Technical Field
The present systems, articles, and methods generally relate to electromyography and particularly relate to capacitive electromyography sensors.
Description of the Related Art
Electronic devices are commonplace throughout most of the world today. Advancements in integrated circuit technology have enabled the development of electronic devices that are sufficiently small and lightweight to be carried by the user. Such “portable” electronic devices may include on-board power supplies (such as batteries or other power storage systems) and may be designed to operate without any wire-connections to other electronic systems; however, a small and lightweight electronic device may still be considered portable even if it includes a wire-connection to another electronic system. For example, a microphone may be considered a portable electronic device whether it is operated wirelessly or through a wire-connection.
The convenience afforded by the portability of electronic devices has fostered a huge industry. Smartphones, audio players, laptop computers, tablet computers, and ebook readers are all examples of portable electronic devices. However, the convenience of being able to carry a portable electronic device has also introduced the inconvenience of having one's hand(s) encumbered by the device itself. This problem is addressed by making an electronic device not only portable, but wearable.
A wearable electronic device is any portable electronic device that a user can carry without physically grasping, clutching, or otherwise holding onto the device with their hands. For example, a wearable electronic device may be attached or coupled to the user by a strap or straps, a band or bands, a clip or clips, an adhesive, a pin and clasp, an article of clothing, tension or elastic support, an interference fit, an ergonomic form, etc. Examples of wearable electronic devices include digital wristwatches, electronic armbands, electronic rings, electronic ankle-bracelets or “anklets,” head-mounted electronic display units, hearing aids, and so on.
A wearable electronic device may provide direct functionality for a user (such as audio playback, data display, computing functions, etc.) or it may provide electronics to interact with, receive information from, or control another electronic device. For example, a wearable electronic device may include sensors that are responsive to (i.e., detect and provide one or more signal(s) in response to detecting) inputs effected by a user and transmit signals to another electronic device based on those inputs. Sensor-types and input-types may each take on a variety of forms, including but not limited to: tactile sensors (e.g., buttons, switches, touchpads, or keys) providing manual control, acoustic sensors providing voice-control, electromyography sensors providing gesture control, and/or accelerometers providing gesture control.
A human-computer interface (“HCI”) is an example of a human-electronics interface. The present systems, articles, and methods may be applied to HCIs, but may also be applied to any other form of human-electronics interface.
Electromyography (“EMG”) is a process for detecting and processing the electrical signals generated by muscle activity. EMG devices employ EMG sensors that are responsive to the range of electrical potentials (typically μV-mV) involved in muscle activity. EMG signals may be used in a wide variety of applications, including: medical monitoring and diagnosis, muscle rehabilitation, exercise and training, prosthetic control, and even in controlling functions of electronic devices.
There are two main types of EMG sensors: intramuscular EMG sensors and surface EMG sensors. As the names suggest, intramuscular EMG sensors are designed to penetrate the skin and measure EMG signals from within the muscle tissue, while surface EMG sensors are designed to rest on an exposed surface of the skin and measure EMG signals from there. Intramuscular EMG sensor measurements can be much more precise than surface EMG sensor measurements; however, intramuscular EMG sensors must be applied by a trained professional, are obviously more invasive, and are less desirable from the patient's point of view. The use of intramuscular EMG sensors is generally limited to clinical settings.
Surface EMG sensors can be applied with ease, are much more comfortable for the patient/user, and are therefore more appropriate for non-clinical settings and uses. For example, human-electronics interfaces that employ EMG, such as those proposed in U.S. Pat. No. 6,244,873 and U.S. Pat. No. 8,170,656, usually employ surface EMG sensors. Surface EMG sensors come in two forms: resistive EMG sensors and capacitive EMG sensors. For both forms of surface EMG sensors, the sensor electrode typically includes a plate of electrically conductive material that is placed against or in very close proximity to the exposed surface of the user's skin. A resistive EMG sensor electrode is typically directly electrically coupled to the user's skin while a capacitive EMG sensor electrode is typically capacitively coupled to the user's skin. In either case, skin and/or environmental conditions, such as hair density, humidity and moisture levels, and so on, can have a significant impact on the performance of the sensor. These parameters are generally controlled for resistive EMG sensors by preparing the user's skin before applying the sensor electrodes. For example, the region of the user's skin where a resistive electrode is to be placed is usually shaved, exfoliated, and slathered with a conductive gel to establish a suitable and stable environment before the resistive electrode is applied. This obviously limits the appeal of resistive EMG sensors to users, in particular for home and/or recreational use. Capacitive EMG sensors are advantageous because they are generally more robust against some skin and environmental conditions, such as hair density, and are typically applied without the elaborate skin preparation measures (e.g., shaving, exfoliating, and applying a conductive gel) that are employed for resistive sensors. However, capacitive EMG sensors are still very sensitive to moisture and performance can degrade considerably when, for example, a user sweats. There is a need in the art for capacitive EMG sensors with improved robustness against variations in skin and/or environmental conditions.
A capacitive electromyography (“EMG”) sensor may be summarized as including a substrate; a first sensor electrode carried by the substrate, wherein the first sensor electrode comprises an electrically conductive plate having a first surface that faces the substrate and a second surface that is opposite the first surface; circuitry communicatively coupled to the first sensor electrode; and a dielectric layer formed of a dielectric material that has a relative permittivity of at least about 10, wherein the dielectric layer coats the second surface of the first sensor electrode. The first sensor electrode may be formed of a material including copper. The circuitry may include at least one circuit selected from the group consisting of: an amplification circuit, a filtering circuit, and an analog-to-digital conversion circuit. At least a portion of the circuitry may be carried by the substrate. The substrate may include a first surface and a second surface, the second surface opposite the first surface across a thickness of the substrate, and the at least a portion of the circuitry may be carried by the first surface of the substrate and the first sensor electrode may be carried by the second surface of the substrate. The dielectric layer may include a ceramic material. The dielectric layer may include an X7R ceramic material. The substrate, the first sensor electrode, and the dielectric layer may constitute a laminate structure. The capacitive EMG sensor may further include an electrically conductive epoxy sandwiched in between the dielectric layer and the first sensor electrode, wherein the dielectric layer is adhered to the first sensor electrode by the electrically conductive epoxy. Alternatively, the capacitive EMG sensor may further include an electrically conductive solder sandwiched in between the dielectric layer and the first sensor electrode, wherein the dielectric layer is adhered to the first sensor electrode by the electrically conductive solder. The dielectric layer may have a thickness of less than about 10 micrometers. The capacitive EMG sensor may be a differential capacitive EMG sensor that further includes a second sensor electrode carried by the substrate, the second sensor electrode comprising an electrically conductive plate having a first surface that faces the substrate and a second surface that is opposite the first surface across a thickness of the second sensor electrode, wherein the second sensor electrode is communicatively coupled to the circuitry, and wherein the dielectric layer coats the second surface of the second sensor electrode. The dielectric layer may comprise a single continuous layer of dielectric material that coats both the second surface of the first sensor electrode and the second surface of the second sensor electrode. The dielectric layer may comprise a first section that coats the second surface of the first sensor electrode and at least a second section that coats the second surface of the second sensor electrode, wherein the first section of the dielectric layer is physically separate from the second section of the dielectric layer. The first sensor electrode and the second sensor electrode may be substantially coplanar. The capacitive EMG sensor may further include a ground electrode carried by the substrate, the ground electrode comprising an electrically conductive plate having a first surface that faces the substrate and a second surface that is opposite the first surface across a thickness of the ground electrode, wherein the ground electrode is communicatively coupled to the circuitry, and wherein the second surface of the ground electrode is exposed and not coated by the dielectric layer. The capacitive EMG sensor may further include at least one additional layer that is sandwiched in between the first sensor electrode and the substrate.
