (e.g., a spot lesion) of a predetermined size and shape. In some embodiments, the first set of electrodes (1220) may be configured as an anode while the second set of electrodes (1230) may be configured as a cathode, or vice versa. Accordingly, a bipole may be formed between the first set of electrodes (1220) and the second set of electrodes (1230) that results in an electric field capable of ablating tissue (e.g., myocardial cells on an inner surface or within a ventricle). The second set of electrodes (1230) and the first set of electrodes (1220) may be electrically isolated from each other. For example, the second set of electrodes (1230) and the first set of electrodes (1220) may each couple to a respective insulated electrical lead, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown.


The first and second sets of electrodes (1220, 1230) may include an atraumatic shape to reduce trauma to tissue. For example, the first set of electrodes (1220) may be ring electrodes. In some embodiments, the first set of electrodes (1220) may be located along any portion of the catheter shaft (1210) proximal to the second set of electrodes (1230). The first set of electrodes (1220) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode) while allowing the catheter shaft (1210) to remain flexible and facilitate deflection. The second set of electrodes (1230) may be disposed on a surface of the inflatable member (1240) and/or flush with the surface of the inflatable member (1240) so as to be electrically coupled to the inflatable member (1240). The second set of electrodes (1230) may have the same or different sizes, shapes, and/or location along the inflatable member (1240).


For example, the second set of electrodes (1230) may include a set of generally circular electrodes disposed around a circumference of the inflatable member (1240). In some embodiments, each electrode of the second set of electrodes (1230) may be wired together. In other embodiments, subsets of the electrodes of the second set of electrodes (1230) may be electrically wired together while other subsets may be independently addressable.


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (1220) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. The ablation device (1200) may include one or more ECG signal electrodes. For example, one or more electrodes of the second set of electrodes (1230) may be configured to receive an ECG signal. These ECG signal electrodes may be coupled to their own insulated electrical lead. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation.


One or more of a biphasic signal may be applied to the bipole formed by the first set of electrodes (122) and the second sets of electrodes (1230) such that tissue distal to or around the inflatable member (1240) may be ablated at a desired location in the ventricle. For example, a biphasic pulse waveform may be delivered between the sets of electrodes, resulting in a zone of irreversible electroporation ablation in the region around the inflatable member. The inflatable member (1240) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (1240) is more bulbous than the other end (for example the proximal end) of the inflatable member (1240). The inflatable member (1240) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (1210). In this configuration, the inflatable member (1240) may be placed at an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion). The electrode leads may be configured with sufficient insulation and high dielectric strength to be suitable for delivery of irreversible electroporation energy as described herein.


In some embodiments, the catheter shaft (1210) may include a deflectable portion between the first set of electrodes (1220) and the second set of electrodes (1230) in some embodiments, or proximal to the first set of electrodes (1220) in other embodiments. The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (1210). In some embodiments, an actuator (e.g., fluid source) may be coupled to the inflatable member and configured to transition the inflatable member between the first configuration (e.g., deflated state) and the second configuration (e.g., inflated state) by, for example, using pressurized saline.



FIG. 13 is a side view of another embodiment of an ablation device (1300) (e.g., structurally and/or functionally similar to the ablation device (110, 200, 300, 500, 500′, 500″, 500″″, 1100, 1200) including a catheter shaft (1310) having a first set of electrodes (1320) provided proximal to a second set of electrodes (1330, 1332) and an inflatable member (e.g., balloon) (1340). The first set of electrodes (1320) may be formed on a surface of a distal portion of the catheter shaft (1310). That is, the first set of electrodes (1320) may be formed on a surface of the distal end of the catheter shaft (1310). The second set of electrodes (1330, 1332) may be formed on a surface of a distal end of the inflatable member (1340) and may be electrically isolated from the first set of electrodes (1320). In some embodiments, a major axis (e.g., longitudinal axis) of the second electrodes (1332) may be substantially parallel to the longitudinal axis of the catheter shaft (1310) and/or inflatable member (1340).


In some embodiments, the ablation device (1300) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle. During use, the electrodes (1320, 1330, 1332) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue, as described in more detail herein. A distal portion of the inflatable member (1340) may include and/or be formed in an atraumatic shape that reduces trauma to tissue. The catheter shaft (1310) and inflatable member (1340) may be sized for advancement into an endocardial space (e.g., left ventricle). The catheter shaft (1310) may be flexible so as to be deflectable. For example, a deflectable portion of the catheter shaft (1310) may be configured for deflecting a portion of the catheter (1300) including the second set of electrodes (1330, 1332) and the inflatable member (1340) up to about 210 degrees relative to the longitudinal axis. The inflatable member (1340) may be configured to transition between a first configuration (e.g., deflated state) and a second configuration (e.g., inflated state). In the first configuration, the inflatable member (1340) may have a diameter that is about the same as a diameter of the catheter shaft (1310) to aid in advancing the ablation device (1300) through vasculature. For example, the inflatable member (1340) in the first configuration may be approximately parallel to a longitudinal axis of the catheter shaft (1310). The inflatable member (1340) when inflated may bias away from the longitudinal axis. The first set of electrodes (1320) may be structurally and/or functionally similar to the electrodes (220, 230) described with respect to FIGS. 2A-2D.


The first set of electrodes (1320) may be electrically coupled together using one or more electrical leads. The second set of electrodes (1330, 1332) may be electrically coupled together using a different set of electrical leads. A voltage pulse waveform delivered between the first set of electrodes (1320) and the second set of electrodes (1330, 1332) to form a lesion via focal ablation (e.g., a spot lesion) of a predetermined size and shape. In some embodiments, the first set of electrodes (1320) may be configured as an anode while the second set of electrodes (1330, 1332) may be configured as a cathode, or vice versa. The second set of electrodes (1330, 1332) and the first set of electrodes (1320) may be electrically isolated from each other. For example, the second set of electrodes (1330, 1332) and the first set of electrodes (1320) may each couple to a respective insulated electrical lead, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown.


The first and second sets of electrodes (1320, 1330, 1332) may include an atraumatic shape to reduce trauma to tissue. For example, the first set of electrodes (1320) may be ring electrodes. In some embodiments, the first set of electrodes (1320) may be located along any portion of the catheter shaft (1310) proximal to the second set of electrodes (1330, 1332). The first set of electrodes (1320) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode) while allowing the catheter shaft (1310) to remain flexible and facilitate deflection. The second set of electrodes (1330, 1332) may be disposed on a surface of the inflatable member (1340) and/or flush with the surface of the inflatable member (1340) so as to be electrically coupled to the inflatable member (1340). The second set of electrodes (1330, 1332) may have the same or different sizes, shapes, and/or location along the inflatable member (1340).


For example, the second set of electrodes (1330, 1332) may include a distal tip electrode (1330) and a set of generally elliptically-shaped electrodes (1332) disposed around a circumference of the inflatable member (1340). For example, the second set of electrodes (1330) may be formed on the inflatable member (1340) on an approximate plane approximately perpendicular to the longitudinal axis. In some embodiments, a longitudinal axis of each of the electrodes (1332) may be substantially parallel to the longitudinal axis of the catheter shaft (1310) and/or inflatable member (1340). In some embodiments, each electrode of the second set of electrodes (1330, 1332) may be wired together. In other embodiments, subsets of the electrodes of the second set of electrodes (1330, 1332) may be electrically wired together while other subsets (e.g., the distal tip electrode) may be independently addressable. In some embodiments, the distal tip electrode (1332) may be electrically isolated from the first set of electrodes (1320). In some embodiments, each electrode of the second set of electrodes (1330, 1332) may be independently addressable. The distal tip electrode (1330) may be formed at a distal portion of the inflatable member (1340) and electrically isolated from the first set of electrodes (1320).


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (1320, 1330, 1332) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. The ablation device (1300) may include one or more ECG signal electrodes. For example, one or more electrodes of the second set of electrodes (1330, 1332) may be configured to receive an ECG signal. These ECG signal electrodes, such as the distal tip electrode (1330), may be coupled to its own insulated electrical lead. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation.


The inflatable member (1340) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (1340) is more bulbous than the other end (for example the proximal end) of the inflatable member (1340). The inflatable member (1340) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (1310). In this configuration, the inflatable member (1340) may be placed at an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion). The electrode leads may be configured with sufficient insulation and high dielectric strength to be suitable for delivery of irreversible electroporation energy as described herein.


In some embodiments, the catheter shaft (1310) may include a deflectable portion between the first set of electrodes (1320) and the second set of electrodes (1330), or proximal to the first set of electrodes (1320). The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (1310). In some embodiments, an actuator (e.g., fluid source) may be coupled to the inflatable member and configured to transition the inflatable member between the first configuration (e.g., deflated state) and the second configuration (e.g., inflated state) by, for example, using pressurized saline.



FIG. 14 is a side view of another embodiment of an ablation device (1400) (e.g., structurally and/or functionally similar to the ablation device (110, 200, 300, 500, 500′, 500″, 500″″, 1100, 1200, 1300) including a catheter shaft (1410) having a first set of electrodes (1420) provided proximal to a second set of electrodes (1430, 1432) and an inflatable member (e.g., balloon) (1440). The first set of electrodes (1420) may be formed on a surface of a proximal portion of the inflatable member (1440). For example, the first set of electrodes (1420) may be formed proximal to an equatorial plane of the inflatable member (1440). As used herein, the equatorial plane of the inflatable member (1440) refers to the plane intersecting the maximum cross-sectional diameter of the inflatable member (1440) when inflated. That is, a proximal portion of the inflatable member (1440) is proximal to a cross-sectional diameter of the inflatable member (1440) at its largest portion. The second set of electrodes (1430, 1432) may be formed on a surface of the inflatable member (1440) distal to the equatorial plane and may be electrically isolated from the first set of electrodes (1420). In some embodiments, a major axis (e.g., longitudinal axis) of the first set of electrodes (1420) and the second set of electrodes (1432) may be substantially parallel to the longitudinal axis of the catheter shaft (1410) and/or inflatable member (1440).


In some embodiments, the ablation device (1400) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle. During use, the electrodes (1420, 1430, 1432) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue, as described in more detail herein. A distal portion of the inflatable member (1440) may include and/or be formed in an atraumatic shape that reduces trauma to tissue. The catheter shaft (1410) and inflatable member (1440) may be sized for advancement into an endocardial space (e.g., left ventricle). The catheter shaft (1410) may be flexible so as to be deflectable. For example, a deflectable portion of the catheter shaft (1410) may be configured for deflecting a portion of the catheter (1400) including first set of electrodes (1420) and the second set of electrodes (1430, 1432) and the inflatable member (1440) up to about 210 degrees relative to the longitudinal axis. The inflatable member (1440) may be configured to transition between a first configuration (e.g., deflated state) and a second configuration (e.g., inflated state). In the first configuration, the inflatable member (1440) may have a diameter that is about the same as a diameter of the catheter shaft (1410) to aid in advancing the ablation device (1400) through vasculature. For example, the inflatable member (1440) in the first configuration may be approximately parallel to a longitudinal axis of the catheter shaft (1410). The inflatable member (1440) when inflated may bias away from the longitudinal axis.


The first set of electrodes (1420) may be electrically coupled together using one or more electrical leads. The second set of electrodes (1430, 1432) may be electrically coupled together using a different set of electrical leads Accordingly, a bipole may be formed between the first set of electrodes (1420) and the second set of electrodes (1430, 1432) that results in an electric field capable of ablating tissue (e.g., myocardial cells on an inner surface or within a ventricle). For example, the second set of electrodes (1430, 1432) and the first set of electrodes (1420) may each couple to a respective insulated electrical lead, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown.


