Systems, assemblies, and methods to enhance intake air flow to a gas turbine engine of a hydraulic fracturing unit

Information

  • Patent Grant
  • 12338772
  • Patent Number
    12,338,772
  • Date Filed
    Thursday, November 17, 2022
    2 years ago
  • Date Issued
    Tuesday, June 24, 2025
    a month ago
Abstract
Systems, assemblies, and methods to enhance the efficiency of operation of a gas turbine engine may include a turbine housing positioned to at least partially enclose the gas turbine engine, and a filtration assembly connected to the turbine housing to supply at least partially filtered intake air to an inlet assembly associated with the gas turbine engine. The filtration assembly may include a pre-cleaner including one or more inertial separators configured to separate a first portion of particles and/or liquid from ambient air supplied to the gas turbine engine, thereby to provide at least partially filtered intake air, and one or more filters positioned downstream of the pre-cleaner to separate a second portion of the particles and/or liquid from the at least partially filtered intake air.
Description
TECHNICAL FIELD

The present disclosure relates to systems, assemblies, and methods for enhancing intake air flow to a gas turbine engine and, more particularly, to systems, assemblies, and methods for enhancing intake air flow to a gas turbine engine of a hydraulic fracturing unit.


BACKGROUND

Hydraulic fracturing is an oilfield operation that stimulates production of hydrocarbons, such that the hydrocarbons may more easily or readily flow from a subsurface formation to a well. For example, a fracturing system may be configured to fracture a formation by pumping a fracturing fluid into a well at high pressure and high flow rates. Some fracturing fluids may take the form of a slurry including water, proppants, and/or other additives, such as thickening agents and/or gels. The slurry may be forced via one or more pumps into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure builds rapidly to the point where the formation may fail and may begin to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation are caused to expand and extend in directions farther away from a well bore, thereby creating flow paths to the well bore. The proppants may serve to prevent the expanded fractures from closing when pumping of the fracturing fluid is ceased or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the formation is fractured, large quantities of the injected fracturing fluid are allowed to flow out of the well, and the production stream of hydrocarbons may be obtained from the formation.


Prime movers may be used to supply power to hydraulic fracturing pumps for pumping the fracturing fluid into the formation. For example, a plurality of gas turbine engines may each be mechanically connected to a corresponding hydraulic fracturing pump via a transmission and operated to drive the hydraulic fracturing pump. The gas turbine engine, hydraulic fracturing pump, transmission, and auxiliary components associated with the gas turbine engine, hydraulic fracturing pump, and transmission may be connected to a common platform or trailer for transportation and set-up as a hydraulic fracturing unit at the site of a fracturing operation, which may include up to a dozen or more of such hydraulic fracturing units operating together to perform the fracturing operation.


The performance of a gas turbine engine is dependent on the conditions under which the gas turbine engine operates. For example, ambient air pressure and temperature are large factors in the output of the gas turbine engine, with low ambient air pressure and high ambient temperature reducing the maximum output of the gas turbine engine. Low ambient pressure and/or high ambient temperature reduce the density of air, which reduces the mass flow of the air supplied to the intake of the gas turbine engine for combustion, which results in a lower power output. Some environments in which hydraulic fracturing operations occur are prone to low ambient pressure, for example, at higher elevations, and/or higher temperatures, for example, in hot climates. In addition, gas turbine engines are subject to damage by particulates in air supplied to the intake. Thus, in dusty environments, such as at many well sites, the air must be filtered before entering the intake of the gas turbine engine. However, filtration may reduce the pressure of air supplied to the intake, particularly as the filter medium of the filter becomes obstructed by filtered particulates with use. Reduced power output of the gas turbine engines reduces the pressure and/or flow rate provided by the corresponding hydraulic fracturing pumps of the hydraulic fracturing units. Thus, the effectiveness of a hydraulic fracturing operation may be compromised by reduced power output of the gas turbine engines of the hydraulic fracturing operation.


Accordingly, Applicant has recognized a need for systems, assemblies, and methods that provide enhanced air flow to the intake of a gas turbine engine for hydraulic fracturing operations. The present disclosure may address one or more of the above-referenced drawbacks, as well as other possible drawbacks.


SUMMARY

As referenced above, it may be desirable to provide systems, assemblies, methods that provide enhanced air flow to the intake of a gas turbine engine for hydraulic fracturing operations. For example, as noted above, low ambient pressure and/or high ambient temperature may reduce the density of air, which reduces the mass flow of the air supplied to the intake of the gas turbine engine for combustion, which results in a lower power output. In addition, particles and/or liquid in air supplied to the intake of a gas turbine engines may damage the gas turbine engine. Thus, in dusty environments, such as at many well sites, the air may be filtered before entering the intake of the gas turbine engine to reduce the likelihood of damage to the gas turbine engine. Filtration of the air, however, may reduce the pressure of air supplied to the intake, particularly as the filter medium of the filter becomes obstructed by filtered particulates with use. The gas turbine engine may not be capable of achieving its optimum power output under such conditions, and further, as air flow through the filter media becomes impeded by a build-up of particles and/or liquid, suction resulting from operation of the gas turbine engine may cause the filter to collapse, potentially resulting in damage to the gas turbine engine and excessive downtime for maintenance. Reduced power output of the gas turbine engines reduces the pressure and/or flow rate provided by the corresponding hydraulic fracturing pumps of the hydraulic fracturing units. Thus, the effectiveness of a hydraulic fracturing operation may be compromised by reduced power output of the gas turbine engines of the hydraulic fracturing operation.


The present disclosure generally is directed to assemblies and methods to enhance the efficiency of operation of gas turbine engines, which may be connected to, for example, one or more hydraulic fracturing pumps to pump hydraulic fracturing fluid into wellheads. For example, in some embodiments, an intake air treatment assembly may be provided to enhance the efficiency of operation of a gas turbine engine including an inlet assembly positioned to supply intake air to the gas turbine engine. The intake air treatment assembly may include a filtration assembly including one or more pre-cleaners to receive ambient air drawn into the filtration assembly via operation of the gas turbine engine, and the one or more pre-cleaners may include one or more inertial separators configured to separate particles and/or liquid from the ambient air to provide at least partially filtered intake air prior to the ambient air reaching the inlet of the gas turbine engine. The pre-cleaners, in at least some embodiments, may serve to reduce particles and/or liquid from reaching one or more filters, which may reduce the rate at which the one or more filters need to be services or replaced, thereby reducing maintenance and downtime associated with the one or more filters.


