Systems, assemblies, and methods for treating a bronchial tree

Information

  • Patent Grant
  • 11937868
  • Patent Number
    11,937,868
  • Date Filed
    Monday, December 3, 2018
    5 years ago
  • Date Issued
    Tuesday, March 26, 2024
    a month ago
Abstract
Systems, assemblies, and methods to treat pulmonary diseases are used to decrease nervous system input to distal regions of the bronchial tree within the lungs. Treatment systems damage nerve tissue to temporarily or permanently decrease nervous system input. The treatment systems are capable of heating nerve tissue, cooling the nerve tissue, delivering a flowable substance that cause trauma to the nerve tissue, puncturing the nerve tissue, tearing the nerve tissue, cutting the nerve tissue, applying pressure to the nerve tissue, applying ultrasound to the nerve tissue, applying ionizing radiation to the nerve tissue, disrupting cell membranes of nerve tissue with electrical energy, or delivering long acting nerve blocking chemicals to the nerve tissue.
Description
BACKGROUND
Technical Field

The present invention generally relates to systems, assemblies, and methods for treating a bronchial tree, and more particularly, the invention relates to systems, assemblies, and methods for eliciting a desired response.


Description of the Related Art

Pulmonary diseases may cause a wide range of problems that adversely affect performance of the lungs. Pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (“COPD”), may lead to increased airflow resistance in the lungs. Mortality, health-related costs, and the size of the population having adverse effects due to pulmonary diseases are all substantial. These diseases often adversely affect quality of life. Symptoms are varied but often include cough; breathlessness; and wheeze. In COPD, for example, breathlessness may be noticed when performing somewhat strenuous activities, such as running, jogging, brisk walking, etc. As the disease progresses, breathlessness may be noticed when performing non-strenuous activities, such as walking. Over time, symptoms of COPD may occur with less and less effort until they are present all of the time, thereby severely limiting a person's ability to accomplish normal tasks.


Pulmonary diseases are often characterized by airway obstruction associated with blockage of an airway lumen, thickening of an airway wall, alteration of structures within or around the airway wall, or combinations thereof. Airway obstruction can significantly decrease the amount of gas exchanged in the lungs resulting in breathlessness. Blockage of an airway lumen can be caused by excessive intraluminal mucus or edema fluid, or both. Thickening of the airway wall may be attributable to excessive contraction of the airway smooth muscle, airway smooth muscle hypertrophy, mucous glands hypertrophy, inflammation, edema, or combinations thereof. Alteration of structures around the airway, such as destruction of the lung tissue itself, can lead to a loss of radial traction on the airway wall and subsequent narrowing of the airway.


Asthma can be characterized by contraction of airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and/or inflammation and swelling of airways. These abnormalities are the result of a complex interplay of local inflammatory cytokines (chemicals released locally by immune cells located in or near the airway wall), inhaled irritants (e.g., cold air, smoke, allergens, or other chemicals), systemic hormones (chemicals in the blood such as the anti-inflammatory cortisol and the stimulant epinephrine), local nervous system input (nerve cells contained completely within the airway wall that can produce local reflex stimulation of smooth muscle cells and mucous glands), and the central nervous system input (nervous system signals from the brain to smooth muscle cells and mucous glands carried through the vagus nerve). These conditions often cause widespread temporary tissue alterations and initially reversible airflow obstruction that may ultimately lead to permanent tissue alteration and permanent airflow obstruction that make it difficult for the asthma sufferer to breathe. Asthma can further include acute episodes or attacks of additional airway narrowing via contraction of hyper-responsive airway smooth muscle that significantly increases airflow resistance. Asthma symptoms include recurrent episodes of breathlessness (e.g., shortness of breath or dyspnea), wheezing, chest tightness, and cough.


Emphysema is a type of COPD often characterized by the alteration of lung tissue surrounding or adjacent to the airways in the lungs. Emphysema can involve destruction of lung tissue (e.g., alveoli tissue such as the alveolar sacs) that leads to reduced gas exchange and reduced radial traction applied to the airway wall by the surrounding lung tissue. The destruction of alveoli tissue leaves areas of emphysematous lung with overly large airspaces that are devoid of alveolar walls and alveolar capillaries and are thereby ineffective at gas exchange. Air becomes “trapped” in these larger airspaces. This “trapped” air may cause over-inflation of the lung, and in the confines of the chest restricts the in-flow of oxygen rich air and the proper function of healthier tissue. This results in significant breathlessness and may lead to low oxygen levels and high carbon dioxide levels in the blood. This type of lung tissue destruction occurs as part of the normal aging process, even in healthy individuals. Unfortunately, exposure to chemicals or other substances (e.g., tobacco smoke) may significantly accelerate the rate of tissue damage or destruction. Breathlessness may be further increased by airway obstruction. The reduction of radial traction may cause the airway walls to become “floppy” such that the airway walls partially or fully collapse during exhalation. An individual with emphysema may be unable deliver air out of their lungs due to this airway collapse and airway obstructions during exhalation.


Chronic bronchitis is a type of COPD that can be characterized by contraction of the airway smooth muscle, smooth muscle hypertrophy, excessive mucus production, mucous gland hypertrophy, and inflammation of airway walls. Like asthma, these abnormalities are the result of a complex interplay of local inflammatory cytokines, inhaled irritants, systemic hormones, local nervous system, and the central nervous system. Unlike asthma where respiratory obstruction may be largely reversible, the airway obstruction in chronic bronchitis is primarily chronic and permanent. It is often difficult for a chronic bronchitis sufferer to breathe because of chronic symptoms of shortness of breath, wheezing, and chest tightness, as well as a mucus producing cough.


Different techniques can be used to assess the severity and progression of pulmonary diseases. For example, pulmonary function tests, exercise capacity, and quality of life questionnaires are often used to evaluate subjects. Pulmonary function tests involve objective and reproducible measures of basic physiologic lung parameters, such as total airflow, lung volume, and gas exchange. Indices of pulmonary function tests used for the assessment of obstructive pulmonary diseases include the forced expiratory volume in 1 second (FEV1), the forced vital capacity (FVC), the ratio of the FEV1 to FVC, the total lung capacity (TLC), airway resistance and the testing of arterial blood gases. The FEV1 is the volume of air a patient can exhale during the first second of a forceful exhalation which starts with the lungs completely filled with air. The FEV1 is also the average flow that occurs during the first second of a forceful exhalation. This parameter may be used to evaluate and determine the presence and impact of any airway obstruction. The FVC is the total volume of air a patient can exhale during a forceful exhalation that starts with the lungs completely filled with air. The FEV1/FVC is the fraction of all the air that can be exhaled during a forceful exhalation during the first second. An FEV1/FVC ratio less than 0.7 after the administration of at least one bronchodilator defines the presence of COPD. The TLC is the total amount of air within the lungs when the lungs are completely filled and may increase when air becomes trapped within the lungs of patients with obstructive lung disease. Airway resistance is defined as the pressure gradient between the alveoli and the mouth to the rate of airflow between the alveoli and the mouth. Similarly, resistance of a given airway would be defined as the ratio of the pressure gradient across the given airway to the flow through the airway. Arterial blood gases tests measure the amount of oxygen and the amount of carbon dioxide in the blood and are the most direct method for assessing the ability of the lungs and respiratory system to bring oxygen from the air into the blood and to get carbon dioxide from the blood out of the body.


Exercise capacity tests are objective and reproducible measures of a patient's ability to perform activities. A six minute walk test (6MWT) is an exercise capacity test in which a patient walks as far as possible over a flat surface in 6 minutes. Another exercise capacity test involves measuring the maximum exercise capacity of a patient. For example, a physician can measure the amount of power the patient can produce while on a cycle ergometer. The patient can breathe 30 percent oxygen and the work load can increase by 5-10 watts every 3 minutes.


Quality of life questionnaires assess a patient's overall health and well being. The St. George's Respiratory Questionnaire is a quality of life questionnaire that includes 75 questions designed to measure the impact of obstructive lung disease on overall health, daily life, and perceived well-being. The efficacy of a treatment for pulmonary diseases can be evaluated using pulmonary function tests, exercise capacity tests, and/or questionnaires. A treatment program can be modified based on the results from these tests and/or questionnaires.


Treatments, such as bronchial thermoplasty, involve destroying smooth muscle tone by ablating the airway wall in a multitude of bronchial branches within the lung thereby eliminating both smooth muscles and nerves in the airway walls of the lung. The treated airways are unable to respond favorably to inhaled irritants, systemic hormones, and both local and central nervous system input. Unfortunately, this destruction of smooth muscle tone and nerves in the airway wall may therefore adversely affect lung performance. For example, inhaled irritants, such as smoke or other noxious substances, normally stimulate lung irritant receptors to produce coughing and contracting of airway smooth muscle. Elimination of nerves in the airway walls removes both local nerve function and central nervous input, thereby eliminating the lung's ability to expel noxious substances with a forceful cough. Elimination of airway smooth muscle tone may eliminate the airways' ability to constrict, thereby allowing deeper penetration of unwanted substances, such as noxious substances, into the lung.


Additionally, methods of destroying smooth muscle tone by ablating portions of the airway wall, such as bronchial thermoplasty, often have the following limitations: 1) inability to affect airways that are not directly ablated, typically airways smaller than approximately 3.0 mm which may also be narrowed in obstructive lung diseases such as asthma, emphysema, and chronic bronchitis; 2) short-term swelling that causes acute respiratory problems due to perioperative swelling in airways already narrowed by obstructive lung disease effects; 3) hundreds of applications to airways within the lungs may be required to alter overall lung functionality; 4) since multiple generations of airways within the lung are treated (typically generations 2-8), targeting lung airways without missing or over treating specific lung airway sections can be problematic; and, 5) separating the treating step into stages may be required to reduce the healing load on the lung which adds additional risk and cost with each additional bronchoscopy treatment session.


Both asthma and COPD are serious diseases with growing numbers of sufferers. Current management techniques, which include prescription drugs, are neither completely successful nor free from side effects. Additionally, many patients do not comply with their drug prescription dosage regiment. Accordingly, it would be desirable to provide a treatment which improves resistance to airflow without the need for patient compliance.


BRIEF SUMMARY

In some embodiments, a treatment system can be navigated through airways, such as the right and left main bronchi of the lung root as well as more distal airways within the lungs, to treat a wide range of pulmonary symptoms, conditions, and/or diseases, including, without limitation, asthma, COPD, obstructive lung diseases, or other diseases that lead to an increased resistance to airflow in the lungs. The treatment system can treat one or more target sites without treating non-targeted sites. Even if targeted anatomical features (e.g., nerves, glands, membranes, and the like) of main bronchi, lobar bronchi, segmental bronchi or subsegmental bronchi are treated, non-targeted anatomical features can be substantially unaltered. For example, the treatment system can destroy nerve tissue at target sites without destroying to any significant extent non-targeted tissue that can remain functional after performing treatment.


At least some embodiments disclosed herein can be used to affect nerve tissue of nerve trunks outside of airway walls while maintaining the airways ability to move (e.g., constrict and/or expand) in response to, for example, inhaled irritants, local nerve stimulation, systemic hormones, or combinations thereof. In some embodiments, the nerve tissue of nerve trunks is destroyed without eliminating smooth muscle tone. After damaging the nerve trunks, the airways have at least some muscle tone such that the smooth muscles in the airways, if stimulated, can alter the diameter of the airway to help maintain proper lung function. A wide range of different physiological functions associated with smooth muscle tone can be maintained before, during, and/or after the treatment.


In some embodiments, a method for treating one or more pulmonary diseases is provided. The method includes damaging nerve tissue of a vagal nerve trunk extending along the outside of a bronchial tree airway so as to attenuate nervous system signals transmitted to a portion of the bronchial tree. The nerve trunk may be the main stem of a nerve, comprising a bundle of nerve fibers bound together by a tough sheath of connective tissue. In some embodiments, the nerve tissue is damaged while maintaining a functionality of one or more anatomical features, such as blood vessels, also extending alongside the airway so as to preserve a respiratory function of the portion of the bronchial tree after the nerve tissue is damaged.


Conditions and symptoms associated with pulmonary diseases can be reduced, limited, or substantially eliminated. For example, airway obstruction can be treated to elicit reduced airflow resistance. Blood vessels or other tissue can remain intact and functional during and/or after treatment. The respiratory function that is preserved can include gas exchange, mucociliary transport, and the like. In some embodiments, the nerve tissue, such as nerve tissue of nerve trunks located outside of the airway, is damaged without damaging to any significant extent a portion of the airway wall that is circumferentially adjacent to the damaged nerve tissue. Accordingly, non-targeted tissue can be substantially unaltered by the damage to the airway nerve tissue.


Damaging the nerve tissue can involve delivering energy to the nerve tissue such that the destroyed nerve tissue impedes or stops the transmission of nervous system signals to nerves more distal along the bronchial tree. The nerve tissue can be temporarily or permanently damaged by delivering different types of energy to the nerve tissue. For example, the nerve tissue can be thermally damaged by increasing a temperature of the nerve tissue to a first temperature (e.g., an ablation temperature) while the wall of the airway is at a second temperature that is less than the first temperature. In some embodiments, a portion of the airway wall positioned radially inward from the nerve tissue can be at the first temperature so as to prevent permanent damage to the portion of the airway wall. The first temperature can be sufficiently high to cause permanent destruction of the nerve tissue. In some embodiments, the nerve tissue is part of a nerve trunk located in connective tissue outside of the airway wall. The smooth muscle and nerve tissue in the airway wall can remain functional to maintain a desired level of smooth muscle tone. The airway can constrict/dilate in response to stimulation (e.g., stimulation caused by inhaled irritants, the local nervous system, or systemic hormones). In other embodiments, the nerve tissue is part of a nerve branch or nerve fibers in the airway wall. In yet other embodiments, both nerve tissue of the nerve trunk and nerve tissue of nerve branches/fibers are simultaneously or sequentially damaged. Various types of activatable elements, such as ablation elements, can be utilized to output the energy.


In some embodiments, a method for treating a subject comprises moving an elongate assembly along a lumen of an airway of a bronchial tree. The airway includes a first tubular section, a second tubular section, a treatment site between the first tubular section and the second tubular section, and a nerve extending along at least the first tubular section, the treatment site, and the second tubular section. The nerve can be within or outside of the airway wall. In some embodiments, the nerve is a nerve trunk outside of the airway wall and connected to a vagus nerve.


The method can further include damaging a portion of the nerve at the treatment site to substantially prevent signals from traveling between the first tubular section and the second tubular section via the nerve. In some embodiments, blood flow between the first tubular section and the second tubular section can be maintained while damaging a portion of the nerve. The continuous blood flow can maintain desired functioning of distal lung tissue.


The second tubular section of the airway may dilate in response to the damage to the nerve. Because nervous system signals are not delivered to smooth muscle of the airway of the second tubular section, smooth muscle can relax so as to cause dilation of the airway, thereby reducing airflow resistance, even airflow resistance associated with pulmonary diseases. In some embodiments, nerve tissue can be damaged to cause dilation of substantially all the airways distal to the damaged tissue. The nerve can be a nerve trunk, nerve branch, nerve fibers, and/or other accessible nerves.


The method, in some embodiments, includes detecting one or one attributes of an airway and evaluating whether the nerve tissue is damaged based on the attributes. Evaluating includes comparing measured attributes of the airway (e.g., comparing measurements taken at different times), comparing measured attributes and stored values (e.g., reference values), calculating values based on measured attributes, monitoring changes of attributes, combinations thereof, or the like.


In some embodiments, a method for treating a subject includes moving an intraluminal device along a lumen of an airway of a bronchial tree. A portion of the airway is denervated using the intraluminal device. In some embodiments, the portion of the airway is denervated without irreversibly damaging to any significant extent an inner surface of the airway. In some embodiments, a portion of a bronchial tree is denervated without irreversibly damaging to any significant extent nerve tissue (e.g., nerve tissue of nerve fibers) within the airway walls of the bronchial tree. The inner surface can define the lumen along which the intraluminal device was moved.


The denervating process can be performed without destroying at least one artery extending along the airway. In some embodiments, substantially all of the arteries extending along the airway are preserved during the denervating process. In some embodiments, one or more nerves embedded in the wall of the airway can be generally undamaged during the denervating process. The destroyed nerves can be nerve trunks outside of the airway.


In some embodiments, the denervating process can decrease smooth muscle tone of the airway to achieve a desired increased airflow into and out of the lung. In some embodiments, the denerving process causes a sufficient decrease of smooth muscle tone so as to substantially increase airflow into and out of the lung. For example, the subject may have an increase in FEV1 of at least 10% over a baseline FEV1. As such, the subject may experience significant improved lung function when performing normal everyday activities, even strenuous activities. In some embodiments, the decrease of airway smooth muscle tone is sufficient to cause an increase of FEV1 in the range of about 10% to about 30%. Any number of treatment sites can be treated either in the main bronchi, segmental bronchi or subsegmental bronchi to achieve the desired increase in lung function.


In some embodiments, an elongate assembly for treating a lung is adapted to damage nerve tissue of a nerve trunk so as to attenuate nervous system signals transmitted to a more distal portion of the bronchial tree. The tissue can be damaged while the elongated assembly extends along a lumen of the bronchial tree. A delivery assembly can be used to provide access to the nerve tissue.


In some other embodiments, a system for treating a subject includes an elongate assembly dimensioned to move along a lumen of an airway of a bronchial tree. The elongate assembly is adapted to attenuate signals transmitted by nerve tissue, such as nerve tissue of nerve trunks, while not irreversibly damaging to any significant extent an inner surface of the airway. The elongate assembly can include an embeddable distal tip having at least one actuatable element, such as an ablation element. The ablation element can ablate various types of nerve tissue when activated. In some embodiments, the ablation element includes one or more electrodes operable to output radiofrequency energy.


In some embodiments, a method comprises damaging nerve tissue of a first main bronchus to substantially prevent nervous system signals from traveling to substantially all distal bronchial branches connected to the first main bronchus. In some embodiments, most or all of the bronchial branches distal to the first main bronchus are treated. The nerve tissue, in certain embodiments, is positioned between a trachea and a lung through which the bronchial branches extend. The method further includes damaging nerve tissue of a second main bronchus to substantially prevent nervous system signals from traveling to substantially all distal bronchial branches connected to the second main bronchus. A catheter assembly can be used to damage the nerve tissue of the first main bronchus and to damage the nerve tissue of the second main bronchus without removing the catheter assembly from a trachea connected to the first and second bronchi.


In some embodiments, a method comprises denervating most of a portion of a bronchial tree to substantially prevent nervous system signals from traveling to substantially all bronchial branches of the portion. In certain embodiments, denervating procedures involve damaging nerve tissue using less than about 100 applications of energy, 50 applications of energy, 36 applications of energy, 18 applications of energy, 10 applications of energy, or 3 applications of energy. Each application of energy can be at a different treatment site. In some embodiments, substantially all bronchial branches in one or both lungs are denervated by the application of energy.


In certain embodiments, one or more detection elements are used to detect attributes of airways before, during, and/or after therapy. A detection element can physically contact an inner surface of the airway to evaluate physical properties of the airway. The detection element may include one or more inflatable balloons that can be positioned distal to targeted tissue.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

In the Figures, identical reference numbers identify similar elements or acts.



FIG. 1 is an illustration of lungs, blood vessels, and nerves near to and in the lungs.



FIG. 2A is a schematic view of a treatment system positioned within a left main bronchus according to one embodiment.



FIG. 2B is a schematic view of a treatment system and an instrument extending distally from the treatment system.



FIG. 3 is a cross-sectional view of an airway of a bronchial tree surrounding a distal tip of a treatment system positioned along an airway lumen according to one embodiment.



FIG. 4 is a cross-sectional view of an airway of a bronchial tree surrounding a distal tip of a treatment system when smooth muscle of the airway is constricted and mucus is in an airway lumen according to one embodiment.



FIG. 5A is a partial cross-sectional view of a treatment system having a delivery assembly and an elongate assembly extending through and out of the delivery assembly.



FIG. 5B is an illustration of a distal tip of the elongate assembly of FIG. 5A positioned to affect nerve tissue of a nerve trunk.



FIG. 6 is a side elevational view of a delivery assembly in a lumen of a bronchial airway according to one embodiment.



FIG. 7 is a side elevational view of a distal tip of an elongate assembly moving through the delivery assembly of FIG. 6.



FIG. 8 is a side elevational view of the distal tip of the elongate assembly protruding from the delivery assembly according to one embodiment.



FIG. 9 is an enlarged partial cross-sectional view of the distal tip of FIG. 8, wherein the distal tip extends into a wall of the airway.



FIG. 10A is a side elevational view of a self-expanding ablation assembly in an airway according to one embodiment.



FIG. 10B is a front view of the ablation assembly of FIG. 10A.



FIG. 11A is a side elevational view of another embodiment of a self-expanding ablation assembly in an airway.



FIG. 11B is a front view of the ablation assembly of FIG. 11A.



FIG. 12A is a partial cross-sectional view of a treatment system having a delivery assembly and a separate elongate assembly within the delivery assembly according to one embodiment.



FIG. 12B is a front view of the treatment system of FIG. 12A.



FIG. 13A is a cross-sectional view of a delivery assembly delivering energy to a treatment site according to one embodiment.



FIG. 13B is a front view of the delivery assembly of FIG. 13A.



FIG. 14A is a partial cross-sectional view of a treatment system having an elongate assembly with a port positioned in an airway wall according to one embodiment.



FIG. 14B is a front view of the treatment system of FIG. 14A.



FIG. 15A is a side elevational view of a treatment system having an expandable assembly.



FIG. 15B is a cross-sectional view of the expandable assembly of FIG. 15A.



FIG. 16 is a graph of the depth of tissue versus temperature of the tissue.



FIG. 17 is a side elevational view of the expandable assembly of FIG. 15A in an airway.



FIG. 18 is a cross-sectional view of the expandable assembly of FIG. 15A and an airway surrounding the expandable assembly.



FIG. 19A is a side elevational view of a treatment system having an expandable assembly, in accordance with one embodiment.



FIG. 19B is a cross-sectional view of the expandable assembly of FIG. 19A.



FIG. 20A is a side elevational view of a treatment system having an expandable assembly, in accordance with another embodiment.



FIG. 20B is a cross-sectional view of the expandable assembly of FIG. 20A.



FIG. 21 is a cross-sectional view of the expandable assembly of FIG. 20A and an airway surrounding the expandable assembly.





DETAILED DESCRIPTION

In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the invention. However, one skilled in the art will understand that the invention may be practiced without these details. In other instances, well-known structures associated with catheter systems, delivery assemblies, activatable elements, circuitry, and electrodes have not been described in detail to avoid unnecessarily obscuring descriptions of the embodiments of the invention.


Unless the context requires otherwise, throughout the specification and claims which follow, the word “comprise” and variations thereof, such as “comprises” and “comprising” are to be construed in an open, inclusive sense, that is, as “including but not limited to.”



FIG. 1 illustrates human lungs 10 having a left lung 11 and a right lung 12. A trachea 20 extends downwardly from the nose and mouth and divides into a left main bronchus 21 and a right main bronchus 22. The left main bronchus 21 and right main bronchus 22 each branch to form a lobar, segmental bronchi, and sub-segmental bronchi, which have successively smaller diameters and shorter lengths in the outward direction (i.e., the distal direction). A main pulmonary artery 30 originates at a right ventricle of the heart and passes in front of a lung root 24. At the lung root 24, the artery 30 branches into a left and right pulmonary artery, which in turn branch to form a network of branching blood vessels. These blood vessels can extend alongside airways of a bronchial tree 27. The bronchial tree 27 includes the left main bronchus 21, the right main bronchus 22, bronchioles, and alveoli. Vagus nerves 41, 42 extend alongside the trachea 20 and branch to form nerve trunks 45.


The left and right vagus nerves 41, 42 originate in the brainstem, pass through the neck, and descend through the chest on either side of the trachea 20. The vagus nerves 41, 42 spread out into nerve trunks 45 that include the anterior and posterior pulmonary plexuses that wrap around the trachea 20, the left main bronchus 21, and the right main bronchus 22. The nerve trunks 45 also extend along and outside of the branching airways of the bronchial tree 27. Nerve trunks 45 are the main stem of a nerve, comprising a bundle of nerve fibers bound together by a tough sheath of connective tissue.


The prime function of the lungs 10 is to exchange oxygen from air into the blood and to exchange carbon dioxide from the blood to the air. The process of gas exchange begins when oxygen rich air is pulled into the lungs 10. Contraction of the diaphragm and intercostal chest wall muscles cooperate to decrease the pressure within the chest to cause the oxygen rich air to flow through the airways of the lungs 10. For example, air passes through the mouth and nose, the trachea 20, then through the bronchial tree 27. The air is ultimately delivered to the alveolar air sacs for the gas exchange process.


Oxygen poor blood is pumped from the right side of the heart through the pulmonary artery 30 and is ultimately delivered to alveolar capillaries. This oxygen poor blood is rich in carbon dioxide waste. Thin semi-permeable membranes separate the oxygen poor blood in capillaries from the oxygen rich air in the alveoli. These capillaries wrap around and extend between the alveoli. Oxygen from the air diffuses through the membranes into the blood, and carbon dioxide from the blood diffuses through the membranes to the air in the alveoli. The newly oxygen enriched blood then flows from the alveolar capillaries through the branching blood vessels of the pulmonary venous system to the heart. The heart pumps the oxygen rich blood throughout the body. The oxygen spent air in the lung is exhaled when the diaphragm and intercostal muscles relax and the lungs and chest wall elastically return to the normal relaxed states. In this manner, air can flow through the branching bronchioles, the bronchi 21, 22, and the trachea 20 and is ultimately expelled through the mouth and nose.


A treatment system 198 of FIG. 2A can be used to treat the lungs 10 to adjust airflow during expiration or inhalation, or both. For example, airways can be enlarged (e.g., dilated) to decrease airflow resistance to increase gas exchange. The treatment system 198 can affect nerve tissue, such as nerve tissue of a nerve trunk, to dilate airways.


In some embodiments, the treatment system 198 targets the nervous system which provides communication between the brain and the lungs 10 using electrical and chemical signals. A network of nerve tissue of the autonomic nervous system senses and regulates activity of the respiratory system and the vasculature system. Nerve tissue includes fibers that use chemical and electrical signals to transmit sensory and motor information from one body part to another. For example, the nerve tissue can transmit motor information in the form of nervous system input, such as a signal that causes contraction of muscles or other responses. The fibers can be made up of neurons. The nerve tissue can be surrounded by connective tissue, i.e., epineurium. The autonomic nervous system includes a sympathetic system and a parasympathetic system. The sympathetic nervous system is largely involved in “excitatory” functions during periods of stress. The parasympathetic nervous system is largely involved in “vegetative” functions during periods of energy conservation. The sympathetic and parasympathetic nervous systems are simultaneously active and generally have reciprocal effects on organ systems. While innervation of the blood vessels originates from both systems, innervation of the airways are largely parasympathetic in nature and travel between the lung and the brain in the right vagus nerve 42 and the left vagus nerve 41.


The treatment system 198 can perform any number of procedures on one or more of these nerve trunks 45 to affect the portion of the lung associated with those nerve trunks. Because some of the nerve tissue in the network of nerve trunks 45 coalesce into other nerves (e.g., nerves connected to the esophagus, nerves though the chest and into the abdomen, and the like), the treatment system 198 can treat specific sites to minimize, limit, or substantially eliminate unwanted damage of those other nerves. Some fibers of anterior and posterior pulmonary plexuses coalesce into small nerve trunks which extend along the outer surfaces of the trachea 20 and the branching bronchi and bronchioles as they travel outward into the lungs 10. Along the branching bronchi, these small nerve trunks continually ramify with each other and send fibers into the walls of the airways, as discussed in connection with FIGS. 3 and 4.