The first and second sets of electrodes (1420, 1430, 1432) may include an atraumatic shape to reduce trauma to tissue. For example, the first set of electrodes (1420) may have a set of generally elliptically-shaped electrodes (1420) disposed around a circumference of the inflatable member (1440) In some embodiments, the first set of electrodes (1420) may be located along any portion of the inflatable member (1440) proximal to the second set of electrodes (1430, 1432). The first set of electrodes (1420) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode). The second set of electrodes (1430, 1432) may be disposed on a distal end of the inflatable member (1430, 1432) and electrically isolated from the first set of electrodes (1420).


The first and second set of electrodes (1420, 1430, 1432) may have the same or different sizes, shapes, and/or location along the inflatable member (1440). For example, one or more electrodes of the first and second set of electrodes (1420, 1430, 1432) may have a generally elliptical shape. For example, the second set of electrodes (1430, 1432) may include a distal tip electrode (1430) and a set of generally elliptically-shaped electrodes (1432) disposed around a circumference of the inflatable member (1440). In some embodiments, a longitudinal axis of each of the electrodes (1420, 1432) may be substantially parallel to the longitudinal axis of the catheter shaft (1410) and/or inflatable member (1440). In some embodiments, each electrode of the second set of electrodes (1430, 1432) may be wired together. In other embodiments, subsets of the electrodes of the second set of electrodes (1430, 1432) may be electrically wired together while other subsets (e.g., the distal tip electrode) may be independently addressable. In some embodiments, the distal tip electrode (1432) may be electrically isolated from the first set of electrodes (1420). In some embodiments, one or more electrodes of the first and second set of electrodes (1420, 1430, 1432) may be independently addressable. The distal tip electrode (1430) may be formed at a distal portion of the inflatable member (1440).


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (1420, 1430, 1432) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. The ablation device (1400) may include one or more ECG signal electrodes. For example, one or more electrodes of the second set of electrodes (1430, 1432) may be configured to receive an ECG signal. These ECG signal electrodes, such as the distal tip electrode (1430), may be coupled to its own insulated electrical lead. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation.


In some embodiments, the first and second set of electrodes (1420, 1430, 1432) may be configured to deliver a pulse waveform from a signal generator to tissue during use. The inflatable member (1440) may be coupled to a distal portion of the catheter shaft (1410) and configured for delivery of irreversible electroporation energy to tissue. The first set of electrodes (1420) and the second set of electrodes (1430, 1432) may have opposite electrical polarities during delivery of a pulse waveform.


The electric field generated by the ablation device (1400) due to conduction between the second set of electrodes (1430, 1432) and the first set of electrodes (1420) through the blood pool and through tissue may result in focal ablation of tissue via irreversible electroporation. The inflatable member (1440) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (1440) is more bulbous than the other end (for example the proximal end) of the inflatable member (1440). The inflatable member (1440) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (1410). In this configuration, the inflatable member (1440) may be placed at an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion). The electrode leads may be configured with sufficient insulation and high dielectric strength to be suitable for delivery of irreversible electroporation energy as described herein.


In some embodiments, the catheter shaft (1410) may include a deflectable portion such as in a distal portion of the catheter shaft (1410). The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (1410). In some embodiments, an actuator (e.g., fluid source) may be coupled to the inflatable member and configured to transition the inflatable member between the first configuration (e.g., deflated state) and the second configuration (e.g., inflated state) by, for example, using pressurized saline.



FIG. 15 is a side view of another embodiment of an ablation device (1500) (e.g., structurally and/or functionally similar to the ablation device (110, 200, 300, 500, 500′, 500″, 500″″, 1100, 1200, 1300, 1400) including a catheter shaft (1510) having a first set of electrodes (1520) provided proximal to a second set of electrodes (1530, 1532, 1534) and an inflatable member (e.g., balloon) (1540). The first set of electrodes (1510) may be formed on a surface of a distal portion of the catheter shaft (1510). That is, the first set of electrodes (1520) may be formed on a surface of the distal end of the catheter shaft (1510). The second set of electrodes (1530, 1532, 1534) may be formed on a surface of the inflatable member (1540) and may be electrically isolated from the first set of electrodes (1520). In some embodiments, a major axis (e.g., longitudinal axis) of the second electrodes (1532, 1534) may be substantially parallel to the longitudinal axis of the catheter shaft (1510) and/or inflatable member (1540).


In some embodiments, the ablation device (1500) is useful for forming lesions on endocardial surfaces via focal ablation, such as an inner surface of a ventricle. During use, the electrodes (1520, 1530, 1532, 1534) may be disposed in a ventricle in order to deliver a pulse waveform to ablate tissue, as described in more detail herein. A distal portion of the inflatable member (1540) may include and/or be formed in an atraumatic shape that reduces trauma to tissue. The catheter shaft (1510) and inflatable member (1540) may be sized for advancement into an endocardial space (e.g., left ventricle). The catheter shaft (1510) may be flexible so as to be deflectable. For example, a deflectable portion of the catheter shaft (1510) may be configured for deflecting a portion of the catheter (1500) including the second set of electrodes (1530, 1532, 1534) and the inflatable member (1540) up to about 210 degrees relative to the longitudinal axis. The inflatable member (1540) may be configured to transition between a first configuration (e.g., deflated state) and a second configuration (e.g., inflated state). In the first configuration, the inflatable member (1540) may have a diameter that is about the same as a diameter of the catheter shaft (1510) to aid in advancing the ablation device (1500) through vasculature. For example, the inflatable member (1540) in the first configuration may be approximately parallel to a longitudinal axis of the catheter shaft (1510). The inflatable member (1540) when inflated may bias away from the longitudinal axis. The first set of electrodes (1520) may be structurally and/or functionally similar to the electrodes (220, 230) described with respect to FIGS. 2A-2D.


The first set of electrodes (1520) may be electrically coupled together using one or more electrical leads. The proximal electrodes (1534) of the second set of electrodes and the distal electrodes (1532, 1530) of the second set of electrodes may be electrically wired respectively separately using different sets of electrical leads. In some embodiments, the first set of electrodes (1520) may be configured as an anode while the second set of electrodes (1530, 1532, 1534) may be configured as a cathode, or vice versa. In alternate embodiments, the first set of electrodes (1520) and the proximal electrodes (1534) of the second set of electrodes may be configured as an anode while the distal electrodes (1532, 1530) of the second set of electrodes may be configured as a cathode, or vice versa. For example, the proximal electrodes (1534) of the second set of electrodes, the distal electrodes (1532, 1530) of the second set of electrodes, and the first set of electrodes (1520) may each couple to respective insulated electrical leads, with each lead having sufficient electrical insulation to sustain an electrical potential difference of at least 700 V across its thickness without dielectric breakdown.


The first and second sets of electrodes (1520, 1530, 1532, 1534) may include an atraumatic shape to reduce trauma to tissue. For example, the first set of electrodes (1520) may be ring electrodes. In some embodiments, the first set of electrodes (1520) may be located along any portion of the catheter shaft (1510) proximal to the second set of electrodes (1530, 1532, 1534). The first set of electrodes (1520) may be spaced apart from each other and wired together via one or more insulated leads so as to function as a single electrode (e.g., anode or cathode) while allowing the catheter shaft (1510) to remain flexible and facilitate deflection. The second set of electrodes (1530, 1532, 1534) may be disposed on a surface of the inflatable member (1540) and/or flush with the surface of the inflatable member (1540). The second set of electrodes (1530, 1532) may have the same or different sizes, shapes, and/or location along the inflatable member (1540).


For example, the second set of electrodes (1530, 1532, 1534) may include a distal tip electrode (1530) and a set of generally elliptically-shaped electrodes (1532, 1534) disposed around a circumference of the inflatable member (1540). In some embodiments, a major axis (e.g., longitudinal axis) of each of the electrodes (1532, 1534) may be substantially parallel to the longitudinal axis of the catheter shaft (1510) and/or inflatable member (1540). In some embodiments, the distal tip electrode (1532) may be electrically isolated from the first set of electrodes (1520). In some embodiments, each electrode of the second set of electrodes (1530, 1532, 1534) may be independently addressable. The distal tip electrode (1530) may be formed at a distal portion of the inflatable member (1540) and electrically isolated from the first set of electrodes (1520).


In some embodiments, a set of the second set of electrodes may be electrically coupled with the first set of electrodes. For example, the first set of electrodes (1520) and the proximal electrodes (1534) of the second set of electrodes may be electrically coupled together using one or more electrical leads. In some embodiments, the proximal electrodes (1534) may be formed proximal to a maximum cross-sectional diameter of the inflatable member (1540) when inflated. That is, a proximal portion of the inflatable member (1540) is proximal to a cross-sectional diameter of the inflatable member (1540) at its largest portion. In this configuration the distal electrodes (1530, 1532) of the second set of electrodes may be configured to contact tissue in the second configuration while the first set of electrodes (1520) and the proximal electrodes (1534) of the second set of electrodes may be configured for non-contact with tissue in the second configuration.


In some embodiments, one or more of the electrodes of the first and second sets of electrodes (1520, 1530, 1532, 1534) may be configured for receiving or sensing an ECG signal for recording electrophysiology data. The ablation device (1500) may include one or more ECG signal electrodes. For example, one or more electrodes of the second set of electrodes (1530, 1532, 1534) may be configured to receive an ECG signal. These ECG signal electrodes, such as the distal tip electrode (1530), may be coupled to its own insulated electrical lead. In these embodiments, the ablation device may be used to record electrophysiology data in place of a mapping catheter before and/or after tissue ablation.


The inflatable member (1540) when inflated may have an asymmetric shape in a proximal-to-distal direction, so that one end (for example the distal end) of the inflatable member (1540) is more bulbous than the other end (for example the proximal end) of the inflatable member (1540). The inflatable member (1540) when inflated may be rotationally symmetric about the longitudinal axis of the catheter shaft (1510). In this configuration, the inflatable member (1540) may be placed at an endocardial surface and used to form a lesion via focal ablation (e.g., a spot lesion). The electrode leads may be configured with sufficient insulation and high dielectric strength to be suitable for delivery of irreversible electroporation energy as described herein.


In some embodiments, the catheter shaft (1510) may include a deflectable portion between the first set of electrodes (1520) and the second set of electrodes (1530). In other embodiments the deflectable portion may be proximal to the first set of electrodes (1520). The deflectable portion may be configured to deflect up to about 210 degrees relative to the longitudinal axis of the catheter shaft (1510). In some embodiments, an actuator (e.g., fluid source) may be coupled to the inflatable member and configured to transition the inflatable member between the first configuration (e.g., deflated state) and the second configuration (e.g., inflated state) by, for example, using pressurized saline.


In the embodiments described herein with respect to FIGS. 11-15, the first set of electrodes may be spaced apart from the second set of electrodes by between about 2 mm and about 10 mm. In some embodiments, the first set of electrodes may be formed on a portion of the catheter shaft having a length of between about 2 mm and about 12 mm. In some embodiments, the inflatable member when inflated may have a shape with an effective cross-sectional diameter at its largest portion of between about 5 mm and about 15 mm. In some embodiments, the inflatable member may have a length of up to about 22 mm. For example, the inflatable member may have substantially the same length in the first configuration and the second configuration. In some embodiments, one or more electrodes of the first set of electrodes may have a width of between about 1 mm and about 5 mm and may be spaced apart by between about 1 mm and about 5 mm. In some embodiments, a distal-most electrode of the first set of electrodes may be spaced apart by at least about 5 mm from a proximal end of the inflatable member when inflated.