According to some embodiments, a pre-cleaner to enhance the efficiency of separation of particles and/or fluid from intake air supplied to a gas turbine engine, may include a first panel positioned to face outward from a filtration assembly and a second panel opposite the first panel. The first panel and the second panel may at least partially define a separator cavity therebetween. The pre-cleaner further may include one or more inertial separators extending between the first panel and the second panel. The one or more inertial separators may be positioned to separate a portion of particles and/or liquid from ambient air, thereby to provide at least partially filtered intake air for supply to the gas turbine engine. The one or more inertial separators may include an air flow tube having a proximal end connected to the first panel, may extend toward the second panel, and may terminate at a distal end. The air flow tube may define an interior cross-sectional area. The one or more inertial separators further may include a diverter connected to the air flow tube and positioned to cause ambient air entering the air flow tube to swirl as the ambient air flows from the proximal end of the air flow tube to the distal end of the air flow tube. The one or more inertial separators also may include a separator tube connected to the second panel and extending from the second panel toward the distal end of the air flow tube. The separator tube may have an exterior cross-sectional area smaller than the interior cross-sectional area of the air flow tube.


According to some embodiments, an intake air treatment assembly to enhance the efficiency of operation of a gas turbine engine including an inlet assembly positioned to supply intake air to the gas turbine engine, may include a turbine housing configured to at least partially enclose the gas turbine engine and the inlet assembly. The turbine housing may be positioned to facilitate supply of intake air to the inlet assembly of the gas turbine engine. The intake air treatment assembly may further include a filtration assembly connected to the turbine housing and positioned to provide a flow path to supply at least partially filtered intake air to the inlet assembly of the gas turbine engine. The filtration assembly may include a pre-cleaner positioned to receive ambient air drawn into the filtration assembly via operation of the gas turbine engine and including one or more inertial separators configured to separate a first portion of particles and/or liquid from the ambient air, thereby to provide at least partially filtered intake air. The filtration assembly further may include one or more filters positioned in the flow path downstream of the pre-cleaner and configured to separate a second portion of the particles and/or liquid from the at least partially filtered intake air, thereby to provide the at least partially filtered intake air to the inlet assembly of the gas turbine engine.


According to some embodiments, a hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation may include a chassis having a longitudinal chassis axis and a width perpendicular to the longitudinal chassis axis. The hydraulic fracturing unit further may include a gas turbine engine supported by the chassis, and an inlet assembly connected to the gas turbine engine to supply intake air to the gas turbine engine. The hydraulic fracturing unit also may include a hydraulic fracturing pump connected to the gas turbine engine, and an intake air treatment assembly associated with the intake assembly to enhance the efficiency of operation of the gas turbine engine. The intake air treatment assembly may include a turbine housing at least partially enclosing the gas turbine engine and the inlet assembly, and positioned to facilitate supply of intake air to the inlet assembly of the gas turbine engine. The hydraulic fracturing unit further may include a filtration assembly connected to the turbine housing and positioned to provide a flow path to supply at least partially filtered intake air to the inlet assembly. The filtration assembly may include a pre-cleaner positioned to receive ambient air drawn into the filtration assembly via operation of the gas turbine engine and including one or more inertial separators configured to separate a first portion of particles and/or liquid from the ambient air, thereby to provide at least partially filtered intake air. The filtration assembly also may include one or more filters positioned in the flow path downstream of the pre-cleaner and configured to separate a second portion of the particles and/or liquid from the at least partially filtered intake air, thereby to provide the at least partially filtered intake air to the inlet assembly of the gas turbine engine.


According to some embodiments, a method to enhance the efficiency of operation of a gas turbine engine may include causing ambient air to flow toward an inlet assembly connected to the gas turbine engine, and passing the ambient air through one or more pre-cleaners to cause the ambient air to swirl and separate a first portion of particles and/or liquid from the ambient air, thereby to provide at least partially filtered intake air. The method further may include passing the at least partially filtered intake air through one or more filters to separate a second portion of the particles and/or liquid from the at least partially filtered intake air, thereby to provide further filtered intake air. The method also may include supplying the further filtered intake air to the intake assembly.


Still other aspects and advantages of these exemplary embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other objects, along with advantages and features of the present disclosure, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included to provide a further understanding of the embodiments of the present disclosure, are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure, and together with the detailed description, serve to explain principles of the embodiments discussed herein. No attempt is made to show structural details of this disclosure in more detail than can be necessary for a fundamental understanding of the embodiments discussed herein and the various ways in which they can be practiced. According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings can be expanded or reduced to more clearly illustrate embodiments of the disclosure.



FIG. 1 schematically illustrates an example hydraulic fracturing system including a plurality of example hydraulic fracturing units, according to embodiments of the disclosure.



FIG. 2 is a schematic perspective view of an example hydraulic fracturing unit, according to embodiments of the disclosure.



FIG. 3A is a schematic partial side section view of an example hydraulic fracturing unit, according to embodiments of the disclosure.



FIG. 3B is a schematic detailed partial side section view of an example intake air treatment assembly of the example hydraulic fracturing unit shown in FIG. 3A, according to embodiments of the disclosure.



FIG. 4A is a schematic perspective view of an example intake air treatment assembly, according to embodiments of the disclosure.



FIG. 4B is a schematic top view of an example intake air treatment assembly showing an example flow path, according to embodiments of the disclosure.



FIG. 4C is a schematic top view of another example intake air treatment assembly showing another example flow path, according to embodiments of the disclosure.



FIG. 4D is a schematic top view of an example intake air treatment assembly including example sound attenuation baffles, according to embodiments of the disclosure.



FIG. 4E is a schematic top view of another example intake air treatment assembly not including sound attenuation baffles, according to embodiments of the disclosure.



FIG. 5A is a schematic perspective view of an example pre-cleaner viewed from an exterior side, according to embodiments of the disclosure.



FIG. 5B is a schematic perspective partial section view of the example pre-cleaner shown in FIG. 5A, according to embodiments of the disclosure.