The treatment system 198 can affect specific nerve tissue, such as vagus nerve tissue, associated with particular sites of interest. Vagus nerve tissue includes efferent fibers and afferent fibers oriented parallel to one another within a nerve branch. The efferent nerve tissue transmits signals from the brain to airway effector cells, mostly airway smooth muscle cells and mucus producing cells. The afferent nerve tissue transmits signals from airway sensory receptors, which respond variously to irritants and stretch, to the brain. While efferent nerve tissue innervates smooth muscle cells all the way from the trachea 20 to the terminal bronchioles, the afferent fiber innervation is largely limited to the trachea 20 and larger bronchi. There is a constant, baseline tonic activity of the efferent vagus nerve tissues to the airways which causes a baseline level of smooth muscle contraction and mucous secretion.


The treatment system 198 can affect the efferent and/or the afferent tissues to control airway smooth muscle (e.g., innervate smooth muscle) and mucous secretion. The contraction of airway smooth muscle and excess mucous secretion associated with pulmonary diseases often results in relatively high airflow resistance causing reduced gas exchange and decreased lung performance.


For example, the treatment system 198 can attenuate the transmission of signals traveling along the vagus nerves 41, 42 that cause muscle contractions, mucus production, and the like. Attenuation can include, without limitation, hindering, limiting, blocking, and/or interrupting the transmission of signals. For example, the attenuation can include decreasing signal amplitude of nerve signals or weakening the transmission of nerve signals. Decreasing or stopping nervous system input to distal airways can alter airway smooth muscle tone, airway mucus production, airway inflammation, and the like, thereby controlling airflow into and out of the lungs 10. In some embodiments, the nervous system input can be decreased to correspondingly decrease airway smooth muscle tone. In some embodiments, the airway mucus production can be decreased a sufficient amount to cause a substantial decrease in coughing and/or in airflow resistance. Signal attenuation may allow the smooth muscles to relax and prevent, limit, or substantially eliminate mucus production by mucous producing cells. In this manner, healthy and/or diseased airways can be altered to adjust lung function. After treatment, various types of questionnaires or tests can be used to assess the subject's response to the treatment. If needed or desired, additional procedures can be performed to reduce the frequency of coughing, decrease breathlessness, decrease wheezing, and the like.


Main bronchi 21, 22 (i.e., airway generation 1) of FIG. 1 can be treated to affect distal portions of the bronchial tree 27. In some embodiments, the left and right main bronchi 21, 22 are treated at locations along the left and right lung roots 24 and outside of the left and right lungs 11, 12. Treatment sites can be distal to where vagus nerve branches connect to the trachea and the main bronchi 21, 22 and proximal to the lungs 11, 12. A single treatment session involving two therapy applications can be used to treat most of or the entire bronchial tree 27. Substantially all of the bronchial branches extending into the lungs 11, 12 may be affected to provide a high level of therapeutic effectiveness. Because the bronchial arteries in the main bronchi 21, 22 have relatively large diameters and high heat sinking capacities, the bronchial arteries may be protected from unintended damage due to the treatment.


In some embodiments, one of the left and right main bronchi 21, 22 is treated to treat one side of the bronchial tree 27. The other main bronchus 21, 22 can be treated based on the effectiveness of the first treatment. For example, the left main bronchus 21 can be treated to treat the left lung 11. The right main bronchus 22 can be treated to treat the right lung 12. In some embodiments, a single treatment system can damage the nerve tissue of one of the bronchi 21, 22 and can damage the nerve tissue of the other main bronchus 21, 22 without removing the treatment system from the trachea 20. Nerve tissue positioned along the main bronchi 21, 22 can thus be damaged without removing the treatment system from the trachea 20. In some embodiments, a single procedure can be performed to conveniently treat substantially all, or at least a significant portion (e.g., at least 50%, 70%, 80%, 90% of the bronchial airways), of the patient's bronchial tree. In other procedures, the treatment system can be removed from the patient after treating one of the lungs 11, 12. If needed, the other lung 11, 12 can be treated in a subsequent procedure.


The treatment system 198 of FIGS. 2A and 2B can treat airways that are distal to the main bronchi 21, 22. For example, the treatment system 198 can be positioned in higher generation airways (e.g., airway generations >2) to affect remote distal portions of the bronchial tree 27. The treatment system 198 can be navigated through tortuous airways to perform a wide range of different procedures, such as, for example, denervation of a portion of a lobe, an entire lobe, multiple lobes, or one lung or both lungs. In some embodiments, the lobar bronchi are treated to denervate lung lobes. For example, one or more treatment sites along a lobar bronchus may be targeted to denervate an entire lobe connected to that lobar bronchus. Left lobar bronchi can be treated to affect the left superior lobe and/or the left inferior lobe. Right lobar bronchi can be treated to affect the right superior lobe, the right middle lobe, and/or the right inferior lobe. Lobes can be treated concurrently or sequentially. In some embodiments, a physician can treat one lobe. Based on the effectiveness of the treatment, the physician can concurrently or sequentially treat additional lobe(s). In this manner, different isolated regions of the bronchial tree can be treated.


The treatment system 198 can also be used in segmental or subsegmental bronchi. Each segmental bronchus may be treated by delivering energy to a single treatment site along each segmental bronchus. For example, energy can be delivered to each segmental bronchus of the right lung. In some procedures, ten applications of energy can treat most of or substantially all of the right lung. In some procedures, most or substantially all of both lungs are treated using less than thirty-six different applications of energy. Depending on the anatomical structure of the bronchial tree, segmental bronchi can often be denervated using one or two applications of energy.


The treatment system 198 can affect nerve tissue while maintaining function of other tissue or anatomical features, such as the mucous glands, cilia, smooth muscle, body vessels (e.g., blood vessels), and the like. Nerve tissue includes nerve cells, nerve fibers, dendrites, and supporting tissue, such as neuroglia. Nerve cells transmit electrical impulses, and nerve fibers are prolonged axons that conduct the impulses. The electrical impulses are converted to chemical signals to communicate with effector cells or other nerve cells. By way of example, the treatment system 198 is capable of denervating a portion of an airway of the bronchial tree 27 to attenuate one or more nervous system signals transmitted by nerve tissue. Denervating can include damaging all of the nerve tissue of a section of a nerve trunk along an airway to stop substantially all of the signals from traveling through the damaged section of the nerve trunk to more distal locations along the bronchial tree. If a plurality of nerve trunks extends along the airway, each nerve trunk can be damaged. As such, the nerve supply along a section of the bronchial tree can be cut off. When the signals are cut off, the distal airway smooth muscle can relax leading to airway dilation. This airway dilation reduces airflow resistance so as to increase gas exchange in the lungs 10, thereby reducing, limiting, or substantially eliminating one or more symptoms, such as breathlessness, wheezing, chest tightness, and the like. Tissue surrounding or adjacent to the targeted nerve tissue may be affected but not permanently damaged. In some embodiments, for example, the bronchial blood vessels along the treated airway can deliver a similar amount of blood to bronchial wall tissues and the pulmonary blood vessels along the treated airway can deliver a similar amount of blood to the alveolar sacs at the distal regions of the bronchial tree 27 before and after treatment. These blood vessels can continue to transport blood to maintain sufficient gas exchange. In some embodiments, airway smooth muscle is not damaged to a significant extent. For example, a relatively small section of smooth muscle in an airway wall which does not appreciably impact respiratory function may be reversibly altered. If energy is used to destroy the nerve tissue outside of the airways, a therapeutically effective amount of energy does not reach a significant portion of the non-targeted smooth muscle tissue.


The treatment system 198 of FIG. 2A includes a treatment controller 202 and an intraluminal elongate assembly 200 connected to the controller 202. The elongate assembly 200 can be inserted into the trachea 20 and navigated into and through the bronchial tree 27 with or without utilizing a delivery assembly. The elongate assembly 200 includes a distal tip 203 capable of selectively affecting tissue.


The controller 202 of FIG. 2A can include one or more processors, microprocessors, digital signal processors (DSPs), field programmable gate arrays (FPGA), and/or application-specific integrated circuits (ASICs), memory devices, buses, power sources, and the like. For example, the controller 202 can include a processor in communication with one or more memory devices. Buses can link an internal or external power supply to the processor. The memories may take a variety of forms, including, for example, one or more buffers, registers, random access memories (RAMs), and/or read only memories (ROMs). The controller 202 may also include a display, such as a screen.


In some embodiments, the controller 202 has a closed loop system or an open loop system. For example, the controller 202 can have a closed loop system, whereby the power to the distal tip 203 is controlled based upon feedback signals from one or more sensors configured to transmit (or send) one or more signals indicative of one or more tissue characteristics, energy distribution, tissue temperature, or any other measurable parameters of interest. Based on those readings, the controller 202 can then adjust operation of the distal tip 203. Alternatively, the treatment system 198 can be an open loop system wherein the operation of the distal tip 203 is set by user input. For example, the treatment system 198 may be set to a fixed power mode. It is contemplated that the treatment system 198 can be repeatedly switched between a closed loop system and an open loop system to treat different types of sites.


The distal tip 203 of FIGS. 2A-4 can target various sites in the lungs 10, including, without limitation, nerve tissue (e.g., tissue of the vagus nerves 41, 42, nerve trunks 45, etc.), fibrous tissue, diseased or abnormal tissues (e.g., cancerous tissue, inflamed tissue, and the like), muscle tissue, blood, blood vessels, anatomical features (e.g., membranes, glands, cilia, and the like), or other sites of interest. Various types of distal tips are discussed in connection with FIGS. 5A-14B.



FIG. 3 is a transverse cross-sectional view of a healthy airway 100, illustrated as a bronchial tube. The distal tip 203 is positioned along a lumen 101 defined by an inner surface 102 of the airway 100. The illustrated inner surface 102 is defined by a folded layer of epithelium 110 surrounded by stroma 112a. A layer of smooth muscle tissue 114 surrounds the stroma 112a. A layer of stroma 112b is between the muscle tissue 114 and connective tissue 124. Mucous glands 116, cartilage plates 118, blood vessels 120, and nerve fibers 122 are within the stroma layer 112b. Bronchial artery branches 130 and nerve trunks 45 are exterior to a wall 103 of the airway 100. The illustrated arteries 130 and nerve trunks 45 are within the connective tissue 124 surrounding the airway wall 103 and can be oriented generally parallel to the airway 100. In FIG. 1, for example, the nerve trunks 45 originate from the vagus nerves 41, 42 and extend along the airway 100 towards the air sacs. The nerve fibers 122 are in the airway wall 103 and extend from the nerve trunks 45 to the muscle tissue 114. Nervous system signals are transmitted from the nerve trunks 45 to the muscle 114 via the nerve fibers 122.


The distal tip 203 of FIG. 3 can damage, excite, or otherwise elicit a desired response of the cilia along the epithelium 110 in order to control (e.g., increase or decrease) mucociliary transport. Many particles are inhaled as a person breathes, and the airways function as a filter to remove the particles from the air. The mucociliary transport system functions as a self-cleaning mechanism for all the airways throughout the lungs 10. The mucociliary transport is a primary method for mucus clearance from distal portions of the lungs 10, thereby serving as a primary immune barrier for the lungs 10. For example, the inner surface 102 of FIG. 3 can be covered with cilia and coated with mucus. As part of the mucociliary transport system, the mucus entraps many inhaled particles (e.g., unwanted contaminates such as tobacco smoke) and moves these particles towards the larynx. The ciliary beat of cilia moves a continuous carpet of mucus and entrapped particles from the distal portions of the lungs 10 past the larynx and to the pharynx for expulsion from the respiratory system. The distal tip 203 can damage the cilia to decrease mucociliary transport or excite the cilia to increase mucociliary transport.


In some embodiments, the distal tip 203 selectively treats targeted treatment sites inside of the airway wall 103 (e.g., anatomical features in the stromas 112a, 112b). For example, the mucous glands 116 can be damaged to reduce mucus production a sufficient amount to prevent the accumulation of mucus that causes increased airflow resistance while preserving enough mucus production to maintain effective mucociliary transport, if needed or desired. In some embodiments, for example, the distal tip 203 outputs ablative energy that travels through the inner periphery of the airway wall 103 to the mucous glands 116. In other embodiments, the distal tip 203 is inserted into the airway wall 103 to position the distal tip 203 next to the mucous glands 116. The embedded distal tip 203 then treats the mucous glands 116 while limiting treatment of surrounding tissue. The distal tip 203 can also be used to destroy nerve branches/fibers passing through the airway wall 103 or other anatomical features in the airway wall 103.


If the airway 100 is overly constricted, the airflow resistance of the airway 100 may be relatively high. The distal tip 203 can relax the muscle tissue 114 to dilate the airway 100 to reduce airflow resistance, thereby allowing more air to reach the alveolar sacs for the gas exchange process. Various airways of the bronchial tree 47 may have muscles that are constricted in response to signals traveling through the nerve trunks 45. The tip 203 can damage sites throughout the lungs 10 to dilate constricted airways.



FIG. 4 is a transverse cross-sectional view of a portion of the airway 100 that has smooth muscle tissue 114 in a contracted state and mucus 150 from hypertrophied mucous glands 116. The contracted muscle tissue 114 and mucus 150 cooperate to partially obstruct the lumen 101. The distal tip 203 can relax the smooth muscle tissue 114 and reduce, limit, or substantially eliminate mucus production of the mucous glands 116. The airway 100 may then dilate and the amount of mucus 150 may be reduced, to effectively enlarge the lumen 101.


The distal tip 203 of FIGS. 3 and 4 can deliver different types of energy. As used herein, the term “energy” is broadly construed to include, without limitation, thermal energy, cryogenic energy (e.g., cooling energy), electrical energy, acoustic energy (e.g., ultrasonic energy), radiofrequency energy, pulsed high voltage energy, mechanical energy, ionizing radiation, optical energy (e.g., light energy), and combinations thereof, as well as other types of energy suitable for treating tissue. By way of example, thermal energy can be used to heat tissue. Mechanical energy can be used to puncture, tear, cut, crush, or otherwise physically damage tissue. In some embodiments, the distal tip 203 applies pressure to tissue in order to temporarily or permanently damage tissue. Electrical energy is particularly well suited for damaging cell membranes, such as the cell membranes of nerve trunk tissue or other targeted anatomical features. Acoustic energy can be emitted as continuous or pulsed waves, depending on the parameters of a particular application. Additionally, acoustic energy can be emitted in waveforms having various shapes, such as sinusoidal waves, triangle waves, square waves, or other wave forms.


In some embodiments, a fluid (e.g., a liquid, gas, or mixtures thereof) is employed to damage tissue. The distal tip 203 can include one or more flow elements through which the fluid can circulate to control the surface temperature of the flow element. The flow element can be one or more balloons, expandable members, and the like. The fluid can be heated/cooled saline, cryogenic fluids, and the like. Additionally or alternatively, the distal tip 203 can include one or more ports through which fluid flows to traumatize tissue.


In some embodiments, the distal tip 203 delivers one or more substances (e.g., radioactive seeds, radioactive materials, etc.), treatment agents, and the like. Exemplary non-limiting treatment agents include, without limitation, one or more antibiotics, anti-inflammatory agents, pharmaceutically active substances, bronchoconstrictors, bronchodilators (e.g., beta-adrenergic agonists, anticholinergics, etc.), nerve blocking drugs, photoreactive agents, or combinations thereof. For example, long acting or short acting nerve blocking drugs (e.g., anticholinergics) can be delivered to the nerve tissue to temporarily or permanently attenuate signal transmission. Substances can also be delivered directly to the nerves 122 or the nerve trunks 45, or both, to chemically damage the nerve tissue.



FIGS. 5A-14B illustrate embodiments for delivery along a lumen of an airway. The illustrated embodiments are just some examples of the types of treatment systems capable of performing particular procedures. It should be recognized that each of the treatment systems described herein can be modified to treat tissue at different locations, depending on the treatment to be performed. Treatment can be performed in airways that are either inside or outside of the left and right lungs. FIGS. 5A-13B illustrate treatment systems capable of outputting energy. These treatment systems may continuously output energy for a predetermined period of time while remaining stationary. Alternatively, the treatment systems may be pulsed, may be activated multiple times, or may be actuated in a combination of any of these ways. Different energy application patterns can be achieved by configuring the treatment system itself or may involve moving the treatment assembly or any of its components to different locations.


Referring to FIG. 5A, a treatment system 198A includes an elongate assembly 200A that has a distal tip 203A positioned along the airway 100. The elongate assembly 200A extends through a working lumen 401 of a delivery assembly 400 and includes a flexible shaft 500 and a deployable ablation assembly 520 protruding from the shaft 500.


The shaft 500 can be a generally straight shaft that is bent as it moves along the lumen 401. In some embodiments, the shaft 500 has a preformed non-linear section 503 to direct the ablation assembly 520 towards the airway wall 103. As shown in FIG. 5A, the lumen 401 can have a diameter that is significantly larger than the outer diameter of the shaft 500. When the shaft 500 passes out of the delivery assembly 400, the shaft 500 assumes the preset configuration. The flexible shaft 500 can be made, in whole or in part, of one or more metals, alloys (e.g., steel alloys such as stainless steel), plastics, polymers, and combinations thereof, as well as other biocompatible materials.


In some embodiments, the shaft 500 selectively moves between a delivery configuration and a treatment configuration. For example, the shaft 500 can have a substantially straight configuration for delivery and a curved configuration for engaging tissue. In such embodiments, the shaft 500 can be made, in whole or in part, of one or more shape memory materials, which move the shaft 500 between the delivery configuration and the treatment configuration when activated. Shape memory materials include, for example, shape memory alloys (e.g., NiTi), shape memory polymers, ferromagnetic materials, and the like. These materials can be transformed from a first preset configuration to a second preset configuration when activated (e.g., thermally activated).


The ablation assembly 520 includes a protective section 524 and an ablation element 525. When the ablation element 525 is activated, the ablation element 525 outputs energy to targeted tissue. The protective section 524 inhibits or blocks the outputted energy to protect non-targeted tissue. The ablation element 525 and the protective section 524 thus cooperate to provide localized delivery of energy to minimize, limit, or substantially eliminate unwanted ancillary trauma associated with the outputted energy.


The ablation element 525 can be adapted to output energy that ablates tissue. The terms “ablate” or “ablation,” including derivatives thereof, include, without limitation, substantial altering of electrical properties, mechanical properties, chemical properties, or other properties of tissue. In the context of pulmonary ablation applications shown and described with reference to the variations of the illustrative embodiments herein, “ablation” includes sufficiently altering of nerve tissue properties to substantially block transmission of electrical signals through the ablated nerve tissue.


The term “element” within the context of “ablation element” includes a discrete element, such as an electrode, or a plurality of discrete elements, such as a plurality of spaced apart electrodes, which are positioned so as to collectively treat a region of tissue or treat discrete sites. One type of ablation element emits energy that ablates tissue when the element is coupled to and energized by an energy source. Example energy emitting ablation elements include, without limitation, electrode elements coupleable to direct current (“DC”) sources or alternating current (“AC”) sources (e.g., radiofrequency (“RF”) current sources), antenna elements energizable by microwave energy sources, pulsed high voltage sources, heating elements (e.g., metallic elements or other thermal conductors which are energized to emit heat via convective heat transfer, conductive heat transfer, etc.), light emitting elements (e.g., fiber optics capable of transmitting light sufficient to ablate tissue when the fiber optics are coupled to a light source), light sources (e.g., lasers, light emitting diodes, etc.), ultrasonic elements such as ultrasound elements adapted to emit ultrasonic sound waves sufficient to ablate tissue when coupled to suitable excitation sources), combinations thereof, and the like.


As used herein, the term “ablate,” including variations thereof, is construed to include, without limitation, to destroy or to permanently damage, injure, or traumatize tissue. For example, ablation may include localized tissue destruction, cell lysis, cell size reduction, necrosis, or combinations thereof.


In some embodiments, the ablation assembly 520 can be connected to an energy generator (e.g., a radiofrequency (RF) electrical generator) by electrical cables within the shaft 500. For example, the RF electrical generator can be incorporated into the controller 202 of FIG. 2A. In some embodiments, the RF electrical generator is incorporated into the ablation assembly 520.


RF energy can be outputted at a desired frequency based on the treatment. Example frequencies include, without limitation, frequencies in the range of about 50 KHZ to about 1000 MHZ. When the RF energy is directed into tissue, the energy is converted within the tissue into heat causing the temperature of the tissue to be in the range of about 40° C. to about 99° C. The RF energy can be applied for a length of time in the range of about 1 second to about 120 seconds. In some embodiments, the RF generator has a single channel and delivers approximately 1 to 25 watts of RF energy and possesses continuous flow capability. Other ranges of frequencies, time internals, and power outputs can also be used.


The protective section 524 can be in the form of a shield made, in whole or in part, of a material that is non-transmissive with respect to the energy from the ablation element 525. In some embodiments, the protective section 524 is comprised of one or more metals, optically opaque materials, and the like. If the ablation element 525 outputs ablative energy, the protective section 524 can block a sufficient amount of the ablative energy to prevent ablation of tissue directly next to the protective section 524. In this manner, non-targeted tissue is not permanently damaged.


A user can visually inspect the airway 100 using the delivery assembly 400 of FIGS. 5A and 5B to locate and evaluate the treatment site(s) and non-targeted tissues before, during, and/or after performing a therapy. The delivery assembly 400 can be a catheter, delivery sheath, bronchoscope, endoscope, or other suitable device for guiding the elongate assembly 200A. In some embodiments, the delivery assembly 400 includes one or more viewing devices, such as optical viewing devices (e.g., cameras), optical trains (e.g., a set of lens), and the like. For example, the delivery assembly 400 can be in the form of a bronchoscope having one or more lights for illumination and optical fibers for transmitting images. By way of another example, the delivery assembly 400 can have an ultrasound viewing device, as discussed in connection with FIGS. 11A and 11B.



FIGS. 6-9 show one exemplary method of using the treatment system 198A. Generally, the treatment system 198A can alter nerve tissue of the airway 100 to control nervous system input to a portion of the lung while not damaging to any significant extent other pulmonary structures.


As shown in FIG. 6, the delivery assembly 400 is moved along the lumen 101 of the airway 100, as indicated by an arrow 560. The elongate assembly 200A is carried in the delivery assembly 400 to prevent injury to the airway 100 during positioning of the delivery assembly 400.



FIG. 7 shows the elongate assembly 200A moving along the lumen 401 towards an opening 564, as indicated by an arrow 568. While the elongate assembly 200A is moved through the delivery assembly 400 (shown in cross-section), the ablation assembly 520 (shown in phantom) can be housed within the shaft 500 to prevent damage to the airway 100 or the delivery assembly 400, or both. A user can push the shaft 500 out of the delivery assembly 400 towards the airway wall 103.



FIG. 8 shows a distal end 570 of the shaft 500 proximate to the wall 103. The sharp ablation assembly 520 is deployed from the shaft 500 and contacts the wall 103. The ablation assembly 520 is then advanced through the wall 103 until the exposed ablation element 525 is embedded within the wall 103, as shown in FIG. 9. The position of the ablation assembly 520 relative to the airway wall 103 can be adjusted by extending or retracting the ablation assembly 520. Because the ablation assembly 520 is relatively slender, the wall 103 can experience an insignificant amount of trauma.


The illustrated ablation assembly 520 is connected to one lead of the RF generator and the other lead of the RF generator may be connected to an external electrode. When the RF generator is activated, the ablation element 525 delivers RF energy to tissue contacting or adjacent to the ablation element 525. RF energy flows through the tissue and is converted into heat. The heat can be concentrated in the outer portion of the airway wall 103. For example, the ablation element 525 of FIG. 5B outputs RF energy that causes damage to the nerve trunks 45. In some embodiments, a sufficient amount of RF energy is delivered to the nerve trunk 45 to destroy an entire longitudinal section of the nerve trunk 45 while keeping the amount energy that reaches the blood vessels 130 below an amount that causes tissue destruction. Damage to other non-targeted regions (e.g., the epithelium) can also be kept at or below an acceptable level. Thus, therapies can be performed without damaging to any significant extent other regions of the airway 100, even regions that are adjacent to the treatment site.


Natural body functions can help prevent, reduce, or limit damage to tissue. If the bronchial artery branches 130 are heated by the treatment system 198A, blood within the blood vessels 130 can absorb the thermal energy and can then carry the thermal energy away from the heated section of the branches 130. In this manner, thermal energy is transferred to the blood. After the treatment is performed, the bronchial artery branches 130 can continue to maintain the health of lung tissue.


This procedure may be repeated to damage additional tissue of nerve trunks 45 located outside the circumference of the wall 103. In some embodiments, all the nerves about the airway 100 can be treated to prevent signals from passing between a proximal section 571 of the airway 100 and distal section 573 of the airway 100, as shown in FIG. 5A. Because signals are not transmitted to the distal section 573, the distal section 573 can dilate. The airway 100 can also remain generally intact to maintain the health of the distal section 573. Upon completion of the treatment process, the ablation assembly 520 is retracted back into the shaft 500 for removal from the airway 100 or for placement at other treatment locations.


Treatment efficacy can be evaluated based at least in part on one or more airway attributes, pulmonary function tests, exercise capacity tests, and/or questionnaires. Patients can be evaluated to track and monitor their progress. If needed or desired, additional procedures can be performed until desired responses are achieved.


Different types of instruments for evaluating airway attributes may be used with treatment systems. During ablation, feedback from an instrument can indicate whether the targeted tissue has been ablated. Once targeted tissue is ablated, therapy can be discontinued to minimize or limit collateral damage, if any, to healthy untargeted tissue. FIG. 2B shows an instrument 199 with a detection element in the form of a balloon. Fluid (e.g., air, saline solution, or the like) can be used inflate the balloon to evaluate airway attributes. The instrument 199 can be a conventional instrument for airway dilation, airway occlusion, or the like. Instruments available for purchase from numerous medical suppliers, including Ackrad Laboratories, Cranford, New Jersey and Erich Jaeger, Hoechberg, Germany, can be used with, or modified to be used with, the treatments systems disclosed herein. The instruments can be delivered through the treatment systems (e.g., through a central lumen of the treatment system) to position a detection element distal to the treatment system.


The attributes of airways evaluated by the instrument may include, without limitation, physical properties of airways (e.g., airway compliance, contractile properties, etc.), airway resistance, dimensions of airway lumens (e.g., shapes of airways, diameters of airways, etc.), responsiveness of airways (e.g., responsiveness to stimulation), muscle characteristics (e.g., muscle tone, muscle tension, etc.), or the like. In some embodiments, changes of airway muscle characteristics can be monitored by measuring pressure changes the intraluminal balloon that is inflated to a known pressure. Based on pressure changes in the balloon, a physician determines the effects, if any, of the treatment, including, without limitation, whether targeted tissue has been stimulated, damaged, ablated, or the like. For example, the balloon can be positioned distal to the targeted tissue. As nerve tissue is damaged, muscle tension in the airway surrounding the balloon is reduced causing expansion of the airway, as well as expansion of the balloon. The pressure in the balloon decreases as the balloon expands.


The instrument 199 and the treatment system 198 can be delivered through different lumens in a delivery device, including, without limitation, a multi-lumen catheter, a delivery sheath, bronchoscope, an endoscope, or other suitable device for delivering and guiding multiple devices. The delivery device can be selected based on the location of the treatment site(s), configuration of the treatment system, or the like.


Decreases in airway resistance may indicate that passageways of airways are opening, for example, in response to attenuation of nervous system input to those airways. The decrease of airway resistance associated with treating low generation airways (e.g., main bronchi, lobar bronchi, segmental bronchi) may be greater than the amount of decrease of airway resistance associated with treating high generation airways (e.g., sub segmental bronchioles). A physician can select appropriate airways for treatment to achieve a desired decrease in airway resistance and can be measured at a patient's mouth, a bronchial branch that is proximate to the treatment site, a trachea, or any other suitable location. The airway resistance can be measured before performing the therapy, during the therapy, and/or after the therapy. In some embodiments, airway resistance is measured at a location within the bronchial tree by, for example, using a vented treatment system that allows for respiration from areas that are more distal to the treatment site.