A method of fabricating a capacitive EMG sensor may be summarized as including forming at least a portion of at least one circuit on a first surface of a substrate; forming a first sensor electrode on a second surface of the substrate, the second surface of the substrate opposite the first surface of the substrate across a thickness of the substrate, wherein the first sensor electrode comprises an electrically conductive plate; forming at least one electrically conductive pathway that communicatively couples the first sensor electrode and the at least a portion of at least one circuit; and coating the first sensor electrode with a dielectric layer comprising a dielectric material that has a relative permittivity of at least about 10. Coating the first sensor electrode with a dielectric layer may include coating at least a portion of the second surface of the substrate with the dielectric layer. Coating the first sensor electrode with a dielectric layer may include coating the first sensor electrode with a ceramic material. Coating the first sensor electrode with a dielectric layer may include coating the first sensor electrode with an X7R ceramic material. The capacitive EMG sensor may be a differential capacitive EMG sensor and the method may further include forming a second sensor electrode on the second surface of the substrate, wherein the second sensor electrode comprises an electrically conductive plate; forming at least one electrically conductive pathway that communicatively couples the second sensor electrode and the at least a portion of at least one circuit; and coating the second sensor electrode with the dielectric layer. The method may further include forming a ground electrode on the second surface of the substrate, wherein the ground electrode comprises an electrically conductive plate; and forming at least one electrically conductive pathway that communicatively couples the ground electrode and the at least a portion of at least one circuit. Coating the first sensor electrode with a dielectric layer may include selectively coating the first sensor electrode with the dielectric layer and not coating the ground electrode with the dielectric layer. Coating the first sensor electrode with a dielectric layer may include coating both the first sensor electrode and the ground electrode with the dielectric layer, and the method may further include forming a hole in the dielectric layer to expose the ground electrode. Coating the first sensor electrode with a dielectric layer may include depositing a layer of electrically conductive epoxy on the first sensor electrode; and depositing the dielectric layer on the layer of electrically conductive epoxy. Coating the first sensor electrode with a dielectric layer may include depositing a layer of electrically conductive solder on the first sensor electrode; and depositing the dielectric layer on the layer of electrically conductive solder.
A wearable EMG device may be summarized as including at least one capacitive EMG sensor responsive to (i.e., to detect and provide one or more signal(s) in response to detecting) muscle activity corresponding to a gesture performed by a user of the wearable EMG device, wherein in response to muscle activity corresponding to a gesture performed by a user of the wearable EMG device, the at least one capacitive EMG sensor provides at least one signal, and wherein the at least one capacitive EMG sensor includes: a first sensor electrode comprising an electrically conductive plate; and a dielectric layer formed of a dielectric material that has a relative permittivity of at least about 10, wherein the dielectric layer coats the first sensor electrode; a processor communicatively coupled to the at least one capacitive EMG sensor to in use process signals provided by the at least one capacitive EMG sensor; and an output terminal communicatively coupled to the processor to transmit signals output by the processor. The dielectric layer may include a ceramic material. The ceramic material may include an X7R ceramic material. The wearable EMG device may further include circuitry that mediates communicative coupling between the at least one capacitive EMG sensor and the processor, wherein the circuitry includes at least one circuit selected from the group consisting of: an amplification circuit, a filtering circuit, and an analog-to-digital conversion circuit. The dielectric layer of the at least one capacitive EMG sensor may have a thickness of less than about 10 micrometers. The at least one capacitive EMG sensor may include at least one differential capacitive EMG sensor, and the at least one differential capacitive EMG sensor may further include a second sensor electrode comprising an electrically conductive plate, wherein the dielectric layer coats the second sensor electrode. The at least one capacitive EMG sensor may further include a ground electrode comprising an electrically conductive plate, wherein the ground electrode is exposed and not coated by the dielectric layer.
In the drawings, identical reference numbers identify similar elements or acts. The sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility. Further, the particular shapes of the elements as drawn are not intended to convey any information regarding the actual shape of the particular elements, and have been solely selected for ease of recognition in the drawings.
In the following description, certain specific details are set forth in order to provide a thorough understanding of various disclosed embodiments. However, one skilled in the relevant art will recognize that embodiments may be practiced without one or more of these specific details, or with other methods, components, materials, etc. In other instances, well-known structures associated with electric circuits, and in particular printed circuit boards, have not been shown or described in detail to avoid unnecessarily obscuring descriptions of the embodiments.
Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as, “comprises” and “comprising” are to be construed in an open, inclusive sense, that is as “including, but not limited to.”
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As used in this specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its broadest sense, that is as meaning “and/or” unless the content clearly dictates otherwise.
The headings and Abstract of the Disclosure provided herein are for convenience only and do not interpret the scope or meaning of the embodiments.
The various embodiments described herein provide systems, articles, and methods for capacitive EMG sensors with improved robustness against variations in skin and/or environmental conditions. In particular, the present systems, articles, and methods describe capacitive EMG sensor designs that employ at least one capacitive electrode having a protective coating that provides a barrier to moisture and a high relative permittivity εr. These capacitive EMG sensor designs may be used in any device or method involving capacitive EMG sensing, though they are particularly well-suited for use in applications involving long-term coupling to a user's body over a range of evolving skin and/or environmental conditions. An example application in a wearable EMG device that forms part of a human-electronics interface is described.
Throughout this specification and the appended claims, the terms “coating” and “coat,” and variants thereof, are used both as nouns and as verbs to indicate a relationship (noun) or the formation of a relationship (verb) in which a layer of material overlies, underlies, or generally “covers” at least a portion of a device or component, either directly or through one or more intervening layers.
First sensor electrode 121 includes an electrically conductive plate formed of an electrically conductive material (such as, for example, copper or a material including copper) and has a first surface 121a and a second surface 121b, second surface 121b being opposite first surface 121a across a thickness of electrode 121. First sensor electrode 121 is carried by second surface 101b of substrate 101 such that first surface 121a of first sensor electrode 121 faces second surface 101b of substrate 101. Throughout this specification and the appended claims, the terms “carries” and “carried by” are generally used to describe a spatial relationship in which a first layer/component is positioned proximate and physically coupled to a surface of a second layer/component, either directly or through one or more intervening layers/components. For example, circuitry 110 is carried by first surface 101a of substrate 101 and first sensor electrode 121 is carried by second surface 101b of substrate 101. Circuitry 110 is directly carried by first surface 101a of substrate 101 because there are no intervening layers/components that mediate the physical coupling between circuitry 110 and first surface 101a of substrate 101; however, circuitry 110 would still be considered “carried by” first surface 101a of substrate 101 even if the physical coupling between circuitry 110 and first surface 101a of substrate 101 was mediated by at least one intervening layer/component. The terms “carries” and “carried by” are not intended to denote a particular orientation with respect to top and bottom and/or left and right.
First sensor electrode 121 is communicatively coupled to circuitry 110 by at least one electrically conductive pathway 151, which in the illustrated example of
In accordance with the present systems, articles, and methods, first sensor electrode 121 is coated by a dielectric layer 123 formed of a material that has a relative permittivity εr of at least 10, and by an adhesive layer 122 that is sandwiched in between first sensor electrode 121 and dielectric layer 123. Adhesive layer 122 serves to adhere, affix, or otherwise couple dielectric layer 123 to the second surface 121b of first sensor electrode 121, and may comprise, for example, an electrically conductive epoxy or an electrically conductive solder. In other words, adhesive layer 122 mediates physical and electrical coupling between dielectric layer 123 and first sensor electrode 121. Referring back to the definition of the terms “carries” and “carried by,” both adhesive layer 122 and dielectric layer 123 are considered to be carried by second surface 101b of substrate 101.