FIG. 5C is a schematic side view of the example pre-cleaner shown in FIG. 5A viewed from the exterior side, according to embodiments of the disclosure.



FIG. 5D is a schematic bottom view of the example pre-cleaner shown in FIG. 5A, according to embodiments of the disclosure.



FIG. 5E is a schematic end view of the example pre-cleaner shown in FIG. 5A, according to embodiments of the disclosure.



FIG. 5F is a schematic partial side section view of an example inertial separator of the example pre-cleaner shown in FIG. 5A, according to embodiments of the disclosure.



FIG. 6 is a graph showing backpressure as a function of air velocity through an example inertial separator, according to embodiments of the disclosure.



FIG. 7 is a graph showing inertial separator efficiency as a function of flow rate through an example inertial separator for example coarse particles and example fine particles, according to embodiments of the disclosure.



FIG. 8 is a schematic diagram of an embodiment of an intake air treatment assembly for increasing the efficiency of a gas turbine engine, according to embodiments of the disclosure.



FIG. 9 shows an exemplary system setup of an air conditioning system for a gas turbine engine, according to embodiments of the disclosure.



FIG. 10 illustrates example performance loss of the gas turbine engine with increased temperature, according to embodiments of the disclosure.



FIG. 11 illustrates, in table form, ambient air properties at different elevations and temperatures, according to embodiments of the disclosure.



FIG. 12 is a schematic diagram of an example electrical system for operating an example intake air treatment assembly, according to embodiments of the disclosure.



FIG. 13 is a schematic diagram of an example hydraulic system for operating an example intake air treatment system, according to embodiments of the disclosure.





DETAILED DESCRIPTION

The drawings include like numerals to indicate like parts throughout the several views, the following description is provided as an enabling teaching of exemplary embodiments, and those skilled in the relevant art will recognize that many changes may be made to the embodiments described. It also will be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those skilled in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the embodiments and not in limitation thereof.


The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. As used herein, the term “plurality” refers to two or more items or components. The terms “comprising,” “including,” “carrying,” “having,” “containing,” and “involving,” whether in the written description or the claims and the like, are open-ended terms, i.e., to mean “including but not limited to,” unless otherwise stated. Thus, the use of such terms is meant to encompass the items listed thereafter, and equivalents thereof, as well as additional items. The transitional phrases “consisting of” and “consisting essentially of,” when present, are closed or semi-closed transitional phrases, respectively, with respect to any claims. Use of ordinal terms such as “first,” “second,” “third,” and the like in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish claim elements.



FIG. 1 schematically illustrates a top view of an example hydraulic fracturing system 10 including a plurality of hydraulic fracturing units 12, according to embodiments of the disclosure. FIG. 2 is a schematic perspective view of an example hydraulic fracturing unit 12, according to embodiments of the disclosure. FIG. 3A is a schematic partial side section view of an example hydraulic fracturing unit 12, and FIG. 3B is a detailed partial side section view of an example intake air treatment assembly 14 of the example hydraulic fracturing unit 12 shown in FIG. 3A, according to embodiments of the disclosure. As explained herein, the intake air treatment assembly 14, in some embodiments, may be configured to enhance the efficiency of operation of a prime mover, such as a gas turbine engine (GTE) 16, including an inlet assembly 18 positioned to supply intake air to the GTE 16.


As shown in FIGS. 3A and 3B, in some embodiments, one or more of the hydraulic fracturing units 12 may include a hydraulic fracturing pump 20 driven by a GTE 16. In some embodiments, the prime mover may be a type of internal combustion engine other than a GTE, such as a reciprocating-piston engine (e.g., a diesel engine). In some embodiments, each of the hydraulic fracturing units 12 may include a directly-driven turbine (DDT) hydraulic fracturing pump 20, in which the hydraulic fracturing pump 20 is connected to one or more GTEs 16 that supply power to the respective hydraulic fracturing pump 20 for supplying fracturing fluid at high pressure and high flow rates to a formation. For example, the GTE 16 may be connected to a respective hydraulic fracturing pump 20 via a transmission 22 (e.g., a reduction gearbox) connected to a drive shaft, which, in turn, is connected to a driveshaft or input flange of a respective hydraulic fracturing pump 20, which may be a reciprocating hydraulic fracturing pump. Other types of engine-to-pump arrangements are contemplated as will be understood by those skilled in the art.


In some embodiments, one or more of the GTEs 16 may be a dual-fuel or bi-fuel GTE, for example, capable of being operated using of two or more different types of fuel, such as natural gas and diesel fuel, although other types of fuel are contemplated. For example, a dual-fuel or bi-fuel GTE may be capable of being operated using a first type of fuel, a second type of fuel, and/or a combination of the first type of fuel and the second type of fuel. For example, the fuel may include gaseous fuels, such as, for example, compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. Other types and associated fuel supply sources are contemplated. The one or more GTEs 16 may be operated to provide horsepower to drive the transmission 22 connected to one or more of the hydraulic fracturing pumps 20 to safely and successfully fracture a formation during a well stimulation project or fracturing operation.


In some embodiments, the fracturing fluid may include, for example, water, proppants, and/or other additives, such as thickening agents and/or gels, such as guar. For example, proppants may include grains of sand, ceramic beads or spheres, shells, and/or other particulates, and may be added to the fracturing fluid, along with gelling agents to create a slurry as will be understood by those skilled in the art. The slurry may be forced via the hydraulic fracturing pumps 16 into the formation at rates faster than can be accepted by the existing pores, fractures, faults, or other spaces within the formation. As a result, pressure in the formation may build rapidly to the point where the formation fails and begins to fracture. By continuing to pump the fracturing fluid into the formation, existing fractures in the formation may be caused to expand and extend in directions away from a well bore, thereby creating additional flow paths for hydrocarbons to flow to the well. The proppants may serve to prevent the expanded fractures from closing or may reduce the extent to which the expanded fractures contract when pumping of the fracturing fluid is ceased. Once the well is fractured, large quantities of the injected fracturing fluid may be allowed to flow out of the well, and the water and any proppants not remaining in the expanded fractures may be separated from hydrocarbons produced by the well to protect downstream equipment from damage and corrosion. In some instances, the production stream of hydrocarbons may be processed to neutralize corrosive agents in the production stream resulting from the fracturing process.