FIGS. 10A-14B illustrate treatment assemblies that can be generally similar to the treatment assembly 198A discussed in connection with FIGS. 5A-9, except as detailed below. FIG. 10A illustrates a treatment system 198B that includes an elongate assembly 200B. The elongate assembly 200B includes an elongate flexible shaft 610 and a plurality of radially deployable ablation assemblies 620. The ablation assemblies 620 can be collapsed inwardly when the shaft 610 is pulled proximally through the delivery assembly 400 (shown in cross-section). When the plurality of ablation assemblies 620 is pushed out of the delivery assembly 400, the ablation assemblies 620 self-expand by biasing radially outward.


Each electrode assembly 620 includes a sharp tip for piercing the airway wall 103 and includes extendable and retractable sharp ablation elements 625. The ablation assemblies 620 are preferably insulated except for the exposed ablation elements 625. The ablation assemblies 620 can be connected to a RF electrical generator by electrical cables that travel within the shaft 610. While the treatment system 198B is being delivered, the ablation assemblies 620 may be positioned within the shaft 610. The ablation assemblies 620 can be moved out of the shaft 610 and brought into contact with the wall 103. The ablation assemblies 620 can be simultaneously moved through the airway wall 103 until desired lengths of the ablation elements 625 are within the airway wall 103.


As shown in FIG. 10B, the plurality of ablation elements 625, illustrated as electrodes, may be circumferentially spaced from each other along the airway wall 103. The ablation elements 625 can be evenly or unevenly spaced from one another.


All of the ablation assemblies 620 can be connected to one lead of the RF generator and the other lead of the RF generator may be connected to an external electrode 623 (shown in phantom), so that current flows between the ablation assemblies 620 and/or between one or more of the ablation assemblies 620 and the external electrode 623. In some embodiments, a selected number of the ablation assemblies 620 are connect to one lead of the RF generator while the other ablation assemblies 620 are connected to the other lead of the RF generator such that current flows between the ablation assemblies 620.


When the RF generator is activated, current flows through the tissue and generates a desired amount of heat. The heat can be concentrated on the outside of the airway wall 103 to damage peripheral tissue. For example, the temperature of the connective tissue can be higher than the temperatures of the stroma, smooth muscles, and/or the epithelium. By way of example, the temperature of the connective tissue can be sufficiently high to cause damage to the nerve tissues in the nerve trunks 45 while other non-targeted tissues of the airway 100 are kept at a lower temperature to prevent or limit damage to the non-targeted tissues. In other embodiments, heat can be concentrated in one or more of the internal layers (e.g., the stroma) of the airway wall 103 or in the inner periphery (e.g., the epithelium) of the airway wall 103.


As shown in FIG. 10B, one or more vessels of the bronchial artery branches 130 may be relatively close to the ablation elements 625. The heat generated by the ablation elements 625 can be controlled such that blood flowing through the bronchial artery branches 130 protects the those branches 130 from thermal injury while nerve tissue is damaged, even if the nerve tissue is next to the artery branches 130. Upon completion of the treatment process, the ablation assemblies 620 are retracted back into the shaft 610 for removal from the airway 100 or for placement at other treatment locations.



FIGS. 11A and 11B illustrate a treatment system 198C that includes an elongate assembly 200C. The elongate assembly 200C includes an elongate flexible shaft 710 and a plurality of extendable and retractable ablation assemblies 720. When the ablation assemblies 720 are deployed, the ablation assemblies 720 bias radially outward and into contact with a tubular section 719 of the airway 100. Ablation elements 725 of the ablation assemblies 720 can be axially and circumferentially distributed throughout a treatment length L T of the section 719.


The ablation assemblies 720 can include protective sections 721 and the exposed ablation elements 725. The protective sections 721 can extend from the shaft 710 to an inner surface of the airway 100. The ablation elements 725 protrude from corresponding protective sections 721. The ablation assemblies 720 can be connected to a radiofrequency (RF) electrical generator by electrical cables that travel within the shaft 710.


The treatment system 198C is delivered to the desired treatment location within the airway 100. While the treatment system 198C is being delivered, the ablation assemblies 720 are retracted within the shaft 710 so as not to damage the airway 100 or the delivery device 400, or both. Once in position, the sharp ablation elements 725 are brought into contact with the airway wall 103. The elements 725 are then advanced through the airway wall 103 until the ablation elements 625 are embedded within the airway wall 103. Substantially all of the ablation assemblies 720 can be connected to one lead of the RF generator and the other lead of the RF generator may be connected to an external electrode, so that current flows between the ablation assemblies 720 and the external electrode. Alternatively, selected individual ablation assemblies 720 can be connected to one lead of the RF generator while other ablation assemblies 720 can be connected to the other lead of the RF generator, so that current can flow between the ablation assemblies 720.



FIG. 12A illustrates the elongate assembly 200A of FIGS. 5A and 5B passing through a delivery assembly 400A, illustrated as a bronchoscope, that has an imaging device 850. The imaging device 850 is positioned at a tip 413A of the delivery assembly 400A. In some embodiments, the imaging device 850 includes an array of ultrasound transducers with a working frequency between about 1 MHz to about 250 MHz and Doppler capabilities. Wavefronts 860 outputted by the imaging device 850 are illustrated in FIGS. 12A and 12B.


When used, the delivery device 400A is advanced to the desired treatment region of the airway 100. The imaging device 850 is then used to image at least a portion of the airway wall 103, thereby locating the anatomical structures, such as the nerve trunks 45 and/or bronchial artery branches 130, which are located in the connective tissue 124 outside of the airway wall. For example, the imaging device 850 can be used to circumferentially image the airway 100. In some modes of operation, target tissues (e.g., the nerve trunks 45, mucous glands 116, and the like) are located such that only the portion of the wall 103 immediately adjacent to the target tissues and the connective tissue 124 are treated. In other modes of operation, the non-targeted tissues (e.g., bronchial artery branches 130) are localized and all other regions of the wall 103 and the connective tissue 124 are treated.


When treating the nerve trunks 45, the tip 413 of the delivery device 400A can be guided and positioned near a selected nerve trunk 45. Once in position, the sharp ablation element 525 is brought into contact with the wall 103. The ablation element 525 is then advanced through the wall 103 until the ablation elements 525 are embedded. The illustrated exposed ablation elements 525 are adjacent to the nerve trunk in the connective tissue 124. The RF generator is activated and current flows between the ablation assembly 520 and the tissue of the wall 103. The current causes the tissues of the nerve trunks 45 to increase in temperature until the heated tissue is damaged. By positioning the ablation assembly 520 near the nerve trunk 45, the nerve trunk 45 is selectively damaged while injury to non-targeted tissues, such as the bronchial arteries 130, is minimized. This procedure may be repeated to damage additional nerve branches 45 located around the circumference of the wall 103 in or adjacent to the connective tissue 124.


Various types of devices can be used to remotely treat target tissues. FIGS. 13A and 13B illustrate a treatment system 200E in the form of a bronchoscope having high energy ultrasound transducer array 950 located at its tip 413E. The energy ultrasound transducer array 950 can be positioned to image the desired treatment site. The ultrasound transducer array 950 is then used to circumferentially image the wall 103 to localize the nerve trunks 45 and/or the bronchial arteries 130. In some modes of operation, the nerve trunks 45 are localized and only the area of the wall 103 of the airway 100 and the connective tissue 124 around the nerve trunks 45 is treated using ultrasound energy. In other modes of operation, the bronchial arteries 130 are localized and all other areas of the wall 103 of the airway 100 and the connective tissue 124 are treated using ultrasound energy.


The ultrasound transducer array 950 can emit highly focused sound waves 960 into the connective tissue 124 to damage the nerve trunks 45 and minimize or prevent injury to the bronchial arteries 130. The tip 413E of the bronchoscope 400B can be positioned such that the outputted energy is directed away from or does not reach the bronchial artery branches 130. This procedure of remotely treating tissue may be repeated to damage additional nerve trunks 45 located around the circumference of the wall 103 in the connective tissue 124, as desired. The bronchoscope 400B can be used to damage all or at least some of the nerve trunks 45 at a particular section of the airway 100.



FIGS. 14A and 14B illustrate a treatment system 198F that includes an elongate assembly 200F. The elongate assembly 200F includes an elongated shaft 1110 and an extendable and retractable puncturing tip 1120. The puncturing tip 1120 is adapted to pass through tissue and includes at least one port 1130. The illustrated puncturing tip 1120 includes a single side port 1130 for outputting flowable substances. A lumen can extend proximally from the port 1130 through the shaft 1110. A flowable substance can flow distally through the lumen and out of the port 1130. Example flowable substances include, without limitation, one or more heated liquids, cooled liquids, heated gases, cooled gases, chemical solutions, drugs, and the like, as well as other substances that that can cause damage to tissue. For example, saline (e.g., heated or cooled saline) or cryogenic fluids can be delivered through the port 1130.


The elongate assembly 200F of FIGS. 14A and 14B can be delivered to the desired treatment location using the delivery assembly 400. While the elongate assembly 200F is being delivered, the puncturing tip 1120 is retracted within the shaft 1110 so as to not damage the airway 100 and/or the delivery assembly 400. Once in position, the sharp hollow tip 1020 is brought into contact with the airway wall 103. The tip 1020 is then advanced through the airway wall 103 until the side port 1130 is within or adjacent to the connective tissue 124. The flowable substance is delivered through the tip 1020 and out of the port 1130 and flows against the tissue of the airway 100. In some embodiments, the expelled substance cuts, crushes, or otherwise damages the tissue. In some embodiments, the flowable substance includes at least one long acting nerve blocking drug that partially or completely blocks nerve conduction in the nerve trunks 45.



FIGS. 15A-19B illustrate treatment systems that can be generally similar to the treatment system 198A discussed in connection with FIGS. 5A-9, except as detailed below. FIG. 15A is a longitudinal side view of a treatment system 2000 in the form of a balloon expandable, fluid heated/cooled electrode catheter. FIG. 15B is a cross-sectional view of an expandable assembly 2001 of the system 2000. The illustrated expandable assembly 2001 is in an expanded state. Lines of flow 2100 represent the movement of fluid through the expanded assembly 2001. The expanded assembly 2001 includes an expandable member 2002 and an ablation electrode 2004. The ablation electrode 2004 can be collapsed inwardly when the treatment system 2000 is moved (e.g., pulled proximally or pushed distally) through a delivery assembly. When the treatment system 2000 is pushed out of the delivery assembly, the ablation electrode 2004 can be expanded outward by inflating the expandable member 2002.


The treatment system 2000 generally includes the expandable member 2002 (illustrated in the form of a distensible, thermally conductive balloon), an ablation electrode 2004, a conducting element 2031, an inflow line 2011, and an outflow line 2021. The ablation electrode 2004 is expandable and connected to a distal end 2033 of the conducting element 2031. A proximal end 2035 of the conducting element 2031 is connected to an electrical connector 2038. Energy is transferred from the electrical connector 2038 to the expandable electrode 2004 through the conducting element 2031. The conducting element 2031 can include, without limitation, one or more wires, conduits, or the like.


A proximal end 2009 of the inflow line 2011 has an inline valve 2012. A proximal end 2015 of the outflow line 2021 also has an outflow valve 2022. The inline valve 2011 can be connected to a fluid supply, such as a coolant source, by a connector 2018. Fluid flows through the inflow line 2011 into the balloon 2002, and exits the balloon 2002 via the outflow line 2021. The fluid can include, without limitation, temperature controlled fluid, such as water, saline, or other fluid suitable for use in a patient.


A lumen 2017 of the inflow line 2011 and a lumen 2019 of the outflow line 2021 provide fluid communication with the balloon 2002. Fluid can flow through the lumen 2017 into the balloon 2002. The fluid circulates within the balloon 2002 and flows out of the balloon 2002 via the lumen 2019. The fluid can pass through the connector 2028 to a fluid return system, which may cool the fluid and re-circulate the fluid to the fluid supply.


Different types of materials can be used to form different components of the system 2000. In some embodiments, the balloon 2002 is made, in whole or in part, of a distensible, chemically inert, non-toxic, electrically insulating, and thermally conductive material. For example, the balloon 2002 may be made of polymers, plastics, silicon, rubber, polyethylene, combinations thereof, or the like. In some embodiments, the inflow line 2011 and the outflow line 2021 are made, in whole or in part, of any suitable flexible, chemically inert, non-toxic material for withstanding operating pressures without significant expansion. The inflow line 2011 and the outflow line 2021 can have a suitable length to be passed into the lung and bronchial tree. For example, the lines 2011, 2021 can have a length of approximately 80 cm. Other lengths are also possible.



FIG. 15B shows the inflow line 2011 and the outflow line 2021 arranged to minimize, reduce, or substantially prevent cross flow, siphoning, or back-flow between the two lines 2011, 2021. The illustrated inflow line 2011 carries the balloon 2004. The inflow line 2011 can enter a proximal end 2003 of the balloon 2002, extend through the length of the balloon 2002, and reach a distal end 2007 of the balloon 2002. The illustrated inflow line 2011 is connected to the distal end 2007 to keep the balloon 2002 in an elongated configuration.


A tip 2005 protrudes from the balloon 2002. The illustrated tip 2005 is an atruamatic tip positioned opposite the end of the inflow line 2011. Near the tip 2005, the inflow line 2011 has an aperture 2013 that releases fluid into the balloon 2002. The fluid flows within the balloon 2002 and is collected into the outflow line 2021. The illustrated outflow line 2021 has an opening 2023 for receiving the fluid. The opening 2023 is generally at the distal end of a portion of the outflow line 2021 in the balloon 2002 and collects fluid from any direction. Because the openings 2013, 2023 are at opposite ends of the balloon 2002, fluid can flow in generally one direction through the balloon 2002. This ensures that fluid at a desired temperature fills the balloon 2002.


The shapes of the electrode 2004 and the balloon 2002 can be selected such that the electrode 2004 and balloon 2004 expand/deflate together. When the balloon 2002 is inflated, the electrode 2004 is expanded with the balloon 2002. When the balloon 2002 is deflated, the electrode 2004 contracts with the balloon 2002. The electrode 2004 may be coupled to an exterior surface or interior surface of the balloon 2002 and may be made of different types of conductive materials, including, without limitation, any chemically inert, non-toxic, structurally resilient, electrically conducting material. In some embodiments, the electrode 2004 is coupled to the exterior of the balloon 2002 and made, in whole or in part, of a highly conductive, deformable material. Energy outputted by the electrode 2004 is outputted directly into the airway wall 100 without passing through the wall of the balloon 2002. The electrode 2004 can be a thin wire or band made mostly or entirely of copper. The wire can be coated or uncoated depending on the application. In other embodiments, the electrode 2004 is embedded in the wall of the balloon 2002. Any number of electrodes 2004 can be positioned along the balloon 2002. For example, an array of spaced apart electrodes can be positioned along the balloon to treat a length of an airway.


The electrical conducting element 2031 travels along side and generally parallel to one or both of the lines 2011, 2021. The electrode 2004 can be connected through the electrical conducting element 2031 and the electrical connector 2038 to an energy source, such as an RF electrical generator. If the energy source is an RF electrical generator, one lead can be coupled to the connector 2038. The other lead of the RF generator may be connected to an external electrode, such as the external electrode 623 shown in phantom in FIG. 10B, so that current flows between the expandable electrode 2004 and the external electrode.


The balloon expandable, fluid cooled electrode catheter 2000 can be delivered into the airways of the lung with the balloon 2002 deflated and the electrode 2004 contracted. The electrode 2004 can be kept in a collapsed or closed configuration to allow the catheter 2000 to pass easily through the lungs. The catheter 2000 is moved through the airways until the electrode 2004 is at the desired treatment location. Once in position, fluid (e.g., coolant) is allowed to flow through the inflow line 2011 and into the balloon 2002. The fluid inflates the balloon 2002 which in turn expands the electrode 2004. Outflow of the fluid through the outflow line 2021 can be regulated such that the balloon 2002 continues to inflate until the electrode 2004 is brought into contact with or proximate to the airway wall.


Treatment can begin with activation of the RF generator. When the RF generator is activated, RF energy is transmitted through the electrical connector 2038, through the electrical connection element 2031, through the expanded electrode 2004, and into the tissues of the airways. The RF energy heats tissue (e.g., superficial and deep tissue) of the airway wall and the fluid 2100 (e.g., a coolant) flowing through the balloon 2002 cools tissue (e.g., superficial tissues) of the airway wall. The net effect of this superficial and deep heating by RF energy and superficial cooling by the circulating coolant 2100 through the balloon 2002 is the concentration of heat in the outer layers of the airway wall 100. The coolant can be a chilled liquid. The temperature of the connective tissue can be higher than the temperatures of the epithelium, stroma, and/or smooth muscle. By example, the temperature of the connective tissue can be sufficiently high to cause damage to the nerve trunk tissue while other non-targeted tissues of the airway are kept at a lower temperature to prevent or limit damage to the non-targeted tissues. In other embodiments, heat can be concentrated in one or more of the internal layers (e.g., the stroma) of the airway wall or in the inner lining (e.g., the epithelium) of the airway wall.



FIGS. 16 and 17 show the effect produced by superficial and deep heating by RF energy and superficial cooling by circulating coolant 2100 in the balloon 2002. FIG. 16 shows a cross-sectional temperature profile taken along a dashed line 2200 of FIG. 15B that is perpendicular to the long axis of the balloon 2002. FIGS. 16 and 17 are discussed in detail below.



FIG. 16 is a graph with a horizontal axis corresponding to the depth into the tissue of the airway wall from the point of contact or area of contact with the electrode 2004 in millimeters with a vertical axis corresponding to the temperature of the tissue in degrees Centigrade. The point “0” on the graph corresponds to the point or area of contact between the ablation electrode 2004 and the tissue of the airway wall. Three curves A, B, and C are shown in the graph and correspond to three different power levels of radiofrequency energy being delivered into the tissue. The temperature on the graph is up to about 100° C. The temperature of about 100° C., or slightly less, has been shown because it is considered to be an upper limit for tissue temperature during RF ablation. At approximately 90° C., tissue fluids begin to boil and tissue coagulates and chars on the ablation electrode 2004, thereby greatly increasing its impedance and compromising its ability to transfer RF energy into the tissue of the airway wall. Thus, it may be desirable to have tissue temperatures remain below about 90° C. At about 50° C., a line 2201 represents the temperature above which tissue cell death occurs and below which tissues suffer no substantial long term effects (or any long term effects).


Curve A shown in FIG. 16 represents what occurs with and without cooling of the ablation electrode 2004 at a relatively low power level, for example, about 10 watts of RF energy. Curve A is divided into three segments A1, A2, and A3. The broken line segment A2 represents a continuation of the exponential curve A3 when no cooling applied. As can be seen by curve A, the temperature of the electrode-tissue interface without cooling reaches 80° C. and decreases exponentially as the distance into the tissue of the airway 100 increases. As shown, the curve A3 crosses the 50° C. tissue cell death boundary represented by the line 2201 at a depth of about 5 millimeters. Thus, without electrode cooling, the depth of cell death that would occur would be approximately 5 millimeters as represented by the distance d1. Further cell death would stop at this power level.


If active cooling is employed, the temperature drops to a much lower level, for example, about 35° C. as represented by the curve A1 at the electrode-tissue interface at 0 millimeters in distance. Since this temperature is below 50° C., cell death will not begin to occur until a distance of d2 at the point where the curve A2 crosses the cell death line at 50° C., for example, a depth of 3 millimeters from the surface. Cell death will occur at depths from 3 millimeters to 5 millimeters as represented by the distance d3. Such a cooled ablation procedure is advantageous because it permits cell death and tissue destruction to occur at a distance (or a range of distances) from the electrode-tissue interface without destroying the epithelium and the tissue immediately underlying the same. In some embodiments, the nerve tissues running along the outside of the airway can be ablated without damaging the epithelium or underlying structures, such as the stroma and smooth muscle cells.


The curve B represents what occurs with and without cooling of the electrode at a higher power level, for example, 20 watts of RF energy. Segment B2 of curve B represents a continuation of the exponential curve of the segment B3 without cooling. As can be seen, the temperature at the electrode-tissue interface approaches 100° C. which may be undesirable because that is a temperature at which boiling of tissue fluid and coagulation and charring of tissue at the tissue-electrode interface will occur, thus making significantly increasing the tissue impedance and compromising the ability to deliver additional RF energy into the airway wall. By providing active cooling, the curve B1 shows that the temperature at the electrode-tissue interface drops to approximately 40° C. and that cell death occurs at depths of two millimeters as represented by d4 to a depth of approximately 8 millimeters where the curve B3 crosses the 50° C. Thus, it can be seen that it is possible to provide a much deeper and larger region of cell death using the higher power level without reaching an undesirable high temperature (e.g., a temperature that would result in coagulation and charring of tissue at the electrode-tissue interface). The systems can be used to achieve cell death below the epithelia surface of the airway so that the surface need not be destroyed, thus facilitating early recovery by the patient from a treatment.


The curve C represents a still higher power level, for example, 40 watts of RF energy. The curve C includes segments C1, C2, and C3. The broken line segment C2 is a continuation of the exponential curve C3. Segment C2 shows that the temperature at the electrode-tissue interface far exceeds 100° C. and would be unsuitable without active cooling. With active cooling, the temperature at the electrode-tissue interface approaches 80° C. and gradually increases and approaches near 95° C. and then drops off exponentially to cross the 50° C. cell death line 2201 at a distance of about 15 millimeters from the electrode-tissue interface at the epithelial surface of the airway represented by the distance d6. Because the starting temperature is above the 50° C. cell death line 2201, tissue cell death will occur from the epithelial surface to a depth of about 15 millimeter to provide large and deep regions of tissue destruction.



FIG. 17 is a longitudinal cross-sectional view of the balloon expandable, fluid cooled electrode catheter 2000. Lines of flow 2100 represent the movement of coolant through the expanded balloon 2002. Isothermal curves show the temperatures that are reached at the electrode 2004 on the outer surface of the balloon 2002 and at different depths into the airway wall 100 from the electrode-tissue interface when power is applied to the electrode 2004 and coolant (e.g., a room temperature saline solution) is delivered to the balloon 2002. By adjusting the rate of power delivery to the electrode 2004, the rate at which saline solution is passed into the balloon 2002, the temperature of the saline solution, and the size of the balloon 2002, the exact contour and temperature of the individual isotherms can be modified. For example, by selecting the proper temperature and flow rate of saline and the rate of power delivery to the electrode, it is possible to achieve temperatures in which isotherm A=60° C., B=55° C., C=50° C., D=45° C., E=40° C., and F=37° C. Further adjustments make it possible to achieve temperatures where isotherm A=50° C., B=47.5° C., C=45° C., D=42.5° C., E=40° C., and F=37° C. Only those areas contained within the 50° C. isotherm will be heated enough to induce cell death. Extrapolating into 3 dimensions the isotherms shown in FIG. 17, a circumferential band 2250 of tissue will potentially be heated above 50° C. sparing the tissue near the epithelial 110 of the airway 100. Different temperatures and isotherms can also be achieved.



FIG. 18 is a transverse cross-sectional view of a portion of the airway 100 and the balloon expandable, fluid cooled electrode catheter 2000 positioned in the airway 100. Because of the undulating shape of the expandable electrode 2004, the electrode appears as a multitude of ovals. The balloon 2002 is inflated to conform to both the expandable electrode 2004 and the epithelial surface of the airway 100. The electrode 2004 can be pressed against the airway 100. When RF energy is transmitted through the expanded electrode 2004 into the tissues of the airway 100 and the balloon 2002 is filled with flowing coolant 2100, the RF energy heats the superficial and deep tissue of the airway wall 100 and the connective tissue 124 while the coolant 2100 cools the superficial tissues of the airway wall 100. The net effect of this superficial and deep heating by RF energy and superficial cooling by the circulating coolant 2100 is the concentration of heat in the outer layers of the airway wall 100, such as the connective tissue 124. A band 2250 of tissue can be selectively heated above 50° C. For example, the temperature of the connective tissue 124 can be higher than the temperatures of the epithelium 110, stroma 112, and/or smooth muscle 114. Furthermore, one or more of the vessels of the bronchial artery branches 130 may be within the band 2250. The heat generated using the electrode 2004 can be controlled such that blood flowing through the bronchial artery branches 130 protects those branches 130 from thermal injury while nerve trunk tissue 45 is damaged, even if the nerve tissue is next to the artery branches.


The electrode catheter 2000 can treat tissue without forming an airway wall perforation at the treatment site to prevent or reduce the frequency of infections. It may also facilitate faster healing for the patient of tissue proximate the region of cell death. The catheter 2000 can produce relatively small regions of cell death. For example, a 2 to 3 millimeter band of tissue in the middle of the airway wall 100 or along the outer surface of the airway wall 100 can be destroyed. By the appropriate application of power and the appropriate removal of heat from the electrode, lesions can be created at any desired depth without damaging the inner surface of the airway.


Upon completion of the treatment process, coolant inflow into the balloon 2002 can be stopped. The balloon 2002 is deflated causing the expandable electrode 2004 to recoil away from the airway wall 100. When the balloon 2002 is completely deflated, the balloon expandable, fluid cooled electrode catheter 2000 may be repositioned for treating other locations in the lung or removed from the airway 100 entirely.



FIGS. 19A and 19B illustrate a treatment system that can be generally similar to the catheter 2000 discussed in connection with FIGS. 15A-18. A balloon expandable, fluid heat-sink electrode catheter 2500 has a single coolant line 2511 with associated inline valve 2512 and connector 2518 that provide for alternately inflow and outflow of heat-sink fluid into and out of a balloon 2502.


The balloon expandable, fluid heat-sink electrode catheter 2500 can be delivered into the airways of the lung with the balloon 2502 deflated and the electrode 2504 contracted. The catheter 2500 can be moved within the airways until the electrode 2504 is in a desired treatment location. Once in position, heat-sink fluid is passed through the line 2511 and into the balloon 2502, thereby inflating the balloon 2502 and expanding the electrode 2504. The fluid is passed into the balloon 2502 until the electrode 2504 is brought into contact with the airway wall 100.


The heat-sink fluid passed into the balloon 2502 of electrode catheter 2500 is generally static and acts as a heat-sink to stabilize the temperature of the electrode 2504 and the superficial tissues of the airway wall 100. The static heat sink provided by the fluid in the balloon 2502 can produce temperature profiles and isotherms similar to those shown in FIGS. 16 and 17. For example, the electrode catheter 2500 can cause a band of tissue cell death in the connective tissue of the airway while the epithelium, stroma, and/or smooth muscle are relatively undamaged. Thus, the nerve tissue can be damaged while other non-targeted tissues of the airway are protected.



FIGS. 20A-21 illustrate a treatment system that can be generally similar to the balloon expandable, fluid cooled electrode catheter 2000 shown in FIGS. 15A-18. FIG. 20A is a longitudinal side view of a radial ultrasound guided fluid cooled electrode catheter 3000. Figure is a partial longitudinal sectional view of the radial ultrasound guided fluid cooled electrode catheter 3000 taken through a balloon 3002 with lines of flow 3100 representing the movement of coolant through the expanded balloon 3002 and wavefronts 3047 of ultrasound imaging for guiding the ablation device.


The electrode catheter 3000 generally includes a distensible, thermally conductive balloon 3002, an electrode 3004, a conducting element 3031, an inflow line 3011, an outflow line 3021, and an ultrasound probe 3045. The expandable electrode 3004 is connected to a distal end of the conducting element 3031. A proximal end of the conducting element 3031 is connected to an electrical connector 3038 for transmission of energy (e.g., RF energy) to the electrode 3004. The proximal end of the coolant inflow line 3011 has an inline valve 3012. The proximal end of the coolant outflow line 3021 also has an outline valve 3022. The inflow valve 3012 can be connected to a coolant source by the connector 3018. The lumen of the inflow line 3011 and the lumen of the outflow line 3021 provide for fluid to flow from the fluid source to the inside of the balloon 3002 and for fluid flow through another connector 3028 to the coolant return, where the coolant may be re-cooled and re-circulated to the fluid supply.