Dielectric layer 123 may comprise any dielectric material that has a large relative permittivity εr (e.g., a relative permittivity of about 10 or more, including a relative permittivity of about 10, about 20, about 50, about 100, about 1000, etc.). Advantageously, dielectric layer 123 may comprise a ceramic material, such as an X7R ceramic material. Throughout this specification and the appended claims, the term “X7R” refers to the EIA RS-198 standard three-digit code for temperature ranges and inherent change of capacitance. Specifically, the code “X7R” indicates a material that will operate in the temperature range of −55° C. to +125° C. with a change of capacitance of ±15%. A person of skill in the art will appreciate that the X7R EIA code is substantially equivalent to “2X1” under the IEC/EN 60384-9/22 standard. Dielectric layer 123 may comprise a resin and/or ceramic powder such as those used in FaradFlex® products available from Oak-Mitsui Technologies.
Since capacitive EMG sensor 100 is differential, it includes a second sensor electrode 131. Second sensor electrode 131 may be substantially similar to first sensor electrode 121 in that second sensor electrode 131 includes an electrically conductive plate formed of an electrically conductive material (e.g., a material including copper) that has a first surface 131a and a second surface 131b, second surface 131b being opposite first surface 131a across a thickness of electrode 131. Second sensor electrode 131 is carried by second surface 101b of substrate 101 such that first surface 131a of second sensor electrode 131 faces second surface 101b of substrate 101. Second sensor electrode 131 is also coated by a dielectric layer 133 that is substantially similar to dielectric layer 123, and dielectric layer 133 is adhered, affixed, or otherwise coupled to second surface 131b of second sensor electrode 131 by an adhesive layer 132 that is substantially similar to adhesive layer 122. Second sensor electrode 131 is communicatively coupled to circuitry 110 by at least one electrically conductive pathway 152, which in the illustrated example of
Capacitive EMG sensor 100 also includes a ground electrode 140. Ground electrode 140 includes an electrically conductive plate formed of an electrically conductive material (e.g., the same material that makes up first sensor electrode 121 and second sensor electrode 131) that has a first surface 141a and a second surface 141b, second surface 141b being opposite first surface 141a across a thickness of electrode 140. Ground electrode 140 is carried by second surface 101b of substrate 101 such that first surface 140a of ground electrode 140 faces second surface 101b of substrate 101. Ground electrode 140 is communicatively coupled to circuitry 110 by at least one electrically conductive pathway 153, which in the illustrated example of
In use, capacitive EMG sensor 100 is positioned proximate a user's muscle(s) so that dielectric layers 123, 133 and ground electrode 140 are all in physical contact with the user's skin (or, in some cases, a layer of material such as clothing may mediate physical contact between sensor 100 and the user's skin). Dielectric layers 123, 133 are advantageously formed of a dielectric material that has a high relative permittivity (e.g., εr greater than or equal to about 10) in order to enhance the capacitive coupling between sensor electrodes 121, 131 and the user's body. For each of first sensor electrode 121 and second sensor electrode 131, the respective capacitance that couples the sensor electrode (121, 131) to the user's body (e.g., skin) is at least approximately given by equation 1:
where εr is the relative permittivity of the dielectric material that coats the sensor electrode (i.e., dielectric layers 123, 133), εo is the vacuum permittivity (i.e., a constant value of 8.8541878176×10−12 F/m), A is the area of the sensor electrode, and d is the distance between the sensor electrode and the user's body. Thus, if A and d are held constant, εr (i.e., the relative permittivity of dielectric layers 123, 133) directly influences the capacitance between the user's body and each of first sensor electrode 121 and second sensor electrode 131. A large εr may enable a capacitive EMG sensor to employ smaller sensor electrode area(s) A and/or greater separation d between the sensor electrode(s) and the user's body.
Dielectric layers 123, 133 are advantageously bio-compatible (e.g., non-toxic, etc.) and substantially robust against the corrosive effects of sweat and skin oils. Dielectric layers 123, 133 are also advantageously non-absorptive and impermeable to water, sweat, and skin oils. Ideally, dielectric layers 123, 133 provide hermetic barriers between the user's skin and first and second sensor electrodes 121, 131 such that the presence of sweat, water, and/or skin oils does not substantially degrade the performance of capacitive EMG sensor 100.
Even though dielectric layers 123, 133 may protect first sensor electrode 121 and second sensor electrode 131 (respectively) from moisture and/or other aspects of the user's skin, such moisture and/or other aspects that may underlie dielectric layers 123, 133 (e.g., sweat or skin oils that may mediate coupling between the user's body and dielectric layers 123, 133) may still affect the capacitive coupling between the user's body and first and second sensor electrodes 121, 131. This is a further reason why it is advantageous for dielectric layers 123, 133 to be formed of a dielectric material that has a high relative permittivity (i.e., εr≥10): the larger the relative permittivity of dielectric layers 123, 133, the larger the capacitance that couples the user's body to first and second sensor electrodes 121, 131 and the smaller the proportionate impact of variations in sweat or skin oil conditions.
Equation 1 shows that the capacitance C that couples the user's body to first and second sensor electrodes 121, 131 is directly proportional to the relative permittivity εr and inversely proportional to the thickness d of dielectric layers 123, 133. Thus, while it is advantageous for dielectric layers 123, 133 to be formed of a dielectric material that has a high relative permittivity εr, it is similarly advantageous for dielectric layers 123, 133 to be relatively thin (i.e., for d to be small). In accordance with the present systems, articles, and methods, the thickness of dielectric layers 123, 133 may be, for example, approximately 10 μm or less. Approximately 10 μm or less is sufficiently thick to provide an adequate barrier to moisture (e.g., sweat/oil) and electrical insulation, and sufficiently thin to provide an adequate capacitance C as per equation 1.
In accordance with the present systems, articles, and methods, ground electrode 140 is exposed and not coated by a dielectric layer. This is because it is advantageous for ground electrode 140 to be resistively coupled to the user's body as opposed to capacitively coupled thereto in order to provide a lower impedance for return currents.
Even though first and second sensor electrodes 121, 131 are coated by dielectric layers 123, 133 (respectively) and ground electrode 140 is not coated by a dielectric layer, dielectric layers 123, 133 and ground electrode 140 may all still simultaneously contact a user's skin when capacitive EMG sensor 100 is positioned on the user. This is because the surface of the user's skin may have a curvature and/or the surface of the user's skin (and/or the flesh thereunder) may be elastic and compressible such that dielectric layers 123, 133 can be “pressed” into the user's skin with sufficient depth to enable physical contact between ground electrode 140 and the user's skin. While not drawn to scale, in the illustrated example of
There are many different ways in which dielectric layers 123, 133 may be applied to coat first and second sensor electrodes 121, 131 (respectively) and the specific structural configuration of the corresponding capacitive EMG sensor may vary to reflect this. In exemplary capacitive EMG sensor 100, dielectric layers 123, 133 have been individually and separately deposited on first and second sensor electrodes 121, 131 (respectively). This may be achieved by, for example, brushing a liquid or fluid form of the dielectric material that constitutes dielectric layers 123 and 133 over second surface 121b of first sensor electrode 121 and second surface 131b of second sensor electrode 131. In this case, dielectric layers 123, 133 may subsequently be hardened or cured (and adhesive layers 122, 132 may potentially not be required). Alternatively, individual and separate sections of a substantially solid or non-fluid form of the dielectric material that constitutes dielectric layers 123 and 133 may be sized and dimensioned to at least approximately match the respective areas of first and second sensor electrodes 121, 131 and then respective ones of such sections may be deposited on first and second sensor electrodes 121 and 131. For example, a first section of a dielectric material (having a high relative permittivity) may be sized and dimensioned to at least approximately match the area of first sensor electrode 121 and this first section of the dielectric material may be adhered, affixed, or otherwise coupled to first sensor electrode 121 by adhesive layer 122 to form dielectric layer 123. Likewise, a second section of the dielectric material may be sized and dimensioned to at least approximately match the area of second sensor electrode 131 and adhered, affixed, or otherwise coupled to second sensor electrode 131 by adhesive layer 132 to form dielectric layer 133.