In the example shown in FIG. 1, the hydraulic fracturing system 10 may include one or more water tanks 24 for supplying water for fracturing fluid, one or more chemical additive units 26 for supplying gels or agents for adding to the fracturing fluid (e.g., guar, etc.), and one or more proppant tanks 28 (e.g., sand tanks) for supplying proppants for the fracturing fluid. The example hydraulic fracturing system 10 shown also includes a hydration unit 30 for mixing water from the water tanks 24 and gels and/or agents from the chemical additive units 26 to form a mixture, for example, gelled water. The example shown also includes a blender 32, which receives the mixture from the hydration unit 30 and proppants via conveyers 34 from the proppant tanks 28. The blender 32 may mix the mixture and the proppants into a slurry to serve as fracturing fluid for the hydraulic fracturing system 10. Once combined, the slurry may be discharged through low-pressure hoses, which convey the slurry into two or more low-pressure lines in a fracturing manifold 36. In the example shown, the low-pressure lines in the fracturing manifold 36 may feed the slurry to the hydraulic fracturing pumps 20 through low-pressure suction hoses as will be understood by those skilled in the art.


The hydraulic fracturing pumps 20, driven by the respective GTEs 16, discharge the slurry (e.g., the fracturing fluid including the water, agents, gels, and/or proppants) at high flow rates and/or high pressures through individual high-pressure discharge lines into two or more high-pressure flow lines, sometimes referred to as “missiles,” on the fracturing manifold 36. The flow from the high-pressure flow lines is combined at the fracturing manifold 36, and one or more of the high-pressure flow lines provide fluid flow to a manifold assembly 38, sometimes referred to as a “goat head.” The manifold assembly 38 delivers the slurry into a wellhead manifold 40. The wellhead manifold 40 may be configured to selectively divert the slurry to, for example, one or more wellheads 42 via operation of one or more valves. Once the fracturing process is ceased or completed, flow returning from the fractured formation discharges into a flowback manifold, and the returned flow may be collected in one or more flowback tanks as will be understood by those skilled in the art.


As schematically depicted in FIG. 1, FIG. 2, and FIG. 3A, one or more of the components of the fracturing system 10 may be configured to be portable, so that the hydraulic fracturing system 10 may be transported to a well site, quickly assembled, operated for a relatively short period of time, at least partially disassembled, and transported to another location of another well site for use. For example, the components may be connected to and/or supported on a chassis 44, for example, a trailer and/or a support incorporated into a truck, so that they may be easily transported between well sites. In some embodiments, the GTE 16, the hydraulic fracturing pump 20, and/or the transmission 22 may be connected to the chassis 44. For example, the chassis 44 may include a platform 46, and the transmission 22 may be connected to the platform 46, and the GTE 16 may be connected to the transmission 22. In some embodiments, the GTE 16 may be connected to the transmission 22 without also connecting the GTE 16 directly to the platform 46, which may result in fewer support structures being needed for supporting the GTE 16, hydraulic fracturing pump 20, and/or transmission 22 on the chassis 44.


As shown in FIG. 1, some embodiments of the hydraulic fracturing system 10 may include one or more fuel supplies 48 for supplying the GTEs 16 and any other fuel-powered components of the hydraulic fracturing system 10, such as auxiliary equipment, with fuel. The fuel supplies 48 may include gaseous fuels, such as compressed natural gas (CNG), natural gas, field gas, pipeline gas, methane, propane, butane, and/or liquid fuels, such as, for example, diesel fuel (e.g., #2 diesel), bio-diesel fuel, bio-fuel, alcohol, gasoline, gasohol, aviation fuel, and other fuels as will be understood by those skilled in the art. Gaseous fuels may be supplied by CNG bulk vessels, such as fuel tanks coupled to trucks, a gas compressor, a liquid natural gas vaporizer, line gas, and/or well-gas produced natural gas. The fuel may be supplied to the hydraulic fracturing units 12 by one of more fuel lines supplying the fuel to a fuel manifold and unit fuel lines between the fuel manifold and the hydraulic fracturing units 12. Other types and associated fuel supply sources and arrangements are contemplated as will be understood by those skilled in the art.


As shown in FIG. 1, some embodiments also may include one or more data centers 50 configured to facilitate receipt and transmission of data communications related to operation of one or more of the components of the hydraulic fracturing system 10. Such data communications may be received and/or transmitted via hard-wired communications cables and/or wireless communications, for example, according to known communications protocols. For example, the data centers 50 may contain at least some components of a hydraulic fracturing control assembly, such as a supervisory controller configured to receive signals from components of the hydraulic fracturing system 10 and/or communicate control signals to components of the hydraulic fracturing system 10, for example, to at least partially control operation of one or more components of the hydraulic fracturing system 10, such as, for example, the GTEs 16, the hydraulic fracturing pumps 20, and/or the transmissions 22 of the hydraulic fracturing units 12, the chemical additive units 26, the hydration units 30, the blender 32, the conveyers 34, the fracturing manifold 36, the manifold assembly 38, the wellhead manifold 40, and/or any associated valves, pumps, and/or other components of the hydraulic fracturing system 10.


As shown in FIGS. 3A and 3B, in some embodiments, the transmission 22 may include a transmission input shaft 52 connected to a prime mover output shaft 54 (e.g., a turbine output shaft), such that the transmission input shaft 52 rotates at the same rotational speed as the prime mover output shaft 54. The transmission 22 may also include a transmission output shaft 56 positioned to be driven by the transmission input shaft 52 at a different rotational speed than the transmission input shaft 52. In some embodiments, the transmission 22 may be a reduction gearbox, which results in the transmission output shaft 56 having a relatively slower rotational speed than the transmission input shaft 52. The transmission 22 may include a continuously variable transmission, an automatic transmission including one or more planetary gear trains, a transmission shiftable between different ratios of input-to-output, etc., or any other suitable of types of transmissions as will be understood by those skilled in the art.