The inflow line 3011 and outflow line 3021 have a suitable length to be passed into the lung and bronchial tree. For example, the catheter 3000 can have a length of approximately 80 cm. FIG. 20B shows a catheter 3000 is adapted to reduce, limit, or substantially prevent cross-flow, siphoning, or back-flow between the two lines within the balloon 3002. The inflow line 3011 enters the proximal end of the balloon 3002, extends through the length of the balloon 3002, reaches the distal end of the balloon 3002, and connects to the balloon 3002. The inflow line 3011 has an aperture 3013 near a tip 3005 that releases coolant into the balloon 3002. The fluid flows within the balloon 3002 and then is collected into the outflow line 3021 via an opening 3023. The opening 3023 is generally at the distal end of the outflow line 3021 and collects coolant from any direction.


The electrode 3004 is located on a surface of the balloon 3002 such that, when the balloon 3002 is inflated using fluid, the electrode 3004 is brought into contact with the airway wall 100. The electrical conducting element 3031 travels along side and parallel to the inflow line 3011, the outflow line 3021, and the ultrasound sheath 3041. The electrode 3004 can be connected through the electrical conducting element 3031 and the electrical connector 3038 to an RF generator. The other lead of the RF generator may be connected to an external electrode so that current flows between the expandable electrode 3004 and the external electrode.


The ultrasound probe 3045 may be an integral part of the ultrasound guided fluid cooled electrode catheter 3000 or it may be a separate, standard radial ultrasound probe, such as an Olympus UM-2R-3 or UM-3R-3 probe driven by a standard Olympus processor EU-M60, with the radial ultrasound guided fluid cooled electrode catheter 3000 configured to slip over the standard radial ultrasound probe.


The ultrasound system can include a broadband ultrasound transducer operating with a center frequency between about 7 MHz and about 50 MHz. If the ultrasound probe 3045 is an integral part of the electrode catheter 3000, the ultrasound probe 3045 may be contained within an acoustically matched ultrasound cover 3041 and connected to an ultrasound drive unit and processor by the ultrasound connector 3048. In operation, the ultrasound probe 3045 is rotated about its longitudinal axis within the ultrasound cover 3041 by the ultrasound drive unit and processor through the ultrasound connector 3048 allowing images (e.g., 360° radial images) to be taken. These images can be taken in a direction perpendicular to the long axis of the ultrasound probe 3045. The fluid in the balloon 3002 can acoustically couple the ultrasound probe 3045 to the airway wall.


The electrode catheter 3000 can be delivered into the airways of the lung with the balloon 3002 in a deflated state. The catheter 3000 is positioned within the airways near or at the desired treatment location. Once positioned, fluid flows through the inflow line 3011 and into the balloon 3002. The balloon 3002 inflates to bring the electrode 3004 into contact with the epithelial surface of the airway. Outflow of fluid through the outflow line 3021 can be regulated such that the balloon 3002 continues to inflate until the electrode 3004 is brought into contact with the airway wall 100.


The ultrasound drive unit and processor can be activated. The ultrasound probe 3045 can capture images. For example, the probe 3045, within the ultrasound cover 3041, can be rotated about its longitudinal axis to produce 360° radial images of the airway and vessels airway wall structures. The electrical connection wire 3031 can serve as a guide on the ultrasound images to the location of the electrode 3004. A section of the wire 3031 extending along (e.g., over the surface) of the balloon 3002 can be visible in the ultrasound images. The section of wire 3031 can therefore indicate the location of the electrode 3004. In some embodiments, the nerve trunks and bronchial blood can be identified in the ultrasound images and the ultrasound guided fluid cooled electrode catheter 3000 can be rotated until the electrode 3004 is brought into proximity with the first nerve trunk 45.


When the RF generator is activated, RF energy is transmitted by the generator through the electrical connector 3038, through the electrical connection wire 3031, through the expanded electrode 3004, and into the tissues of the airways. The RF energy heats the superficial and deep tissue of the airway wall 100 and the connective tissue 124 in the area immediately overlying the electrode 3004 and the coolant flowing 3100 through the balloon 3002 cools the superficial tissues of the airway wall 100. The net effect of this superficial and deep heating by RF energy and superficial cooling by the circulating coolant 3100 through the balloon 3002 is the concentration of heat in the outer layers of the airway wall 100 immediately overlying the electrode 3004. For example, the temperature of the connective tissue 124 in the area of a single nerve trunk 45 can be higher than the temperatures of the epithelium 110, stroma 112, and/or smooth muscle 114. By example, the temperature of the connective tissue can be sufficiently high to cause damage to the nerve tissue 45 while other non-targeted tissues of the airway 100 are kept at a lower temperature to prevent or limit damage to the non-targeted tissues. The treatment can be repeated in other areas as needed.



FIG. 21 is a transverse cross-sectional view of a portion of the airway 100 and the ultrasound guided fluid cooled electrode catheter 3000 positioned in the airway 100. The cross-section is taken through the electrode 3004 itself.


The balloon 3002 is conformable to both the electrode 3004 and the epithelial surface of the airway 100. When RF energy is transmitted through the electrode 3004 into the tissues of the airways and the balloon 3002 is filled with flowing coolant 3100, the RF energy heats the superficial and deep tissue of the airway wall 100 immediately overlying the electrode 3004. The coolant 3100 flows to control the temperature of the superficial tissues of the airway wall 100. The net effect is the concentration of heat in the outer layers of the airway wall 100 immediately over the electrode 3004 producing a single target volume 3250 of tissue heated above a treatment temperature (e.g., about 50° C.). For example, the temperature of the connective tissue 124 in the region of a single nerve trunk 45 in the region immediately over the electrode 3004 can be higher than the temperatures of the epithelium 110, stroma 112, and/or smooth muscle 114.


The vessels of the bronchial artery branches 130 may be within or near the volume of heating produced during application of RF energy. The heat generated by the electrode 3004 can be controlled such that blood flowing through the bronchial artery branches 130 protects those branches 130 from thermal injury while nerve tissue 45 is damaged, even if the nerve tissue is next to the artery branches.


The embodiments disclosed herein can be used in the respiratory system, digestive system, nervous system, vascular system, or other systems. For example, the elongate assemblies disclosed herein can be delivered through blood vessels to treat the vascular system. The treatment systems and its components disclosed herein can be used as an adjunct during another medical procedure, such as minimally invasive procedures, open procedures, semi-open procedures, or other surgical procedures (e.g., lung volume reduction surgery) that preferably provide access to a desired target site. Various surgical procedures on the chest may provide access to lung tissue. Access techniques and procedures used to provide access to a target region can be performed by a surgeon and/or a robotic system. Those skilled in the art recognize that there are many different ways that a target region can be accessed.


The elongated assemblies disclosed herein can be used with guidewires, delivery sheaths, optical instruments, introducers, trocars, biopsy needles, or other suitable medical equipment. If the target treatment site is at a distant location in the patient (e.g., a treatment site near the lung root 24 of FIG. 1), a wide range of instruments and techniques can be used to access the site. The flexible elongated assemblies can be easily positioned within the patient using, for example, steerable delivery devices, such as endoscopes and bronchoscopes, as discussed above.


Semi-rigid or rigid elongated assemblies can be delivered using trocars, access ports, rigid delivery sheaths using semi-open procedures, open procedures, or other delivery tools/procedures that provide a somewhat straight delivery path. Advantageously, the semi-rigid or rigid elongated assemblies can be sufficiently rigid to access and treat remote tissue, such as the vagus nerve, nerve branches, nerve fibers, and/or nerve trunks along the airways, without delivering the elongated assemblies through the airways. The embodiments and techniques disclosed herein can be used with other procedures, such as bronchial thermoplasty.


The various embodiments described above can be combined to provide further embodiments. These and other changes can be made to the embodiments in light of the above-detailed description. The embodiments, features, systems, devices, materials, methods and techniques described herein may, in some embodiments, be similar to any one or more of the embodiments, features, systems, devices, materials, methods and techniques described in of U.S. Provisional Patent Application No. 61/052,082 filed May 9, 2008; U.S. Provisional Patent Application No. 61/106,490 filed Oct. 17, 2008; and U.S. Provisional Patent Application No. 61/155,449 filed Feb. 25, 2009. In addition, the embodiments, features, systems, devices, materials, methods and techniques described herein may, in certain embodiments, be applied to or used in connection with any one or more of the embodiments, features, systems, devices, materials, methods and techniques disclosed in the above-mentioned of U.S. Provisional Patent Application No. 61/052,082 filed May 9, 2008; U.S. Provisional Patent Application No. 61/106,490 filed Oct. 17, 2008; and U.S. Provisional Patent Application No. 61/155,449 filed Feb. 25, 2009. Each of these applications is hereby incorporated by reference in its entirety. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.

Claims
  • 1. A method of treating at least partial obstruction of an airway caused by excessive intraluminal mucus, mucous glands hypertrophy, or both, the method comprising: damaging nerve tissue via ablation at a first location along the airway so as to attenuate transmission of signals to and/or from mucous producing cells at a second location along the airway so as to reduce a production of mucous from the mucous producing cells.
  • 2. The method of claim 1, wherein damaging nerve tissue comprises damaging efferent nerve tissue to inhibit signals from being transmitted from the brain to airway to mucous producing cells.
  • 3. The method of claim 1, wherein damaging nerve tissue disrupts a baseline level of mucous secretion.
  • 4. The method of claim 1, wherein damaging nerve tissue attenuates transmission of signals traveling along vagus nerves that cause mucus production.
  • 5. The method of claim 1, wherein attenuation of the transmission of signals comprises hindering, limiting, blocking, and/or interrupting transmission of signals.
  • 6. The method of claim 1, wherein attenuation of the transmission of signals comprises decreasing signal amplitude, weakening transmission of signals, or both.
  • 7. The method of claim 1, wherein the method decreases a sufficient amount of mucus production to cause substantial decrease in coughing and/or airflow resistance.
  • 8. The method of claim 1, wherein the method further comprises, after damaging nerve tissue: providing a questionnaire or test to assess a subject's response to treatment by assessing a subject's mucous secretion and comparing the assessment to an assessment of the subject's mucous secretion before damaging the nerve tissue.
  • 9. The method of claim 1, further comprising: determining whether a patient is a candidate for damaging nerve tissue by measuring mucous secretion.
  • 10. The method of claim 1, wherein damaging nerve tissue comprises: outputting energy from an activatable element of an intraluminal device positioned in the airway to heat and ablate the nerve tissue along an airway wall of the airway at the first location; andcooling a portion of the intraluminal device to cool an inner portion of the airway wall while outputting the energy to inhibit damage to the inner portion of the airway wall while the nerve tissue is ablated.
  • 11. The method of claim 1, wherein damaging nerve tissue comprises: delivering energy from an ablation element of an intraluminal device positioned in the airway lumen to destroy the nerve tissue along a wall of the airway lumen while avoiding injury to airway tissue distal the damaged nerve tissue.
  • 12. The method of claim 1, wherein the nerve tissue is positioned between the trachea and a lung of the subject.
  • 13. The method of claim 1, wherein damaging nerve tissue includes ablating nerve tissue of a nerve trunk along a right main bronchus, a left main bronchus, or both.
  • 14. The method of claim 1, wherein damaging nerve tissue comprises: introducing an intraluminal device into the airway lumen via a trachea of a subject;positioning the intraluminal device proximate the nerve tissue to be damaged; anddelivering energy to the nerve tissue to damage the nerve tissue, wherein the intraluminal device is positioned proximate the nerve tissue such that only the portion of a wall of the airway lumen immediately adjacent to the nerve tissue is treated.
  • 15. The method of claim 1, wherein the mucous producing cells define a mucous gland in the stroma of the airway wall at the second location.
  • 16. The method of claim 1, wherein the mucous producing cells are located in an epithelium of the airway wall at the second location.
  • 17. A method of treating at least partial obstruction of an airway lumen caused by excessive intraluminal mucus, mucous glands hypertrophy, or both, the method comprising: damaging nerve tissue via ablation at a first location along an airway wall of the airway lumen so as to attenuate transmission of signals to and/or from mucous producing cells so as to reduce a production of mucous from the mucous producing cells.
  • 18. The method of claim 17, wherein the nerve tissue is positioned between the trachea and a lung of the subject.
  • 19. The method of claim 17, wherein damaging nerve tissue includes ablating nerve tissue of a nerve trunk along a right main bronchus, a left main bronchus, or both.
  • 20. The method of claim 17, wherein the mucous producing cells define a mucous gland in the airway wall.
  • 21. The method of claim 17, wherein the mucous producing cells are located in an epithelium of the airway wall.
  • 22. The method of claim 17, wherein damaging nerve tissue comprises: introducing an intraluminal device into the airway lumen via a trachea of a subject;positioning the intraluminal device proximate the nerve tissue to be damaged; anddelivering energy to the nerve tissue to damage the nerve tissue, wherein the intraluminal device is positioned proximate the nerve tissue such that only the nerve tissue and a portion of the airway wall of the airway lumen immediately adjacent to the nerve tissue is treated.
  • 23. A method of determining treatment efficacy, the method comprising: determining, in a subject, a baseline level of mucous secretion;providing an airway treatment to the subject by damaging nerve tissue via ablation at a first location along the airway so as to attenuate transmission of signals to and/or from mucous producing cells at a second location along the airway so as to reduce a production of mucous from the mucous producing cells; andafter damaging nerve tissue, assessing, in the subject, a level of mucous secretion to determine the treatment efficacy.
  • 24. The method of claim 23, wherein assessing a level of mucous secretion comprises providing questionnaires and/or tests to the subject to compare the level of mucous secretion to the baseline level to determine the treatment efficacy.
  • 25. The method of claim 23, wherein the level of mucous section is compared to the baseline level by comparing a level of coughing and/or airflow resistance before and after treatment.
  • 26. The method of claim 23, wherein providing an airway treatment to the subject comprises: introducing an intraluminal device into a lumen of the airway via a trachea of the subject;positioning the intraluminal device proximate the nerve tissue to be damaged; anddelivering energy to the nerve tissue to damage the nerve tissue, wherein the intraluminal device is positioned proximate the nerve tissue such that only the nerve tissue and a portion of a wall of the airway lumen immediately adjacent to the nerve tissue is treated.
CROSS-REFERENCES TO RELATED APPLICATIONS

This application is a is a continuation of U.S. application Ser. No. 15/427,685 filed Feb. 8, 2017, now U.S. Pat. No. 10,149,714 issued Dec. 11, 2018, which in turn is a continuation of U.S. patent application Ser. No. 13/592,075 filed Aug. 22, 2012, now U.S. Pat. No. 9,668,809 issued Jun. 6, 2017, which is a continuation of U.S. patent application Ser. No. 13/452,664 filed Apr. 20, 2012, now U.S. Pat. No. 8,808,280 issued Aug. 19, 2014, which is a continuation of U.S. patent application Ser. No. 13/245,522 filed Sep. 26, 2011, now U.S. Pat. No. 8,226,638 issued Jul. 24, 2012, which is a continuation of U.S. patent application Ser. No. 12/463,304, filed May 8, 2009, now U.S. Pat. No. 8,088,127 issued Jan. 3, 2012, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 61/052,082 filed May 9, 2008; U.S. Provisional Patent Application No. 61/106,490 filed Oct. 17, 2008; and U.S. Provisional Patent Application No. 61/155,449 filed Feb. 25, 2009. Each of these applications is incorporated herein by reference in its entirety.