As an alternative to the above examples of depositing dielectric layers 121, 131 as individual, separate sections of dielectric material, a single continuous piece of dielectric material may be deposited over second surface 101b of substrate 101, first and second sensor electrodes 121, 131, and optionally ground electrode 140. In this case, substrate 101, first and second sensors electrodes 121, 131, and dielectric layers 123, 133 may together constitute a laminate structure. In other words, dielectric layers 123, 133 may be applied to first and second sensor electrodes 121, 131 as lamination layers using a lamination process. In fabrication processes in which dielectric material coats ground electrode 140, the portion of dielectric material that coats ground electrode may subsequently be removed (e.g., by an etching process) to expose second surface 140b of ground electrode 140.
Dielectric layer 250 may be deposited to provide a desired thickness of, for example, less than about 10 μm measured from the interface with first and second sensor electrodes 221, 231. Though not illustrated in
Various methods for fabricating an improved capacitive EMG sensor that includes at least one protective, high-εr dielectric barrier have been described. These methods are summarized and generalized in
At 301, at least a portion of at least one circuit is formed on a first surface of a substrate. The at least a portion of at least one circuit may include one or more conductive traces and/or one or more electrical or electronic circuits, such as one or more amplification circuit(s), one or more filtering circuit(s), and/or one or more analog-to-digital conversion circuit(s). As examples, sensor 100 from
At 302, a first sensor electrode is formed on a second surface of the substrate. The first sensor electrode may include an electrically conductive plate formed of, for example, a material including copper. As examples, sensor 100 from
At 303, at least one electrically conductive pathway that communicatively couples the at least a portion of at least one circuit and the first sensor electrode is formed. The at least one electrically conductive pathway may include at least one via through the substrate, at least one conductive trace, and/or at least one wiring component. For example, sensor 100 includes electrically conductive pathway 151 that communicatively couples circuitry 110 to first sensor electrode 121. In some implementations, all or a portion of a via (e.g., a hole or aperture with or without electrically conductive communicative path therethrough) may be formed in the substrate before either or both of acts 301 and/or 302.
At 304, the first sensor electrode is coated with a dielectric layer comprising a dielectric material that has a relative permittivity εr of at least 10. As previously described, the coating may be applied in a variety of different ways, including without limitation: brushing or otherwise applying a fluid form of the dielectric material on the first sensor electrode and curing the dielectric material; adhering, affixing, or otherwise coupling a substantially non-fluid form of the dielectric material to the first sensor electrode using, for example, an adhesive layer such as an electrically conductive epoxy or an electrically conductive solder; or depositing a single continuous layer of the dielectric material over both the first sensor electrode and at least a portion of the substrate using a lamination process or other dielectric deposition process. When an adhesive layer is used, coating the first sensor electrode with a dielectric layer may include depositing a layer of electrically conductive epoxy on the first sensor electrode and depositing the dielectric layer on the layer of electrically conductive epoxy, or depositing a layer of electrically conductive solder on the first sensor electrode and depositing the dielectric layer on the layer of electrically conductive solder. As examples, sensor 100 includes dielectric layer 123 that is adhered to first sensor electrode 121 by adhesive layer 122 and sensor 200 includes dielectric layer 250 that is deposited over first sensor electrode 221 and substrate 201 to form a laminate structure. The dielectric layer may include a ceramic material, such as an X7R ceramic material.
In addition to acts 301, 302, 303, and 304, method 300 may be extended to include further acts in order to, for example, fabricate some of the additional elements and/or features described for sensors 100 and 200. For example, method 300 may include forming a second sensor electrode on the second surface of the substrate, forming at least one electrically conductive pathway that communicatively couples the at least a portion of at least one circuit and the second sensor electrode, and coating the second sensor electrode with the dielectric layer (either with a single continuous dielectric layer or with a separate section of the dielectric layer, as described previously). Either separately or in addition to forming a second sensor electrode, method 300 may include forming a ground electrode on the second surface of the substrate and forming at least one electrically conductive pathway that communicatively couples the ground electrode and the at least a portion of at least one circuit. In this case, coating the first sensor electrode with a dielectric layer per act 303 may include selectively coating the first sensor electrode with the dielectric layer and not coating the ground electrode with the dielectric layer, or coating both the first sensor electrode and the ground electrode with the dielectric layer and then forming a hole in the dielectric layer to expose the ground electrode.
The improved capacitive EMG sensors described herein may be implemented in virtually any system, device, or process that makes use of capacitive EMG sensors; however, the improved capacitive EMG sensors described herein are particularly well-suited for use in EMG devices that are intended to be worn by (or otherwise coupled to) a user for an extended period of time and/or for a range of different skin and/or environmental conditions. As an example, the improved capacitive EMG sensors described herein may be implemented in a wearable EMG device that provides gesture-based control in a human-electronics interface. Some details of exemplary wearable EMG devices that may be adapted to include at least one improved capacitive EMG sensor from the present systems, articles, and methods are described in, for example, U.S. Provisional Patent Application Ser. No. 61/903,238; U.S. Provisional Patent Application Ser. No. 61/768,322 (now U.S. Non-Provisional patent application Ser. No. 14/186,889); Provisional Patent Application Ser. No. 61/771,500 (now U.S. Non-Provisional patent application Ser. No. 14/194,252); Provisional Patent Application Ser. No. 61/857,105 (now U.S. Non-Provisional patent application Ser. No. 14/335,668); Provisional Patent Application Ser. No. 61/860,063 (now U.S. Non-Provisional patent application Ser. No. 14/276,575); Provisional Patent Application Ser. No. 61/866,960 (now U.S. Non-Provisional patent application Ser. No. 14/461,044); Provisional Patent Application Ser. No. 61/869,526 (now U.S. Non-Provisional patent application Ser. No. 14/465,194); Provisional Patent Application Ser. No. 61/881,064 (now U.S. Non-Provisional patent application Ser. No. 14/494,274); and Provisional Patent Application Ser. No. 61/894,263 (now U.S. Non-Provisional patent application Ser. No. 14/520,081), all of which are incorporated herein by reference in their entirety.
Throughout this specification and the appended claims, the term “gesture” is used to generally refer to a physical action (e.g., a movement, a stretch, a flex, a pose, etc.) performed or otherwise effected by a user. Any physical action performed or otherwise effected by a user that involves detectable muscle activity (detectable, e.g., by at least one appropriately positioned EMG sensor) may constitute a gesture in the present systems, articles, and methods.