As shown in FIGS. 3A and 3B, in some embodiments, the hydraulic fracturing pump 20 may be, for example, a reciprocating fluid pump, as explained herein. In some embodiments, the hydraulic fracturing pump 20 may include a pump drive shaft 58 connected to the transmission output shaft 56, such that the transmission output shaft 56 drives the pump drive shaft 58 at a desired rotational speed. For example, the transmission output shaft 56 may include an output shaft connection flange, and the pump drive shaft 58 may include a drive shaft connection flange, and the output shaft connection flange and the drive shaft connection flange may be coupled to one another, for example, directly connected to one another. In some embodiments, the transmission output shaft 56 and the pump drive shaft 58 may be connected to one another via any known coupling types as will be understood by those skilled in the art (e.g., such as a universal joint and/or a torsional coupling).


As shown in FIGS. 2 and 3A, in some embodiments, the chassis 44 may be or include a trailer 60 including the platform 46 for supporting components of the hydraulic fracturing unit 12, one or more pairs of wheels 62 facilitating movement of the trailer 60, a pair of retractable supports 64 to support the hydraulic fracturing unit 12 during use, and a tongue 66 including a coupler 68 for connecting the trailer 60 to a truck for transport of the hydraulic fracturing unit 12 between well sites to be incorporated into a hydraulic fracturing system 10 of a well site fracturing operation, as will be understood by those skilled in the art.


As shown in FIGS. 2, 3A, and 3B, some embodiments of the intake air treatment assembly 14 may include a turbine housing 70 configured to at least partially enclose the GTE 16 and the inlet assembly 18. The turbine housing 70 may be positioned to facilitate supply of intake air to the inlet assembly 18 of the GTE 16. The turbine housing 70 may be connected to and supported by the chassis 44 according to embodiments of the disclosure. In some embodiments, as shown in FIGS. 3A and 3B, the GTE 16 may be connected to the transmission 22 via the prime mover output shaft 54 and the transmission input shaft 52, both of which may be substantially contained within the turbine housing 70. The inlet assembly 18 may include an air intake duct 72 and a turbine exhaust duct 74 passing through walls of the turbine housing 70 and connected to the GTE 16. The GTE 16 may be connected to the hydraulic fracturing pump 20 via the transmission 22, with the transmission output shaft 56 connected to the pump drive shaft 58, for example, as explained herein.


As shown in FIGS. 1, 2, 3A, and 3B, some embodiments of the hydraulic fracturing pump 20 may have physical dimensions configured such that the hydraulic fracturing pump 20 does not exceed the space available on the platform 46, for example, while still providing a desired pressure output and/or flow output to assist with performing the fracturing operation as explained herein. For example, the hydraulic fracturing pump 20 may have a pump length dimension substantially parallel to a longitudinal axis of the platform 46 that facilitates placement and/or connection of the hydraulic fracturing pump 20 on the platform 46, for example, without causing the hydraulic fracturing unit 12 to exceed a length permitted for transportation on public highways, for example, in compliance with government regulations. In some embodiments, for example, as shown in FIG. 2, the hydraulic fracturing pump 20 may have a pump width dimension substantially perpendicular to a longitudinal axis of the platform 46 that facilitates placement and/or connection of the hydraulic fracturing pump 20 on the platform 46, for example, without causing the hydraulic fracturing unit 12 to exceed a width permitted for transportation on public highways, for example, in compliance with government regulations. For example, the hydraulic fracturing pump 14 may have a pump width perpendicular to the longitudinal axis of the platform 46, such that the pump width is less than or equal to the width of the platform, for example, as shown in FIG. 2. As shown in FIG. 2, in some embodiments, as viewed from the rear of the platform 46 and in a direction substantially parallel to the longitudinal axis of the platform 46, an end of the hydraulic fracturing pump 20 may take on the appearance of an inverted V and may include two, four, six, eight, or more plungers that reciprocate in two banks of plungers in planes defining an angle therebetween ranging, for example, from about 20 degrees to about 180 degrees (e.g., from about 30 degrees to about 120 degrees, about 90 degrees, about 70 degrees, about 60 degrees, or about 45 degrees). Hydraulic fracturing pumps having an in-line architecture and having two or more plungers (e.g., three, four, five, or more plungers) reciprocating in a common plane are contemplated


As shown in FIG. 2, FIG. 3A, FIG. 3B, FIG. 4B, FIG. 4C, FIG. 4D, and FIG. 4E, some embodiments of the intake air treatment assembly 14 may include a filtration assembly 76 connected to the turbine housing 70 and positioned to provide a flow path to supply at least partially filtered intake air to the inlet assembly 18 of the GTE 16. For example, FIGS. 4A-4E show schematic views of an example intake air treatment assembly 14, according to embodiments of the disclosure.


For example, the filtration assembly 76 may include a filtration housing 78 connected to the turbine housing 70, for example, as shown. In some embodiments, the filtration assembly 76 may include one or more pre-cleaners 80 positioned to receive ambient air drawn into the filtration assembly 76 via operation of the GTE 16. As shown, in some embodiments, the one or more pre-cleaners 80 may include one or more inertial separators 82 configured to separate a first portion of particles and/or liquid from the ambient air, thereby to provide at least partially filtered intake air for use by the GTE 16 during operation. For example, the ambient air, particularly in harsh environments common to oilfield operations, may include contaminates, such as particles and/or liquid, including, for example, sand, dust, dirt, water, ice, proppants, and/or fracturing fluid additives, such as thickening agents and/or gels, such as guar. For example, proppants may include grains of sand, ceramic beads or spheres, shells, and/or other particulates, along with gelling agents, and such materials may become suspended in the ambient air and drawn into the GTE 16 during operation, unless separated from the ambient air, for example, via the pre-cleaners 80 and/or other types of filtration. In some embodiments, the one or more pre-cleaners 80 may be configured to separate one or more of these contaminates from ambient air supplied to the GTE 16 during operation to prevent damage to components of the GTE 16 and/or to reduce maintenance and/or downtime associated with the GTE 16, for example, as discussed herein.