US Referenced Citations (1531)
Number Name Date Kind
612724 Hamilton Oct 1898 A
1155169 John Sep 1915 A
1207479 Holger Dec 1916 A
1216183 Swingle Feb 1917 A
1695107 Kahl Dec 1928 A
2072346 Smith Mar 1937 A
2279714 Meyerhof et al. Apr 1942 A
3320957 Sokolik May 1967 A
3568659 Karnegis Mar 1971 A
3667476 Muller Jun 1972 A
3692029 Adair Sep 1972 A
3918449 Pistor Nov 1975 A
3946745 Hsiang-Lai et al. Mar 1976 A
3949743 Shanbrom Apr 1976 A
3995617 Watkins et al. Dec 1976 A
4078864 Howell Mar 1978 A
4095602 Leveen Jun 1978 A
4116589 Rishton Sep 1978 A
4129129 Amrine Dec 1978 A
4154246 LeVeen May 1979 A
4277168 Oku Jul 1981 A
4305402 Katims Dec 1981 A
4351330 Scarberry Sep 1982 A
4461283 Doi Jul 1984 A
4502490 Evans et al. Mar 1985 A
4503855 Maslanka Mar 1985 A
4503863 Katims Mar 1985 A
4512762 Spears Apr 1985 A
4522212 Gelinas et al. Jun 1985 A
4557272 Carr Dec 1985 A
4565200 Cosman Jan 1986 A
4567882 Heller Feb 1986 A
4573481 Bullara Mar 1986 A
4584998 McGrail Apr 1986 A
4612934 Borkan Sep 1986 A
4621642 Chen Nov 1986 A
4621882 Krumme Nov 1986 A
4625712 Wampler Dec 1986 A
4643186 Rosen et al. Feb 1987 A
4646737 Hussein et al. Mar 1987 A
4649924 Taccardi Mar 1987 A
4649935 Charmillot et al. Mar 1987 A
4658836 Turner Apr 1987 A
4674497 Ogasawara Jun 1987 A
4683890 Hewson Aug 1987 A
4704121 Moise Nov 1987 A
4706688 Don Michael et al. Nov 1987 A
4709698 Johnston et al. Dec 1987 A
4739759 Rexroth et al. Apr 1988 A
4754065 Levenson et al. Jun 1988 A
4754752 Ginsburg et al. Jul 1988 A
4765322 Charmillot et al. Aug 1988 A
4765959 Fukasawa Aug 1988 A
4767402 Kost et al. Aug 1988 A
4772112 Zider et al. Sep 1988 A
4773899 Spears Sep 1988 A
4779614 Moise Oct 1988 A
4784135 Blum et al. Nov 1988 A
4790305 Zoltan et al. Dec 1988 A
4799479 Spears Jan 1989 A
4802492 Grunstein Feb 1989 A
4808164 Hess Feb 1989 A
4817586 Wampler Apr 1989 A
4825871 Cansell May 1989 A
4827935 Geddes et al. May 1989 A
4846152 Wampler et al. Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4881542 Schmidt et al. Nov 1989 A
4895557 Moise et al. Jan 1990 A
4902129 Siegmund et al. Feb 1990 A
4904472 Belardinelli et al. Feb 1990 A
4906229 Wampler Mar 1990 A
4907589 Cosman Mar 1990 A
4908012 Moise et al. Mar 1990 A
4920978 Colvin May 1990 A
4944722 Carriker et al. Jul 1990 A
4945910 Budyko et al. Aug 1990 A
4955377 Lennox et al. Sep 1990 A
4967765 Turner et al. Nov 1990 A
4969865 Hwang et al. Nov 1990 A
4976709 Sand Dec 1990 A
4976710 Mackin Dec 1990 A
4985014 Orejola Jan 1991 A
4989604 Fang Feb 1991 A
4991603 Cohen et al. Feb 1991 A
4992474 Skidmore et al. Feb 1991 A
5005559 Blanco et al. Apr 1991 A
5007908 Rydell Apr 1991 A
5009636 Wortley et al. Apr 1991 A
5009936 Yamanaka et al. Apr 1991 A
5010892 Colvin et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5027829 Larsen Jul 1991 A
5030645 Kollonitsch Jul 1991 A
5036848 Hewson Aug 1991 A
5053033 Clarke Oct 1991 A
5054486 Yamada Oct 1991 A
5056519 Vince Oct 1991 A
5056529 de Groot Oct 1991 A
5057107 Parins et al. Oct 1991 A
5074860 Gregory et al. Dec 1991 A
5078716 Doll Jan 1992 A
5084044 Quint Jan 1992 A
5096916 Skupin Mar 1992 A
5100388 Behl et al. Mar 1992 A
5100423 Fearnot Mar 1992 A
5103804 Abele et al. Apr 1992 A
5105826 Smits et al. Apr 1992 A
5106360 Ishiwara et al. Apr 1992 A
5107830 Younes Apr 1992 A
5107835 Thomas Apr 1992 A
5109846 Thomas May 1992 A
5114423 Kasprzyk et al. May 1992 A
5116864 March et al. May 1992 A
5117828 Metzger et al. Jun 1992 A
5123413 Hasegawa et al. Jun 1992 A
5126375 Skidmore et al. Jun 1992 A
5135480 Bannon et al. Aug 1992 A
5135517 McCoy Aug 1992 A
5139029 Fishman et al. Aug 1992 A
5151100 Abele et al. Sep 1992 A
5152286 Sitko et al. Oct 1992 A
5158536 Sekins et al. Oct 1992 A
5165420 Strickland Nov 1992 A
5167223 Koros et al. Dec 1992 A
5170802 Mehra Dec 1992 A
5170803 Hewson et al. Dec 1992 A
5174288 Bardy et al. Dec 1992 A
5188602 Nichols Feb 1993 A
5190540 Lee Mar 1993 A
5191883 Lennox et al. Mar 1993 A
5213576 Abiuso et al. May 1993 A
5215103 Desai Jun 1993 A
5224491 Mehra Jul 1993 A
5225445 Skidmore et al. Jul 1993 A
5231996 Bardy et al. Aug 1993 A
5232444 Just et al. Aug 1993 A
5234456 Silvestrini Aug 1993 A
5239982 Trauthen Aug 1993 A
5254088 Lundquist et al. Oct 1993 A
5255678 Deslauriers et al. Oct 1993 A
5255679 Imran Oct 1993 A
5265604 Vince Nov 1993 A
5269758 Taheri Dec 1993 A
5271383 Wilk Dec 1993 A
5281218 Imran Jan 1994 A
5286254 Shapland et al. Feb 1994 A
5292331 Boneau Mar 1994 A
5293869 Edwards et al. Mar 1994 A
5309910 Edwards et al. May 1994 A
5311866 Kagan et al. May 1994 A
5313943 Houser et al. May 1994 A
5324255 Passafaro et al. Jun 1994 A
5324284 Imran Jun 1994 A
5331947 Shturman Jul 1994 A
5343936 Beatenbough et al. Sep 1994 A
5344398 Hara Sep 1994 A
5345936 Pomeranz et al. Sep 1994 A
5348554 Imran et al. Sep 1994 A
5366443 Eggers et al. Nov 1994 A
5368591 Lennox et al. Nov 1994 A
5370644 Langberg Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5370679 Atlee, III Dec 1994 A
5372603 Acker et al. Dec 1994 A
5374287 Rubin Dec 1994 A
5379765 Kajiwara et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5393207 Maher et al. Feb 1995 A
5394880 Atlee, III Mar 1995 A
5396887 Imran Mar 1995 A
5400778 Jonson et al. Mar 1995 A
5400783 Pomeranz et al. Mar 1995 A
5405362 Kramer et al. Apr 1995 A
5405366 Fox et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
5409710 Leonard Apr 1995 A
5411025 Webster, Jr. May 1995 A
5415166 Imran May 1995 A
5415656 Tihon et al. May 1995 A
5417687 Nardella et al. May 1995 A
5422362 Vincent et al. Jun 1995 A
5423744 Gencheff et al. Jun 1995 A
5423811 Imran et al. Jun 1995 A
5425023 Haraguchi et al. Jun 1995 A
5425703 Feiring Jun 1995 A
5425811 Mashita Jun 1995 A
5431696 Atlee, III Jul 1995 A
5433730 Alt Jul 1995 A
5437665 Munro Aug 1995 A
5443470 Stern et al. Aug 1995 A
5454782 Perkins Oct 1995 A
5454840 Krakovsky et al. Oct 1995 A
5456667 Ham et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5465717 Imran et al. Nov 1995 A
5470352 Rappaport Nov 1995 A
5471982 Edwards et al. Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478309 Sweezer et al. Dec 1995 A
5478578 Arnold et al. Dec 1995 A
5496271 Burton et al. Mar 1996 A
5496304 Chasan Mar 1996 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek Mar 1996 A
5500011 Desai Mar 1996 A
5505728 Ellman et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507791 Sit'ko Apr 1996 A
5509419 Edwards et al. Apr 1996 A
5522862 Testerman et al. Jun 1996 A
5531779 Dahl et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5540730 Terry, Jr. et al. Jul 1996 A
5545161 Imran Aug 1996 A
5545193 Fleischman et al. Aug 1996 A
5547469 Rowland et al. Aug 1996 A
5549559 Eshel Aug 1996 A
5549655 Erickson Aug 1996 A
5549661 Kordis et al. Aug 1996 A
RE35330 Malone et al. Sep 1996 E
5553611 Budd et al. Sep 1996 A
5558073 Pomeranz et al. Sep 1996 A
5562608 Sekins et al. Oct 1996 A
5571074 Buckman, Jr. et al. Nov 1996 A
5571088 Lennox et al. Nov 1996 A
5574059 Regunathan et al. Nov 1996 A
5578072 Barone et al. Nov 1996 A
5582609 Swanson et al. Dec 1996 A
5588432 Crowley Dec 1996 A
5588812 Taylor et al. Dec 1996 A
5595183 Swanson et al. Jan 1997 A
5598848 Swanson et al. Feb 1997 A
5599345 Edwards et al. Feb 1997 A
5601088 Swanson et al. Feb 1997 A
5605157 Panescu et al. Feb 1997 A
5607419 Amplatz et al. Mar 1997 A
5607462 Imran Mar 1997 A
5620438 Amplatz et al. Apr 1997 A
5620463 Drolet Apr 1997 A
5623940 Daikuzono Apr 1997 A
5624392 Saab Apr 1997 A
5624439 Edwards et al. Apr 1997 A
5626618 Ward et al. May 1997 A
5627392 Diorio et al. May 1997 A
5630425 Panescu et al. May 1997 A
5630794 Lax et al. May 1997 A
5630813 Kieturakis May 1997 A
5634471 Fairfax et al. Jun 1997 A
5641326 Adams Jun 1997 A
5647870 Kordis et al. Jul 1997 A
5658278 Imran et al. Aug 1997 A
5658322 Fleming Aug 1997 A
5658549 Akehurst et al. Aug 1997 A
5660175 Dayal Aug 1997 A
5662108 Budd et al. Sep 1997 A
5669930 Igarashi Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5674472 Akehurst et al. Oct 1997 A
5678535 DiMarco Oct 1997 A
5680860 Imran Oct 1997 A
5681280 Rusk et al. Oct 1997 A
5681308 Edwards et al. Oct 1997 A
5687723 Avitall Nov 1997 A
5688267 Panescu et al. Nov 1997 A
5690692 Fleming Nov 1997 A
5693078 Desai et al. Dec 1997 A
5694934 Edelman Dec 1997 A
5695471 Wampler Dec 1997 A
5699799 Xu et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5707218 Maher et al. Jan 1998 A
5707336 Rubin Jan 1998 A
5707352 Sekins et al. Jan 1998 A
5707400 Terry, Jr. et al. Jan 1998 A
5722401 Pietroski et al. Mar 1998 A
5722403 Mcgee et al. Mar 1998 A
5722416 Swanson et al. Mar 1998 A
5725525 Kordis Mar 1998 A
5727569 Benetti et al. Mar 1998 A
5728094 Edwards Mar 1998 A
5730128 Pomeranz et al. Mar 1998 A
5730704 Avitall Mar 1998 A
5730726 Klingenstein Mar 1998 A
5730741 Horzewski et al. Mar 1998 A
5733316 Tierney et al. Mar 1998 A
5733319 Neilson et al. Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5740808 Panescu et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5746224 Edwards May 1998 A
5752518 McGee et al. May 1998 A
5755714 Murphy-Chutorian May 1998 A
5755753 Knowlton May 1998 A
5759158 Swanson Jun 1998 A
5765568 Sweezer, Jr. et al. Jun 1998 A
5766605 Sanders et al. Jun 1998 A
5769846 Edwards et al. Jun 1998 A
5772590 Webster, Jr. Jun 1998 A
5779669 Haissaguerre et al. Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782239 Webster, Jr. Jul 1998 A
5782797 Schweich, Jr. et al. Jul 1998 A
5782827 Gough et al. Jul 1998 A
5782848 Lennox Jul 1998 A
5782899 Imran Jul 1998 A
5792064 Panescu et al. Aug 1998 A
5795303 Swanson et al. Aug 1998 A
5800375 Sweezer et al. Sep 1998 A
5800486 Thome et al. Sep 1998 A
5807306 Shapland et al. Sep 1998 A
5810757 Sweezer, Jr. et al. Sep 1998 A
5810807 Ganz et al. Sep 1998 A
5814078 Zhou et al. Sep 1998 A
5817028 Anderson Oct 1998 A
5817073 Krespi Oct 1998 A
5820554 Davis et al. Oct 1998 A
5820589 Torgerson et al. Oct 1998 A
5823189 Kordis Oct 1998 A
5827277 Edwards Oct 1998 A
5833651 Donovan et al. Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5836905 Lemelson et al. Nov 1998 A
5836947 Fleischman et al. Nov 1998 A
5837001 Mackey Nov 1998 A
5843075 Taylor Dec 1998 A
5843077 Edwards Dec 1998 A
5843088 Barra et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5848972 Triedman et al. Dec 1998 A
5849026 Zhou et al. Dec 1998 A
5855577 Murphy-Chutorian et al. Jan 1999 A
5860974 Abele Jan 1999 A
5863291 Schaer Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5868740 LeVeen et al. Feb 1999 A
5871443 Edwards et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871523 Fleischman et al. Feb 1999 A
5873852 Vigil et al. Feb 1999 A
5873865 Horzewski et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5876399 Chia et al. Mar 1999 A
5881727 Edwards Mar 1999 A
5882346 Pomeranz et al. Mar 1999 A
5891027 Tu et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5891182 Fleming Apr 1999 A
5893847 Kordis Apr 1999 A
5893887 Jayaraman Apr 1999 A
5897554 Chia et al. Apr 1999 A
5899882 Waksman et al. May 1999 A
5902268 Saab May 1999 A
5904651 Swanson et al. May 1999 A
5904711 Flom et al. May 1999 A
5906636 Casscells, III et al. May 1999 A
5908445 Whayne et al. Jun 1999 A
5908446 Imran Jun 1999 A
5908839 Levitt et al. Jun 1999 A
5911218 DiMarco Jun 1999 A
5916235 Guglielmi Jun 1999 A
5919147 Jain Jul 1999 A
5919172 Golba, Jr. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928228 Kordis et al. Jul 1999 A
5931806 Shimada Aug 1999 A
5931835 Mackey Aug 1999 A
5935079 Swanson et al. Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5951494 Wang et al. Sep 1999 A
5951546 Lorentzen Sep 1999 A
5954661 Greenspon et al. Sep 1999 A
5954662 Swanson et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5956501 Brown Sep 1999 A
5957919 Laufer Sep 1999 A
5957961 Maguire et al. Sep 1999 A
5964223 Baran Oct 1999 A
5964753 Edwards Oct 1999 A
5964796 Imran Oct 1999 A
5971983 Lesh Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5976175 Hirano et al. Nov 1999 A
5976709 Kageyama et al. Nov 1999 A
5979456 Magovern Nov 1999 A
5980563 Tu et al. Nov 1999 A
5984917 Fleischman et al. Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
5989545 Foster et al. Nov 1999 A
5991650 Swanson et al. Nov 1999 A
5992419 Sterzer et al. Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5995873 Rhodes Nov 1999 A
5997534 Tu et al. Dec 1999 A
5999855 DiMarco Dec 1999 A
6001054 Regulla et al. Dec 1999 A
6003517 Sheffield et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6006134 Hill et al. Dec 1999 A
6006755 Edwards Dec 1999 A
6008211 Robinson et al. Dec 1999 A
6009877 Edwards Jan 2000 A
6010500 Sherman et al. Jan 2000 A
6012457 Lesh Jan 2000 A
6014579 Pomeranz et al. Jan 2000 A
6016437 Tu et al. Jan 2000 A
6023638 Swanson Feb 2000 A
6024740 Lesh et al. Feb 2000 A
6029091 de la Rama et al. Feb 2000 A
6033397 Laufer et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6039731 Taylor et al. Mar 2000 A
6043273 Duhaylongsod Mar 2000 A
6045549 Smethers et al. Apr 2000 A
6045550 Simpson et al. Apr 2000 A
6050992 Nichols Apr 2000 A
6052607 Edwards et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053909 Shadduck Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056769 Epstein et al. May 2000 A
6060454 Duhaylongsod May 2000 A
6063078 Wittkampf May 2000 A
6063768 First May 2000 A
6071280 Edwards et al. Jun 2000 A
6071281 Burnside et al. Jun 2000 A
6071282 Fleischman Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083249 Familoni Jul 2000 A
6083255 Laufer et al. Jul 2000 A
6087394 Duhaylongsod Jul 2000 A
6090104 Webster, Jr. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6092528 Edwards Jul 2000 A
6097985 Kasevich et al. Aug 2000 A
6101412 Duhaylongsod Aug 2000 A
6102886 Lundquist et al. Aug 2000 A
6106524 Eggers et al. Aug 2000 A
6117101 Diederich et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6125301 Capel Sep 2000 A
6127410 Duhaylongsod Oct 2000 A
6129726 Edwards et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6139527 Laufer et al. Oct 2000 A
6139571 Fuller et al. Oct 2000 A
6139845 Donovan Oct 2000 A
6141589 Duhaylongsod Oct 2000 A
6142993 Whayne et al. Nov 2000 A
6143013 Samson et al. Nov 2000 A
6143277 Ashurst et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152143 Edwards Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152953 Hipskind Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6163716 Edwards et al. Dec 2000 A
6174323 Biggs et al. Jan 2001 B1
6179833 Taylor Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6197013 Reed et al. Mar 2001 B1
6198970 Freed et al. Mar 2001 B1
6200311 Danek et al. Mar 2001 B1
6200332 Del Giglio Mar 2001 B1
6200333 Laufer Mar 2001 B1
6203562 Ohkubo Mar 2001 B1
6210013 Bousfield Apr 2001 B1
6210355 Edwards et al. Apr 2001 B1
6210367 Carr Apr 2001 B1
6212432 Matsuura Apr 2001 B1
6212433 Behl Apr 2001 B1
6214002 Fleischman et al. Apr 2001 B1
6216043 Swanson et al. Apr 2001 B1
6216044 Kordis Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6226543 Gilboa et al. May 2001 B1
6230052 Wolff et al. May 2001 B1
6231595 Dobak, III May 2001 B1
6235024 Tu May 2001 B1
6238392 Long May 2001 B1
6240307 Beatty et al. May 2001 B1
6241727 Tu et al. Jun 2001 B1
6245040 Inderbitzen et al. Jun 2001 B1
6245065 Panescu et al. Jun 2001 B1
6251368 Akehurst et al. Jun 2001 B1
6253762 Britto Jul 2001 B1
6254598 Edwards et al. Jul 2001 B1
6254599 Lesh et al. Jul 2001 B1
6258083 Daniel et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6264653 Falwell Jul 2001 B1
6265379 Donovan Jul 2001 B1
6269813 Fitzgerald et al. Aug 2001 B1
6270476 Santoianni et al. Aug 2001 B1
6273886 Edwards et al. Aug 2001 B1
6273907 Laufer Aug 2001 B1
6283987 Laird et al. Sep 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6287304 Eggers et al. Sep 2001 B1
6296639 Truckai et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6302870 Jacobsen et al. Oct 2001 B1
6303509 Chen et al. Oct 2001 B1
6306423 Donovan et al. Oct 2001 B1
6315173 Di Giovanni et al. Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6317615 Kenknight et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6322584 Ingle et al. Nov 2001 B2
6325798 Edwards et al. Dec 2001 B1
6327503 Familoni Dec 2001 B1
6338727 Noda et al. Jan 2002 B1
6338836 Kuth et al. Jan 2002 B1
6341236 Osorio et al. Jan 2002 B1
6346104 Daly et al. Feb 2002 B2
6355031 Edwards et al. Mar 2002 B1
6356786 Rezai et al. Mar 2002 B1
6356787 Rezai et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6358245 Edwards et al. Mar 2002 B1
6358926 Donovan Mar 2002 B2
6361554 Brisken Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6366814 Boveja et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6383509 Donovan et al. May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6402744 Edwards et al. Jun 2002 B2
6405732 Edwards et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
6411852 Danek et al. Jun 2002 B1
6414018 Duhaylongsod Jul 2002 B1
6416511 Lesh et al. Jul 2002 B1
6416740 Unger Jul 2002 B1
6423058 Edwards et al. Jul 2002 B1
6423105 Iijima et al. Jul 2002 B1
6424864 Matsuura Jul 2002 B1
6425877 Edwards Jul 2002 B1
6425887 McGuckin et al. Jul 2002 B1
6425895 Swanson et al. Jul 2002 B1
6432092 Miller Aug 2002 B2
6436130 Philips et al. Aug 2002 B1
6438423 Rezai et al. Aug 2002 B1
6440128 Edwards et al. Aug 2002 B1
6440129 Simpson Aug 2002 B1
6442435 King et al. Aug 2002 B2
6447505 McGovern et al. Sep 2002 B2
6447785 Donovan Sep 2002 B1
6448231 Graham Sep 2002 B2
6451013 Bays et al. Sep 2002 B1
6458121 Rosenstock et al. Oct 2002 B1
6460545 Kordis Oct 2002 B2
6464680 Brisken et al. Oct 2002 B1
6464697 Edwards et al. Oct 2002 B1
6475160 Sher Nov 2002 B1
6480746 Ingle et al. Nov 2002 B1
6485416 Platt et al. Nov 2002 B1
6488673 Laufer et al. Dec 2002 B1
6488679 Swanson et al. Dec 2002 B1
6491710 Satake Dec 2002 B2
6493589 Medhkour et al. Dec 2002 B1
6494880 Swanson et al. Dec 2002 B1
6496737 Rudie et al. Dec 2002 B2
6496738 Carr Dec 2002 B2
6506399 Donovan Jan 2003 B2
6510969 Di Giovanni et al. Jan 2003 B2
6514246 Swanson et al. Feb 2003 B1
6514290 Loomas Feb 2003 B1
6519488 Kenknight et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6524555 Ashurst et al. Feb 2003 B1
6526320 Mitchell Feb 2003 B2
6526976 Baran Mar 2003 B1
6529756 Phan et al. Mar 2003 B1
6532388 Hill et al. Mar 2003 B1
6533780 Laird et al. Mar 2003 B1
6536427 Davies et al. Mar 2003 B2
6544226 Gaiser et al. Apr 2003 B1
6544262 Fleischman Apr 2003 B2
6546928 Ashurst et al. Apr 2003 B1
6546932 Nahon et al. Apr 2003 B1
6546934 Ingle et al. Apr 2003 B1
6547776 Gaiser et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549808 Gisel et al. Apr 2003 B1
6551274 Heiner Apr 2003 B2
6551310 Ganz et al. Apr 2003 B1
6558333 Gilboa et al. May 2003 B2
6558378 Sherman et al. May 2003 B2
6558381 Ingle et al. May 2003 B2
6562034 Edwards et al. May 2003 B2
6572612 Stewart et al. Jun 2003 B2
6575623 Werneth Jun 2003 B2
6575969 Rittman, III et al. Jun 2003 B1
6582427 Goble et al. Jun 2003 B1
6582430 Hall Jun 2003 B2
6587718 Talpade Jul 2003 B2
6587719 Barrett et al. Jul 2003 B1
6587731 Ingle et al. Jul 2003 B1
6589235 Wong et al. Jul 2003 B2
6589238 Edwards et al. Jul 2003 B2
6593130 Sen et al. Jul 2003 B1
6599311 Biggs et al. Jul 2003 B1
6601581 Babaev Aug 2003 B1
6603996 Beatty et al. Aug 2003 B1
6610054 Edwards et al. Aug 2003 B1
6610083 Keller et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6613002 Clark et al. Sep 2003 B1
6613045 Laufer et al. Sep 2003 B1
6620159 Hegde Sep 2003 B2
6620415 Donovan Sep 2003 B2
6622047 Barrett et al. Sep 2003 B2
6623742 Voet Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6626903 McGuckin, Jr. et al. Sep 2003 B2
6629535 Ingle et al. Oct 2003 B2
6629951 Laufer et al. Oct 2003 B2
6632440 Quinn Oct 2003 B1
6633779 Schuler et al. Oct 2003 B1
6634363 Danek Oct 2003 B1
6635054 Fjield et al. Oct 2003 B2
6635056 Kadhiresan et al. Oct 2003 B2
6638273 Farley et al. Oct 2003 B1
6640119 Budd et al. Oct 2003 B1
6640120 Swanson et al. Oct 2003 B1
6645200 Koblish et al. Nov 2003 B1
6645496 Aoki et al. Nov 2003 B2
6647617 Beatty et al. Nov 2003 B1
6648881 Kenknight et al. Nov 2003 B2
6649161 Donovan Nov 2003 B1
6652517 Hall et al. Nov 2003 B1
6652548 Evans et al. Nov 2003 B2
6656960 Puskas Dec 2003 B2
6658279 Swanson et al. Dec 2003 B2
6663622 Foley et al. Dec 2003 B1
6666858 Lafontaine Dec 2003 B2
6669693 Friedman Dec 2003 B2
6671533 Chen et al. Dec 2003 B2
6673068 Berube Jan 2004 B1
6673070 Edwards et al. Jan 2004 B2
6675047 Konoplev et al. Jan 2004 B1
6676686 Naganuma Jan 2004 B2
6681136 Schuler et al. Jan 2004 B2
6692492 Simpson et al. Feb 2004 B2
6692494 Cooper et al. Feb 2004 B1
6699180 Kobayashi Mar 2004 B2
6699243 West et al. Mar 2004 B2
6708064 Rezai Mar 2004 B2
6711436 Duhaylongsod Mar 2004 B1
6712074 Edwards et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6712814 Edwards et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6719685 Fujikura et al. Apr 2004 B2
6719694 Weng et al. Apr 2004 B2
6723053 Ackerman et al. Apr 2004 B2
6723091 Goble et al. Apr 2004 B2
6728562 Budd et al. Apr 2004 B1
6735471 Hill et al. May 2004 B2
6735475 Whitehurst et al. May 2004 B1
6740321 Donovan May 2004 B1
6743197 Edwards Jun 2004 B1
6743413 Schultz et al. Jun 2004 B1
6749604 Eggers et al. Jun 2004 B1
6749606 Keast et al. Jun 2004 B2
6752765 Jensen et al. Jun 2004 B1
6755026 Wallach Jun 2004 B2
6755849 Gowda et al. Jun 2004 B1
6767347 Sharkey et al. Jul 2004 B2
6767544 Brooks et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6772013 Ingle et al. Aug 2004 B1
6773711 Voet et al. Aug 2004 B2
6776991 Naumann Aug 2004 B2
6777423 Banholzer et al. Aug 2004 B2
6778854 Puskas Aug 2004 B2
6780183 Jimenez, Jr. et al. Aug 2004 B2
6786889 Musbach et al. Sep 2004 B1
6802843 Truckai et al. Oct 2004 B2
6805131 Kordis Oct 2004 B2
6819956 DiLorenzo Nov 2004 B2
6826420 Beatty et al. Nov 2004 B1
6826421 Beatty et al. Nov 2004 B1
6827931 Donovan Dec 2004 B1
6836688 Ingle et al. Dec 2004 B2
6837888 Ciarrocca et al. Jan 2005 B2
6838429 Paslin Jan 2005 B2
6838434 Voet Jan 2005 B2
6838471 Tracey Jan 2005 B2
6840243 Deem et al. Jan 2005 B2
6841156 Aoki et al. Jan 2005 B2
6843998 Steward et al. Jan 2005 B1
6846312 Edwards et al. Jan 2005 B2
6847849 Mamo et al. Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6852091 Edwards et al. Feb 2005 B2
6852110 Roy et al. Feb 2005 B2
6861058 Aoki et al. Mar 2005 B2
6866662 Fuimaono et al. Mar 2005 B2
6871092 Piccone Mar 2005 B2
6872206 Edwards et al. Mar 2005 B2
6872397 Aoki et al. Mar 2005 B2
6878156 Noda Apr 2005 B1
6881213 Ryan et al. Apr 2005 B2
6885888 Rezai Apr 2005 B2
6890347 Machold et al. May 2005 B2
6893436 Woodard et al. May 2005 B2
6893438 Hall et al. May 2005 B2
6893439 Fleischman May 2005 B2
6895267 Panescu et al. May 2005 B2
6904303 Phan et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6908928 Banholzer et al. Jun 2005 B2
6913616 Hamilton et al. Jul 2005 B2
6917834 Koblish et al. Jul 2005 B2
6934583 Weinberg et al. Aug 2005 B2
6937896 Kroll Aug 2005 B1
6937903 Schuler et al. Aug 2005 B2
6939309 Beatty et al. Sep 2005 B1
6939345 Kenknight et al. Sep 2005 B2
6939346 Kannenberg et al. Sep 2005 B2
6947785 Beatty et al. Sep 2005 B1
6954977 Maguire et al. Oct 2005 B2
6957106 Schuler et al. Oct 2005 B2
6961622 Gilbert Nov 2005 B2
6970742 Mann et al. Nov 2005 B2
RE38912 Walz et al. Dec 2005 E
6971395 Edwards et al. Dec 2005 B2
6974224 Thomas-Benedict Dec 2005 B2
6974456 Edwards et al. Dec 2005 B2
6974578 Aoki et al. Dec 2005 B1
6978168 Beatty et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6990370 Beatty et al. Jan 2006 B1
6994706 Chornenky et al. Feb 2006 B2
6997189 Biggs et al. Feb 2006 B2
7004942 Laird et al. Feb 2006 B2
7022088 Keast et al. Apr 2006 B2
7022105 Edwards Apr 2006 B1
7027869 Danek et al. Apr 2006 B2
7043307 Zelickson et al. May 2006 B1
7070800 Bechtold-Peters et al. Jul 2006 B2
7072720 Puskas Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7101368 Lafontaine Sep 2006 B2
7101387 Garabedian et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7104990 Jenkins et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7118568 Hassett et al. Oct 2006 B2
7122031 Edwards et al. Oct 2006 B2
7122033 Wood Oct 2006 B2
7125407 Edwards et al. Oct 2006 B2
7131445 Amoah Nov 2006 B2
7142910 Puskas Nov 2006 B2
7150745 Stern et al. Dec 2006 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7167757 Ingle et al. Jan 2007 B2
7175644 Cooper et al. Feb 2007 B2
7179257 West et al. Feb 2007 B2
7186251 Malecki et al. Mar 2007 B2
7187964 Khoury Mar 2007 B2
7187973 Hauck Mar 2007 B2
7189208 Beatty et al. Mar 2007 B1
7198635 Danek et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7229469 Witzel et al. Jun 2007 B1
7238357 Barron Jul 2007 B2
7241295 Maguire Jul 2007 B2
7255693 Johnston et al. Aug 2007 B1
RE39820 Banholzer et al. Sep 2007 E
7264002 Danek et al. Sep 2007 B2
7266414 Cornelius et al. Sep 2007 B2
7273055 Danek et al. Sep 2007 B2
7289843 Beatty et al. Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7292890 Whitehurst et al. Nov 2007 B2
7309707 Bender et al. Dec 2007 B2
7310552 Puskas Dec 2007 B2