II. Methods


Also described here are methods for ablating tissue in a heart chamber using the systems and devices described above. The heart chamber may include one or more of the right, left ventricle, and/or right, left atria. Generally, the methods described here include introducing and disposing a device in contact with one or more chambers such as the ventricles. A pulse waveform may be delivered by one or more electrodes and an inflatable member (e.g., balloon) of the device to ablate tissue. In some embodiments, a cardiac pacing signal may synchronize the delivered pulse waveforms with the cardiac cycle. Additionally or alternatively, the pulse waveforms may include a plurality of levels of a hierarchy to reduce total energy delivery. The tissue ablation thus performed may be delivered in synchrony with paced heartbeats and with less energy delivery to reduce damage to healthy tissue. It should be appreciated that any of the ablation devices described herein may be used to ablate tissue using the methods discussed below as appropriate.


In some embodiments, the ablation devices described herein may be used for focal ablation of cardiac features/structures identified to cause arrhythmia. For example, a cardiac electrophysiology diagnostic catheter (e.g., mapping catheter) may be used to map cardiac structures such as re-entrant circuits and ventricular scar tissue that may be subsequently ablated through focal ablation using any of the ablation devices described herein. Focal ablation may, for example, create a spot lesion that neutralizes a re-entrant circuit while sparing surrounding tissue. In some embodiments, one or more focal ablation lesions may be formed in combination with one or more box or line lesions to treat cardiac arrhythmia. As a non-limiting example, in some embodiments, a system can include one or more mapping catheters, one or more ablation devices (e.g., as illustrated in FIGS. 2A-2C and 3) useful for creating lesions via focal ablation.


Generally, and as illustrated in FIGS. 4A-4B, a method (400) includes the introduction of a device (e.g., ablation device, such as the ablation devices (110, 200, 300, 500, 500′, 500″, 500″″, 1100, 1200, 1300, 1400, 1500) into an endocardial space of a ventricle. The ablation device may be introduced in a first configuration and transitioned to a second configuration in the ventricle. Once positioned in the ventricle, voltage pulse waveforms may be applied to tissue during a refractory period of the cardiac cycle. Electrophysiology data of the ventricle may be recorded to determine efficacy of the ablation.


The method (400) may begin with creating an access site in a patient (402). For example, to access the left ventricle for treatment, an antegrade delivery approach may be used, in which the first access site may be via a femoral vein of the patient. A guidewire may be advanced into the access site via the femoral vein and into the right atrium of the patient (404). A dilator and a deflectable sheath may be advanced over the guidewire and into the right atrium (406). The sheath may, for example, be configured for deflecting up to about 210 degrees. The dilator may be advanced from the right atrium into the left atrium through the septum (408) to create a transseptal opening. For example, the dilator may be advanced from the right atrium into the left atrium through the interatrial septum to create the transseptal opening. The interatrial septum may include the fossa ovalis of the patient. The transseptal opening may be dilated using the dilator (410). For example, the dilator may be advanced out of the sheath and used to poke the fossa ovalis to create the transseptal opening (assuming the patient is heparinized). Alternatively, a transseptal needle (e.g., Brockenbrough needle) may be used to create the transseptal opening. The sheath may be advanced from the right atrium into the left atrium (412) through the transseptal opening. An ablation device may be advanced into the left ventricle over the guidewire (414) via the mitral valve. Alternatively, the left ventricle may be accessed by a retrograde approach, in which the first access site may be via a femoral artery of the patient, and a guidewire and ablation device may be advanced through an aorta of the patient, and then through the aortic valve into the left ventricle. For treatment of the right ventricle, the first access site may again be via a femoral vein of the patient, and the guidewire and ablation device may be advanced into the right atrium of the patient and then through the tricuspid valve into the right ventricle.


In some embodiments, the ablation device may include a catheter shaft lumen and a set of insulated electrical leads extending through the shaft lumen. The catheter shaft may include one or more electrodes formed on a surface of the shaft. In some embodiments, one or more electrodes may be disposed on one or more portions of the inflatable member. For example, an electrode may be disposed on a distal end of the inflatable member. One or more of the electrodes may be configured to receive electrophysiology signals from the ventricle. In the method of FIGS. 4A-4B, an ablation device may be configured to record electrophysiology data of the ventricle. In some embodiments, to allow the ablation device to record electrophysiology data, the ablation device may be transitioned from the first configuration into the second configuration (416) within the ventricle (e.g., left ventricle). In some embodiments, the inflatable member may be transitioned between the first and second configurations using a handle of the ablation device. For example, the handle may include a saline flow control mechanism to control a volume of saline within an inflatable member. The handle may further include a saline volume indicator to indicate a configuration of the inflatable member. The ablation device in the second configuration may be configured to record electrophysiology data using the ablation device (418). For example, one or more electrodes on the catheter shaft and inflatable member may be configured for receiving an ECG signal for recording electrophysiology data.


In other embodiments, a separate diagnostic device (e.g., a mapping catheter) may be used to record electrophysiology data of the ventricle to be treated. Electrophysiology data may be used to generate an anatomical map that may be used to compare electrophysiology data recorded after energy delivery (e.g., ablation). The diagnostic device may be advanced into the selected ventricle via a femoral vein or jugular vein. In these embodiments, the diagnostic device (e.g., second catheter) may be advanced into the right ventricle (via the tricuspid valve) or into the ventricle (via the left atrium and the mitral valve) over the guidewire after step (412) instead of advancing the ablation device into the selected ventricle. The second catheter may be used to record electrophysiology data of one or more ventricles. Once completed, the diagnostic device may be withdrawn from the body over the guidewire, and the ablation device may then be advanced over the guidewire into the selected ventricle.


Still referring to FIGS. 4A-4B, a second access site may be created in the patient to advance a lead or catheter for cardiac stimulation into the patient's heart. For example, the second access site may be via a jugular vein of the patient. The device for cardiac stimulation may be advanced into the right ventricle through the second access site (420) (e.g., near the apex of the right ventricle). A pacing signal may be generated by a cardiac stimulator and applied to the heart for cardiac stimulation of the heart. An indication of the pacing signal may be transmitted from the cardiac stimulator to the signal generator. In some embodiments, the operator may confirm the pacing capture and determine that the ventricle is responding to the pacing signal as intended. For example, pacing capture may be confirmed on an ECG display on a signal generator. Confirmation of pacing capture is a safety feature in that ablation is delivered in synchrony with pacing through enforced periodicity of a Q-wave through pacing.


The ablation device may be advanced towards a target ventricle (422) for delivering a pulse waveform configured for tissue ablation. In particular, the ablation device in the second configuration may be advanced towards a ventricle of the heart to contact a tissue surface. The sheath may be deflected as needed to direct the ablation device towards the target ventricle. The inflatable member may be transitioned to a second configuration where the inflatable member inflates to contact the inflatable member against the ventricle at a predetermined location. Once the ablation device is in position within the heart to deliver one or more pulse waveforms, an extension cable may be used to electrically couple a signal generator to a proximal end of the handle of the ablation device. After pacing the right ventricle using the pacing device (424), the pulse waveform may be delivered to the ventricle using the ablation device to ablate tissue in a portion of the target ventricle (426). The pulse waveform may be delivered in synchronization with the pacing signal.


As described in detail in the figures (e.g., FIGS. 5A-5J), the ablation device may be configured to generate an electric field intensity in a region of myocardial tissue of a ventricle (e.g., where there may be re-entrant circuits, etc.) that is large enough to cause irreversible electroporation in tissue. For example, the inflatable member of the ablation device in FIG. 5D may be in contact with a tissue surface and may be used to generate a set of high intensity electric field lines that penetrate the ventricle at a depth of between about 5 mm to about 8 mm or more to form one or more focal ablation lesions, as shown by the spatial zone (532) in FIG. 5E. The ablation zone corresponding to the spatial region (532) may be wide and deep. The size of the inflatable member may be modified to control a depth and strength of the electric field. This allows energy to be delivered more efficiently and thus permits tissue ablation with minimal total energy delivered.


While examples of ablation devices configured for delivery of irreversible electroporation pulsed electric field therapy have been described here, the examples described herein are provided for exemplary purposes only and those skilled in the art may devise other variations without departing from the scope of the present invention. For example, a range and variety of materials, polyhedral sides, electrode diameters, device dimensions, voltage levels, proximal electrodes, and other such details are possible and may be implemented as convenient for the application at hand without departing from the scope of the present invention. The catheter shaft may undergo a range of deflections by controlling deflection from a catheter handle. The metallized electrode portions disposed on the inflatable member embodiments may be used for ECG signal recording or irreversible electroporation therapy delivery or both.


As discussed herein, the pulse waveform may be generated by a signal generator coupled to the ablation device. The signal generator may be electrically coupled to a proximal end of a handle of the ablation device. For example, an extension cable may electrically couple the signal generator to the proximal end of the handle. In some embodiments, the pulse waveform may include a time offset with respect to the pacing signal. In some embodiments, the pulse waveform may include a first level of a hierarchy of the pulse waveform including a first set of pulses. Each pulse has a pulse time duration and a first time interval separating successive pulses. A second level of the hierarchy of the pulse waveform may include a plurality of first sets of pulses as a second set of pulses. A second time interval may separate successive first sets of pulses. The second time interval may be at least three times the duration of the first time interval. A third level of the hierarchy of the pulse waveform may include a plurality of second sets of pulses as a third set of pulses. A third time interval may separate successive second sets of pulses. The third time interval may be at least thirty times the duration of the second level time interval. A fourth level of the hierarchy of the pulse waveform may include a plurality of third sets of pulses as a fourth set of pulses. A fourth time interval may separate successive third sets of pulses. The fourth time interval may be at least ten times the duration of the third level time interval.


One or more electrodes of the ablation device in the second configuration may be configured to receive electrophysiology signals of the target ventricle and used to record electrophysiology data of the target ventricle (428). The electrophysiology data may be compared to the baseline data recorded prior to ablation to determine if ablation was successful (430).


In other embodiments, the ablation device may be withdrawn from the heart over the guidewire and a mapping catheter may be advanced over the guidewire to record the post-ablation electrophysiology data of the target ventricle. If the ablation is not successful (430—NO) based on the electrophysiology data and predetermined criteria, then the process may return to step 426 for delivery of additional pulse waveforms. The pulse waveform parameters may be the same or changed for subsequent ablation cycles.


If analysis of the electrophysiology data indicates that the ablation of a ventricle portion is successful (e.g., tissue portion is electrically silent) (430—YES), then a determination may be made of other target ventricle portions to ablate (432). Another target ventricle portion may be selected (424) and the process may return to step 422 when other ventricular portions are to be ablated. When switching between target ventricles, the inflatable member may be at least partially deflated, and the ablation device may be advanced towards another portion of tissue. If no other portions are to be ablated (432—NO), the ablation device, cardiac stimulator, sheath, guidewire, and the like, may be removed from the patient (436).


In other embodiments, the diagnostic device (e.g., mapping catheter) may be used to record electrophysiology data of the ventricle after pulse waveforms are delivered to tissue by the ablation device. In these embodiments, the ablation device may be withdrawn from the patient over the guidewire after steps 426 or 436 and the diagnostic device may be advanced into the ventricle over the guidewire to record electrophysiology data of the target ventricle having undergone tissue ablation.


It should be noted that for any of the steps described herein, a radiopaque portion of the ablation device may be fluoroscopically imaged to aid an operator. For example, visual confirmation may be performed through fluoroscopic imaging that the inflatable members in the second configuration is in contact with the ventricle or to visually confirm an apposition of the inflatable member and electrodes relative to the ventricle. Imaging from a plurality of angles may be used to confirm positioning.


It should be understood that the examples and illustrations in this disclosure serve exemplary purposes and departures and variations such as inflatable member characteristics, number of electrodes, and so on can be built and deployed according to the teachings herein without departing from the scope of this invention.