In some embodiments, the filtration housing 78 and one or more of the pre-cleaners 80 may at least partially define a filtration chamber 84, for example, as shown in FIGS. 4B-4E. The filtration assembly 76 may include one or more filters 86 positioned in the filtration chamber 84 and positioned in the flow path downstream of the one or more pre-cleaners 80 and configured to separate a second portion of the particles and/or liquid from the at least partially filtered intake air received from the one or more pre-cleaners 80, thereby to provide at least partially (e.g., further) filtered intake air to the inlet assembly 18 of the GTE 16. For example, the one or more filters 86 may serve to separate additional particles and/or liquid from the partially filtered ambient air received from the one or more pre-cleaners 80. In some embodiments, the pre-cleaners 80 may be configured to separate relatively larger particles and/or larger liquid droplets from the ambient air, and the filters 84 may be configured to separate relatively smaller particles and/or larger liquid droplets from the partially filtered ambient air received from the pre-cleaners 80, for example, as described herein. Use of the pre-cleaners 80, in some embodiments, may reduce the frequency with which the filters 86 need to be serviced or replaced due to obstruction or clogging by particles and/or liquid in the ambient air. In some embodiments, as shown in FIGS. 4B and 4C, the one or more filters 86 may include one or more pre-filters 88 and/or one or more final filters 90, and in some embodiments, additional filtration downstream of the pre-filters 88 and/or the final filters 90. In some embodiments, the one or more pre-filters 88 may include one or more medium-efficiency intermediate filters (e.g., one or more cartridge-type pre-filters and/or bag-type pre-filters), and the one or more final filters 90 may include one or more high-efficiency final filters.



FIG. 4B is a schematic top view of an example intake air treatment assembly 14 showing an example flow path, according to embodiments of the disclosure. As shown in FIG. 4B, in some embodiments, during operation of the GTE 16, ambient air 92 is drawn into the filtration housing 78 via the one or more pre-cleaners 80. As described herein, the pre-cleaners 80 may include one or more inertial separators 82 (see, e.g., FIGS. 4A and 5A-5F) configured to separate a first portion of particles and/or liquid from the ambient air 92, thereby to provide at least partially filtered intake air 94. The at least partially filtered intake air 94 may be further drawn into and through the one or more filters 86, including, in at least some embodiments, the pre-filters 88 and/or the final filters 90 downstream relative to the pre-cleaners 80. The one or more filters 86 may be configured to separate a second portion of the particles and/or liquid from the at least partially filtered intake air 94, thereby to provide filtered intake air 96 (e.g., the at least partially filtered intake air, which may be further filtered relative to the at least partially filtered intake air 94 received from the pre-cleaners 80). As shown, in some embodiments, the filtered intake air 96 may be supplied to the inlet assembly 18 of the GTE 16, with or without additional filtration.


As shown in FIG. 4B, in some embodiments, the intake assembly 18 may be separated into two or more separate intake assemblies 18a and 18b configured to supply at least partially filtered intake air (e.g., intake air 96) to one or more GTEs 16. For example, in some embodiments, the two or more intake assemblies 18a and 18b may be configured to supply the at least partially filtered intake air 94 to a single GTE 16, for example, from opposite sides of the hydraulic fracturing unit 12 (e.g., from the driver side and the passenger side of the trailer 60). In some embodiments, the two or more intake assemblies 18a and 18b may be configured to supply the at least partially filtered intake air 94 to two or more GTEs 16 of a common hydraulic fracturing unit 12. FIG. 4C is a schematic top view of another example intake air treatment assembly 14 showing another example flow path, according to embodiments of the disclosure. In the example embodiment shown in FIG. 4C, the example intake assembly 18 may be a combined or single intake assembly 18 configured to supply at least partially filtered intake air (e.g., the at least partially filtered intake air 96) to one or more GTEs 16. For example, in some embodiments, the single intake assembly 18 may be configured to supply the at least partially filtered intake air 94 to a single GTE 16 of a hydraulic fracturing unit 12. In some embodiments, the single intake assembly 18 may be configured to supply the at least partially filtered intake air 94 to two or more GTEs 16 of a common hydraulic fracturing unit 12.



FIG. 4D is a schematic top view of an example intake air treatment assembly 14 including example sound attenuation baffles 100, according to embodiments of the disclosure, and FIG. 4E is a schematic top view of another example intake air treatment assembly 14 without sound attenuation baffles, according to embodiments of the disclosure. As shown in FIG. 4D, some embodiments of the intake air treatment assembly 14 may include one or more sound attenuation baffles received in the filtration chamber 84 and configured to reduce sound generated during operation of the GTE 16 caused by air drawn into the filtration chamber 84 during operation of the GTE 16. In the example shown, the sound attenuation baffles 100 are positioned downstream relative to the pre-cleaners 80 and the filters 86, but upstream relative to the inlet assembly 18, which may include an inlet plenum (and/or inlet manifold), for example, as shown in FIGS. 4D and 4E.


In some embodiments, the filtration housing 78 may include one or more access panels 102 positioned to facilitate access to the filtration chamber 84, as shown in FIG. 4A. For example, the access panels 102 may enable maintenance or replacement of the filters 86 and/or the sound attenuation baffles 100, for example, if the filtration chamber 84 houses sound attenuation baffles 100. Some embodiments may not include sound attenuation baffles, for example, as shown in FIG. 4E.



FIG. 5A, FIG. 5B, FIG. 5C, FIG. 5D, and FIG. 5E are schematic views of an example pre-cleaner 80, according to embodiments of the disclosure. FIG. 5A is a schematic perspective view of the example pre-cleaner 80 viewed from an exterior side. In some embodiments, one or more of the pre-cleaners 80 may include one or more inertial separators 82 configured to separate particles and/or liquid from ambient air 92 passing through the pre-cleaners 80, thereby to provide at least partially filtered intake air 94 (see, e.g., FIGS. 4B and 4C). As shown in FIGS. 5A and 5B, in some embodiments, the pre-cleaners 80 may include an exterior panel 104 facing outward from the filtration assembly 76, and an interior panel 106 opposite the exterior panel 104 and facing inward toward an interior of the filtration assembly 76, for example, toward the filtration chamber 84. The exterior panel 104 and the interior panel 106 may at least partially define a separator cavity 108 therebetween, for example, as shown in FIG. 5B.