RE40045 Palmer Feb 2008 E
7326207 Edwards Feb 2008 B2
7344535 Stern et al. Mar 2008 B2
7371231 Rioux et al. May 2008 B2
7393330 Keast et al. Jul 2008 B2
7393350 Maurice Jul 2008 B2
7394976 Entenman et al. Jul 2008 B2
7402172 Chin et al. Jul 2008 B2
7422563 Roschak et al. Sep 2008 B2
7422584 Loomas et al. Sep 2008 B2
7425212 Danek et al. Sep 2008 B1
7430449 Aldrich et al. Sep 2008 B2
7462162 Phan et al. Dec 2008 B2
7462179 Edwards et al. Dec 2008 B2
7473273 Campbell Jan 2009 B2
7477945 Rezai et al. Jan 2009 B2
7483755 Ingle et al. Jan 2009 B2
7493160 Weber et al. Feb 2009 B2
7494661 Sanders Feb 2009 B2
7507234 Utley et al. Mar 2009 B2
7507238 Edwards et al. Mar 2009 B2
7517320 Wibowo et al. Apr 2009 B2
7530979 Ganz et al. May 2009 B2
7532938 Machado et al. May 2009 B2
7542802 Danek et al. Jun 2009 B2
7553307 Bleich et al. Jun 2009 B2
7556624 Laufer et al. Jul 2009 B2
7559890 Wallace et al. Jul 2009 B2
7572245 Herweck et al. Aug 2009 B2
7585296 Edwards et al. Sep 2009 B2
7588549 Eccleston Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7608275 Deem et al. Oct 2009 B2
7613515 Knudson et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7628789 Soltesz et al. Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7641632 Noda et al. Jan 2010 B2
7641633 Laufer et al. Jan 2010 B2
7648500 Edwards et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7684865 Aldrich et al. Mar 2010 B2
7689290 Ingle et al. Mar 2010 B2
7691079 Gobel et al. Apr 2010 B2
RE41334 Beatty et al. May 2010 E
7708712 Phan et al. May 2010 B2
7708768 Danek et al. May 2010 B2
7711430 Errico et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722538 Khoury May 2010 B2
7725188 Errico et al. May 2010 B2
7734355 Cohen et al. Jun 2010 B2
7734535 Burns Jun 2010 B1
7740017 Danek et al. Jun 2010 B2
7740631 Bleich et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7747324 Errico et al. Jun 2010 B2
7756583 Demarais et al. Jul 2010 B2
7765010 Chornenky et al. Jul 2010 B2
7770584 Danek et al. Aug 2010 B2
7783358 Aldrich et al. Aug 2010 B2
7815590 Cooper Oct 2010 B2
7826881 Beatty et al. Nov 2010 B1
7831288 Beatty et al. Nov 2010 B1
7837676 Sinelnikov et al. Nov 2010 B2
7837679 Biggs et al. Nov 2010 B2
7841986 He et al. Nov 2010 B2
7844338 Knudson et al. Nov 2010 B2
7853331 Kaplan et al. Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7854740 Carney Dec 2010 B2
7869879 Errico et al. Jan 2011 B2
7869880 Errico et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7877146 Rezai et al. Jan 2011 B2
7904159 Errico et al. Mar 2011 B2
7906124 Laufer et al. Mar 2011 B2
7914448 Bob et al. Mar 2011 B2
7921855 Danek et al. Apr 2011 B2
7930012 Beatty et al. Apr 2011 B2
7931647 Wizeman et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938123 Danek et al. May 2011 B2
7949407 Kaplan et al. May 2011 B2
7967782 Laufer et al. Jun 2011 B2
7985187 Wibowo et al. Jul 2011 B2
7992572 Danek et al. Aug 2011 B2
7993336 Jackson et al. Aug 2011 B2
8002740 Willink et al. Aug 2011 B2
8007495 McDaniel et al. Aug 2011 B2
8010197 Errico et al. Aug 2011 B2
8012149 Jackson et al. Sep 2011 B2
8041428 Errico et al. Oct 2011 B2
8046085 Knudson et al. Oct 2011 B2
8052668 Sih Nov 2011 B2
8088127 Mayse et al. Jan 2012 B2
8099167 Errico et al. Jan 2012 B1
8105817 Deem et al. Jan 2012 B2
8128595 Walker et al. Mar 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarais et al. Mar 2012 B2
8133497 Deem et al. Mar 2012 B2
8152803 Edwards et al. Apr 2012 B2
8172827 Deem et al. May 2012 B2
8204598 Errico et al. Jun 2012 B2
8208998 Beatty et al. Jun 2012 B2
8209034 Simon et al. Jun 2012 B2
8216216 Warnking et al. Jul 2012 B2
8226638 Mayse et al. Jul 2012 B2
8229564 Rezai Jul 2012 B2
8231621 Hutchins et al. Jul 2012 B2
8233988 Errico et al. Jul 2012 B2
8251992 Utley et al. Aug 2012 B2
8267094 Danek et al. Sep 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8313484 Edwards et al. Nov 2012 B2
8328798 Witzel et al. Dec 2012 B2
8338164 Deem et al. Dec 2012 B2
8347891 Demarais et al. Jan 2013 B2
8357118 Orr Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8371303 Schaner et al. Feb 2013 B2
8377055 Jackson et al. Feb 2013 B2
8454594 Demarais et al. Jun 2013 B2
8483831 Hlavka et al. Jul 2013 B1
8489192 Hlavka et al. Jul 2013 B1
8660647 Parnis et al. Feb 2014 B2
8731672 Hlavka et al. May 2014 B2
8740895 Mayse et al. Jun 2014 B2
8777943 Mayse et al. Jul 2014 B2
8808280 Mayse et al. Aug 2014 B2
8821489 Mayse et al. Sep 2014 B2
8911439 Mayse et al. Dec 2014 B2
8932289 Mayse et al. Jan 2015 B2
8961391 Deem et al. Feb 2015 B2
8961507 Mayse et al. Feb 2015 B2
8961508 Mayse et al. Feb 2015 B2
9005195 Mayse et al. Apr 2015 B2
9017324 Mayse et al. Apr 2015 B2
9125643 Hlavka et al. Sep 2015 B2
9149328 Dimmer et al. Oct 2015 B2
9192435 Jenson Nov 2015 B2
9339618 Deem et al. May 2016 B2
9398933 Mayse Jul 2016 B2
9498283 Deem et al. Nov 2016 B2
9539048 Hlavka et al. Jan 2017 B2
9649153 Mayse et al. May 2017 B2
9649154 Mayse et al. May 2017 B2
9662171 Dimmer et al. May 2017 B2
9668809 Mayse et al. Jun 2017 B2
9675412 Mayse et al. Jun 2017 B2
9867986 Hlavka et al. Jan 2018 B2
9931162 Mayse et al. Apr 2018 B2
10022529 Deem et al. Jul 2018 B2
10149714 Mayse Dec 2018 B2
10201386 Mayse et al. Feb 2019 B2
10206735 Kaveckis et al. Feb 2019 B2
10252057 Hlavka et al. Apr 2019 B2
10363091 Dimmer et al. Jul 2019 B2
10368937 Kaveckis et al. Aug 2019 B2
10575893 Mayse Mar 2020 B2
10610283 Mayse et al. Apr 2020 B2
10729897 Deem et al. Aug 2020 B2
10869997 Mayse Dec 2020 B2
20010020151 Reed et al. Sep 2001 A1
20010044596 Jaafar Nov 2001 A1
20020002387 Naganuma Jan 2002 A1
20020010495 Freed et al. Jan 2002 A1
20020013581 Edwards et al. Jan 2002 A1
20020016344 Tracey Feb 2002 A1
20020042564 Cooper et al. Apr 2002 A1
20020042565 Cooper et al. Apr 2002 A1
20020049370 Laufer et al. Apr 2002 A1
20020072738 Edwards et al. Jun 2002 A1
20020082197 Aoki et al. Jun 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020087208 Koblish et al. Jul 2002 A1
20020091379 Danek et al. Jul 2002 A1
20020107512 Edwards Aug 2002 A1
20020107515 Edwards et al. Aug 2002 A1
20020111386 Sekins et al. Aug 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020115991 Edwards Aug 2002 A1
20020116030 Rezai Aug 2002 A1
20020143302 Hinchliffe et al. Oct 2002 A1
20020143326 Foley et al. Oct 2002 A1
20020143373 Courtnage et al. Oct 2002 A1
20020151888 Edwards et al. Oct 2002 A1
20020183682 Darvish Dec 2002 A1
20020198512 Seward Dec 2002 A1
20020198570 Puskas Dec 2002 A1
20020198574 Gumpert Dec 2002 A1
20030018344 Kaji et al. Jan 2003 A1
20030023287 Edwards et al. Jan 2003 A1
20030027752 Steward et al. Feb 2003 A1
20030050591 Patrick McHale Mar 2003 A1
20030050631 Mody et al. Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030070676 Cooper et al. Apr 2003 A1
20030074039 Puskas Apr 2003 A1
20030093069 Panescu et al. May 2003 A1
20030093128 Freed et al. May 2003 A1
20030100895 Simpson et al. May 2003 A1
20030125786 Gliner et al. Jul 2003 A1
20030130657 Tom et al. Jul 2003 A1
20030144572 Oschman et al. Jul 2003 A1
20030153905 Edwards et al. Aug 2003 A1
20030159700 Laufer et al. Aug 2003 A1
20030181949 Whale Sep 2003 A1
20030187430 Vorisek Oct 2003 A1
20030195593 Ingle et al. Oct 2003 A1
20030195604 Ingle et al. Oct 2003 A1
20030202990 Donovan et al. Oct 2003 A1
20030208103 Sonnenschein et al. Nov 2003 A1
20030211121 Donovan Nov 2003 A1
20030216791 Schuler et al. Nov 2003 A1
20030216792 Levin et al. Nov 2003 A1
20030216891 Wegener Nov 2003 A1
20030225443 Kiran et al. Dec 2003 A1
20030233099 Danaek et al. Dec 2003 A1
20030236455 Swanson et al. Dec 2003 A1
20040006268 Gilboa et al. Jan 2004 A1
20040009180 Donovan Jan 2004 A1
20040010289 Biggs et al. Jan 2004 A1
20040010290 Schroeppel et al. Jan 2004 A1
20040028676 Klein et al. Feb 2004 A1
20040029849 Schatzberg et al. Feb 2004 A1
20040030368 Kemeny et al. Feb 2004 A1
20040031494 Danek et al. Feb 2004 A1
20040044390 Szeles Mar 2004 A1
20040059383 Puskas Mar 2004 A1
20040073201 Cooper et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040073278 Pachys Apr 2004 A1
20040082948 Stewart et al. Apr 2004 A1
20040086531 Barron May 2004 A1
20040087936 Stern et al. May 2004 A1
20040088030 Jung, Jr. May 2004 A1
20040088036 Gilbert May 2004 A1
20040091880 Wiebusch et al. May 2004 A1
20040106954 Whitehurst et al. Jun 2004 A1
20040116981 Mazar Jun 2004 A1
20040122488 Mazar et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040127942 Yomtov et al. Jul 2004 A1
20040127958 Mazar et al. Jul 2004 A1
20040142005 Brooks et al. Jul 2004 A1
20040147921 Edwards et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147988 Stephens Jul 2004 A1
20040151741 Borodic Aug 2004 A1
20040153056 Muller et al. Aug 2004 A1
20040158237 Abboud et al. Aug 2004 A1
20040162584 Hill et al. Aug 2004 A1
20040162597 Hamilton et al. Aug 2004 A1
20040167509 Taimisto Aug 2004 A1
20040167580 Mann et al. Aug 2004 A1
20040172075 Shafer et al. Sep 2004 A1
20040172080 Stadler et al. Sep 2004 A1
20040172084 Knudson et al. Sep 2004 A1
20040175399 Schiffman Sep 2004 A1
20040176803 Whelan et al. Sep 2004 A1
20040176805 Whelan et al. Sep 2004 A1
20040182399 Danek et al. Sep 2004 A1
20040186435 Seward Sep 2004 A1
20040204747 Kemeny et al. Oct 2004 A1
20040213813 Ackerman Oct 2004 A1
20040213814 Ackerman Oct 2004 A1
20040215235 Jackson et al. Oct 2004 A1
20040215289 Fukui Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040220621 Zhou et al. Nov 2004 A1
20040226556 Deem et al. Nov 2004 A1
20040230251 Schuler et al. Nov 2004 A1
20040230252 Kullok et al. Nov 2004 A1
20040243118 Ayers et al. Dec 2004 A1
20040243119 Lane et al. Dec 2004 A1
20040243182 Cohen et al. Dec 2004 A1
20040248188 Sanders Dec 2004 A1
20040249401 Rabiner et al. Dec 2004 A1
20040249416 Yun et al. Dec 2004 A1
20040253274 Voet Dec 2004 A1
20050004609 Stahmann et al. Jan 2005 A1
20050004631 Benedict Jan 2005 A1
20050010263 Schauerte Jan 2005 A1
20050010270 Laufer Jan 2005 A1
20050015117 Gerber Jan 2005 A1
20050019346 Boulis Jan 2005 A1
20050021092 Yun et al. Jan 2005 A1
20050049615 Cooper et al. Mar 2005 A1
20050055020 Skarda Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050059153 George et al. Mar 2005 A1
20050060041 Phan et al. Mar 2005 A1
20050060042 Phan et al. Mar 2005 A1
20050060044 Roschak et al. Mar 2005 A1
20050065553 Ben Ezra et al. Mar 2005 A1
20050065562 Rezai Mar 2005 A1
20050065567 Lee et al. Mar 2005 A1
20050065573 Rezai Mar 2005 A1
20050065574 Rezai Mar 2005 A1
20050065575 Dobak Mar 2005 A1
20050065584 Schiff et al. Mar 2005 A1
20050074461 Donovan Apr 2005 A1
20050076909 Stahmann et al. Apr 2005 A1
20050080461 Stahmann et al. Apr 2005 A1
20050085801 Cooper et al. Apr 2005 A1
20050090722 Perez Apr 2005 A1
20050096529 Cooper et al. May 2005 A1
20050096644 Hall et al. May 2005 A1
20050107783 Tom et al. May 2005 A1
20050107829 Edwards et al. May 2005 A1
20050107853 Krespi et al. May 2005 A1
20050125044 Tracey Jun 2005 A1
20050137518 Biggs et al. Jun 2005 A1
20050137611 Escudero et al. Jun 2005 A1
20050137715 Phan et al. Jun 2005 A1
20050143788 Yun et al. Jun 2005 A1
20050149146 Boveja et al. Jul 2005 A1
20050152924 Voet Jul 2005 A1
20050153885 Yun et al. Jul 2005 A1
20050159736 Danek et al. Jul 2005 A9
20050165456 Mann et al. Jul 2005 A1
20050171396 Pankratov et al. Aug 2005 A1
20050177144 Phan et al. Aug 2005 A1
20050177192 Rezai et al. Aug 2005 A1
20050182288 Zabara Aug 2005 A1
20050182393 Abboud et al. Aug 2005 A1
20050183732 Edwards Aug 2005 A1
20050187579 Danek et al. Aug 2005 A1
20050193279 Daners Sep 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050222628 Krakousky Oct 2005 A1
20050222635 Krakovsky Oct 2005 A1
20050222651 Jung, Jr. Oct 2005 A1
20050228054 Tatton Oct 2005 A1
20050228459 Levin et al. Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050234523 Levin et al. Oct 2005 A1
20050238693 Whyte Oct 2005 A1
20050240176 Oral et al. Oct 2005 A1
20050240241 Yun et al. Oct 2005 A1
20050245926 Edwards et al. Nov 2005 A1
20050245992 Persen et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050251213 Freeman Nov 2005 A1
20050255317 Bavaro et al. Nov 2005 A1
20050256028 Yun et al. Nov 2005 A1
20050261747 Schuler et al. Nov 2005 A1
20050267536 Freeman et al. Dec 2005 A1
20050277993 Mower Dec 2005 A1
20050283197 Daum et al. Dec 2005 A1
20060009758 Edwards et al. Jan 2006 A1
20060015151 Aldrich Jan 2006 A1
20060058692 Beatty et al. Mar 2006 A1
20060058693 Beatty et al. Mar 2006 A1
20060058780 Edwards et al. Mar 2006 A1
20060062808 Laufer et al. Mar 2006 A1
20060079887 Buysse et al. Apr 2006 A1
20060084884 Beatty et al. Apr 2006 A1
20060084966 Maguire et al. Apr 2006 A1
20060084970 Beatty et al. Apr 2006 A1
20060084971 Beatty et al. Apr 2006 A1
20060084972 Beatty et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060095029 Young et al. May 2006 A1
20060095032 Jackson et al. May 2006 A1
20060100495 Santoianni et al. May 2006 A1
20060100666 Wilkinson et al. May 2006 A1
20060106361 Muni et al. May 2006 A1
20060111755 Stone et al. May 2006 A1
20060116749 Willink et al. Jun 2006 A1
20060118127 Chinn Jun 2006 A1
20060135953 Kania et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060135998 Libbus et al. Jun 2006 A1
20060137698 Danek et al. Jun 2006 A1
20060142801 Demarais et al. Jun 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060178703 Huston et al. Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060212076 Demarais et al. Sep 2006 A1
20060212078 Demarais et al. Sep 2006 A1
20060222667 Deem et al. Oct 2006 A1
20060225742 Deem et al. Oct 2006 A1
20060235474 Demarais Oct 2006 A1
20060241523 Sinelnikov et al. Oct 2006 A1
20060247617 Danek et al. Nov 2006 A1
20060247618 Kaplan et al. Nov 2006 A1
20060247619 Kaplan et al. Nov 2006 A1
20060247683 Danek et al. Nov 2006 A1
20060247726 Biggs et al. Nov 2006 A1
20060247727 Biggs et al. Nov 2006 A1
20060247746 Danek et al. Nov 2006 A1
20060254600 Danek et al. Nov 2006 A1
20060259028 Utley et al. Nov 2006 A1
20060259029 Utley et al. Nov 2006 A1
20060259030 Utley et al. Nov 2006 A1
20060265014 Demarais et al. Nov 2006 A1
20060265015 Demarais et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060276807 Keast et al. Dec 2006 A1
20060276852 Demarais et al. Dec 2006 A1
20060278243 Danek et al. Dec 2006 A1
20060278244 Danek et al. Dec 2006 A1
20060280772 Roschak et al. Dec 2006 A1
20060280773 Roschak et al. Dec 2006 A1
20060282071 Utley et al. Dec 2006 A1
20060287679 Stone Dec 2006 A1
20070021803 Deem et al. Jan 2007 A1
20070025919 Deem et al. Feb 2007 A1
20070027496 Parnis et al. Feb 2007 A1
20070032788 Edwards et al. Feb 2007 A1
20070043342 Kleinberger Feb 2007 A1
20070043350 Soltesz et al. Feb 2007 A1
20070055328 Mayse et al. Mar 2007 A1
20070060954 Cameron et al. Mar 2007 A1
20070060990 Satake Mar 2007 A1
20070062545 Danek et al. Mar 2007 A1
20070066957 Demarais et al. Mar 2007 A1
20070074719 Danek et al. Apr 2007 A1
20070083194 Kunis et al. Apr 2007 A1
20070083197 Danek et al. Apr 2007 A1
20070083239 Demarais et al. Apr 2007 A1
20070093802 Danek et al. Apr 2007 A1
20070093809 Edwards et al. Apr 2007 A1
20070100390 Danaek et al. May 2007 A1
20070102011 Danek et al. May 2007 A1
20070106292 Kaplan et al. May 2007 A1
20070106296 Laufer et al. May 2007 A1
20070106337 Errico et al. May 2007 A1
20070106338 Errico May 2007 A1
20070106339 Errico et al. May 2007 A1
20070106348 Laufer May 2007 A1
20070112349 Danek et al. May 2007 A1
20070118184 Danek et al. May 2007 A1
20070118190 Danek et al. May 2007 A1
20070123922 Cooper et al. May 2007 A1
20070123958 Laufer May 2007 A1
20070123961 Danek et al. May 2007 A1
20070129720 Demarais et al. Jun 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070156185 Swanson et al. Jul 2007 A1
20070173899 Levin et al. Jul 2007 A1
20070191902 Errico et al. Aug 2007 A1
20070197896 Moll et al. Aug 2007 A1
20070203549 Demarais et al. Aug 2007 A1
20070225768 Dobak, III Sep 2007 A1
20070232896 Gilboa et al. Oct 2007 A1
20070239256 Weber et al. Oct 2007 A1
20070244479 Beatty et al. Oct 2007 A1
20070250050 Lafontaine Oct 2007 A1
20070255270 Carney Nov 2007 A1
20070255304 Roschak et al. Nov 2007 A1
20070265639 Danek et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070267011 Deem et al. Nov 2007 A1
20070270794 Anderson et al. Nov 2007 A1
20080004596 Yun et al. Jan 2008 A1
20080021274 Bayer et al. Jan 2008 A1
20080021369 Deem et al. Jan 2008 A1
20080051839 Libbus et al. Feb 2008 A1
20080086107 Roschak Apr 2008 A1
20080097422 Edwards et al. Apr 2008 A1
20080097424 Wizeman et al. Apr 2008 A1
20080125772 Stone et al. May 2008 A1
20080147137 Cohen et al. Jun 2008 A1
20080154258 Chang et al. Jun 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080183248 Rezai et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080194956 Aldrich et al. Aug 2008 A1
20080208305 Rezai et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080234564 Beatty et al. Sep 2008 A1
20080243112 De Neve Oct 2008 A1
20080255449 Warnking et al. Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275445 Kelly et al. Nov 2008 A1
20080302359 Loomas et al. Dec 2008 A1
20080306570 Rezai et al. Dec 2008 A1
20080312543 Laufer et al. Dec 2008 A1
20080312725 Penner Dec 2008 A1
20080319350 Wallace et al. Dec 2008 A1
20090018473 Aldrich et al. Jan 2009 A1
20090018538 Webster et al. Jan 2009 A1
20090022197 Hisa et al. Jan 2009 A1
20090030477 Jarrard Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043301 Jarrard Feb 2009 A1
20090043302 Ford et al. Feb 2009 A1
20090048593 Ganz et al. Feb 2009 A1
20090060953 Sandars Mar 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069797 Danek et al. Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090076491 Roschak et al. Mar 2009 A1
20090112203 Danek et al. Apr 2009 A1
20090124883 Wibowo et al. May 2009 A1
20090131765 Roschak et al. May 2009 A1
20090131928 Edwards et al. May 2009 A1
20090131930 Gelbart et al. May 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090143705 Danek et al. Jun 2009 A1
20090143776 Danek et al. Jun 2009 A1
20090143831 Huston et al. Jun 2009 A1
20090155336 Rezai Jun 2009 A1
20090177192 Rioux et al. Jul 2009 A1
20090192505 Askew et al. Jul 2009 A1
20090192508 Laufer et al. Jul 2009 A1
20090204005 Keast et al. Aug 2009 A1
20090204119 Bleich et al. Aug 2009 A1
20090221997 Arnold et al. Sep 2009 A1
20090227885 Lowery et al. Sep 2009 A1
20090227980 Kangas et al. Sep 2009 A1
20090232850 Manack et al. Sep 2009 A1
20090248011 Hlavka et al. Oct 2009 A1
20090254079 Edwards et al. Oct 2009 A1
20090254142 Edwards et al. Oct 2009 A1
20090259274 Simon et al. Oct 2009 A1
20090275840 Roschak et al. Nov 2009 A1
20090275878 Cambier et al. Nov 2009 A1
20090281593 Errico et al. Nov 2009 A9
20090287087 Gwerder et al. Nov 2009 A1
20090306644 Mayse et al. Dec 2009 A1
20090318904 Cooper et al. Dec 2009 A9
20090319002 Simon et al. Dec 2009 A1
20100003282 Deem et al. Jan 2010 A1
20100004648 Edwards et al. Jan 2010 A1
20100010564 Simon et al. Jan 2010 A1
20100016709 Gilboa et al. Jan 2010 A1
20100042089 Soltesz et al. Feb 2010 A1
20100049031 Fruland et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100057178 Simon Mar 2010 A1
20100063495 Edwards et al. Mar 2010 A1
20100070004 Hlavka et al. Mar 2010 A1
20100076518 Hlavka et al. Mar 2010 A1
20100087783 Weber et al. Apr 2010 A1
20100087809 Edwards et al. Apr 2010 A1
20100094231 Bleich et al. Apr 2010 A1
20100114087 Edwards et al. May 2010 A1
20100116279 Cooper May 2010 A9
20100125239 Perry et al. May 2010 A1
20100130892 Warnking May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100145427 Gliner et al. Jun 2010 A1
20100152835 Orr Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100160996 Simon et al. Jun 2010 A1
20100174340 Simon Jul 2010 A1
20100179424 Warnking et al. Jul 2010 A1
20100185190 Danek et al. Jul 2010 A1
20100191089 Stebler et al. Jul 2010 A1
20100204689 Danek et al. Aug 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100228318 Errico et al. Sep 2010 A1
20100241188 Errico et al. Sep 2010 A1
20100249873 Errico Sep 2010 A1
20100256629 Wylie et al. Oct 2010 A1
20100256630 Hamilton, Jr. et al. Oct 2010 A1
20100268222 Danek et al. Oct 2010 A1
20100298905 Simon Nov 2010 A1
20100305463 Macklem et al. Dec 2010 A1
20100318020 Atanasoska et al. Dec 2010 A1
20100331776 Salahieh et al. Dec 2010 A1
20110004148 Ishii Jan 2011 A1
20110015548 Aldrich et al. Jan 2011 A1
20110028898 Clark, III et al. Feb 2011 A1
20110046432 Simon et al. Feb 2011 A1
20110060380 Gelfand et al. Mar 2011 A1
20110079230 Danek et al. Apr 2011 A1
20110093032 Boggs, II et al. Apr 2011 A1
20110098762 Rezai Apr 2011 A1
20110112400 Emery et al. May 2011 A1
20110112521 DeLonzor et al. May 2011 A1
20110118725 Mayse et al. May 2011 A1
20110125203 Simon et al. May 2011 A1
20110125213 Simon et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137284 Arora et al. Jun 2011 A1
20110144630 Loeb Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110146674 Roschak Jun 2011 A1
20110152855 Mayse et al. Jun 2011 A1
20110152967 Simon et al. Jun 2011 A1
20110152974 Rezai et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110166565 Wizeman et al. Jul 2011 A1
20110172654 Barry et al. Jul 2011 A1
20110172655 Biggs et al. Jul 2011 A1
20110172658 Gelbart et al. Jul 2011 A1
20110178569 Parnis et al. Jul 2011 A1
20110184330 Laufer et al. Jul 2011 A1
20110190569 Simon et al. Aug 2011 A1
20110196288 Kaplan et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110224768 Edwards Sep 2011 A1
20110230701 Simon et al. Sep 2011 A1
20110230938 Simon et al. Sep 2011 A1
20110245756 Arora et al. Oct 2011 A1
20110251592 Biggs et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257647 Mayse et al. Oct 2011 A1
20110263960 Mitchell Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110270249 Utley et al. Nov 2011 A1
20110276107 Simon et al. Nov 2011 A1
20110276112 Simon et al. Nov 2011 A1
20110282229 Danek et al. Nov 2011 A1
20110282418 Saunders et al. Nov 2011 A1
20110301587 Deem et al. Dec 2011 A1
20110301664 Rezai Dec 2011 A1
20110301679 Rezai et al. Dec 2011 A1
20110306851 Wang Dec 2011 A1
20110306904 Jacobson et al. Dec 2011 A1
20110306997 Roschak et al. Dec 2011 A9
20110319958 Simon et al. Dec 2011 A1
20120004656 Jackson et al. Jan 2012 A1
20120015019 Pacetti et al. Jan 2012 A1
20120016256 Mabary et al. Jan 2012 A1
20120016358 Mayse et al. Jan 2012 A1
20120016363 Mayse et al. Jan 2012 A1
20120016364 Mayse et al. Jan 2012 A1
20120029261 Deem et al. Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029591 Simon et al. Feb 2012 A1
20120029601 Simon et al. Feb 2012 A1
20120041412 Roth et al. Feb 2012 A1
20120041509 Knudson et al. Feb 2012 A1
20120071870 Salahieh et al. Mar 2012 A1
20120078096 Krolik et al. Mar 2012 A1
20120083734 Ayres et al. Apr 2012 A1
20120089078 Deem et al. Apr 2012 A1
20120089138 Edwards et al. Apr 2012 A1
20120101326 Simon et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120109278 Sih May 2012 A1
20120143132 Orlowski Jun 2012 A1
20120143177 Avitall Jun 2012 A1
20120143179 Avitall Jun 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120165803 Bencini et al. Jun 2012 A1
20120172680 Gelfand et al. Jul 2012 A1
20120184801 Simon et al. Jul 2012 A1
20120185020 Simon et al. Jul 2012 A1
20120191081 Markowitz Jul 2012 A1
20120191082 Markowitz Jul 2012 A1
20120197100 Razavi et al. Aug 2012 A1
20120197246 Mauch Aug 2012 A1
20120197251 Edwards et al. Aug 2012 A1
20120203067 Higgins et al. Aug 2012 A1
20120203216 Mayse et al. Aug 2012 A1
20120203222 Mayse et al. Aug 2012 A1
20120209118 Warnking Aug 2012 A1
20120209259 Danek et al. Aug 2012 A1
20120209261 Mayse et al. Aug 2012 A1
20120209296 Mayse et al. Aug 2012 A1
20120221087 Parnis et al. Aug 2012 A1
20120232436 Warnking Sep 2012 A1
20120245415 Emura et al. Sep 2012 A1
20120253336 Littrup et al. Oct 2012 A1
20120253442 Gliner et al. Oct 2012 A1
20120259263 Celermajer et al. Oct 2012 A1
20120259269 Meyer Oct 2012 A1
20120259326 Brannan et al. Oct 2012 A1
20120265280 Errico et al. Oct 2012 A1
20120289952 Utley et al. Nov 2012 A1
20120290035 Levine et al. Nov 2012 A1
20120294424 Chin et al. Nov 2012 A1
20120296329 Ng Nov 2012 A1
20120302909 Mayse et al. Nov 2012 A1
20120310233 Dimmer et al. Dec 2012 A1
20120316552 Mayse et al. Dec 2012 A1
20120316559 Mayse et al. Dec 2012 A1
20120330298 Ganz et al. Dec 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130035576 O'Grady et al. Feb 2013 A1
20130123751 Deem et al. May 2013 A1
20130289555 Mayse et al. Oct 2013 A1
20130289556 Mayse et al. Oct 2013 A1
20130296647 Mayse et al. Nov 2013 A1
20130303948 Deem et al. Nov 2013 A1
20130310822 Mayse et al. Nov 2013 A1
20130345700 Hlavka et al. Dec 2013 A1
20140018789 Kaplan et al. Jan 2014 A1
20140018790 Kaplan et al. Jan 2014 A1
20140025063 Kaplan et al. Jan 2014 A1
20140186341 Mayse Jul 2014 A1
20140236148 Hlavka et al. Aug 2014 A1
20140257271 Mayse et al. Sep 2014 A1
20140276792 Kaveckis et al. Sep 2014 A1
20140316398 Kelly et al. Oct 2014 A1
20140358136 Kelly et al. Dec 2014 A1
20140371809 Parnis et al. Dec 2014 A1
20150051597 Mayse et al. Feb 2015 A1
20150126986 Kelly et al. May 2015 A1