Pulse Waveform

Disclosed herein are methods, systems and apparatuses for the selective and rapid application of pulsed electric fields/waveforms to effect tissue ablation with irreversible electroporation. The pulse waveform(s) as disclosed herein are usable with any of the systems (100), devices (e.g., 200, 300), and methods (e.g., 400) described herein. Some embodiments are directed to pulsed high voltage waveforms together with a sequenced delivery scheme for delivering energy to tissue via sets of electrodes. In some embodiments, peak electric field values can be reduced and/or minimized while at the same time sufficiently large electric field magnitudes can be maintained in regions where tissue ablation is desired. In some embodiments, a system useful for irreversible electroporation includes a signal generator and a processor capable of being configured to apply pulsed voltage waveforms to a selected plurality or a subset of electrodes of an ablation device. In some embodiments, the processor is configured to control inputs whereby selected pairs of anode-cathode subsets of electrodes can be sequentially triggered based on a pre-determined sequence, and in one embodiment the sequenced delivery can be triggered from a cardiac stimulator and/or pacing device. In some embodiments, the ablation pulse waveforms are applied in a refractory period of the cardiac cycle so as to avoid disruption of the sinus rhythm of the heart. One example method of enforcing this is to electrically pace the heart with a cardiac stimulator and ensure pacing capture to establish periodicity and predictability of the cardiac cycle, and then to define a time window well within the refractory period of this periodic cycle within which the ablation waveform is delivered.


In some embodiments, the pulsed voltage waveforms disclosed herein are hierarchical in organization and have a nested structure. In some embodiments, the pulsed waveform includes hierarchical groupings of pulses with a variety of associated timescales. Furthermore, the associated timescales and pulse widths, and the numbers of pulses and hierarchical groupings, can be selected so as to satisfy one or more of a set of Diophantine inequalities involving the frequency of cardiac pacing.


Pulsed waveforms for electroporation energy delivery as disclosed herein may enhance the safety, efficiency and effectiveness of the energy delivery by reducing the electric field threshold associated with irreversible electroporation, yielding more effective ablative lesions with reduced total energy delivered. This in turn can broaden the areas of clinical application of electroporation including therapeutic treatment of a variety of cardiac arrhythmias.



FIG. 6 illustrates a pulsed voltage waveform in the form of a sequence of rectangular double pulses, with each pulse, such as the pulse (600) being associated with a pulse width or duration. The pulse width/duration can be about 0.5 microseconds, about 1 microsecond, about 5 microseconds, about 10 microseconds, about 25 microseconds, about 50 microseconds, about 100 microseconds, about 125 microseconds, about 140 microseconds, about 150 microseconds, including all values and sub-ranges in between. The pulsed waveform of FIG. 6 illustrates a set of monophasic pulses where the polarities of all the pulses are the same (all positive in FIG. 6, as measured from a zero baseline). In some embodiments, such as for irreversible electroporation applications, the height of each pulse (600) or the voltage amplitude of the pulse (600) can be in the range from about 400 volts, about 1,000 volts, about 5,000 volts, about 10,000 volts, about 15,000 volts, including all values and sub ranges in between. As illustrated in FIG. 6, the pulse (600) is separated from a neighboring pulse by a time interval (602), also sometimes referred to as a first time interval. The first time interval can be about 3 microseconds, about 50 microseconds, about 100 microseconds, about 200 microseconds, about 500 microseconds, about 800 microseconds, about 1 millisecond including all values and sub ranges in between, in order to generate irreversible electroporation.



FIG. 7 introduces a pulse waveform with the structure of a hierarchy of nested pulses. FIG. 7 shows a series of monophasic pulses such as pulse (700) with pulse width/pulse time duration w, separated by a time interval (also sometimes referred to as a first time interval) such as (702) of duration t1 between successive pulses, a number m1 of which are arranged to form a group of pulses (710) (also sometimes referred to as a first set of pulses). Furthermore, the waveform has a number m2 of such groups of pulses (also sometimes referred to as a second set of pulses) separated by a time interval (712) (also sometimes referred to as a second time interval) of duration t2 between successive groups. The collection of m2 such pulse groups, marked by (720) in FIG. 7, constitutes the next level of the hierarchy, which can be referred to as a packet and/or as a third set of pulses. The pulse width and the time interval t1 between pulses can both be in the range of microseconds to hundreds of microseconds, including all values and sub ranges in between. In some embodiments, the time interval t2 can be at least three times larger than the time interval t1. In some embodiments, the ratio t2/t1 can be in the range between about 3 and about 300, including all values and sub-ranges in between.



FIG. 8 further elaborates the structure of a nested pulse hierarchy waveform. In this figure, a series of m1 pulses (individual pulses not shown) form a group of pulses (800) (e.g., a first set of pulses). A series of m2 such groups separated by an inter-group time interval (810) of duration t2 (e.g., a second time interval) between one group and the next form a packet (e.g., a second set of pulses). A series of m3 such packets separated by time intervals (812) of duration t3 (e.g., a third time interval) between one packet and the next form the next level in the hierarchy, a super-packet labeled (820) (e.g., a third set of pulses) in the figure. In some embodiments, the time interval t3 can be at least about thirty times larger than the time interval t2. In some embodiments, the time interval t3 can be at least fifty times larger than the time interval t2. In some embodiments, the ratio t3/t2 can be in the range between about 30 and about 800, including all values and sub-ranges in between. The amplitude of the individual voltage pulses in the pulse hierarchy can be anywhere in the range from 500 volts to 7,000 volts or higher, including all values and sub ranges in between.



FIG. 9 provides an example of a biphasic waveform sequence with a hierarchical structure. In the example shown in the figure, biphasic pulses such as (900) have a positive voltage portion as well as a negative voltage portion to complete one cycle of the pulse. There is a time delay (902) (e.g., a first time interval) between adjacent cycles of duration t1, and n1 such cycles form a group of pulses (910) (e.g., a first set of pulses). A series of n2 such groups separated by an inter-group time interval (912) (e.g., a second time interval) of duration t2 between one group and the next form a packet (920) (e.g., a second set of pulses). The figure also shows a second packet (930), with a time delay (932) (e.g., a third time interval) of duration t3 between the packets. Just as for monophasic pulses, higher levels of the hierarchical structure can be formed as well. The amplitude of each pulse or the voltage amplitude of the biphasic pulse can be anywhere in the range from 500 volts to 7,000 volts or higher, including all values and sub ranges in between. The pulse width/pulse time duration can be in the range from nanoseconds or even sub-nanoseconds to tens of microseconds, while the delays t1 can be in the range from zero to several microseconds. The inter-group time interval t2 can be at least ten times larger than the pulse width. In some embodiments, the time interval t3 can be at least about twenty times larger than the time interval t2. In some embodiments, the time interval t3 can be at least fifty times larger than the time interval t2.


Embodiments disclosed herein include waveforms structured as hierarchical waveforms that include waveform elements/pulses at various levels of the hierarchy. The individual pulses such as (700) in FIG. 7 comprise the first level of the hierarchy, and have an associated pulse time duration and a first time interval between successive pulses. A set of pulses, or elements of the first level structure, form a second level of the hierarchy such as the group of pulses/second set of pulses (710) in FIG. 7. Among other parameters, associated with the waveform are parameters such as a total time duration of the second set of pulses (not shown), a total number of first level elements/first set of pulses, and second time intervals between successive first level elements that describe the second level structure/second set of pulses. In some embodiments, the total time duration of the second set of pulses can be between about 20 microseconds and about 10 milliseconds, including all values and subranges in between. A set of groups, second set of pulses, or elements of the second level structure, form a third level of the hierarchy such as the packet of groups/third set of pulses (720) in FIG. 7. Among other parameters, there is a total time duration of the third set of pulses (not shown), a total number of second level elements/second set of pulses, and third time intervals between successive second level elements that describe the third level structure/third set of pulses. In some embodiments, the total time duration of the third set of pulses can be between about 60 microseconds and about 200 milliseconds, including all values and sub ranges in between. The generally iterative or nested structure of the waveforms can continue to a higher plurality of levels, such as ten levels of structure, or more.


For example, a pulse waveform may include a fourth level of the hierarchy of the pulse waveform may include a plurality of third sets of pulses as a fourth set of pulses, a fourth time interval separating successive third sets of pulses, the fourth time interval being at least ten times the duration of the third level time interval.


In some embodiments, hierarchical waveforms with a nested structure and hierarchy of time intervals as described herein are useful for irreversible electroporation ablation energy delivery, providing a good degree of control and selectivity for applications in different tissue types. A variety of hierarchical waveforms can be generated with a suitable pulse generator. It is understood that while the examples herein identify separate monophasic and biphasic waveforms for clarity, it should be noted that combination waveforms, where some portions of the waveform hierarchy are monophasic while other portions are biphasic, can also be generated/implemented.


In some embodiments, the ablation pulse waveforms described herein are applied during the refractory period of the cardiac cycle so as to avoid disruption of the sinus rhythm of the heart. In some embodiments, a method of treatment includes electrically pacing the heart with a cardiac stimulator to ensure pacing capture to establish periodicity and predictability of the cardiac cycle, and then defining a time window within the refractory period of the cardiac cycle within which one or more pulsed ablation waveforms can be delivered. FIG. 10 illustrates an example where both atrial and ventricular pacing is applied (for instance, with pacing leads or catheters situated in the right atrium and right ventricle respectively). With time represented on the horizontal axis, FIG. 10 illustrates a series of ventricular pacing signals such as (1000) and (1010), and a series of atrial pacing signals (1020, 1030), along with a series of ECG waveforms (1040, 1042) that are driven by the pacing signals. As indicated in FIG. 10 by the thick arrows, there is an atrial refractory time window (1022) and a ventricular refractory time window (1002) that respectively follow the atrial pacing signal (1022) and the ventricular pacing signal (1000). As shown in FIG. 10, a common refractory time window (1050) of duration Tr can be defined that lies within both atrial and ventricular refractory time windows (1022, 1002). In some embodiments, the electroporation ablation waveform(s) can be applied in this common refractory time window (1050). The start of this refractory time window (1022) is offset from the pacing signal (1000) by a time offset (1004) as indicated in FIG. 10. The time offset (1004) can be smaller than about 25 milliseconds, in some embodiments. At the next heartbeat, a similarly defined common refractory time window (1052) is the next time window available for application of the ablation waveform(s). In this manner, the ablation waveform(s) may be applied over a series of heartbeats, at each heartbeat remaining within the common refractory time window. In one embodiment, each packet of pulses as defined above in the pulse waveform hierarchy can be applied over a heartbeat, so that a series of packets is applied over a series of heartbeats, for a given electrode set.


As used herein, the terms “about” and/or “approximately” when used in conjunction with numerical values and/or ranges generally refer to those numerical values and/or ranges near to a recited numerical value and/or range. In some instances, the terms “about” and “approximately” may mean within ±10% of the recited value. For example, in some instances, “about 100 [units]” may mean within ±10% of 100 (e.g., from 90 to 110). The terms “about” and “approximately” may be used interchangeably.


Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also may be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also may be referred to as code or algorithm) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to, magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments described herein relate to a computer program product, which may include, for example, the instructions and/or computer code disclosed herein.


The systems, devices, and/or methods described herein may be performed by software (executed on hardware), hardware, or a combination thereof. Hardware modules may include, for example, a general-purpose processor (or microprocessor or microcontroller), a field programmable gate array (FPGA), and/or an application specific integrated circuit (ASIC). Software modules (executed on hardware) may be expressed in a variety of software languages (e.g., computer code), including C, C++, Java®, Ruby, Visual Basic®, and/or other object-oriented, procedural, or other programming language and development tools. Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.