Device 400 includes a set of eight pod structures 401, 402, 403, 404, 405, 406, 407, and 408 that form physically coupled links of the wearable EMG device 400. Each pod structure in the set of eight pod structures 401, 402, 403, 404, 405, 406, 407, and 408 is positioned adjacent and in between two other pod structures in the set of eight pod structures such that the set of pod structures forms a perimeter of an annular or closed loop configuration. For example, pod structure 401 is positioned adjacent and in between pod structures 402 and 408 at least approximately on a perimeter of the annular or closed loop configuration of pod structures, pod structure 402 is positioned adjacent and in between pod structures 401 and 403 at least approximately on the perimeter of the annular or closed loop configuration, pod structure 403 is positioned adjacent and in between pod structures 402 and 404 at least approximately on the perimeter of the annular or closed loop configuration, and so on. Each of pod structures 401, 402, 403, 404, 405, 406, 407, and 408 is physically coupled to the two adjacent pod structures by at least one adaptive coupler (not visible in
Throughout this specification and the appended claims, the term “pod structure” is used to refer to an individual link, segment, pod, section, structure, component, etc. of a wearable EMG device. For the purposes of the present systems, articles, and methods, an “individual link, segment, pod, section, structure, component, etc.” (i.e., a “pod structure”) of a wearable EMG device is characterized by its ability to be moved or displaced relative to another link, segment, pod, section, structure component, etc. of the wearable EMG device. For example, pod structures 401 and 402 of device 400 can each be moved or displaced relative to one another within the constraints imposed by the adaptive coupler providing adaptive physical coupling therebetween. The desire for pod structures 401 and 402 to be movable/displaceable relative to one another specifically arises because device 400 is a wearable EMG device that advantageously accommodates the movements of a user and/or different user forms.
Device 400 includes eight pod structures 401, 402, 403, 404, 405, 406, 407, and 408 that form physically coupled links thereof. Wearable EMG devices employing pod structures (e.g., device 400) are used herein as exemplary wearable EMG device designs, while the present systems, articles, and methods may be applied to wearable EMG devices that do not employ pod structures (or that employ any number of pod structures). Thus, throughout this specification, descriptions relating to pod structures (e.g., functions and/or components of pod structures) should be interpreted as being applicable to any wearable EMG device design, even wearable EMG device designs that do not employ pod structures (except in cases where a pod structure is specifically recited in a claim).
In exemplary device 400 of
Details of the components contained within the housings (i.e., within the inner volumes of the housings) of pod structures 401, 402, 403, 404, 405, 406, 407, and 408 are not necessarily visible in
Throughout this specification and the appended claims the term “communicative” as in “communicative pathway,” “communicative coupling,” and in variants such as “communicatively coupled,” is generally used to refer to any engineered arrangement for transferring and/or exchanging information. Exemplary communicative pathways include, but are not limited to, electrically conductive pathways (e.g., electrically conductive wires, electrically conductive traces), magnetic pathways (e.g., magnetic media), and/or optical pathways (e.g., optical fiber), and exemplary communicative couplings include, but are not limited to, electrical couplings, magnetic couplings, and/or optical couplings.
Each individual pod structure within a wearable EMG device may perform a particular function, or particular functions. For example, in device 400, each of pod structures 401, 402, 403, 404, 405, 406, and 407 includes a respective improved capacitive EMG sensor 410 (only one called out in
Pod structure 408 of device 400 includes a processor 430 that processes the signals provided by the improved capacitive EMG sensors 410 of sensor pods 401, 402, 403, 404, 405, 406, and 407 in response to detected muscle activity. Pod structure 408 may therefore be referred to as a “processor pod.” Throughout this specification and the appended claims, the term “processor pod” is used to denote an individual pod structure that includes at least one processor to process signals. The processor may be any type of processor, including but not limited to: a digital microprocessor or microcontroller, an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA), a digital signal processor (DSP), a graphics processing unit (GPU), a programmable gate array (PGA), a programmable logic unit (PLU), or the like, that analyzes or otherwise processes the signals to determine at least one output, action, or function based on the signals. A person of skill in the art will appreciate that implementations that employ a digital processor (e.g., a digital microprocessor or microcontroller, a DSP, etc.) may advantageously include a non-transitory processor-readable storage medium or memory communicatively coupled thereto and storing processor-executable instructions that control the operations thereof, whereas implementations that employ an ASIC, FPGA, or analog processor may or may optionally not include a non-transitory processor-readable storage medium, or may include on-board registers or other non-transitory storage structures.
As used throughout this specification and the appended claims, the terms “sensor pod” and “processor pod” are not necessarily exclusive. A single pod structure may satisfy the definitions of both a “sensor pod” and a “processor pod” and may be referred to as either type of pod structure. For greater clarity, the term “sensor pod” is used to refer to any pod structure that includes a sensor and performs at least the function(s) of a sensor pod, and the term processor pod is used to refer to any pod structure that includes a processor and performs at least the function(s) of a processor pod. In device 400, processor pod 408 includes an improved capacitive EMG sensor 410 (not visible in
In device 400, processor 430 includes and/or is communicatively coupled to a non-transitory processor-readable storage medium or memory 440. Memory 440 may store processor-executable gesture identification instructions and/or data that, when executed by processor 430, cause processor 430 to process the EMG signals from improved capacitive EMG sensors 410 and identify a gesture to which the EMG signals correspond. For communicating with a separate electronic device (not shown), wearable EMG device 400 includes at least one communication terminal. Throughout this specification and the appended claims, the term “communication terminal” is generally used to refer to any physical structure that provides a telecommunications link through which a data signal may enter and/or leave a device. A communication terminal represents the end (or “terminus”) of communicative signal transfer within a device and the beginning of communicative signal transfer to/from an external device (or external devices). As examples, device 400 includes a first communication terminal 451 and a second communication terminal 452. First communication terminal 451 includes a wireless transmitter (i.e., a wireless communication terminal) and second communication terminal 452 includes a tethered connector port 452. Wireless transmitter 451 may include, for example, a Bluetooth® transmitter (or similar) and connector port 452 may include a Universal Serial Bus port, a mini-Universal Serial Bus port, a micro-Universal Serial Bus port, a SMA port, a THUNDERBOLT® port, or the like.
For some applications, device 400 may also include at least one inertial sensor 460 (e.g., an inertial measurement unit, or “IMU,” that includes at least one accelerometer and/or at least one gyroscope) responsive to (i.e., to detect, sense, or measure and provide one or more signal(s) in response to detecting, sensing, or measuring) motion effected by a user and provide signals in response to the detected motion. Signals provided by inertial sensor 460 may be combined or otherwise processed in conjunction with signals provided by improved capacitive EMG sensors 410.
As previously described, each of pod structures 401, 402, 403, 404, 405, 406, 407, and 408 may include circuitry (i.e., electrical and/or electronic circuitry).
Each of EMG sensors 410 includes a respective improved capacitive EMG sensor per the present systems, articles, and methods, such as for example sensor 100 from
The improved capacitive EMG sensors 410 of wearable EMG device 400 are differential sensors that each implement two respective sensor electrodes 471, 472, though the teachings herein may similarly be applied to wearable EMG devices that employ single-ended improved capacitive EMG sensors that each implement a respective single sensor electrode.
Signals that are provided by improved capacitive EMG sensors 410 in device 400 are routed to processor pod 408 for processing by processor 430. To this end, device 400 employs a set of communicative pathways (e.g., 421 and 422) to route the signals that are output by sensor pods 401, 402, 403, 404, 405, 406, and 407 to processor pod 408. Each respective pod structure 401, 402, 403, 404, 405, 406, 407, and 408 in device 400 is communicatively coupled to, over, or through at least one of the two other pod structures between which the respective pod structure is positioned by at least one respective communicative pathway from the set of communicative pathways. Each communicative pathway (e.g., 421 and 422) may be realized in any communicative form, including but not limited to: electrically conductive wires or cables, ribbon cables, fiber-optic cables, optical/photonic waveguides, electrically conductive traces carried by a rigid printed circuit board, electrically conductive traces carried by a flexible printed circuit board, and/or electrically conductive traces carried by a stretchable printed circuit board.