As shown in FIGS. 5A, 5B, 5C, and 5E, the exterior panel 104 and/or the interior panel 106 may at least partially define an upper end 110 and a lower end 112, and a plurality of the inertial separators 82 may be arranged in groups 114 extending diagonally between the upper end 110 and the lower end 112 of the pre-cleaner 80. For example, as shown in FIGS. 5A-5C, the groups 114 of inertial separators 82 may include two or more inertial separators 82 (e.g., groups of three inertial separators 82 as shown), and/or the groups 114 may be spaced from one another lengthwise and/or height-wise across the pre-cleaners 80. For example, as shown, the pre-cleaners 80 may include multiple groups 114 spaced across the pre-cleaners 80 and from the upper end 110 toward the lower end 112 of the pre-cleaners 80. In some embodiments, the spacing may facilitate internal reinforcement of the pre-cleaners 80, for example, with internal bracing 116 to prevent the exterior panel 104 and/or the interior panel 106 from deflecting toward one another and/or collapsing during operation of the GTE 16. In some embodiments, the spacing and/or the diagonal arrangements of the groups 114 may allow particles and/or liquid separated from the ambient air 92 by the inertial separators 82 to fall or drop to a lower end of the separator cavity 108 to facilitate removal of the separated particles and/or liquid from the pre-cleaners 80. Other configurations of groups 114 of the inertial separators 82 are contemplated. In some embodiments, the inertial separators 82 may not be arranged in groups across the pre-cleaner 80.


As shown, some embodiments of the pre-cleaner 80 may include a pre-cleaner bypass 118 connected to the pre-cleaner 80 and positioned to receive ambient air expelled from the inertial separators 82 that does not exit the pre-cleaner 80 via the interior panel 106 and/or that includes the first portion of the particles and/or liquid separated from the ambient air 92. For example, some of the ambient air 92 entering the pre-cleaner 80, rather than exiting the pre-cleaner 80 via the inertial separators 82, may be expelled from the pre-cleaner 80 via the pre-cleaner bypass 118. In some embodiments, as particles and/or liquid separated from the ambient air 92 by the inertial separators 82 fall or drop within the separator cavity 108, the particles and/or liquid may pass through the pre-cleaner bypass 118 located at the lower end 112 of the pre-cleaner 80. In some embodiments, the pre-cleaner bypass 118 may be configured to be connected to a conduit 120 configured to draw-off the ambient air and/or the particles and/or liquid passing into the pre-cleaner bypass 118 from the intake air treatment assembly 14, for example, as shown in FIG. 5A.


As shown in FIGS. 5A and 5E, some embodiments of the pre-cleaner 80 may include one or more access plates 122 configured to provide access to the separator cavity 108, for example, to service the pre-cleaner 80 and/or remove particles and/or liquid from the separator cavity 108, for example, particles and/or liquid that do not drop into the pre-cleaner bypass 118. For example, the pre-cleaner 80 may include side panels 124 at opposite longitudinal ends of the pre-cleaner 80 and extending between the exterior panel 104 and the interior panel 106, and one or more access plates 122 may be located at lower ends of one or more of the side panels 124.


In some embodiments, the pre-cleaner 80 may include one or more lifting fixtures 126 configured to facilitate lifting and mounting of the pre-cleaner 80 to the filtration housing 78. The lifting fixtures 126 may include, for example, hooks, eyebolts, and/or other devices to facilitate lifting of the pre-cleaner 80 via a lifting mechanism, such as a forklift or crane. For example, the pre-cleaner 80 may include an upper panel 128 and a lower panel 130 at the upper end 110 and lower end 112, respectively, of the pre-cleaner 80 and extending between the exterior panel 104 and the interior panel 106, and one or more lifting fixtures 126 may be located at the upper panel 128. The side panels 124, the upper panel 128, and the lower panel 130 may at least partially define the separator cavity 108 of the pre-cleaner 80.


As shown in FIG. 5A, the pre-cleaner 80 may include one or more flanges 131 extending outward from a perimeter of the pre-cleaner 80. The one or more flanges 131 may facilitate connection of the pre-cleaner 80 to the filtration assembly 76 via, for example, one or more fasteners, adhesives, and/or welding.


As shown in FIG. 5B, for example, in some embodiments, the exterior panel 104 may at least partially define one or more exterior holes 132, and the interior panel 106 may at least partially define one or more interior holes 134. The one or more exterior holes 132 and the one or more interior holes 134 may provide mounting points for the one or more inertial separators 82, for example, as described with respect to FIG. 5E and FIG. 5F.


For example, as schematically shown in FIG. 5E, an example inertial separator 82 extends between the exterior panel 104 and the interior panel 106 with opposite ends of the inertial separator 82 being connected to the exterior panel 104 and the interior panel 106 at respective exterior holes 132 and interior holes 134, with exterior holes 132 providing ambient air flow into the pre-cleaner 80 via the inertial separator 82. The interior holes 134 provide partially filtered air flow from the inertial separator 82 into the filtration chamber 84.


As shown in FIG. 5E and FIG. 5F, in some embodiments, the one or more pre-cleaners 80 may include one or more (e.g., a plurality of) inertial separators 82 to separate a first portion of particles and/or liquid from the ambient air 92, thereby to provide the at least partially filtered intake air 94 for operation of the GTE 16. For example, as shown, the one or more inertial separators 82 may include an air flow tube 138, a diverter 140, and/or a separator tube 142. As shown in FIG. 5F, the air flow tube 138 may have a proximal end 144 connected to the exterior panel 104, may extend toward the interior panel 106, and may terminate at a distal end 146. In some embodiments, the diverter 140 may be connected to the air flow tube 138 and may be positioned to cause the ambient air 92 entering the air flow tube 138 to swirl as the ambient air 92 flows from the proximal end 144 of the air flow tube 138 to the distal end 146 of the air flow tube 138, for example, as schematically depicted in FIG. 5F. For example, the diverter 140 may include one or more stator blades 148 presenting one or more curved surfaces to cause the ambient air 92 entering the air flow tube 138 to swirl as the ambient air 92 passes the one or more stator blades 148 and flows from the proximal end 144 of the air flow tube 138 to the distal end 146 of the air flow tube 138.