The specific examples and descriptions herein are exemplary in nature and embodiments may be developed by those skilled in the art based on the material taught herein without departing from the scope of the present invention, which is limited only by the attached claims.

Claims
  • 1. An apparatus for delivering a pulse waveform to tissue, the apparatus comprising: a catheter shaft defining a longitudinal axis and having a catheter distal end;an inflatable member including a proximal end and a distal end opposite to the proximal end, the inflatable member having an asymmetric shape in a proximal-to-distal direction, the distal end being more bulbous than the proximal end, the proximal end of the inflatable member being adjacent to and coupled to the catheter distal end and the distal end of the inflatable member being spaced apart from and not coupled to the catheter distal end;a first set of electrodes formed on a surface of the catheter shaft; anda second set of electrodes formed on the inflatable member at a location distal to the catheter distal end and electrically isolated from the first set of electrodes, the second set of electrodes including a tip electrode formed on a surface at the distal end of the inflatable member;wherein the catheter shaft includes a deflectable portion formed between the first set of electrodes and the second set of electrodes, the deflectable portion configured for deflecting a portion of the catheter including the second set of electrodes and the inflatable member up to about 210 degrees relative to the longitudinal axis.
  • 2. The apparatus of claim 1, wherein the second set of electrodes are formed on the inflatable member on an approximate plane approximately perpendicular to the longitudinal axis.
  • 3. The apparatus of claim 1, wherein each electrode of the second set of electrodes has a circular or elliptical shape.
  • 4. The apparatus of claim 3, wherein a major axis of each electrode of the second set of electrodes having the elliptical shape is substantially parallel to the longitudinal axis.
  • 5. The apparatus of claim 1, the first set of electrodes having a polarity opposite to a polarity of the second electrode during delivery of a pulse waveform.
  • 6. The apparatus of claim 1, wherein one or more electrodes of the first set of electrodes and one or more electrodes of the second electrode has an insulated electrical lead associated therewith, the insulated electrical lead configured for sustaining a voltage potential of at least about 700 V without dielectric breakdown of its corresponding insulation, the insulated electrical lead disposed in a lumen of the catheter shaft.
  • 7. The apparatus of claim 1, wherein a distal-most electrode of the first set of electrodes is spaced apart from a proximal most electrode of the second set of electrodes by between about 4 mm and about 10 mm.
  • 8. The apparatus of claim 1, wherein a distal-most electrode of the first set of electrodes is spaced apart by at least about 5 mm from a proximal end of the inflatable member.
  • 9. The apparatus of claim 1, wherein the first set of electrodes are formed on a portion of the catheter shaft having a length of between about 3 mm and about 12 mm.
  • 10. The apparatus as in claim 1, further including a conductive element formed on a surface of the inflatable member, the conductive element being electrically connected to the second set of electrodes.
  • 11. The apparatus of claim 10, wherein the conductive element includes a set of spaced apart conductive stripes extending between ends of the inflatable member, wherein the set of spaced apart conductive stripes intersect each other at the proximal and distal ends of the inflatable member.
  • 12. The apparatus of claim 1, further including a first conductive element disposed on an outer surface of the inflatable member and a second conductive element disposed on an inner surface of the inflatable member, wherein the first conductive element has an opposite polarity to the second conductive element during delivery of a pulse waveform.
  • 13. The apparatus as in claim 1, wherein a distal end of the inflatable member has a concave surface facing away from a proximal end of the inflatable member, wherein the second electrode is formed on the concave surface.
  • 14. The apparatus of claim 1, wherein each electrode of the second set of electrodes has a diameter of between about 3 mm and about 15 mm.
  • 15. The apparatus of claim 1, wherein the inflatable member is transitionable between a first configuration and a second configuration, the inflatable member in the second configuration having a cross-sectional diameter at its largest portion of between about 6 mm and about 22 mm.
  • 16. The apparatus of claim 1, wherein the second set of electrodes is formed on a distal portion of the inflatable member located distal to an equatorial plane of the inflatable member, the apparatus further comprising a third set of electrodes formed on the inflatable member at a location proximal to the equatorial plane of the inflatable member.
  • 17. An apparatus for delivering a pulse waveform to tissue, the apparatus comprising: a catheter shaft defining a longitudinal axis and having a catheter distal end;an inflatable member including a proximal end and a distal end opposite to the proximal end, the proximal end of the inflatable member being adjacent to and coupled to the catheter distal end and the distal end of the inflatable member being spaced apart from and not coupled to the catheter distal end;a first set of electrodes formed on an outer surface of the catheter shaft; anda second set of electrodes formed on an inner surface of the catheter shaft and the inflatable member at a location distal to the catheter distal end and electrically isolated from the first set of electrodes, the second set of electrodes including a distal electrode formed on the inner surface of the catheter shaft and a tip electrode formed on an outer surface at the distal end of the inflatable member, and an electrical lead coupling the distal electrode and the tip electrode.
  • 18. An apparatus for delivering a pulse waveform to tissue, the apparatus comprising: a catheter shaft defining a longitudinal axis and having a catheter distal end;an inflatable member including a proximal end and a distal end opposite to the proximal end, the inflatable member having a polyhedron shape including a plurality of faces, the proximal end of the inflatable member being adjacent to and coupled to the catheter distal end and the distal end of the inflatable member being spaced apart from and not coupled to the catheter distal end;a first set of electrodes formed on a surface of the catheter shaft; anda second set of electrodes formed on the plurality of faces of the inflatable member at a location distal to the catheter distal end and electrically isolated from the first set of electrodes, the second set of electrodes including a tip electrode formed on a surface at the distal end of the inflatable member.
  • 19. The apparatus of claim 18, wherein one or more of the second set of electrodes includes a concave curved shape such that a pocket is formed.
  • 20. The apparatus of claim 18, wherein each of the plurality of faces include edges having a stiffness higher than a surface of the face such that the plurality of faces are indented.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 16/817,410, filed on Mar. 12, 2020, which is a continuation of International Patent Application No. PCT/US2018/050660, filed on Sep. 12, 2018, which claims priority to U.S. Provisional Application No. 62/557,390, filed on Sep. 12, 2017, the disclosures of each of which are hereby incorporated by reference in their entirety.