Device 400 from
In accordance with the present systems, articles, and methods, a capacitive EMG sensor may be fabricated directly on a substrate that has a high relative permittivity εr, such as on a ceramic substrate. For example, referring back to sensor 200 of
Throughout this specification and the appended claims, infinitive verb forms are often used. Examples include, without limitation: “to detect,” “to provide,” “to transmit,” “to communicate,” “to process,” “to route,” and the like. Unless the specific context requires otherwise, such infinitive verb forms are used in an open, inclusive sense, that is as “to, at least, detect,” to, at least, provide,” “to, at least, transmit,” and so on.
The above description of illustrated embodiments, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. Although specific embodiments of and examples are described herein for illustrative purposes, various equivalent modifications can be made without departing from the spirit and scope of the disclosure, as will be recognized by those skilled in the relevant art. The teachings provided herein of the various embodiments can be applied to other portable and/or wearable electronic devices, not necessarily the exemplary wearable electronic devices generally described above.
In the context of this disclosure, a memory is a processor-readable medium that is an electronic, magnetic, optical, or other physical device or means that contains or stores a computer and/or processor program. Logic and/or the information can be embodied in any processor-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions associated with logic and/or information.
In the context of this specification, a “non-transitory processor-readable medium” can be any element that can store the program associated with logic and/or information for use by or in connection with the instruction execution system, apparatus, and/or device. The processor-readable medium can be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device. More specific examples (a non-exhaustive list) of the processor-readable medium would include the following: a portable computer diskette (magnetic, compact flash card, secure digital, or the like), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM, EEPROM, or Flash memory), a portable compact disc read-only memory (CDROM), digital tape, and other non-transitory media.
The various embodiments described above can be combined to provide further embodiments. To the extent that they are not inconsistent with the specific teachings and definitions herein, all of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, including but not limited to U.S. Provisional Patent Application Ser. No. 61/903,238; US Provisional Patent Application Ser. No. 61/768,322 (now U.S. Non-Provisional patent application Ser. No. 14/186,889); Provisional Patent Application Ser. No. 61/771,500 (now U.S. Non-Provisional patent application Ser. No. 14/194,252); Provisional Patent Application Ser. No. 61/857,105 (now U.S. Non-Provisional patent application Ser. No. 14/335,668); Provisional Patent Application Ser. No. 61/860,063 (now U.S. Non-Provisional patent application Ser. No. 14/276,575); Provisional Patent Application Ser. No. 61/866,960 (now U.S. Non-Provisional patent application Ser. No. 14/461,044); Provisional Patent Application Ser. No. 61/869,526 (now U.S. Non-Provisional patent application Ser. No. 14/465,194); Provisional Patent Application Ser. No. 61/881,064 (now U.S. Non-Provisional patent application Ser. No. 14/494,274); and Provisional Patent Application Ser. No. 61/894,263 (now U.S. Non-Provisional patent application Ser. No. 14/520,081), are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary, to employ systems, circuits and concepts of the various patents, applications and publications to provide yet further embodiments.
These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1411995 | Dull | Apr 1922 | A |
3620208 | Higley et al. | Nov 1971 | A |
3880146 | Everett et al. | Apr 1975 | A |
4602639 | Hoogendoorn et al. | Jul 1986 | A |
4705408 | Jordi | Nov 1987 | A |
4817064 | Milles | Mar 1989 | A |
5003978 | Dunseath, Jr. | Apr 1991 | A |
D322227 | Warhol | Dec 1991 | S |
5081852 | Cox | Jan 1992 | A |
5251189 | Thorp | Oct 1993 | A |
D348660 | Parsons | Jul 1994 | S |
5445869 | Ishikawa et al. | Aug 1995 | A |
5482051 | Reddy et al. | Jan 1996 | A |
5605059 | Woodward | Feb 1997 | A |
5683404 | Johnson | Nov 1997 | A |
6032530 | Hock | Mar 2000 | A |
6184847 | Fateh et al. | Feb 2001 | B1 |
6238338 | Deluca et al. | May 2001 | B1 |
6244873 | Hill et al. | Jun 2001 | B1 |
6377277 | Yamamoto | Apr 2002 | B1 |
D459352 | Giovanniello | Jun 2002 | S |
6487906 | Hock | Dec 2002 | B1 |
6510333 | Licata et al. | Jan 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6619836 | Silvant et al. | Sep 2003 | B1 |
6720984 | Jorgensen et al. | Apr 2004 | B1 |
6743982 | Biegelsen et al. | Jun 2004 | B2 |
6807438 | Brun Del Re et al. | Oct 2004 | B1 |
D502661 | Rapport | Mar 2005 | S |
D502662 | Rapport | Mar 2005 | S |
6865409 | Getsla et al. | Mar 2005 | B2 |
D503646 | Rapport | Apr 2005 | S |
6880364 | Vidolin et al. | Apr 2005 | B1 |
6927343 | Watanabe et al. | Aug 2005 | B2 |
6965842 | Rekimoto | Nov 2005 | B2 |
6972734 | Ohshima et al. | Dec 2005 | B1 |
6984208 | Zheng | Jan 2006 | B2 |
7022919 | Brist et al. | Apr 2006 | B2 |
7086218 | Pasach | Aug 2006 | B1 |
D535401 | Travis et al. | Jan 2007 | S |
7173437 | Hervieux et al. | Feb 2007 | B2 |
7209114 | Radley-Smith | Apr 2007 | B2 |
D543212 | Marks | May 2007 | S |
7265298 | Maghribi et al. | Sep 2007 | B2 |
7271774 | Puuri | Sep 2007 | B2 |
7333090 | Tanaka et al. | Feb 2008 | B2 |
7450107 | Radley-Smith | Nov 2008 | B2 |
7491892 | Wagner et al. | Feb 2009 | B2 |
7517725 | Reis | Apr 2009 | B2 |
7558622 | Tran | Jul 2009 | B2 |
7596393 | Jung et al. | Sep 2009 | B2 |
7618260 | Daniel et al. | Nov 2009 | B2 |
7636549 | Ma et al. | Dec 2009 | B2 |
7640007 | Chen et al. | Dec 2009 | B2 |
7660126 | Cho et al. | Feb 2010 | B2 |
7809435 | Ettare et al. | Oct 2010 | B1 |
7844310 | Anderson | Nov 2010 | B2 |
7870211 | Pascal et al. | Jan 2011 | B2 |
7925100 | Howell et al. | Apr 2011 | B2 |
7948763 | Chuang | May 2011 | B2 |
D643428 | Janky et al. | Aug 2011 | S |
D646192 | Woode | Oct 2011 | S |