20150141985 Mayse et al. May 2015 A1
20150150625 Deem et al. Jun 2015 A1
20150190193 Mayse et al. Jul 2015 A1
20150366603 Hlavka et al. Dec 2015 A1
20160022351 Kaveckis et al. Jan 2016 A1
20160038725 Mayse et al. Feb 2016 A1
20160192981 Dimmer et al. Jul 2016 A1
20160220851 Mayse et al. Aug 2016 A1
20160278845 Mayse Sep 2016 A1
20160310210 Harshman et al. Oct 2016 A1
20170014571 Deem et al. Jan 2017 A1
20170050008 Mayse Feb 2017 A1
20170072176 Deem et al. Mar 2017 A1
20170143421 Mayse et al. May 2017 A1
20170245911 Mayse et al. Aug 2017 A1
20180028748 Deem et al. Feb 2018 A1
20180042668 Dimmer et al. Feb 2018 A1
20180199993 Mayse et al. Jul 2018 A1
20190142510 Mayse et al. May 2019 A1
20190142511 Wahr May 2019 A1
20190151018 Mayse et al. May 2019 A1
20200001081 Hlavka et al. Jan 2020 A1
20200060750 Kaveckis et al. Feb 2020 A1
20200222114 Johnson et al. Jul 2020 A1
20200268436 Mayse Aug 2020 A1
20200360677 Deem et al. Nov 2020 A1
Foreign Referenced Citations (129)
Number Date Country
2419228 Aug 2004 CA
1700880 Nov 2005 CN
1777396 May 2006 CN
101115448 Jan 2008 CN
101209217 Jul 2008 CN
101292897 Oct 2008 CN
101411645 Apr 2009 CN
101437477 May 2009 CN
101448466 Jun 2009 CN
101522106 Sep 2009 CN
201431510 Mar 2010 CN
101115448 May 2010 CN
19529634 Feb 1997 DE
19952505 May 2001 DE
0189329 Jun 1987 EP
0286145 Oct 1988 EP
0280225 Mar 1989 EP
0286145 Oct 1990 EP
0282225 Jun 1992 EP
0643982 Mar 1995 EP
0908713 Apr 1999 EP
1064886 Jan 2001 EP
1143864 Oct 2001 EP
1169972 Jan 2002 EP
1271384 Jan 2003 EP
1281366 Feb 2003 EP
0908150 May 2003 EP
0768091 Jul 2003 EP
1326548 Jul 2003 EP
1326549 Jul 2003 EP
1400204 Mar 2004 EP
1297795 Aug 2005 EP
1588662 Oct 2005 EP
2320821 Oct 2012 EP
2659240 Jul 1997 FR
2233293 Jan 1991 GB
2233293 Feb 1994 GB
S59167707 Sep 1984 JP
H06339453 Dec 1994 JP
H07289557 Nov 1995 JP
H0947518 Feb 1997 JP
H09243837 Sep 1997 JP
H1026709 Jan 1998 JP
2000271235 Oct 2000 JP
2001037773 Feb 2001 JP
2002503512 Feb 2002 JP
2002508989 Mar 2002 JP
2002541905 Dec 2002 JP
2003510126 Mar 2003 JP
2003533265 Nov 2003 JP
2011519699 Jul 2011 JP
2053814 Feb 1996 RU
2091054 Sep 1997 RU
545358 Feb 1977 SU
WO-8911311 Nov 1989 WO
WO-9301862 Feb 1993 WO
WO-9304734 Mar 1993 WO
WO-9316632 Sep 1993 WO
WO-9407446 Apr 1994 WO
WO-9501075 Jan 1995 WO
WO-9502370 Jan 1995 WO
WO-9510322 Apr 1995 WO
WO-9604860 Feb 1996 WO
WO-9610961 Apr 1996 WO
WO-9725917 Jul 1997 WO
WO-9732532 Sep 1997 WO
WO-9733715 Sep 1997 WO
WO-9737715 Oct 1997 WO
WO-9740751 Nov 1997 WO
WO-9818391 May 1998 WO
WO-9844854 Oct 1998 WO
WO-9852480 Nov 1998 WO
WO-9856234 Dec 1998 WO
WO-9856324 Dec 1998 WO
WO-9903413 Jan 1999 WO
WO-9858681 Mar 1999 WO
WO-9913779 Mar 1999 WO
WO-9932040 Jul 1999 WO
WO-9935986 Jul 1999 WO
WO-9935988 Jul 1999 WO
WO-9942044 Aug 1999 WO
WO-9942047 Aug 1999 WO
WO-9964109 Dec 1999 WO
WO-0010598 Mar 2000 WO
WO-0051510 Sep 2000 WO
WO-0062699 Oct 2000 WO
WO-0066017 Nov 2000 WO
WO-0100114 Jan 2001 WO
WO-0103642 Jan 2001 WO
WO-0122897 Apr 2001 WO
WO-0170114 Sep 2001 WO
WO-0187169 Nov 2001 WO
WO-0189526 Nov 2001 WO
WO-0205720 Jan 2002 WO
WO-0205868 Jan 2002 WO
WO-0232333 Apr 2002 WO
WO-0232334 Apr 2002 WO
WO-03073358 Sep 2003 WO
WO-03086524 Oct 2003 WO
WO-03088820 Oct 2003 WO
WO-2004078252 Sep 2004 WO
WO-2004082736 Sep 2004 WO
WO-2004101028 Nov 2004 WO
WO-2005006963 Jan 2005 WO
WO-2005006964 Jan 2005 WO
WO-2005074829 Aug 2005 WO
WO-2006053308 May 2006 WO
WO-2006053309 May 2006 WO
WO-2006116198 Nov 2006 WO
WO-2007001981 Jan 2007 WO
WO-2007058780 May 2007 WO
WO-2007061982 May 2007 WO
WO-2007092062 Aug 2007 WO
WO-2007094828 Aug 2007 WO
WO-2007143665 Dec 2007 WO
WO-2008005953 Jan 2008 WO
WO-2008024220 Feb 2008 WO
WO-2008051706 May 2008 WO
WO-2008063935 May 2008 WO
WO-2008071914 Jun 2008 WO
WO-2009009236 Jan 2009 WO
WO-2009015278 Jan 2009 WO
WO-2009082433 Jul 2009 WO
WO-2009126383 Oct 2009 WO
WO-2009137819 Nov 2009 WO
WO-2010110785 Sep 2010 WO
WO-2011056684 May 2011 WO
WO-2011060200 May 2011 WO
WO-2011127216 Oct 2011 WO
Non-Patent Literature Citations (323)
Entry
Abbott., “Present Concepts Relative to Autonomic Nerve Surgery in the Treatment of Pulmonary Disease,” American Journal of Surgery, 1955, vol. 90, pp. 479-489.
Accad M., “Single-Step Renal Denervation with the OneShotTM Ablation System,” Presentation at the Leipzig Interventional Course 2012 in Leipzig, Germany, Jan. 26, 2012, 11 pages.
Ahnert-Hilger., et al., “Introduction of Macromolecules into Bovine Adrenal-Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Teanus Toxin on Catecholamine Secretion,” J. Neurochem, Jun. 1989, vol. 52 (6), pp. 1751-1758.
Amendment After Allowance dated Sep. 17, 2012, in co-pending U.S. Appl. No. 12/372,607, filed Feb. 17, 2009, 12 pages.
An S S., et al., “Airway Smooth Muscle Dynamics; A Common Pathway of Airway Obstruction in Asthma,” European Respiratory Journal, 2007, vol. 29 (5), pp. 834-860.
Application and File History for European Patent Application No. 09743805.5, filed May 8, 2009, 949 pages.
Application and File History for European Patent Application No. 10774097.9 filed Oct. 27, 2010, 530 pages.
Application and File History for European Patent Application No. 10779422.4, filed Nov. 11, 2010, 372 pages.
Application and File History for European Patent Application No. 12005299.8, filed Jul. 18, 2012, 403 pages.
Application and File History for European Patent Application No. 13003665.0, filed Jul. 22, 2013, 354 pages.
Application and File History for European Patent Application No. 13003666.8, filed Jul. 22, 2013, 356 pages.
Application and File History for European Patent Application No. 13003667.6, filed Jul. 22, 2013, 356 pages.
Application and File History for U.S. Appl. No. 15/401,825, filed Jan. 9, 2017, Inventors: Hlavka, et al, 193 pages.
Application and File History for U.S. Appl. No. 14/265,443, filed Apr. 30, 2014, inventors Hlavka et al.
Application and File History for U.S. Appl. No. 15/427,685, filed Feb. 8, 2017, 391 pages, inventors Mayse et al.
Application and File History for U.S. Appl. No. 15/607,918, filed May 30, 2017, inventors Dimmer, et al.
Application and File History for U.S. Appl. No. 15/922,485, filed Jul. 19, 2018, inventors Mayse et al.
Application and File History for U.S. Appl. No. 16/207,810, filed Apr. 11, 2019, inventors Mayse et al.
Application and File History for U.S. Appl. No. 16/207,810, filed Dec. 3, 2018, 262 pages, inventors Mayse et al.
Application and File History for U.S. Appl. No. 09/095,323, filed Jun. 6, 1998, inventor Laufer, 931 pages.
Application and File History for U.S. Appl. No. 12/372,607, filed Feb. 17, 2009, inventors: Hlavka et al., now U.S. Pat. No. 8,483,831, issued Jul. 9, 2013, 690 pages.
Application and File History for U.S. Appl. No. 12/463,304, Inventor: Martin L. Mayse, et al., filed May 8, 2009, Issued as U.S. Pat. No. 8,088,127 on Jan. 3, 2012, Systems, Assemblies, and Methods for Treating a Bronchial Tree, 384 pages.
Application and File History for U.S. Appl. No. 12/913,702, Inventor: Martin L. Mayse, et al., filed Oct. 27, 2010, Delivery Devices With Coolable Energy Emitting Assemblies, 564 pages.
Application and File History for U.S. Appl. No. 13/168,893, filed Jun. 24, 2011, inventors Mayse et al, 270 pages.
Application and File History for U.S. Appl. No. 13/245,522, filed Sep. 26, 2011, issued as U.S. Pat. No. 8,226,638 on Jul. 24, 2012, inventors Mayse et al, 313 pages.
Application and File History for U.S. Appl. No. 13/245,529, filed Sep. 26, 2011, inventors Mayse et al, 624 pages.
Application and File History for U.S. Appl. No. 13/245,537, filed Sep. 26, 2011, issued as U.S. Pat. No. 8,932,289 on Jan. 13, 2015, inventors Mayse et al, 656 pages.
Application and File History for U.S. Appl. No. 13/452,648, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,961,507 on Feb. 24, 2015, inventors Mayse et al, 621 pages.
Application and File History for U.S. Appl. No. 13/452,655, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,961,508 on Feb. 24, 2015, inventors Mayse et al, 602 pages.
Application and File History for U.S. Appl. No. 13/452,660, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,821,489 on Sep. 2, 2014, inventors Mayse et al, 356 pages.
Application and File History for U.S. Appl. No. 13/452,664, filed Apr. 20, 2012, issued as U.S. Pat. No. 8,808,280 on Aug. 19, 2014, inventors Mayse et al, 598 pages.
Application and File History for U.S. Appl. No. 13/509,581, filed Aug. 14, 2012, now U.S. Pat. No. 9,149,328 issued Oct. 6, 2015, inventors Dimmer et al, 608 pages.
Application and File History for U.S. Appl. No. 13/523,223, filed Jun. 14, 2012, issued as U.S. Pat. No. 8,489,192 on Jul. 16, 2013, inventors Hlavka et al, 446 pages.
Application and File History for U.S. Appl. No. 13/584,142, filed Aug. 13, 2012, inventors Mayse et al, 236 pages.
Application and File History for U.S. Appl. No. 13/592,075, filed Aug. 22, 2012, inventors Mayse et al, 602 pages.
Application and File History for U.S. Appl. No. 13/894,920, filed May 15, 2013, inventors Mayse et al, 532 pages.
Application and File History for U.S. Appl. No. 13/920,801, filed Jun. 18, 2013, issued as U.S. Pat. No. 8,731,672 on May 20, 2014, inventors Hlavka, et al, 433 pages.
Application and File History for U.S. Appl. No. 13/930,825, filed Jun. 28, 2013, issued as U.S. Pat. No. 8,740,895 on Jun. 3, 2014, inventors Mayse et al, 626 pages.
Application and File History for U.S. Appl. No. 13/931,208, filed Jun. 28, 2013, issued as U.S. Pat. No. 8,777,943 on Jul. 15, 2014, inventors Mayse et al, 597 pages.
Application and File History for U.S. Appl. No. 13/931,246, filed Jun. 28, 2013, inventors Mayse et al, 676 pages.
Application and File History for U.S. Appl. No. 14/349,599, filed Apr. 3, 2014, inventors Mayse, et al, 300 pages.
Application and File History for U.S. Appl. No. 14/529,335, filed Oct. 18, 2014, inventors Mayse et al.
Application and File History for U.S. Appl. No. 14/529,335, filed Oct. 31, 2014, inventors Mayse et al, 681 pages.
Application and File History for U.S. Appl. No. 14/601,717, filed Jan. 21, 2015, inventors Mayse et al, 329 pages.
Application and File History for U.S. Appl. No. 14/841,836, filed Sep. 1, 2015, Inventors: Hlavka et al, 176 pages.
Application and File history for U.S. Appl. No. 14/872,212, filed Oct. 1, 2015. Inventors: Dimmer et al, 274 pages.
Application and File History for U.S. Appl. No. 15/427,685, filed May 25, 2017, issued as U.S. Pat. No. 10,149,714 on Dec. 11, 2018, inventors Mayse et al, 464 pages.
Application and File history for U.S. Appl. No. 15/853,030, filed Dec. 22, 2017.Inventors: Hlavka et al.
Awadh N., et al., “Airway Wall Thickness in Patients with Near Fatal Asthma and Control Groups: Assessment with High Resolution Computed Tomographic Scanning,” Thorax, 1998, vol. 53, pp. 248-253.
Babichev., et al., “Clinico-Morphological Comparisons in Patients with Bronchial Asthma after Denervation of the Lungs,” Sov Med, 1985, vol. 12, pp. 13-16.
Babichev., et al., “Long-term Results of Surgical Treatment of Bronchial Asthma Based on Adaptive Response,” Khirurgiia (Mosk), 1993, vol. 4, pp. 5-11.
Babichev., et al., “Partial Deneration of the Lungs in Bronchial Asthma,” Khirurgiia (Mosk), 1985, vol. 4, pp. 31-35.
Barlaw., “Surgical Treatment of Asthma,” Postgrad Med. Journal, 1949, vol. 25, pp. 193-196.
Bel E H., “Hot Stuff: Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 941-942.
Bertog S., “Covidien-Maya: OneShot.TM.,” presentation at the 2012 Congenital & Structural Interventions Congress in Frankfurt, Germany, Jun. 28, 2012, 25 pages.
Bester., et al., “Recovery of C-Fiber-Induced Extravasation Following Peripheral Nerve Injury in the Rat,” Experimental Neurology, 1998, vol. 154, pp. 628-636.
Bigalke., et al., “Clostridial Neurotoxins,” Handbook of Experimental Pharmacology (Aktories, K., and Just, I., eds), 2000, vol. 145, pp. 407-443.
Bittner., et al., “Isolated Light Chains of Botulinum Neurotoxins Inhibit Exocytosis,” The Journal of Biological Chemistry, 1989, vol. 264(18), pp. 10354-10360.
Blindt., et al., “Development of a New Biodegradable Intravascular Polymer Stent with Simultaneous Incorporation of Bioactive Substances,” The International Journal of Artificial Organs, 1999, vol. 22 (12), pp. 843-853.
Boxem V TJM., et al., “Tissue Effects of Bronchoscopic Electrocautery,” Chest, Mar. 2000, vol. 117(3), pp. 887-891.
Bradley., et al., “Effect of Vagotomy on the Breathing Pattern and Exercise Ability in Emphysematous Patients,” Clinical Science, 1982, vol. 62, pp. 311-319.
Breekveldt-Postma., et al., “Enhanced Persistence with Tiotropium Compared with Other Respiratory Drugs in COPD,” Respiratory Medicine, 2007, vol. 101, pp. 1398-1405.
Brody., et al., “Mucociliary Clearance After Lung Denervation and Bronchial Transection,” J Applied Physiology, 1972, vol. 32 (2), pp. 160-164.
Brown R H., et al., “Effect of Bronchial Thermoplasty on Airway Distensibility,” European Respiratory Journal, Aug. 2005, vol. 26 (2), pp. 277-282.
Brown R H., et al., “In Vivo Evaluation of the Effectiveness of Bronchial Thermoplasty with Computed Tomography,” Journal of Applied Physiology, 2005, vol. 98, pp. 1603-1606.
Buzzi., “Diphtheria Toxin Treatment of Human Advanced Cancer,” Cancer Research, 1982, vol. 42, pp. 2054-2058.
Canning., et al., “Reflex Mechanisms in Gastroesophageal Reflux Disease and Asthma,” The American Journal of Medicine, 2003, vol. 115 (3A), pp. 45S-48S.
Canning., “Reflex Regulation of Airway Smooth Muscle Tone,” J Appl. Physiol, 2006, vol. 101, pp. 971-985.
Castro M., et al., “Effectiveness and Safety of Bronchial Thermoplasty in the Treatment of Severe Asthma: a Multicenter, Randomized, Double-Blind, Sham-Controlled Clinical Trial,” American Journal of Respiratory and Critical Care Medicine, 2010, vol. 181, pp. 116-124.
Chaddock., et al., “Expression and Purification of Catalytically Active, Non-Toxic Endopeptidase Derivatives of Clostridium Botulinum Toxin Type A,” Protein Expression and Purification, Jul. 2002, vol. 25 (2), pp. 219-228.
Chang., “Cell Poration and Cell Fusion Using an Oscillating Electric Field,” Biophys. J, 1989, vol. 56 (4), pp. 641-652.
Chernyshova., et al., “The Effect of Low-Energy Laser Radiation in the Infrared Spectrum on Bronchial Patency in Children with Bronchial Asthma,” Vopr Kurortol Fizioter Lech Fiz Kult, 1995, vol. 2, pp. 11-14, (6 pages of English translation).
Chhajed P., “Will There be a Role for Bronchoscopic Radiofrequency Ablation,” J Bronchol, 2005, vol. 12 (3), p. 184.
Chumakov., et al., “Morphologic Studies of Bronchial Biopsies in Chronic Bronchitis Before and After Treatment,” Arkh Patol, 1995, vol. 57 (6), pp. 21-25.(English Abstract and Translation, 8 pages).
Communication dated Jul. 5, 2019 for EP Application No. 15164210.5, 4 pages.
Communication dated May 20, 2016 for EP Application No. 13003665.0, filing date May 8, 2009, 4 pages.
Communication dated May 20, 2016 for EP Application No. 13003666.8, filing date May 8, 2009, 5 pages.
Co-pending U.S. Appl. No. 09/095,323, filed Jun. 10, 1998, 26 pages.
Co-pending U.S. Appl. No. 09/244,173, filed Feb. 4, 1999, 74 Pages.
Co-pending U.S. Appl. No. 12/372,607, filed Feb. 17, 2009, 54 pages.
Co-pending U.S. Appl. No. 13/523,223, filed Jun. 14, 2012, 49 pages.
Cox G., et al., “Asthma Control During the Year After Bronchial Thermoplasty,” The New England Journal of Medicine, Mar. 29, 2007, vol. 356 (13), pp. 1327-1337.
Cox G., et al., “Bronchial Thermoplasty for Asthma,” American Journal of Respiratory and Critical Care Medicine, 2006, vol. 173, pp. 965-969.
Cox G., et al., “Bronchial Thermoplasty: Long-Term Follow-up and Patient Satisfaction,” 2004, 1 page.
Cox G., et al., “Bronchial Thermoplasty: One-Year Update, American Thoracic Society Annual Meeting,” 2004, 1 page.
Cox G., et al., “Clinical Experience with Bronchial Thermoplasty for the Treatment of Asthma,” Chest 124, 2003, p. 106S.
Cox G., et al., “Development of a Novel Bronchoscope Therapy for Asthma,” Journal of Allergy and Clinical Immunology, 2003, 1 page.
Cox G., et al., “Early Clinical Experience With Bronchial Thermoplasty for the Treatment of Asthma,” 2002, p. 1068.
Cox G., et al., “Impact of Bronchial Thermoplasty on Asthma Status: Interim Results From the AIR Trial,” European Respiratory Society Annual Meeting, Munich, Germany, 2006, 1 page.
Cox G., et al., “Radiofrequency Ablation of Airway Smooth Muscle for Sustained Treatment of Asthma: Preliminary Investigations,” European Respiratory Journal, 2004, vol. 24, pp. 659-663.
Crimi., et al., “Protective Effects of Inhaled Ipratropium Bromide on Bronchoconstriction Induced by Adenosine and Methacholine in Asthma,” Eur Respir J, 1992, vol. 5, pp. 560-565.
Danek C J., et al., “Asthma Intervention Research (AIR) Trial Evaluating Bronchial Hermoplasty. TM.; Early Results,” American Thoracic Society Annual Meeting, 2002, 1 page.
Danek C J., et al., “Bronchial Thermoplasty Reduces Canine Airway Responsiveness to Local Methacholine Challenge,” American Thoracic Society Annual Meeting, 2002, 1 page.
Danek C J., et al., “Reduction in Airway Hyperesponsiveness to Methacholine by the Application of RF Energy in Dogs,” J Appl Physiol, 2004, vol. 97, pp. 1946-1953.
De Paiva., et al., “Light Chain of Botulinum Neurotoxin is Active in Mammalian Motor Nerve Terminals When Delivered Via Liposomes,” FEBS Lett, Dec. 1990, vol. 17:277(1-2), pp. 171-174.
Dierkesmann., et al., “Indication and Results of Endobronchial Laser Therapy,” Lung, 1990, vol. 168, pp. 1095-1102.
Dimitrov-Szokodi., et al., “Lung Denervation in the Therapy of Intractable Bronchial Asthma,” J. Thoracic Surg, Feb. 1957, vol. 33 (2), pp. 166-184.
Donohue., et al., “A 6-Month, Placebo-Controlled Study Comparing Lung Function and Health Status Changes in COPD Patients Treated With Tiotropium or Salmeterol,” Chest, 2002, vol. 122, pp. 47-55.
English Translation of Office Action dated Jul. 13, 2014 for Japanese Application No. JP 2012-538992, filing date Nov. 11, 2010, 2 pages.
European Communication dated Oct. 31, 2013 for Application No. 12005299.8 filed May 8, 2009, 2 pages.
European Search Report for Application No. 13003665, dated Oct. 8, 2013, 2 pages.
European Search Report for Application No. 13003666, dated Oct. 16, 2013, 7 pages.
European Search Report for Application No. 13003667.6, dated Oct. 16, 2013, 7 pages.
“Evis Exera Bronchovideoscope Brochure,” Olympus Bf-XT160, Olympus, Jun. 15, 2007, 2 pages.
Examination Report dated Mar. 26, 2018 for EP Application No. 13731525.5, filed May 15, 2013, 8 pages.
Extended European Search report for Application No. 12005299.8, dated Nov. 7, 2012, 9 pages.
Extended European Search Report for Application No. 13003665.0, dated Oct. 16, 2013, 6 pages.
Extended European Search Reportfor Application No. 14188819.8, dated Jan. 29, 2015, 7 pages.
Extended European Search Reportfor Application No. 15164210.5, dated Sep. 23, 2015, 8 pages.
Feshenko., et al., “Clinico-Morphological Comparisons in the Laser Therapy of Chronic Bronchitis Patients,” Lik Sprava, 1993, vol. 10-12, pp. 75-79.(English abstract, 1 Page).
File History for Opposition Proceedings for 12005299.8, current as of Jun. 15, 2018, 783 pages.
File History for Opposition and Appeal Proceedings for 09743805.5, current as of Jun. 15, 2018, 901 pages.
File Wrapper for EP Application No. 14188819.8 filed Nov. 11, 2010 (Publication No. 2842510), 135 pages.
Final Office Action dated Feb. 27, 2018 for Japanese Application No. 2016-051983, 7 pages.
Final Office Action dated Sep. 30, 2014 for Japanese Application No. JP 2011508719, filing date May 8, 2009, 8 pages.
First Action Interview Pilot Program Pre-Interview Communication dated Aug. 10, 2011 for U.S. Appl. No. 12/463,304, filed May 8, 2009, 4 pages.
Friedman., et al., “Healthcare Costs with Tiotropium Plus Usual Care versus Usual Care Alone Following 1 Year of Treatment in Patients with Chronic Obstructive Pulmonary Disorder (COPD),” Pharmacoeconomics, 2004, vol. 22 (11), pp. 741-749.
Gaude., G.S., “Pulmonary Manifestations of Gastroesophageal Reflux Disease,” Annals of Thoracic Medicine, Jul.-Sep. 2009, vol. 4 (3), pp. 115-123.
Gelb., et al., “Laser in Treatment of Lung Cancer,” American College of Chest Physicians, Nov. 1984, vol. 86 (5), pp. 662-666.
George., et al., “Factors Associated With Medication Nonadherence in Patients With COPD,” Chest, 2005, vol. 128, pp. 3198-3204.
Gerasin., et al., “Endobronchial Electrosurgery,” Chest, 1988, vol. 93, pp. 270-274.
Gibson., et al., “Gastroesophageal Reflux Treatment for Asthma in Adults and Children,” Cochrane Database Syst. Rev. 2:CD001496, 2003. (Abstract only).
Glanville., et al., “Bronchial Responsiveness after Human Heart-Lung Transplantation,” Chest, 1990, vol. 97 (6), pp. 1360-1366.
Glanville., et al., “Bronchial Responsiveness to Exercise after Human Cardiopulmonary Transplantation,” Chest, 1989, vol. 96 (2), pp. 281-286.
“Global Strategy for Asthma Management and Prevention,” 2002, 192 pages.
Gosens., et al., “Muscarinic Receptor Signaling in the Pathophysiology of Asthma and COPD,” Respiratory Research, 2006, vol. 7 (73), pp. 1-15.
Grey H., “Anatomy of the Human Body, Lea and Febiger,” Philadelphia, 1918, sections 1b and 1e. (Abstract only).
Groeben., et al., “High Thoracic Epidural Anesthesia Does Not Alter Airway Resistance and Attenuates the Response to an Inhalational Provocation Test in Patients with Bronchial Hyperreactivity,” Anesthesiology, 1994, vol. 81 (4), pp. 868-874.
Guarini., et al., “Efferent Vagal Fibre Stimulation Blunts Nuclear Factor-kB Activation and Protects Against Hypovolemic Hemmorrhagic Shock,” Circulation, 2003, vol. 107, pp. 1189-1194.
Guzman., et al., “Bioeffects Caused by Changes in Acoustic Cavitation Bubble Density and Cell Concentration: A Unified Explanation Based on Cell-to-Bubble Ratio and Blast Radius,” Ultrasound in medicine & biology, 2003, vol. 29 (8), pp. 1211-1222.
Hainsworth., et al., “Afferent Lung Denervation by Brief Inhalation of Steam,” Journal of Applied Physiology, May 1972, vol. 34 (5), pp. 708-714.
Harding., “Recent Clinical Investigations Examining the Association of Asthma and Gastroesophageal Reflux,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), pp. 39S-44S. (Abstract only).
Hiraga., “Experimental surgical therapy of bronchial asthma. The effect of denervation in dogs,” Nihon Kyobu Shikkan Gakkai Zasshi, 1981, vol. 19 (1), pp. 46-56.
Hoffmann., et al., “Inhibition of Histamine-Induced Bronchoconstriction in Guinea Pig and Swine by Pulsed Electrical Vagus Nerve Stimulation,” Neuromodulation: Technology at the Neural Interface, 2009, pp. 1-9.
Hogg J.C., et a., “The Pathology of Asthma,” APMIS, Oct. 1997, vol. 105 (10), pp. 735-745.
Hooper., et al., “Endobronchial Electrocautery,” Chest, 1985, vol. 87 (6), pp. 712-714.
International Preliminary Report on Patentability for Application No. PCT/US2012/058485, dated Apr. 17, 2014, 9 pages.
International Preliminary Report on Patentability for Application No. PCT/US2010/054356, dated May 10, 2012, 15 pages.
International Preliminary Report on Patentabilityfor Application No. PCT/US2009/043393, dated Nov. 18, 2010, 9 pages.
International Preliminary Report on Patentability No. PCT/US2010/056424, dated May 24, 2012, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2009/043393, dated Sep. 21, 2009, 11 pages.
International Search Report and Written Opinion for Application No. PCT/US2012/058485, dated Jan. 3, 2013, 12 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/054356, dated Jun. 16, 2011, 20 pages.
International Search Report and Written Opinion for Application No. PCT/US2010/056424, dated Apr. 14, 2011, 18 pages.
International Search Report and Written Opinion for PCT Application No. PCT/US2013/041189, dated Dec. 4, 2013, 16 pages.
International Search Report for Application No. PCT/US2001/032321, dated Jan. 18, 2002, 2 pages.
International Search Report for Application No. PCT/US98/26227, dated Mar. 25, 1999, 1 page.
International Search Report for Application No. PCT/US99/00232, dated Mar. 4, 1999, 1 page.
International Search Report for Application No. PCT/US99/12986, dated Sep. 29, 1999, 1 page.
Ivanyuta O M., et al., “Effect of Low-Power Laser Irradiation of Bronchia Mucosa on the State of Systemic and Local Immunity in Patients with Chronic Bronchitis,” Problemy Tuberkuleza, 1991, vol. 6, pp. 26-29.
James., et al., “The Mechanics of Airway Narrowing in Asthma,” The American Review of Respiratory Disease, 1989, vol. 139, pp. 242-246.
Jammes., et al., “Assessment of the Pulmonary Origin of Bronchoconstrictor Vagal Tone,” The Journal of physiology, 1979, vol. 291, pp. 305-316.
Janssen L. J., “Asthma therapy: how far have we come, why did we fail and where should we go next?,” European Respiratory Journal, 2009, vol. 33, pp. 11-20.
Jiang., et al., “Effects of Antireflux Treatment on Bronchial Hyper-responsiveness and Lung Function in Asthmatic Patients with Gastroesophageal Reflux Disease,” World Journal of Gastroenterology, 2003, vol. 9, pp. 1123-1125. (Abstract only).