US Referenced Citations (716)
Number Name Date Kind
4200104 Harris Apr 1980 A
4470407 Hussein Sep 1984 A
4739759 Rexroth et al. Apr 1988 A
5234004 Hascoet et al. Aug 1993 A
5242441 Avitall Sep 1993 A
5257635 Langberg Nov 1993 A
5281213 Milder et al. Jan 1994 A
5304214 Deford et al. Apr 1994 A
5306296 Wright et al. Apr 1994 A
5334193 Nardella Aug 1994 A
5341807 Nardella Aug 1994 A
5342301 Saab Aug 1994 A
5398683 Edwards et al. Mar 1995 A
5443463 Stern et al. Aug 1995 A
5454370 Avitall Oct 1995 A
5515848 Corbett et al. May 1996 A
5531685 Hemmer et al. Jul 1996 A
5545161 Imran Aug 1996 A
5578040 Smith Nov 1996 A
5617854 Munsif Apr 1997 A
5624430 Eton et al. Apr 1997 A
5667491 Pliquett et al. Sep 1997 A
5672170 Cho et al. Sep 1997 A
5700243 Narciso, Jr. Dec 1997 A
5702438 Avitall Dec 1997 A
5706823 Wodlinger Jan 1998 A
5722400 Ockuly et al. Mar 1998 A
5722402 Swanson et al. Mar 1998 A
5749914 Janssen May 1998 A
5779699 Lipson Jul 1998 A
5788692 Campbell et al. Aug 1998 A
5810762 Hofmann Sep 1998 A
5833710 Jacobson Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836942 Netherly et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5843154 Osypka Dec 1998 A
5849028 Chen Dec 1998 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5868736 Swanson et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5876336 Swanson et al. Mar 1999 A
5885278 Fleischman Mar 1999 A
5895404 Ruiz Apr 1999 A
5899917 Edwards et al. May 1999 A
5904709 Arndt et al. May 1999 A
5916158 Webster, Jr. Jun 1999 A
5916213 Haissaguerre et al. Jun 1999 A
5921924 Avitall Jul 1999 A
5928269 Alt Jul 1999 A
5928270 Ramsey, III Jul 1999 A
5938660 Swartz et al. Aug 1999 A
6002955 Willems et al. Dec 1999 A
6006131 Cooper et al. Dec 1999 A
6009351 Flachman Dec 1999 A
6014579 Pomeranz et al. Jan 2000 A
6029671 Stevens et al. Feb 2000 A
6033403 Tu et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6045550 Simpson et al. Apr 2000 A
6068653 LaFontaine May 2000 A
6071274 Thompson et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6074389 Levine et al. Jun 2000 A
6076012 Swanson et al. Jun 2000 A
6090104 Webster, Jr. Jul 2000 A
6096036 Bowe et al. Aug 2000 A
6113595 Muntermann Sep 2000 A
6119041 Pomeranz et al. Sep 2000 A
6120500 Bednarek et al. Sep 2000 A
6142993 Whayne et al. Nov 2000 A
6146381 Bowe et al. Nov 2000 A
6164283 Lesh Dec 2000 A
6167291 Barajas et al. Dec 2000 A
6171305 Sherman Jan 2001 B1
6216034 Hofmann et al. Apr 2001 B1
6219582 Hofstad et al. Apr 2001 B1
6223085 Dann et al. Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245064 Lesh et al. Jun 2001 B1
6251107 Schaer Jun 2001 B1
6251109 Hassett et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6272384 Simon et al. Aug 2001 B1
6287306 Kroll et al. Sep 2001 B1
6314963 Vaska et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6350263 Wetzig et al. Feb 2002 B1
6370412 Armoundas et al. Apr 2002 B1
6391024 Sun et al. May 2002 B1
6405732 Edwards et al. Jun 2002 B1
6447505 McGovern et al. Sep 2002 B2
6464699 Swanson Oct 2002 B1
6470211 Ideker et al. Oct 2002 B1
6502576 Lesh Jan 2003 B1
6503247 Swartz et al. Jan 2003 B2
6517534 McGovern et al. Feb 2003 B1
6527724 Fenici Mar 2003 B1
6527767 Wang et al. Mar 2003 B2
6592581 Bowe Jul 2003 B2
6595991 Toellner et al. Jul 2003 B2
6607520 Keane Aug 2003 B2
6613046 Jenkins et al. Sep 2003 B1
6623480 Kuo et al. Sep 2003 B1
6638278 Falwell et al. Oct 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669693 Friedman Dec 2003 B2
6702811 Stewart et al. Mar 2004 B2
6719756 Muntermann Apr 2004 B1
6723092 Brown et al. Apr 2004 B2
6728563 Rashidi Apr 2004 B2
6743225 Sanchez et al. Jun 2004 B2
6743226 Cosman et al. Jun 2004 B2
6743239 Kuehn et al. Jun 2004 B1
6764486 Natale Jul 2004 B2
6780181 Kroll et al. Aug 2004 B2
6805128 Pless et al. Oct 2004 B1
6807447 Griffin, III Oct 2004 B2
6892091 Ben-Haim et al. May 2005 B1
6893438 Hall et al. May 2005 B2
6926714 Sra Aug 2005 B1
6955173 Lesh Oct 2005 B2
6960206 Keane Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6972016 Hill et al. Dec 2005 B2
6973339 Govari Dec 2005 B2
6979331 Hintringer et al. Dec 2005 B2
6984232 Vanney et al. Jan 2006 B2
6985776 Kane et al. Jan 2006 B2
7001383 Keidar Feb 2006 B2
7041095 Wang et al. May 2006 B2
7113831 Hooven Sep 2006 B2
7171263 Darvish et al. Jan 2007 B2
7182725 Bonan et al. Feb 2007 B2
7195628 Falkenberg Mar 2007 B2
7207988 Leckrone et al. Apr 2007 B2
7207989 Pike et al. Apr 2007 B2
7229402 Diaz et al. Jun 2007 B2
7229437 Johnson et al. Jun 2007 B2
7250049 Roop et al. Jul 2007 B2
7285116 De et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7326208 Vanney et al. Feb 2008 B2
7346379 Eng et al. Mar 2008 B2
7367974 Haemmerich et al. May 2008 B2
7374567 Heuser May 2008 B2
7387629 Vanney et al. Jun 2008 B2
7387630 Mest Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7416552 Paul et al. Aug 2008 B2
7419477 Simpson et al. Sep 2008 B2
7419489 Vanney et al. Sep 2008 B2
7422591 Phan Sep 2008 B2
7429261 Kunis et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7513896 Orszulak Apr 2009 B2
7527625 Knight et al. May 2009 B2
7578816 Boveja et al. Aug 2009 B2
7588567 Boveja et al. Sep 2009 B2
7623899 Worley et al. Nov 2009 B2
7678108 Chrisitian et al. Mar 2010 B2
7681579 Schwartz Mar 2010 B2
7771421 Stewart et al. Aug 2010 B2
7805182 Weese et al. Sep 2010 B2
7842031 Abboud et al. Nov 2010 B2
7850642 Moll et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7857808 Oral et al. Dec 2010 B2
7857809 Drysen Dec 2010 B2
7869865 Govari et al. Jan 2011 B2
7896873 Hiller et al. Mar 2011 B2
7917211 Zacouto Mar 2011 B2
7918819 Karmarkar et al. Apr 2011 B2
7918850 Govari et al. Apr 2011 B2
7922714 Stevens-Wright Apr 2011 B2
7955827 Rubinsky et al. Jun 2011 B2
8048067 Davalos et al. Nov 2011 B2
8048072 Verin et al. Nov 2011 B2
8100895 Panos et al. Jan 2012 B2
8100900 Prinz et al. Jan 2012 B2
8108069 Stahler et al. Jan 2012 B2
8133220 Lee et al. Mar 2012 B2
8137342 Crossman Mar 2012 B2
8145289 Calabro'et al. Mar 2012 B2
8147486 Honour et al. Apr 2012 B2
8160690 Wilfley et al. Apr 2012 B2
8175680 Panescu May 2012 B2
8182477 Orszulak et al. May 2012 B2
8206384 Falwell et al. Jun 2012 B2
8206385 Stangenes et al. Jun 2012 B2
8216221 Ibrahim et al. Jul 2012 B2
8221411 Francischelli et al. Jul 2012 B2
8226648 Paul et al. Jul 2012 B2
8228065 Wirtz et al. Jul 2012 B2
8235986 Kulesa et al. Aug 2012 B2
8235988 Davis et al. Aug 2012 B2
8251986 Chornenky et al. Aug 2012 B2
8282631 Davalos et al. Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8414508 Thapliyal et al. Apr 2013 B2
8430875 Ibrahim et al. Apr 2013 B2
8433394 Harlev et al. Apr 2013 B2
8449535 Deno et al. May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8463368 Harlev et al. Jun 2013 B2
8475450 Govari et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8500733 Watson Aug 2013 B2
8535304 Sklar et al. Sep 2013 B2
8538501 Venkatachalam et al. Sep 2013 B2
8562588 Hobbs et al. Oct 2013 B2
8568406 Harlev et al. Oct 2013 B2
8571635 McGee Oct 2013 B2
8571647 Harlev et al. Oct 2013 B2
8585695 Shih Nov 2013 B2
8588885 Hall et al. Nov 2013 B2
8597288 Christian Dec 2013 B2
8608735 Govari et al. Dec 2013 B2
8628522 Ibrahim et al. Jan 2014 B2
8632534 Pearson et al. Jan 2014 B2
8647338 Chornenky et al. Feb 2014 B2
8708952 Cohen et al. Apr 2014 B2
8734442 Cao et al. May 2014 B2
8771267 Kunis et al. Jul 2014 B2
8795310 Fung et al. Aug 2014 B2
8808273 Caples et al. Aug 2014 B2
8808281 Emmons et al. Aug 2014 B2
8834461 Werneth et al. Sep 2014 B2
8834464 Stewart et al. Sep 2014 B2
8868169 Narayan et al. Oct 2014 B2
8876817 Avitall et al. Nov 2014 B2
8880195 Azure Nov 2014 B2
8886309 Luther et al. Nov 2014 B2
8903488 Callas et al. Dec 2014 B2
8920411 Gelbart et al. Dec 2014 B2
8926589 Govari Jan 2015 B2
8932287 Gelbart et al. Jan 2015 B2
8945117 Bencini Feb 2015 B2
8979841 Kunis et al. Mar 2015 B2
8986278 Fung et al. Mar 2015 B2
8996091 De et al. Mar 2015 B2
9002442 Harley et al. Apr 2015 B2
9005189 Davalos et al. Apr 2015 B2
9005194 Oral et al. Apr 2015 B2
9011425 Fischer et al. Apr 2015 B2
9044245 Condie et al. Jun 2015 B2
9055959 Vaska et al. Jun 2015 B2
9072518 Swanson Jul 2015 B2
9078667 Besser et al. Jul 2015 B2
9101374 Hoch et al. Aug 2015 B1
9113911 Sherman Aug 2015 B2
9119533 Ghaffari Sep 2015 B2
9119634 Gelbart et al. Sep 2015 B2
9131897 Harada et al. Sep 2015 B2
9155590 Mathur Oct 2015 B2
9162037 Belson et al. Oct 2015 B2
9179972 Olson Nov 2015 B2
9186481 Avitall et al. Nov 2015 B2
9192769 Donofrio et al. Nov 2015 B2
9204916 Lalonde Dec 2015 B2
9211405 Mahapatra et al. Dec 2015 B2
9216055 Spence et al. Dec 2015 B2
9233248 Luther et al. Jan 2016 B2
9237926 Nollert et al. Jan 2016 B2
9262252 Kirkpatrick et al. Feb 2016 B2
9277957 Long et al. Mar 2016 B2
9282910 Narayan et al. Mar 2016 B2
9289258 Cohen Mar 2016 B2
9289606 Paul et al. Mar 2016 B2
9295516 Pearson et al. Mar 2016 B2
9301801 Scheib Apr 2016 B2
9351789 Novichenok et al. May 2016 B2
9375268 Long Jun 2016 B2
9387031 Stewart et al. Jul 2016 B2
9414881 Callas et al. Aug 2016 B2
9468495 Kunis et al. Oct 2016 B2
9474486 Eliason et al. Oct 2016 B2
9474574 Ibrahim et al. Oct 2016 B2
9480525 Lopes et al. Nov 2016 B2
9486272 Bonyak et al. Nov 2016 B2
9486273 Lopes et al. Nov 2016 B2
9492227 Lopes et al. Nov 2016 B2
9492228 Lopes et al. Nov 2016 B2
9510888 Lalonde Dec 2016 B2
9517103 Panescu et al. Dec 2016 B2
9526573 Lopes et al. Dec 2016 B2
9532831 Reinders et al. Jan 2017 B2
9539010 Gagner et al. Jan 2017 B2
9554848 Stewart et al. Jan 2017 B2
9554851 Sklar et al. Jan 2017 B2
9700368 Callas et al. Jul 2017 B2
9724170 Mickelsen Aug 2017 B2
9757193 Zarins et al. Sep 2017 B2
9782099 Williams et al. Oct 2017 B2
9795442 Salahieh et al. Oct 2017 B2
9801681 Laske et al. Oct 2017 B2
9808304 Jean-Pierre Nov 2017 B2
9861802 Mickelsen Jan 2018 B2
9913685 Clark et al. Mar 2018 B2