8054061 | Prance et al. | Nov 2011 | B2 |
D654622 | Hsu | Feb 2012 | S |
8170656 | Tan et al. | May 2012 | B2 |
8179604 | Prada Gomez et al. | May 2012 | B1 |
8188937 | Amafuji et al. | May 2012 | B1 |
D661613 | Demeglio | Jun 2012 | S |
8203502 | Chi et al. | Jun 2012 | B1 |
8207473 | Axisa et al. | Jun 2012 | B2 |
8212859 | Tang et al. | Jul 2012 | B2 |
8355671 | Kramer et al. | Jan 2013 | B2 |
8389862 | Arora et al. | Mar 2013 | B2 |
8421634 | Tan et al. | Apr 2013 | B2 |
8427977 | Workman et al. | Apr 2013 | B2 |
D682727 | Bulgari | May 2013 | S |
8447704 | Tan et al. | May 2013 | B2 |
8467270 | Gossweiler, III et al. | Jun 2013 | B2 |
8469741 | Oster et al. | Jun 2013 | B2 |
D689862 | Liu | Sep 2013 | S |
8591411 | Banet et al. | Nov 2013 | B2 |
D695454 | Moore | Dec 2013 | S |
8620361 | Bailey et al. | Dec 2013 | B2 |
8624124 | Koo et al. | Jan 2014 | B2 |
8702629 | Giuffrida et al. | Apr 2014 | B2 |
8704882 | Turner | Apr 2014 | B2 |
8777668 | Ikeda et al. | Jul 2014 | B2 |
D716457 | Brefka et al. | Oct 2014 | S |
D717685 | Bailey et al. | Nov 2014 | S |
8879276 | Wang | Nov 2014 | B2 |
8883287 | Boyce et al. | Nov 2014 | B2 |
8895865 | Lenahan et al. | Nov 2014 | B2 |
8912094 | Koo et al. | Dec 2014 | B2 |
8922481 | Kauffmann et al. | Dec 2014 | B1 |
8954135 | Yuen et al. | Feb 2015 | B2 |
8970571 | Wong et al. | Mar 2015 | B1 |
8971023 | Olsson et al. | Mar 2015 | B2 |
9018532 | Wesselmann et al. | Apr 2015 | B2 |
9086687 | Park et al. | Jul 2015 | B2 |
D736664 | Paradise et al. | Aug 2015 | S |
9146730 | Lazar | Sep 2015 | B2 |
D741855 | Park et al. | Oct 2015 | S |
D742272 | Bailey et al. | Nov 2015 | S |
D742874 | Cheng et al. | Nov 2015 | S |
D743963 | Osterhout | Nov 2015 | S |
9211417 | Heldman et al. | Dec 2015 | B2 |
D747714 | Erbeus | Jan 2016 | S |
D750623 | Park et al. | Mar 2016 | S |
D751065 | Magi | Mar 2016 | S |
9299248 | Lake et al. | Mar 2016 | B2 |
D756359 | Bailey et al. | May 2016 | S |
9367139 | Ataee et al. | Jun 2016 | B2 |
9372535 | Bailey et al. | Jun 2016 | B2 |
9393418 | Giuffrida et al. | Jul 2016 | B2 |
9418927 | Axisa et al. | Aug 2016 | B2 |
9439566 | Arne et al. | Sep 2016 | B2 |
9472956 | Michaelis et al. | Oct 2016 | B2 |
9477313 | Mistry et al. | Oct 2016 | B2 |
9529434 | Choi et al. | Dec 2016 | B2 |
20020032386 | Sackner et al. | Mar 2002 | A1 |
20020077534 | DuRousseau | Jun 2002 | A1 |
20030036691 | Stanaland et al. | Feb 2003 | A1 |
20030051505 | Robertson et al. | Mar 2003 | A1 |
20030144586 | Tsubata | Jul 2003 | A1 |
20040068409 | Tanaka et al. | Apr 2004 | A1 |
20040073104 | Brun del Re et al. | Apr 2004 | A1 |
20040194500 | Rapport | Oct 2004 | A1 |
20040210165 | Marmaropoulos et al. | Oct 2004 | A1 |
20050005637 | Rapport | Jan 2005 | A1 |
20050012715 | Ford | Jan 2005 | A1 |
20050070227 | Shen et al. | Mar 2005 | A1 |
20050119701 | Lauter et al. | Jun 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20060037359 | Stinespring | Feb 2006 | A1 |
20060061544 | Min et al. | Mar 2006 | A1 |
20070132785 | Ebersole, Jr. et al. | Jun 2007 | A1 |
20080136775 | Conant | Jun 2008 | A1 |
20090007597 | Hanevold | Jan 2009 | A1 |
20090031757 | Harding | Feb 2009 | A1 |
20090040016 | Ikeda | Feb 2009 | A1 |
20090051544 | Niknejad | Feb 2009 | A1 |
20090102580 | Uchaykin | Apr 2009 | A1 |
20090109241 | Tsujimoto | Apr 2009 | A1 |
20090147004 | Ramon et al. | Jun 2009 | A1 |
20090179824 | Tsujimoto et al. | Jul 2009 | A1 |
20090189867 | Krah et al. | Jul 2009 | A1 |
20090251407 | Flake et al. | Oct 2009 | A1 |
20090258669 | Nie et al. | Oct 2009 | A1 |
20090318785 | Ishikawa et al. | Dec 2009 | A1 |
20090326406 | Tan et al. | Dec 2009 | A1 |
20090327171 | Tan et al. | Dec 2009 | A1 |
20100041974 | Ting et al. | Feb 2010 | A1 |
20100280628 | Sankai | Nov 2010 | A1 |
20100293115 | Seyed Momen | Nov 2010 | A1 |
20100317958 | Beck et al. | Dec 2010 | A1 |
20110018754 | Tojima et al. | Jan 2011 | A1 |
20110072510 | Cheswick | Mar 2011 | A1 |
20110134026 | Kang et al. | Jun 2011 | A1 |
20110166434 | Gargiulo | Jul 2011 | A1 |
20110172503 | Knepper et al. | Jul 2011 | A1 |
20110181527 | Capela et al. | Jul 2011 | A1 |
20110213278 | Horak et al. | Sep 2011 | A1 |
20110224556 | Moon et al. | Sep 2011 | A1 |
20110224564 | Moon et al. | Sep 2011 | A1 |
20120029322 | Wartena et al. | Feb 2012 | A1 |
20120051005 | Vanfleteren et al. | Mar 2012 | A1 |
20120053439 | Ylostalo | Mar 2012 | A1 |
20120101357 | Hoskuldsson et al. | Apr 2012 | A1 |
20120157789 | Kangas et al. | Jun 2012 | A1 |
20120165695 | Kidmose et al. | Jun 2012 | A1 |
20120182309 | Griffin et al. | Jul 2012 | A1 |
20120188158 | Tan et al. | Jul 2012 | A1 |
20120203076 | Fatta et al. | Aug 2012 | A1 |
20120209134 | Morita et al. | Aug 2012 | A1 |
20120226130 | De Graff | Sep 2012 | A1 |
20120265090 | Fink et al. | Oct 2012 | A1 |
20120293548 | Perez et al. | Nov 2012 | A1 |
20120302858 | Kidmose et al. | Nov 2012 | A1 |
20120323521 | De Foras et al. | Dec 2012 | A1 |
20130005303 | Song et al. | Jan 2013 | A1 |
20130020948 | Han et al. | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130080794 | Hsieh | Mar 2013 | A1 |
20130127708 | Jung et al. | May 2013 | A1 |
20130165813 | Chang et al. | Jun 2013 | A1 |
20130191741 | Dickinson et al. | Jul 2013 | A1 |
20130198694 | Rahman et al. | Aug 2013 | A1 |
20130265229 | Forutanpour et al. | Oct 2013 | A1 |
20130265437 | Thörn et al. | Oct 2013 | A1 |
20130271292 | McDermott | Oct 2013 | A1 |
20130312256 | Wesselmann et al. | Nov 2013 | A1 |
20130317648 | Assad | Nov 2013 | A1 |
20130332196 | Pinsker | Dec 2013 | A1 |
20140020945 | Hurwitz et al. | Jan 2014 | A1 |
20140028539 | Newham et al. | Jan 2014 | A1 |
20140028546 | Jeon et al. | Jan 2014 | A1 |
20140045547 | Singamsetty et al. | Feb 2014 | A1 |
20140049417 | Abdurrahman et al. | Feb 2014 | A1 |
20140094675 | Luna et al. | Apr 2014 | A1 |
20140121471 | Walker | May 2014 | A1 |
20140122958 | Greenebrg et al. | May 2014 | A1 |
20140194062 | Palin et al. | Jul 2014 | A1 |
20140198034 | Bailey et al. | Jul 2014 | A1 |
20140198035 | Bailey | Jul 2014 | A1 |
20140236031 | Banet et al. | Aug 2014 | A1 |
20140240103 | Lake et al. | Aug 2014 | A1 |
20140249397 | Lake et al. | Sep 2014 | A1 |
20140257141 | Giuffrida et al. | Sep 2014 | A1 |
20140285326 | Luna et al. | Sep 2014 | A1 |
20140299362 | Park et al. | Oct 2014 | A1 |