Johnson S R., et al., “Synthetic Functions of Airway Smooth Muscle in Asthma,” Trends in Pharmacological Sciences, Aug. 1997, vol. 18 (8), pp. 288-292.
Karashurov., et al., “Electrostimulation in the Therapy of Bronchial Asthma,” Klin Med (Mosk), 2001, vol. 79 (11), pp. 39-41.
Karashurov., et al., “Radiofrequency Electrostimulation of Carotid Sinus Nerves for the treatment of Bronchial Asthma,” Khirurgiia (Mosk), 1999, vol. 12, pp. 4-6.
Khmel'Kova et al., “Does laser irridation affect bronchial obstruction?,” Probl Tuberk, 1995, vol. 3, pp. 41-42 (Abstract only).
Khoshoo., et al., “Role of Gastroesophageal Reflux in Older Children with Persistent Asthma,” Chest, 2003, vol. 123, pp. 1008-1013. (Abstract only).
Kiljander., “The Role of Proton Pump Inhibitors in the Management of Gastroesophageal Reflux Disease-Related Asthma and Chronic Cough,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), pp. 65S-71S. (Abstract only.).
Kistner., et al., “Reductive Cleavage of Tetanus Toxin and Botulinum Neurotoxin A by the Thioredoxin System from Brain,” Naunyn-Schmiedebergs Arch Pharmacal, Feb. 1992, vol. 345 (2), pp. 227-234.
Kitamura S., “Color Atlas of Clinical Application of Fiberoptic Bronchoscopy,” 1990, Year Book Medical Publishers, p. 17.
Kletskin., et al., “Value of Assessing the Autonomic Nervous System in Bronchial Asthma in Selecting the Surgical Treatment Method,” Khirurgiia (Mosk), 1987, vol. 7, pp. 91-95.
Kliachkin., et al., “Bronchoscopy in the Treatment of Bronchial Asthma of Infectious Allergic Origin,” Terapeuticheskii arkhiv, 1982, vol. 54 (4), pp. 76-79.
Korochkin., et al., “Use of a Helium-Neon Laser in Combined Treatment of Bronchial Asthma,” New Developments in Diagnostics and Treatment, 1990, 9 pages.
Korochkin et al., “Use of the Helium-Neon Laser in the Multimodal Treatment of Bronchial Asthma,” Sov Med, 1990, vol. 6, pp. 18-20.
Korpela., et al., “Comparison of Tissue Reactions in the Tracheal Mucosa Surrounding a Bioabsorbable and Silicone Airway Stents,” Annals of Thoracic Surgery, 1998, vol. 66, pp. 1772-1776.
Kozaki., et al., “New Surgical Treatment of Bronchial Asthma—Denervation of the Hilus Pulmonis (2),” Nippon Kyobu Geka Gakkai Zasshi, 1974, vol. 22 (5), pp. 465-466.
Kraft M., “The Distal Airways: Are they Important in Asthma?,” European Respiratory, 1999, pp. 1403-1417.
Kreitman., “Taming Ricin Toxin,” Nature Biotechnology, 2003, vol. 21, pp. 372-374.
Kuntz., “The Autonomic Nervous System in Relation to the Thoracic Viscera,” Chest, 1944, vol. 10, pp. 1-18.
Lavioletts et al., “Asthma Intervention Research (AIR) Trial: Early Safety Assessment of Bronchial Thermoplasty,” 2004, 1 page.
Leff., et al., “Bronchial Thermoplasty Alters Airway Smooth Muscle and Reduces Responsiveness in Dogs; A Possible Procedure for the Treatment of Asthma,” American Thoracic Society Annual Meeting, 2002, 1 page.
Lennerz., et al., “Electrophysiological Characterization of Vagal Afferents Relevant to Mucosal Nociception in the Rat Upper Oesophagus,” The Journal of physiology, 2007, vol. 582 (1), pp. 229-242.
Levin., “The Treatment of Bronchial Asthma by Dorsal Sympathectomy,” Annals of Surgery, 1935, vol. 102 (2), pp. 161-170.
Lim E E., et al., “Botulinum Toxin: A Novel Therapeutic Option for Bronchial Asthma?,” Medical Hypotheses, 2006, vol. 66, pp. 915-919.
Liou., et al., “Causative and Contributive Factors to Asthmas Severity and Patterns of Medication Use in Patients Seeking Specialized Asthma Care,” Chest, 2003, vol. 124, pp. 1781-1788. (Abstract only).
Lokke., et al., “Developing COPD: A 25 Year Follow Up Study of the General Population,” Thorax, 2006, vol. 61, pp. 935-939.
Lombard., et al., “Histologic Effects of Bronchial Thermoplasty of Canine and Human Airways,” American Thoracic Society Annual Meeting, 2002, 1 page.
Macklem P T., “Mechanical Factors Determining Maximum Bronchoconstriction, European Respiratory Journal,” Jun. 1989, vol. 6, pp. 516s-519s.
Maesen., et al., “Tiotropium Bromide, A New Long-Acting Antimuscarinic Bronchodilator: A Pharmacodynamic Study in Patients with Chronic Obstructive Pulmonary Disease (COPD),” The European Respiratory Journal, 1995, vol. 8, pp. 1506-1513.
Magnussen., et al., “Effect of Inhaled Ipratropium Bromide on the Airway Response to Methacholine, Histamine, and Exercise in Patients with Mild Bronchial Asthma,” Respiration, 1992, vol. 59, pp. 42-47.
Maltais., et al., “Improvements in Symptom-Limited Exercise Performance Over 8 h With Once-Daily Tiotropium in Patients With COPD,” Chest, 2005, vol. 128, pp. 1168-1178.
Martin N., et al., “Bronchial Thermoplasty for the Treatment of Asthma,” Current Allergy and Asthma Reports, Jan. 2009, vol. 9 (1), pp. 88-95.
Mathew., et al., “Gastro-Oesophageal Reflux and Bronchial Asthma: Current Status and Future Directions,” Postgraduate Medical Journal, 2004, vol. 80, pp. 701-705.
Matthias O., et al., “Fisherman's Pulmonary Diseases and Disorders,” Functional Design of the Human Lung for Gas Exchange, McGraw Hill Medical, New York, Edition 4, 2008, Chapter 2(Abstract only).
Mayse M., et al., “Clinical Pearls for Bronchial Thermoplasty,” J Bronchol, Apr. 2007, vol. 14 (2), pp. 115-123.
McEvoy C E., et al., “Changing the Landscape: Bronchial Thermoplasty Offers a Novel Approach to Asthma Treatment,” Advance for Managers of Respiratory Care, Oct. 24-25, 2007, pp. 22-25.
McKay., et al., “Autocrine Regulation of Asthmatic Airway Inflammation: Role of Airway Smooth Muscle,” Respiratory Research, 2002, vol. 3 (11), pp. 1-13.
Mehta., et al., “Effect of Endobronchial Radiation therapy on Malignant Bronchial Obstruction,” Chest, Mar. 1990, vol. 97 (3), pp. 662-665.
Meshalkin., et al., “Partial Denervation of the Pulmonary Hilus as One of the Methods of Surgical Treatment of Bronchial Asthma,” Grudnaia Khirurgiia, 1975, vol. 1, pp. 109-111.
Michaud G., et al., “Positioned for Success: Interest in Diagnostic and Therapeutic Bronchoscopy is Growing,” Advance for Managers of Respiratory Care, Jul.-Aug. 2008, pp. 40, 42-43.
Miller J D., et al., “A Prospective Feasibility Study of Bronchial Thermoplasty in the Human Airway,” 2005, vol. 127 (6), pp. 1999-2006.
Miller J D., et al., “Bronchial Thermoplasty is Well Tolerated by Non-Asthmatic Patients Requiring Lobectomy,” American Thoracic Society Annual Meeting, 2002, 1 page.
Mitzner W., “Airway Smooth Muscle the appendix of the Lung,” American Journal of Respiratory and Critical Care Medicine, 2004, vol. 169, pp. 787-790.
Mitzner W., “Bronchial Thermoplasty in Asthma,” Allergology International, 2006, vol. 55, pp. 225-234.
Montaudon M., et al., “Assessment of Bronchial Wall Thickness and Lumen Diameter in Human Adults Using Multi-Detector Computed Tomography: Comparison with Theoretical Models,” Journal of Anatomy, 2007, vol. 211, pp. 579-588.
Moore K.L., “Clinically Oriented Anatomy,” Williams & Wilkins, Baltimore, 1985, 2nd edition, pp. 85 and 87(Abstract only).
Netter F H., Respiratory System: A Compilation of Paintings Depicting Anatomy and Embryology, Physiology, Pathology, Pathophysiology, and Clinical Features and Treatment of Diseases, In The CIBA Collection of Medical Illustrations M.B. Divertie, ed., Summit: New Jersey, 1979, vol. 7, pp. 119-135.
Netter F H., “The Ciba Collection of Medical Illustrations,” Respiratory System, Ciba-Geigy Corporation, West Caldwell, 1979, vol. 7, p. 23, section 1. (Abstract only).
Non-Final Office Action dated Apr. 27, 2010 for U.S. Appl. No. 11/398,353, filed Apr. 4, 2006, 8 pages.
Non-Final Office Action dated Aug. 31, 2009 for U.S. Appl. No. 11/398,353, filed Apr. 4, 2006, 7 pages.
Notice of final Rejection dated Sep. 2, 2008 for Japanese Patent Application No. 2000-553172, filed Jun. 9, 1999, 5 pages.
O'Connor., et al., “Prolonged Effect of Tiotropium Bromide on Methacholine-induced Bronchoconstriction in Asthma,” American Journal of Respiratory and Critical Care Medicine, 1996, vol. 154, pp. 876-880.
Office Action dated Apr. 7, 2015 for Australian Patent Application No. 2010315396 filed Oct. 27, 2010, 4 pages.
Office Action dated Aug. 10, 2015 for Canadian Application No. 2,723,806 filed May 8, 2009, 4 pages.
Office Action dated Feb. 10, 2016 for Australian Application No. 2010315396 filed Oct. 27, 2010, 3 pages.
Office Action dated Jan. 10, 2017 for JP Application No. 2015-014893 filed Dec. 29, 2015, 10 pages.
Office Action dated Jul. 12, 2016 for Japanese Application No. 2015-162994 filed Aug. 20, 2015 , 8 pages.
Office Action dated May 14, 2015 for Chinese Application No. 201080060627.6 filed Nov. 11, 2010, 7 pages.
Office Action dated Jun. 20, 2016 for Chinese Application No. 201410250553.2 filed Oct. 27, 2010, 8 pages.
Office Action dated Sep. 20, 2016 for Canadian Application No. 2,723,806 dated May 8, 2009, 5 pages.
Office Action dated Jan. 22, 2016 for Canadian Application No. 2,779,135 filed Oct. 27, 2010, 7 pages.
Office Action dated Mar. 24, 2015 for Japanese Application No. 2012-538992 filed Nov. 11, 2010, 5 pages.
Office Action dated Sep. 25, 2018 for Canadian Application No. 2,723,806, 5 pages.
Office Action dated Nov. 4, 2020 for Japanese Application No. 2019186520, 6 pages.
Office Action dated Jan. 5, 2016 for JP Application No. 2015-014893 filed Jan. 29, 2015, 11 pages.
Office Action dated Sep. 9, 2016 for Chinese Application No. 201510166836.3, dated Oct. 27, 2010, 5 pages.
Office Action dated Apr. 23, 2019 for Japanese Application No. 2015-162994, 6 pages.
Office Action dated Apr. 4, 2017 for Japanese Application No. 2016-051983, 6 pages.
Office Action dated Aug. 28, 2018 for Chinese Application No. 201611095404.9, 8 pages.
Office Action dated Dec. 2, 2019 for Chinese Application 201710326753.5, 9 pages.
Office Action dated Jan. 28, 2019 for Chinese Application No. 201710326753.5, 9 pages.
Office Action dated May 1, 2017 for Korean Application No. 0-2012-7013100 14 pages.
Office Action dated Oct. 2, 2013 for Japanese Application No. 2011-508719 filed May 8, 2009, 5 pages.
Office Action dated Dec. 5, 2017 for JP Application No. 2015-014893 filed Nov. 27, 2017, 4 pages.
Office Action dated Nov. 11, 2013 for Chinese Patent Application No. 200980116717.X, filed May 8, 2009, 4 pages.
Office Action dated May 13, 2013 from related European Application No. 10774097.9, filed Oct. 27, 2010, 4 pages.
Office Action dated Oct. 14, 2016 for Canadian Application No. 2,780,608 filed Nov. 11, 2010, 4 pages.
Office Action dated Feb. 15, 2016 from Chinese Application CN 201080060627.6, filed Nov. 11, 2010, 6 pages. (No English translation available).
Office Action dated Feb. 16, 2016 from Japanese Application JP 2012-538992 filed Nov. 11, 2010, 2 pages. (No English translation available).
Office Action dated Sep. 16, 2015 for KR Application No. 1020107026952, filed May 8, 2009, 17 pages.
Office Action dated Jun. 2, 2015 for Japanese Application No. 2012-537018, filed Oct. 27, 2010, 2 pages (English translation alone available).
Office Action dated Sep. 20, 2013 from related Japanese Application 2011-508719, filed May 8, 2009, 3 pages. (English translation of relevant portions).
Office Action dated Sep. 22, 2015 for CN Application No. 201410250553.2, filed Oct. 27, 2010, 3 pages.
Office Action dated Apr. 25, 2014 from related Japanese Application 2011-508719, filed May 8, 2009, 2 pages. (English translation of relevant portions).
Office Action dated Feb. 26, 2018 for IN Application No. 8069/DELNP/2010 filed Nov. 16, 2010, 7 pages.
Office Action dated Jun. 27, 2014 for Chinese Application No. 201080048938.0, filed Oct. 27, 2010, 11 pages.
Office Action dated Sep. 27, 2017 for Chinese Application No. 201380037371.0, filed May 15, 2013, 9 pages.
Office Action dated Mar. 28, 2014 for Chinese Application No. 2010800048938.0, filed Oct. 27, 2010, 7 pages.
Office Action dated Sep. 30, 2014 for Japanese Application No. 2011-508719 filed May 8, 2009, 8 pages.
Office Action dated Aug. 4, 2014 from EP Patent Application No. 12005299.8, filed May 8, 2009, 5 pages.
Office Action dated Jan. 4, 2017 for Chinese Application No. 201380037371.0, filed May 15, 2013, 28 pages.
Office Action dated Aug. 6, 2013 from Application JP 2011508719, filed May 8, 2009, 7 pages.
Office Action dated May 7, 2014 for Japanese Application No. 2012-537018, filed Oct. 27, 2010, 7 pages.
Office action dated Aug. 27, 2015 for European Application No. 13003667.6 filed May 8, 2009, 4 pages.
O'Sullivan M P., et al., “Apoptosis in the Airways: Another Balancing Act in the Epithelial Program,” American Journal of Respiratory Cell and Molecular Biology, 2003, vol. 29, pp. 3-7.
Ovcharenko., et al., “Endobronchial Use Of Low-Frequency Ultrasound And Ultraviolet Laser Radiation In The Complex Treatment Of Patients With Suppurative Bronchial Diseases,” Problemy Tuberkuleza, 1997, vol. 3, pp. 40-42. (Abstract only).
Overholt., “Glomectomy for Asthma,” Diseases of the Chest, 1961, vol. 40, pp. 605-610.
Patent Examination Report dated May 1, 2014 for Australian Patent Application No. 2009244058, filed May 8, 2009, 4 pages.
Pavord I D., et al., “Safety and Efficacy of Bronchial Thermoplasty in Symptomatic, Severe Asthma,” American Journal of Respiratory and Critical Care Medicine, 2007, vol. 176, pp. 1185-1191.
PCT International Search Report for Application No. PCT/US00/05412, dated Jun. 20, 2000, 2 pages.
PCT International Search Report for Application No. PCT/US00/18197, dated Oct. 3, 2000, 1 page.
PCT International Search Report for Application No. PCT/US00/28745, dated Mar. 28, 2001, 6 pages.
PCT International Search Report for Application No. PCT/US98/03759, dated Jul. 30, 1998, 1 page.
Peter K. Jeffery, “Remodeling in Asthma and Chronic Obstructive Lung Disease,” American Journal of Respiratory and Critical Care Medicine, 2001, vol. 164 (10), pp. S28-S38.
Peters, et al., “Tiotropium Bromide Step-Up Therapy for Adults with Uncontrolled Asthma,” New England Journal of Medicine, Oct. 28, 2010, vol. 363 (18), pp. 1715-1726.
Petrou et al., “Bronchoscopic Diathermy Resection and Stent Insertion: a Cost Effective Treatment for Tracheobronchial Obstruction,” Thorax, 1993, vol. 48, pp. 1156-1159.
Polosukhin., “Dynamics of the Ultrastructural Changes in Blood and Lymphatic Capillaries of Bronchi in Inflammation and Following Endobronchial Laser Therapy,” Virchows Arch, 1997, vol. 431, pp. 283-290.
Polosukhin., “Regeneration of Bronchial Epithelium of Chronic Inflammatory Changes Under Laser Treatment,” Pathology, Research and Practice, 1996, vol. 192 (9), pp. 909-918.
Polosukhin., “Ultrastructural Study of the Destructive and Repair Processes in Pulmonary Inflammation and Following Endobronchial Laser Therapy,” Virchows Arch, 1999, vol. 435, pp. 13-19.
Polosukhin., “Ultrastructure of the Blood and Lymphatic Capillaries of the Respiratory Tissue During Inflammation and Endobronchial Laser Therapy,” Ultrastructural Pathology, 2000, vol. 24, pp. 183-189.
Preliminary Amendment and Response to Restriction Requirement dated Oct. 22, 2012, for U.S. Appl. No. 13/523,223, filed Jun. 14, 2012.
Printout of a Selected List of Reference for Respiratory Development from PubMed Aug. 1999; UNSW Embryo-Respiratory System http://embryology.med.unsw.edu.au/Refer/respire/select.htm; 12 pages, printout dated Oct. 12, 2007.
Provotorov V M., et al., “Clinical Efficacy of Treatment of Patients with Non-Specific Pulmonary Diseases by Using Low-Power Laser Irradiation and Performing Intrapulmonary Drug Administration,” Terapevichesky Arkhiv, 1991, vol. 62, pp. 18-23.
Provotorov V.M., et al., “The Clinical Efficacy of Treating Patients with Nonspecific Lung Disease by Using Low-energy Laser Irradiation and Intrapulmonary Drug Administration,” ISSN: 0040-3660, Terapeuticheskii Arkhiv (USSR), 1991, vol. 62 (12), pp. 18-23 (11 pages).
Raj., “Editorial,” Pain Practice, 2004, vol. 4 (1S), pp. S1-S3.
Ramirez et al., “Sympathetomy in Bronchial Asthma,” J. A. M. A., 1925, vol. 84 (26), pp. 2002-2003.
Response to Summons to Attend Oral Proceedings mailed Jun. 2, 2014 from related EP Application No. 10774097.9 filed Oct. 27, 2010, 6 pgs.
Rienhoff., et al., “Treatment of Intractable Bronchial Asthma by Bilateral Resection of the Posterior Pulmonary Plexus,” Arch Surg, 1938, vol. 37 (3), pp. 456-469.
Rocha-Singh K J., “Renal Artery Denervation: A Brave New Frontier,” Endovascular Today, Feb. 2012, pp. 45-53.
Rubin., et al., “Bronchial Thermoplasty Improves Asthma Status of Moderate to Severe Persistent Asthmatics Over and Above Current Standard-of-Care,” American College of Chest Physicians, 2006, 2 pages.
Savchenko., et al., “Adaptation of Regulatory Physiological Systems in Surgical Treatment of Patients with Bronchial Asthma,” Klin Med (Mask), 1996, vol. 74 (7), pp. 38-39.
Search Report dated Aug. 27, 2015 for European Application No. 13003665.0 filed May 8, 2009, 4 pages.
Search Report dated Aug. 27, 2015 for European Application No. 13003666.8 filed May 8, 2009, 4 pages.
Secondary Office Action dated Mar. 4, 2014 for Japanese Application No. 2011-508719 filed May 8, 2009.
Sengupta., “Part 1 Oral Cavity, Pharynx and Esophagus—Esophageal Sensory Physiology,” GI Motility online, 2006, 17 pages.
Seow C Y., et al., “Signal Transduction in Smooth Muscle Historical Perspective on Airway Smooth Muscle: The Saga of a Frustrated Cell,” Journal of applied physiology, 2001, vol. 91, pp. 938-952.
Sepulveda., et al., “Treatment of Asthmatic Bronchoconstriction by Percutaneous Low Voltage Vagal Nerve Stimulation: Case Report,” Internet Journal of Asthma, Allergy, and Immunology, 2009, vol. 7 (2), 3 pages.
Shaari., et al., “Rhinorrhea is Decreased in Dogs After Nasal Application of Botulinum Toxin,” Otolaryngol Head Neck Surgery, Apr. 1995, vol. 112 (4), pp. 566-571.
Sheski F D., et al., “Cryotherapy, Electrocautery, and Brachytherapy,” Clinics in Chest Medicine, Mar. 1999, vol. 20 (1), pp. 123-138.
Shesterina M V., et al., “Effect of laser therapy on immunity in patients with bronchial asthma and pulmonary tuberculosis,” 1993, pp. 23-26.
Shore S A., “Airway Smooth Muscle in Asthma—Not Just More of the Same,” The New England Journal of Medicine, 2004, vol. 351 (6), pp. 531-532.
Sil'Vestrov., et al., “The Clinico-Pathogenetic Validation and Efficacy of the Use of Low-Energy Laser Irradiation and Glucocorticoids in the Treatment of Bronchial Asthma Patients,” Department of Therapy of the Pediatric and Stomatological Faculties of the N.N. Burdenko Voronezh Medical Institute, vol. 63(11), 1991, pp. 87-92.
Simonsson., et al., “Role of Autonomic Nervous System and the Cough Reflex in the Increased Responsiveness of Airways in Patients with Obstructive Airway Disease,” The Journal of Clinical Investigation, 1967, vol. 46 (11), pp. 1812-1818.
Simpson., et al., “Isolation and Characterization of the botulinum Neurotoxins,” Methods Enzymol, 1988, vol. 165, pp. 76-85.
Smakov., “Denervation of the Lung in the Treatment of Bronchial Asthma,” Khirurgiia (Mosk), 1982, vol. 9, pp. 117-120.
Smakov., “Pathogenetic Substantiation of Lung Denervation in Bronchial Asthma and it's Indications,” Khirurgiia (Mosk), 1999, vol. 2, pp. 67-69.
Smakov., “Prognostication of the Effect of Therapeutic Bronchoscopy in Patients with Bronchial Asthma According to the State of Local Immunity,” Klin Med (Mask), 1995, vol. 73 (5), pp. 76-77.
Solway J., et al., “Airway Smooth Muscle as a Target for Asthma Therapy,” The New England Journal of Medicine, Mar. 29, 2007, vol. 356 (13), pp. 1367-1369.
Sontag., et al., “Asthmatics with Gastroesophageal Reflux: Long-term Results of a Randomized Trial of Medical and Surgical Antireflux Therapies,” The American Journal of Gastroenterology, 2003, vol. 98, pp. 987-999. (Abstract only.).
Stein., “Possible Mechanisms of Influence of Esophageal Acid on Airway Hyperresponsiveness,” The American Journal of Medicine, 2003, vol. 115 (Suppl 3A), pp. 55S-59S. (Abstract only.).
Sterk P J., “Heterogeneity of Airway Hyperresponsiveness: Time for Unconventional, but Traditional Studies,” The American Pshychoiogical Society, 2004, pp. 2017-2018.
Summons to Attend Oral Proceedings mailed Jul. 14, 2014 for European Application No. EP09743805.5 filed May 8, 2009, 5 pages.
Summons to Attend Oral Proceedings mailed Jan. 30, 2014 for European Application No. 10774097.9, filed Oct. 27, 2010, 2 pages.
Sundaram, et al., “An Experimental and Theoretical Analysis of Ultrasound-Induced Permeabilization of Cell Membranes,” Biophysical Journal, May 2003, vol. 84 (5), pp. 3087-3101.
Takino., et al., “Surgical Removal of the Carotid Body and its Relation to the Carotid Chemoreceptor and Baroreceptor Reflex in Asthmatics,” Dis Chest, 1965, vol. 47, pp. 129-138.
Tashkin., et al., “Long-term Treatment Benefits With Tiotropium in COPD Patients With and Without Short-term Bronchodilator Responses,” Chest, 2003, vol. 123, pp. 1441-1449.
Third party submission filed on Apr. 2, 2004 in U.S. Appl. No. 14/024,371, 8 pages.
Toma T P., “Brave New World for Interventional Bronchoscopy,” Thorax, 2005, vol. 60, pp. 180-181.
Trow T., “Clinical Year in Review I, proceedings of the American Thoracic Society,” 2006, vol. 3, pp. 553-556.
Tschumperlin D J., et al., “Chronic Effects of Mechanical Force on Airways,” Annual Review of Physiology, 2006, vol. 68, pp. 563-583.
Tschumperlin D J., et al., “Mechanical Stimuli to Airway Remodeling,” American Journal of Respiratory and Critical Care Medicine, 2001, vol. 164, pp. S90-S94.
Tsugeno., et al., “A Proton-Pump Inhibitor, Rabeprazole, Improves Ventilatory Function in Patients with Asthma Associated with Gastroesophageal Reflux,” Scand J Gastroenterol, 2003, vol. 38, pp. 456-461. (Abstract only).
Tsuji., et al., “Biodegradable Stents as a Platform to Drug Loading,” International Journal of Cardiovascular Interventions, 2003, vol. 5(1), pp. 13-16.
Unal., et al., “Effect of Botulinum Toxin Type A on Nasal Symptoms in Patients with Allergic Rhinitis: A Double-blind, Placebo-controlled Clinical Trial,” Acta Oto-Laryngologica, Dec. 2003, vol. 123 (9), pp. 1060-1063.
UNSW, “Embryo—Respiratory System,” Embryology, 2007, retrieved from: http://embryology.med.unsw.edu.au/Refer/respire/select.htm on Dec. 10, 2007, 22 pages.
Urologix inc., “Cooled ThermoTherapy™” retrieved on Mar. 5, 2013, from http://www.urologix.com/cliinicians/cooled-thermotherapy.php, 2012, 2 pages.
Urologix, Inc, “CTC Advance.TM. Instructions for Use,” Targis.RTM. System Manual, 2010, 8 pages.
Vasilotta P I., et al., “I-R Laser: A New Therapy in Rhino-Sino-Nasal Bronchial Syndrome with Asthmatic Component,” American Society for Laser medicine and Surgery abstracts, facsimile copy dated, Feb. 8, 2007, p. 74.
Velden V D., et al., “Autonomic Innervation of Human Airways: Structure, Function, and Pathophysiology in Asthma,” Neuroimmunomodulation, 1999, vol. 6, pp. 145-159.
Verhein., et al., “Neural Control of Airway Inflammation,” Current Allergy and Asthma Reports, 2009, vol. 9, pp. 484-490.
Vincken., et al., “Improved health outcomes in patients with COPD during 1 yr's treatment with tiotropium,” Eur. Respir. J., 2002, vol. 19, pp. 209-216.
Vorotnev., et al., “Treatment of Patients with Chronic Obstructive Bronchitis Using Low Energy Laser at a General Rehabilitation Center,” Therapeutic Archive, 1997, vol. 3, pp. 17-19.
Wagner., et al., “Methacholine causes reflex bronchoconstriction,” J. Appi. Physiol, 1999, vol. 86, pp. 294-297.
Wahidi., et al., “State of the Art: Interventional Pulmonology,” American College of Chest Physicians, Jan. 2007, vol. 131 (1), pp. 261-274.
Weaver, “Electroporation: A General Phenomenon for Manipulating Cells and Tissues,” Journal of Cellular Biochemistry, Apr. 1993, vol. 51(4), pp. 426-435.
Wechsler M E., “Bronchial Thermoplasty for Asthma: A Critical Review of a New Therapy,” Allergy and Asthma Proceedings, Jul.-Aug. 2008, vol. 29 (4), pp. 1-6.
Wiggs B R., et al., On the Mechanism of Mucosal Folding in Normal and Asthmatic Airways, J. Appl. Physiol, Dec. 1997, vol. 83 (6), pp. 1814-1821.
Wilson K C., et al., “Flexible Bronchoscopy: Indications and contraindications,” UptoDate, Nov. 12, 2010 (retrieved Sep. 30, 2012 from www.uptodate.com), 15 pages.
Wilson S R., et al., “Global assessment after bronchial thermoplasty: the patient's perspective,” Journal of Outcomes Research, 2006, vol. 10, pp. 37-46.
Wirtz., et al., “Bilateral Lung Transplantation for Severe Persistent and Difficult Asthma,” The Journal of Heart and Lung Transplantation, 2005, vol. 24 (10), pp. 1700-1703.
Wizeman., et al., “A Computer Model of Thermal Treatment of Airways by Radiofrequency (RF) Energy Delivery,” American Thoracic Society Annual Meeting, 2007, 1 page.
Related Publications (1)
Number Date Country
20190105102 A1 Apr 2019 US
Provisional Applications (3)
Number Date Country
61155449 Feb 2009 US
61106490 Oct 2008 US
61052082 May 2008 US
Continuations (5)
Number Date Country
Parent 15427685 Feb 2017 US
Child 16207810 US
Parent 13592075 Aug 2012 US
Child 15427685 US
Parent 13452664 Apr 2012 US
Child 13592075 US
Parent 13245522 Sep 2011 US
Child 13452664 US
Parent 12463304 May 2009 US
Child 13245522 US