9931487 Quinn et al. Apr 2018 B2
9987081 Bowers et al. Jun 2018 B1
9999465 Long et al. Jun 2018 B2
10010368 Laske et al. Jul 2018 B2
10016232 Bowers et al. Jul 2018 B1
10130423 Viswanathan et al. Nov 2018 B1
10172673 Viswanathan et al. Jan 2019 B2
10194818 Williams et al. Feb 2019 B2
10285755 Stewart et al. May 2019 B2
10322286 Viswanathan et al. Jun 2019 B2
10433906 Mickelsen Oct 2019 B2
10433908 Viswanathan et al. Oct 2019 B2
10507302 Leeflang et al. Dec 2019 B2
10512505 Viswanathan Dec 2019 B2
10512779 Viswanathan et al. Dec 2019 B2
10517672 Long Dec 2019 B2
10617467 Viswanathan et al. Apr 2020 B2
10660702 Viswanathan et al. May 2020 B2
10687892 Long et al. Jun 2020 B2
10842561 Viswanathan et al. Nov 2020 B2
20010000791 Suorsa et al. May 2001 A1
20010007070 Stewart et al. Jul 2001 A1
20010020167 Woloszko Sep 2001 A1
20010044624 Seraj et al. Nov 2001 A1
20020052602 Wang et al. May 2002 A1
20020077627 Johnson et al. Jun 2002 A1
20020087169 Brock et al. Jul 2002 A1
20020091384 Hooven et al. Jul 2002 A1
20020095176 Prestel Jul 2002 A1
20020111618 Stewart et al. Aug 2002 A1
20020120304 Mest Aug 2002 A1
20020156526 Hlavka et al. Oct 2002 A1
20020161323 Miller et al. Oct 2002 A1
20020169445 Jain et al. Nov 2002 A1
20020177765 Bowe et al. Nov 2002 A1
20020183638 Swanson Dec 2002 A1
20030014098 Quijano et al. Jan 2003 A1
20030018374 Paulos Jan 2003 A1
20030023287 Edwards et al. Jan 2003 A1
20030028189 Woloszko et al. Feb 2003 A1
20030050637 Maguire et al. Mar 2003 A1
20030114849 Ryan Jun 2003 A1
20030125729 Hooven et al. Jul 2003 A1
20030130598 Manning et al. Jul 2003 A1
20030130711 Pearson et al. Jul 2003 A1
20030204161 Ferek-Petric Oct 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030229379 Maynard Dec 2003 A1
20040002748 Ryan et al. Jan 2004 A1
20040039382 Kroll et al. Feb 2004 A1
20040049181 Stewart et al. Mar 2004 A1
20040049182 Koblish et al. Mar 2004 A1
20040082859 Schaer Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040087939 Eggers et al. May 2004 A1
20040111087 Stern et al. Jun 2004 A1
20040199157 Palanker et al. Oct 2004 A1
20040215139 Cohen Oct 2004 A1
20040231683 Eng et al. Nov 2004 A1
20040236360 Cohn et al. Nov 2004 A1
20040254607 Wittenberger et al. Dec 2004 A1
20040267337 Hayzelden Dec 2004 A1
20050033282 Hooven Feb 2005 A1
20050187545 Hooven et al. Aug 2005 A1
20050222632 Obino Oct 2005 A1
20050251130 Boveja et al. Nov 2005 A1
20050261672 Deem et al. Nov 2005 A1
20050288730 Deem Dec 2005 A1
20060009755 Sra Jan 2006 A1
20060009759 Chrisitian et al. Jan 2006 A1
20060015095 Desinger et al. Jan 2006 A1
20060015165 Bertolero et al. Jan 2006 A1
20060024359 Walker et al. Feb 2006 A1
20060058781 Long Mar 2006 A1
20060111702 Oral et al. May 2006 A1
20060142801 Demarais Jun 2006 A1
20060167448 Kozel Jul 2006 A1
20060217703 Chornenky et al. Sep 2006 A1
20060241734 Marshall et al. Oct 2006 A1
20060264752 Rubinsky et al. Nov 2006 A1
20060270900 Chin et al. Nov 2006 A1
20060287648 Schwartz Dec 2006 A1
20060293730 Rubinsky et al. Dec 2006 A1
20060293731 Rubinsky et al. Dec 2006 A1
20070005053 Dando Jan 2007 A1
20070021744 Creighton Jan 2007 A1
20070060989 Deem et al. Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070083192 Welch Apr 2007 A1
20070129721 Phan et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070156135 Rubinsky et al. Jul 2007 A1
20070167740 Grunewald et al. Jul 2007 A1
20070167940 Stevens-Wright Jul 2007 A1
20070173878 Heuser Jul 2007 A1
20070208329 Ward et al. Sep 2007 A1
20070225589 Viswanathan Sep 2007 A1
20070249923 Keenan Oct 2007 A1
20070260223 Scheibe et al. Nov 2007 A1
20070270792 Hennemann et al. Nov 2007 A1
20080009855 Hamou Jan 2008 A1
20080033426 Machell Feb 2008 A1
20080065061 Viswanathan Mar 2008 A1
20080086120 Mirza et al. Apr 2008 A1
20080091195 Sliwa et al. Apr 2008 A1
20080103545 Bolea et al. May 2008 A1
20080132885 Rubinsky et al. Jun 2008 A1
20080161789 Thao et al. Jul 2008 A1
20080172048 Martin et al. Jul 2008 A1
20080200913 Viswanathan Aug 2008 A1
20080208118 Goldman Aug 2008 A1
20080243214 Koblish Oct 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080300574 Belson et al. Dec 2008 A1
20080300588 Groth et al. Dec 2008 A1
20090024084 Khosla et al. Jan 2009 A1
20090048591 Ibrahim et al. Feb 2009 A1
20090062788 Long et al. Mar 2009 A1
20090076498 Saadat et al. Mar 2009 A1
20090076500 Azure Mar 2009 A1
20090105654 Kurth et al. Apr 2009 A1
20090138009 Viswanathan et al. May 2009 A1
20090149917 Whitehurst et al. Jun 2009 A1
20090163905 Winkler et al. Jun 2009 A1
20090171352 Sutter Jul 2009 A1
20090182287 Kassab Jul 2009 A1
20090228003 Sinelnikov Sep 2009 A1
20090240248 Deford et al. Sep 2009 A1
20090275827 Aiken et al. Nov 2009 A1
20090281477 Mikus et al. Nov 2009 A1
20090306651 Schneider Dec 2009 A1
20100004623 Hamilton et al. Jan 2010 A1
20100023004 Francischelli et al. Jan 2010 A1
20100137861 Soroff et al. Jun 2010 A1
20100185140 Kassab et al. Jul 2010 A1
20100185186 Longoria Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100204560 Salahieh Aug 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100261994 Davalos et al. Oct 2010 A1
20100274238 Klimovitch Oct 2010 A1
20100280513 Juergen et al. Nov 2010 A1
20100280539 Miyoshi et al. Nov 2010 A1
20100292687 Kauphusman et al. Nov 2010 A1
20100312096 Guttman et al. Dec 2010 A1
20100312300 Ryu et al. Dec 2010 A1
20110028962 Werneth et al. Feb 2011 A1
20110028964 Edwards Feb 2011 A1
20110040199 Hopenfeld Feb 2011 A1
20110098694 Long Apr 2011 A1
20110106221 Neal et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110144524 Fish et al. Jun 2011 A1
20110144633 Govari Jun 2011 A1
20110160785 Mori et al. Jun 2011 A1
20110190659 Long et al. Aug 2011 A1
20110190727 Edmunds et al. Aug 2011 A1
20110213231 Hall et al. Sep 2011 A1
20110276047 Sklar et al. Nov 2011 A1
20110276075 Fung et al. Nov 2011 A1
20110288544 Verin et al. Nov 2011 A1
20110288547 Morgan et al. Nov 2011 A1
20110301587 Deem Dec 2011 A1
20110313417 De et al. Dec 2011 A1
20120029512 Willard et al. Feb 2012 A1
20120046570 Mllegas et al. Feb 2012 A1
20120053581 Wittkampf et al. Mar 2012 A1
20120059255 Paul et al. Mar 2012 A1
20120071872 Rubinsky et al. Mar 2012 A1
20120078320 Schotzko et al. Mar 2012 A1
20120078343 Fish Mar 2012 A1
20120089089 Swain et al. Apr 2012 A1
20120095459 Callas et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120158021 Morrill Jun 2012 A1
20120165667 Altmann et al. Jun 2012 A1
20120172859 Condie et al. Jul 2012 A1
20120172867 Ryu et al. Jul 2012 A1
20120197100 Razavi et al. Aug 2012 A1
20120209260 Lambert et al. Aug 2012 A1
20120220998 Long et al. Aug 2012 A1
20120265198 Crow et al. Oct 2012 A1
20120283582 Mahapatra et al. Nov 2012 A1
20120303019 Zhao et al. Nov 2012 A1
20120310052 Mahapatra et al. Dec 2012 A1
20120310230 Willis Dec 2012 A1
20120310237 Swanson Dec 2012 A1
20120316557 Sartor et al. Dec 2012 A1
20130030430 Stewart et al. Jan 2013 A1
20130060247 Sklar et al. Mar 2013 A1
20130060248 Sklar et al. Mar 2013 A1
20130079768 De et al. Mar 2013 A1
20130090651 Smith Apr 2013 A1
20130096655 Moffitt et al. Apr 2013 A1
20130103027 Sklar et al. Apr 2013 A1
20130103064 Arenson et al. Apr 2013 A1
20130123778 Richardson May 2013 A1
20130131662 Wittkampf May 2013 A1
20130158538 Govari Jun 2013 A1
20130158621 Ding et al. Jun 2013 A1
20130172715 Just et al. Jul 2013 A1
20130172864 Ibrahim et al. Jul 2013 A1
20130172875 Govari et al. Jul 2013 A1
20130184702 Neal et al. Jul 2013 A1
20130218157 Callas et al. Aug 2013 A1
20130226174 Ibrahim et al. Aug 2013 A1
20130237984 Sklar Sep 2013 A1
20130253415 Sano et al. Sep 2013 A1
20130296679 Condie et al. Nov 2013 A1
20130310829 Cohen Nov 2013 A1
20130317385 Sklar et al. Nov 2013 A1
20130331831 Werneth et al. Dec 2013 A1
20130338467 Grasse et al. Dec 2013 A1
20140005664 Govari et al. Jan 2014 A1
20140024911 Harlev et al. Jan 2014 A1
20140039288 Hue-Teh Feb 2014 A1
20140051993 McGee Feb 2014 A1
20140052118 Laske et al. Feb 2014 A1
20140052126 Long et al. Feb 2014 A1
20140052216 Long et al. Feb 2014 A1
20140058377 Deem et al. Feb 2014 A1
20140081113 Cohen et al. Mar 2014 A1
20140100563 Govari et al. Apr 2014 A1
20140107644 Falwell et al. Apr 2014 A1
20140142408 De et al. May 2014 A1
20140148804 Ward et al. May 2014 A1
20140163480 Govari et al. Jun 2014 A1
20140163546 Govari et al. Jun 2014 A1
20140171942 Werneth et al. Jun 2014 A1
20140180035 Anderson Jun 2014 A1
20140187916 Clark et al. Jul 2014 A1
20140194716 Diep et al. Jul 2014 A1
20140194867 Fish et al. Jul 2014 A1
20140200567 Cox et al. Jul 2014 A1
20140235986 Harlev et al. Aug 2014 A1
20140235988 Ghosh Aug 2014 A1
20140235989 Wodlinger et al. Aug 2014 A1
20140243851 Cohen et al. Aug 2014 A1
20140257130 Cao et al. Sep 2014 A1
20140276760 Bonyak et al. Sep 2014 A1
20140276782 Paskar Sep 2014 A1
20140276791 Ku et al. Sep 2014 A1
20140288556 Ibrahim et al. Sep 2014 A1
20140303721 Fung et al. Oct 2014 A1
20140330266 Thompson et al. Nov 2014 A1
20140343549 Spear et al. Nov 2014 A1
20140364845 Rashidi Dec 2014 A1
20140371613 Narayan et al. Dec 2014 A1
20150005767 Werneth et al. Jan 2015 A1
20150011995 Avitall et al. Jan 2015 A1
20150066108 Shi et al. Mar 2015 A1
20150119674 Fischell et al. Apr 2015 A1
20150126840 Thakur et al. May 2015 A1
20150133914 Koblish May 2015 A1
20150138977 Dacosta May 2015 A1
20150141978 Subramaniam et al. May 2015 A1
20150141982 Lee May 2015 A1
20150142041 Kendale et al. May 2015 A1
20150148796 Bencini May 2015 A1
20150150472 Harlev et al. Jun 2015 A1
20150157402 Kunis et al. Jun 2015 A1
20150157412 Wallace et al. Jun 2015 A1
20150164584 Davalos et al. Jun 2015 A1
20150173824 Davalos et al. Jun 2015 A1
20150173828 Avitall Jun 2015 A1
20150174404 Rousso et al. Jun 2015 A1
20150182740 Mickelsen Jul 2015 A1
20150196217 Harlev et al. Jul 2015 A1