20140334083 | Bailey | Nov 2014 | A1 |
20140334653 | Luna et al. | Nov 2014 | A1 |
20140337861 | Chang et al. | Nov 2014 | A1 |
20140340857 | Hsu et al. | Nov 2014 | A1 |
20140349257 | Connor | Nov 2014 | A1 |
20140375465 | Fenuccio et al. | Nov 2014 | A1 |
20140354528 | Laughlin et al. | Dec 2014 | A1 |
20140354529 | Laughlin et al. | Dec 2014 | A1 |
20140364703 | Kim et al. | Dec 2014 | A1 |
20150011857 | Henson et al. | Jan 2015 | A1 |
20150025355 | Bailey et al. | Jan 2015 | A1 |
20150051470 | Bailey et al. | Feb 2015 | A1 |
20150057506 | Luna et al. | Feb 2015 | A1 |
20150057770 | Bailey et al. | Feb 2015 | A1 |
20150065840 | Bailey | Mar 2015 | A1 |
20150084860 | Aleem et al. | Mar 2015 | A1 |
20150106052 | Balakrishnan et al. | Apr 2015 | A1 |
20150109202 | Ataee et al. | Apr 2015 | A1 |
20150124566 | Lake et al. | May 2015 | A1 |
20150148641 | Morun et al. | May 2015 | A1 |
20150160621 | Yilmaz | Jun 2015 | A1 |
20150182113 | Utter, II | Jul 2015 | A1 |
20150182130 | Utter, II | Jul 2015 | A1 |
20150182163 | Utter | Jul 2015 | A1 |
20150182164 | Utter, II | Jul 2015 | A1 |
20150185838 | Camacho-Perez et al. | Jul 2015 | A1 |
20150186609 | Utter, II | Jul 2015 | A1 |
20150216475 | Luna et al. | Aug 2015 | A1 |
20150230756 | Luna et al. | Aug 2015 | A1 |
20150234426 | Bailey et al. | Aug 2015 | A1 |
20150237716 | Su et al. | Aug 2015 | A1 |
20150261306 | Lake | Sep 2015 | A1 |
20150277575 | Ataee et al. | Oct 2015 | A1 |
20150296553 | DiFranco et al. | Oct 2015 | A1 |
20150325202 | Lake et al. | Nov 2015 | A1 |
20150370333 | Ataee et al. | Dec 2015 | A1 |
20160020500 | Matsuda | Jan 2016 | A1 |
20160150636 | Otsubo | May 2016 | A1 |
20160156762 | Bailey et al. | Jun 2016 | A1 |
20160199699 | Klassen | Jul 2016 | A1 |
20160202081 | Debieuvre et al. | Jul 2016 | A1 |
20160274758 | Bailey | Sep 2016 | A1 |
20160309249 | Wu et al. | Oct 2016 | A1 |
20160313899 | Noel | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
102246125 | Nov 2011 | CN |
44 12 278 | Oct 1995 | DE |
0 301 790 | Feb 1989 | EP |
2009-50679 | Mar 2009 | JP |
20120094870 | Aug 2012 | KR |
20120097997 | Sep 2012 | KR |
2011070554 | Jun 2011 | WO |
Entry |
---|
Costanza et al., “EMG as a Subtle Input Interface for Mobile Computing,” Mobile HCI 2004, LNCS 3160, edited by S. Brewster and M. Dunlop, Springer-Verlag Berlin Heidelberg, pp. 426-430, 2004. |
Costanza et al., “Toward Subtle Intimate Interfaces for Mobile Devices Using an EMG Controller,” CHI 2005, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 481-489, 2005. |
Ghasemzadeh et al., “A Body Sensor Network With Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, No. 2, pp. 198-206, Mar. 2010. |
Gourmelon et al., “Contactless sensors for Surface Electromyography,” Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, NY, Aug. 30-Sep. 3, 2006, pp. 2514-2517. |
International Search Report and Written Opinion, dated May 16, 2014, for corresponding International Application No. PCT/US2014/017799, 9 pages. |
International Search Report and Written Opinion, dated Aug. 21, 2014, for corresponding International Application No. PCT/US2014/037863, 10 pages. |
International Search Report and Written Opinion, dated Nov. 21, 2014, for corresponding International Application No. PCT/US2014/052143, 9 pages. |
International Search Report and Written Opinion, dated Feb. 27, 2015, for corresponding International Application No. PCT/US2014/067443, 10 pages. |
International Search Report and Written Opinion, dated May 27, 2015, for corresponding International Application No. PCT/US2015/015675, 9 pages. |
Morris et al., “Emerging Input Technologies for Always-Available Mobile Interaction,” Foundations and Trends in Human-Computer Interaction 4(4):245-316, 2010. (74 total pages). |
Naik et al., “Real-Time Hand Gesture Identification for Human Computer Interaction Based on ICA of Surface Electromyogram,” IADIS International Conference Interfaces and Human Computer Interaction 2007, 8 pages. |
Picard et al., “Affective Wearables,” Proceedings of the IEEE 1st International Symposium on Wearable Computers, ISWC, Cambridge, MA, USA, Oct. 13-14, 1997, pp. 90-97. |
Rekimoto, “GestureWrist and GesturePad: Unobtrusive Wearable Interaction Devices,” ISWC '01 Proceedings of the 5th IEEE International Symposium on Wearable Computers, 2001, 7 pages. |
Saponas et al., “Making Muscle-Computer Interfaces More Practical,” CHI 2010, Atlanta, Georgia, USA, Apr. 10-15, 2010, 4 pages. |
Sato et al., “Touche: Enhancing Touch Interaction on Humans, Screens, Liquids, and Everyday Objects,” CHI' 12, May 5-10, 2012, Austin, Texas. |
Ueno et al., “A Capacitive Sensor System for Measuring Laplacian Electromyogram through Cloth: A Pilot Study,” Proceedings of the 29th Annual International Conference of the IEEE EMBS, Cite Internationale, Lyon, France, Aug. 23-26, 2007. |
Ueno et al., “Feasibility of Capacitive Sensing of Surface Electromyographic Potential through Cloth,” Sensors and Materials 24(6):335-346, 2012. |
Xiong et al., “A Novel HCI based on EMG and IMU,” Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, Dec. 7-11, 2011, 5 pages. |
Zhang et al., “A Framework for Hand Gesture Recognition Based on Accelerometer and EMG Sensors,” IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 41, No. 6, pp. 1064-1076, Nov. 2011. |
Brownlee, “Finite State Machines (FSM): Finite state machines as a control technique in Artificial Intelligence (AI),” Jun. 2002, 12 pages. |
Communication pursuant to Rule 164(1) EPC, dated Sep. 30, 2016, for corresponding EP Application No. 14753949.8, 7 pages. |
Xu et al., “Hand Gesture Recognition and Virtual Game Control Based on 3D Accelerometer and EMG Sensors,” Proceedings of the 14th international conference on Intelligent user interfaces, Sanibel Island, Florida, Feb. 8-11, 2009, pp. 401-406. |
Janssen, “Radio Frequency (RF)” 2013, retrieved from https://web.archive.org/web/20130726153946/https://www.techopedia.com/definition/5083/radio-frequency-rf, retrieved on Jul. 12, 2017, 2 pages. |
Merriam-Webster, “Radio Frequencies” retrieved from https://www.merriam-webster.com/table/collegiate/radiofre.htm, retrieved on Jul. 12, 2017, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150141784 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61903238 | Nov 2013 | US |