20150223726 Harlev et al. Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150258344 Tandri et al. Sep 2015 A1
20150265342 Long et al. Sep 2015 A1
20150265344 Aktas et al. Sep 2015 A1
20150272656 Chen Oct 2015 A1
20150272664 Cohen Oct 2015 A9
20150272667 Govari et al. Oct 2015 A1
20150282729 Harlev et al. Oct 2015 A1
20150289923 Davalos et al. Oct 2015 A1
20150304879 Dacosta Oct 2015 A1
20150320481 Cosman et al. Nov 2015 A1
20150321021 Tandri et al. Nov 2015 A1
20150342532 Basu et al. Dec 2015 A1
20150343212 Rousso et al. Dec 2015 A1
20150351836 Prutchi Dec 2015 A1
20150359583 Swanson Dec 2015 A1
20160000500 Salahieh et al. Jan 2016 A1
20160008061 Fung et al. Jan 2016 A1
20160008065 Gliner et al. Jan 2016 A1
20160029960 Toth et al. Feb 2016 A1
20160038772 Thapliyal et al. Feb 2016 A1
20160051204 Harlev et al. Feb 2016 A1
20160051324 Stewart et al. Feb 2016 A1
20160058493 Neal et al. Mar 2016 A1
20160058506 Spence et al. Mar 2016 A1
20160066993 Avitall et al. Mar 2016 A1
20160074679 Thapliyal et al. Mar 2016 A1
20160095531 Narayan et al. Apr 2016 A1
20160095642 Deno et al. Apr 2016 A1
20160095653 Lambert et al. Apr 2016 A1
20160100797 Mahapatra et al. Apr 2016 A1
20160100884 Fay et al. Apr 2016 A1
20160106498 Highsmith et al. Apr 2016 A1
20160106500 Olson Apr 2016 A1
20160113709 Maor Apr 2016 A1
20160113712 Cheung et al. Apr 2016 A1
20160120564 Kirkpatrick et al. May 2016 A1
20160128770 Afonso et al. May 2016 A1
20160166167 Narayan et al. Jun 2016 A1
20160166310 Stewart et al. Jun 2016 A1
20160166311 Long et al. Jun 2016 A1
20160174865 Stewart et al. Jun 2016 A1
20160183877 Williams et al. Jun 2016 A1
20160184003 Srimathveeravalli et al. Jun 2016 A1
20160184004 Hull et al. Jun 2016 A1
20160213282 Leo et al. Jul 2016 A1
20160220307 Miller et al. Aug 2016 A1
20160235470 Callas et al. Aug 2016 A1
20160249972 Klink Sep 2016 A1
20160256682 Paul et al. Sep 2016 A1
20160287314 Arena et al. Oct 2016 A1
20160310211 Long Oct 2016 A1
20160324564 Gerlach et al. Nov 2016 A1
20160324573 Mickelson et al. Nov 2016 A1
20160331254 Tegg et al. Nov 2016 A1
20160331441 Konings Nov 2016 A1
20160331459 Townley et al. Nov 2016 A1
20160338770 Bar-Tal et al. Nov 2016 A1
20160354142 Pearson et al. Dec 2016 A1
20160361109 Weaver et al. Dec 2016 A1
20170001016 De Ridder Jan 2017 A1
20170035499 Stewart et al. Feb 2017 A1
20170042449 Deno et al. Feb 2017 A1
20170042615 Salahieh et al. Feb 2017 A1
20170056648 Syed et al. Mar 2017 A1
20170065330 Mickelsen et al. Mar 2017 A1
20170065339 Mickelsen Mar 2017 A1
20170065340 Long Mar 2017 A1
20170065343 Mickelsen Mar 2017 A1
20170071543 Basu et al. Mar 2017 A1
20170095291 Harrington et al. Apr 2017 A1
20170105793 Cao et al. Apr 2017 A1
20170112405 Sterrett et al. Apr 2017 A1
20170120048 He et al. May 2017 A1
20170146584 Daw et al. May 2017 A1
20170151014 Perfler Jun 2017 A1
20170151029 Mickelsen Jun 2017 A1
20170172654 Wittkampf et al. Jun 2017 A1
20170181795 Debruyne Jun 2017 A1
20170189097 Viswanathan et al. Jul 2017 A1
20170215953 Long et al. Aug 2017 A1
20170245928 Xiao et al. Aug 2017 A1
20170246455 Athos et al. Aug 2017 A1
20170312024 Harlev et al. Nov 2017 A1
20170312025 Harlev et al. Nov 2017 A1
20170312027 Harlev et al. Nov 2017 A1
20180001056 Leeflang et al. Jan 2018 A1
20180028252 Lalonde Feb 2018 A1
20180042674 Mickelsen Feb 2018 A1
20180042675 Long Feb 2018 A1
20180043153 Viswanathan et al. Feb 2018 A1
20180064488 Long et al. Mar 2018 A1
20180085160 Viswanathan et al. Mar 2018 A1
20180093088 Mickelsen Apr 2018 A1
20180133460 Townley et al. May 2018 A1
20180161093 Basu et al. Jun 2018 A1
20180168511 Hall et al. Jun 2018 A1
20180184982 Basu et al. Jul 2018 A1
20180193090 De et al. Jul 2018 A1
20180200497 Mickelsen Jul 2018 A1
20180235496 Wu et al. Aug 2018 A1
20180256109 Wu et al. Sep 2018 A1
20180280080 Govari et al. Oct 2018 A1
20180303488 Hill Oct 2018 A1
20180303543 Stewart et al. Oct 2018 A1
20180311497 Viswanathan et al. Nov 2018 A1
20180344202 Bar-Tal et al. Dec 2018 A1
20180344393 Gruba et al. Dec 2018 A1
20180360531 Holmes et al. Dec 2018 A1
20180360534 Teplitsky et al. Dec 2018 A1
20190015007 Rottmann et al. Jan 2019 A1
20190015638 Gruba et al. Jan 2019 A1
20190030328 Stewart Jan 2019 A1
20190046791 Ebbers et al. Feb 2019 A1
20190069950 Viswanathan et al. Mar 2019 A1
20190076179 Babkin et al. Mar 2019 A1
20190125439 Rohl et al. May 2019 A1
20190125788 Gruba et al. May 2019 A1
20190143106 Dewitt et al. May 2019 A1
20190151015 Viswanathan et al. May 2019 A1
20190175263 Altmann et al. Jun 2019 A1
20190183378 Mosesov et al. Jun 2019 A1
20190183567 Govari et al. Jun 2019 A1
20190192223 Rankin Jun 2019 A1
20190201089 Waldstreicher et al. Jul 2019 A1
20190201688 Olson Jul 2019 A1
20190209235 Stewart et al. Jul 2019 A1
20190223948 Stewart et al. Jul 2019 A1
20190231421 Viswanathan et al. Aug 2019 A1
20190231425 Waldstreicher et al. Aug 2019 A1
20190254735 Stewart et al. Aug 2019 A1
20190269912 Viswanathan et al. Sep 2019 A1
20190298442 Ogata et al. Oct 2019 A1
20190307500 Byrd et al. Oct 2019 A1
20190336198 Viswanathan et al. Nov 2019 A1
20190336207 Viswanathan Nov 2019 A1
20190350647 Ramberg et al. Nov 2019 A1
20190350649 Sutermeister et al. Nov 2019 A1
20200008869 Byrd Jan 2020 A1
20200008870 Gruba et al. Jan 2020 A1
20200009378 Stewart et al. Jan 2020 A1
20200038104 Mickelsen Feb 2020 A1
20200046423 Viswanathan et al. Feb 2020 A1
20200093539 Long et al. Mar 2020 A1
20200289197 Viswanathan et al. Sep 2020 A1
Foreign Referenced Citations (106)
Number Date Country
1042990 Oct 2000 EP
1125549 Aug 2001 EP
0797956 Jun 2003 EP
1340469 Sep 2003 EP
1127552 Jun 2006 EP
1803411 Jul 2007 EP
1009303 Jun 2009 EP
2213729 Aug 2010 EP
2382935 Nov 2011 EP
2425871 Mar 2012 EP
2532320 Dec 2012 EP
2587275 May 2013 EP
2663227 Nov 2013 EP
1909678 Jan 2014 EP
2217165 Mar 2014 EP
2376193 Mar 2014 EP
2708181 Mar 2014 EP
2777579 Sep 2014 EP
2777585 Sep 2014 EP
2934307 Oct 2015 EP
3056242 Aug 2016 EP
3111871 Jan 2017 EP
3151773 Apr 2018 EP
06-507797 Sep 1994 JP
10-510745 Oct 1998 JP
2000-508196 Jul 2000 JP
2001-509415 Jul 2001 JP
2005-516666 Jun 2005 JP
2006-506184 Feb 2006 JP
2007-325935 Dec 2007 JP
2008-538997 Nov 2008 JP
2009-500129 Jan 2009 JP
2011-509158 Mar 2011 JP
2012-050538 Mar 2012 JP
2012-508083 Apr 2012 JP
9207622 May 1992 WO
9221278 Dec 1992 WO
9221285 Dec 1992 WO
9407413 Apr 1994 WO
9724073 Jul 1997 WO
9725917 Jul 1997 WO
9737719 Oct 1997 WO
9902096 Jan 1999 WO
9904851 Feb 1999 WO
9922659 May 1999 WO
9949407 Sep 1999 WO
9956650 Nov 1999 WO
9959486 Nov 1999 WO
0256782 Jul 2002 WO
0353289 Jul 2003 WO
0365916 Aug 2003 WO
2004045442 Jun 2004 WO
2004086994 Oct 2004 WO
2005046487 May 2005 WO
2006115902 Nov 2006 WO
2007006055 Jan 2007 WO
2007079438 Jul 2007 WO
2009082710 Jul 2009 WO
2009089343 Jul 2009 WO
2009137800 Nov 2009 WO
2010014480 Feb 2010 WO
2011028310 Mar 2011 WO
2011154805 Dec 2011 WO
2012051433 Apr 2012 WO
2012097067 Jul 2012 WO
2012153928 Nov 2012 WO
2013019385 Feb 2013 WO
2014025394 Feb 2014 WO
2014031800 Feb 2014 WO
2014036439 Mar 2014 WO
2014100579 Jun 2014 WO
2014160832 Oct 2014 WO
2015066322 May 2015 WO
2015099786 Jul 2015 WO
2015103530 Jul 2015 WO
2015103574 Jul 2015 WO
2015130824 Sep 2015 WO
2015140741 Sep 2015 WO
2015143327 Sep 2015 WO
2015171921 Nov 2015 WO
2015175944 Nov 2015 WO
2015192018 Dec 2015 WO
2015192027 Dec 2015 WO
2016059027 Apr 2016 WO
2016060983 Apr 2016 WO
2016081650 May 2016 WO
2016090175 Jun 2016 WO
2017070559 Apr 2017 WO
2017093926 Jun 2017 WO
2017119934 Jul 2017 WO
2017120169 Jul 2017 WO
2017192477 Nov 2017 WO
2017192495 Nov 2017 WO
2017201504 Nov 2017 WO
2017218734 Dec 2017 WO
2018005511 Jan 2018 WO
2018106569 Jun 2018 WO
2018200800 Nov 2018 WO
2019023259 Jan 2019 WO
2019023280 Jan 2019 WO
2019035071 Feb 2019 WO
2019133606 Jul 2019 WO
2019133608 Jul 2019 WO
2019136218 Jul 2019 WO
2019181612 Sep 2019 WO
2019234133 Dec 2019 WO
Non-Patent Literature Citations (11)
Entry
Du Pre, B.C. et al., “Minimal coronary artery damage by myocardial electroporation ablation,” Europace, 15(1):144-149 (2013).
Hobbs, E. P., “Investor Relations Update: Tissue Ablation via Irreversible Electroporation (IRE),” Powerpoint (2004), 16 pages.
Lavee, J. et al., “A Novel Nonthermal Energy Source for Surgical Epicardial Atrial Ablation: Irreversible Electroporation,” The Heart Surgery Forum #2006-1202, 10(2), 2007 [Epub Mar. 2007].
Madhavan, M. et al., “Novel Percutaneous Epicardial Autonomic Modulation in the Canine for Atrial Fibrillation: Results of an Efficacy and Safety Study,” Pace, 00:1-11 (2016).
Neven, K. et al., “Epicardial linear electroporation ablation and lesion size,” Heart Rhythm, 11:1465-1470 (2014).
Neven, K. et al., “Myocardial Lesion Size After Epicardial Electroporation Catheter Ablation After Subxiphoid Puncture,” Circ Arrhythm Electrophysiol., 7(4):728-733 (2014).
Neven, K. et al., “Safety and Feasibility of Closed Chest Epicardial Catheter Ablation Using Electroporation,” Circ Arrhythm Electrophysiol., 7:913-919 (2014).
Van Driel, V.J.H.M. et al., “Low vulnerability of the right phrenic nerve to electroporation ablation,” Heart Rhythm, 12:1838-1844 (2015).
Van Driel, V.J.H.M. et al., “Pulmonary Vein Stenosis After Catheter Ablation Electroporation Versus Radiofrequency,” Circ Arrhythm Electrophysiol., 7(4):734-738 (2014).
Wittkampf, F.H. et al., “Feasibility of Electroporation for the Creation of Pulmonary Vein Ostial Lesions,” J Cardiovasc Electrophysiol, 22(3):302-309 (Mar. 2011).
Wittkampf, F.H. et al., “Myocardial Lesion Depth With Circular Electroporation Ablation,” Circ. Arrhythm Electrophysiol., 5(3):581-586 (2012).
Related Publications (1)
Number Date Country
20210137592 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62557390 Sep 2017 US
Continuations (2)
Number Date Country
Parent 16817410 Mar 2020 US
Child 17150164 US
Parent PCT/US2018/050660 Sep 2018 WO
Child 16817410 US