As shown in FIGS. 5E and 5F, in some embodiments, the separator tube 142 may be connected to the interior panel 106 and may extend from the interior panel 106 toward the distal end 146 of the air flow tube 138. The separator tube 142 may have a proximal end 150 connected to the interior panel 106 and may terminate at a distal end 152. As shown, in some embodiments, the air flow tube 138 may define an interior cross-sectional area, and the separator tube 142 may have an exterior cross-sectional area smaller than the interior cross-sectional area of the air flow tube 138, for example, and the distal end 152 of the separator tube 142 may be received in the distal end 146 of the air flow tube 138, such that the distal end 152 of the separator tube 142 terminates between the distal end 146 and the proximal end 144 of the air flow tube 138, for example, as shown in FIG. 5F.


In some embodiments, the separator tube 142 may be connected to the interior panel 106, such that an interior passage 154 of the separator tube 142 provides a first separator flow path 156 for the at least partially filtered intake air 94 to exit the inertial separator 82 through the interior passage 154 of the separator tube 142 and the interior hole 134 of the interior panel 106. For example, as shown in FIG. 5F, the separator tube 142 may be positioned relative to the distal end 146 of the air flow tube 138 to provide the first separator flow path 156 for the at least partially filtered intake air 94 to exit the pre-cleaner 80 through the interior passage 154 of the separator tube 142. In some embodiments, the distal end 146 of the air flow tube 138 may be connected to the separator tube 142 (e.g., at an exterior surface 158, as shown) and may at least partially define a second separator flow path 160 for the first portion of particles and/or liquid 162 to be separated from the ambient air 92 entering the inertial separator 82. For example, one or more struts 164 may connect the exterior surface 158 of the distal end 152 of the separator tube 142 to the distal end 146 of the air flow tube 138, for example, as shown in FIG. 5F.


In some embodiments, the second separator flow path 160 may be configured and/or positioned to deposit the first portion of the particles and/or liquid 162 into the separator cavity 108, for example, as shown in FIG. 5E. For example, the distal end 146 of the air flow tube 138 may terminate between the exterior panel 104 and the interior panel 106, thereby at least partially defining the second separator flow path 160 for the first portion of the particles and/or liquid 162 to be separated from the ambient air 92 entering the inertial separator 82, with the second separator flow path 160 passing between the exterior surface 158 of the separator tube 142 and an interior surface 166 of the air flow tube 138. As shown in FIG. 5F, in some embodiments, an interior passage 168 of the air flow tube 138, the interior passage 154 of the separator tube 142, and/or the exterior surface 158 of the separator tube 142 may have a substantially circular cross-sectional shape. Other cross-sectional shapes are contemplated.


Applicant has recognized that for some embodiments, for ambient air that flows through the pre-cleaners 80 via the inertial separators 82, as the velocity of the ambient air increases, the resistance or pressure against the flow of the ambient air also increases, which reduces the efficiency of operation and/or the power output of the GTE 16. Thus, reducing the velocity of the ambient air flowing through the pre-cleaner 80 via the inertial separators 82 may result in more efficient operation and/or a higher power output of the GTE 16. Applicant has also recognized that reducing the velocity of the ambient air flowing through the pre-cleaner 80 and the inertial separators 82 also reduces the effectiveness of the removal of particles and/or liquid from the ambient air passing through the inertial separators 82.


Some embodiments according to the present disclosure address the high pressure associated with high ambient air velocities and/or the reduced effectiveness of the particle and/or liquid separation by (1) reducing the cross-sectional area of the inertial separators 82 (e.g., by reducing the diameter of the inertial separators 82, for example, when the interior passage 168 of the air flow tube 138, the interior passage 154 of the separator tube 142, and/or the exterior surface 158 of the separator tube 142 have a substantially circular cross-sectional shape), and/or (2) providing relatively more inertial separators 82 per unit area of the pre-cleaner 80. By reducing the cross-sectional area of the inertial separators 82, the angular acceleration of particles and/or liquid in the ambient air 92 is increased for a given air flow velocity, which, in turn, causes the particles and/or liquid to be forced outward toward the interior surface 166 of the air flow tube 138 by the diverter 140 as the particles and/or liquid travel in a substantially helical path down the length of the air flow tube 138 between the proximal end 144 of the air flow tube 138 to the distal end 146 of the air flow tube 138 (see, e.g., FIG. 5F). Because the particles and/or liquid are forced outward by the relatively higher angular acceleration due to centrifugal force due to the smaller diameter, the particles and/or liquid travel radially outward relative to the distal end 152 of the separator tube 142 and follow the second separator flow path 160 into the separator cavity 108 of the pre-cleaner 80. The ambient air 92, separated from the particles and/or liquid that follows the second separator flow path 160, continues in through the interior passage 154 of the separator tube 142, following the first separator flow path 156. By reducing the cross-sectional area of the inertial separators 82, a relatively greater percentage of the particles and/or liquid in the ambient air 92 may be separated from the ambient air 92 by the inertial separators 82 for the ambient air 92 travelling at a given velocity. In some embodiments, this may facilitate reducing the velocity of the ambient air 92 flowing through the pre-cleaners 80 and thus reducing the pressure drop of the ambient air 92 passing through the pre-cleaners 80 to enhance operation of the GTE 16, while maintaining, or even increasing, the effectiveness of the separation of particles and/or liquid from the ambient air 92.


In addition, by reducing the cross-sectional area of the inertial separators 82, relatively smaller particles (e.g., fine silica dust) and/or liquid droplets in the ambient air 92 may be more effectively separated from the ambient air 92 by the inertial separators 82 for the ambient air 92 travelling at a given velocity. According to some embodiments, this may be desirable in environments in which hydraulic fracturing operations are being performed due to the smaller dust particles and/or liquid droplets, sometimes including gels, that are often present in the ambient air 92 in such environments. According to some embodiments, by increasing the number of inertial separators 82 for given surface area of a pre-cleaner 80, the volume of ambient air 92 flowing through the pre-cleaner 80 during operation of the GTE 16 may be substantially maintained, even though the cross-sectional area of the inertial separators 82 may be relatively reduced.


In some embodiments, the cross-sectional area of the inertial separators 82 may be substantially circular, and the inertial separators 82 (e.g., measured at the air flow tube 138) may have a diameter ranging from about 0.5 inches to about 6 inches, for example, from about 0.5 inches to about 5.5 inches, from about 0.5 inches to about 5.0 inches, from about 0.5 inches to about 4.5 inches, from about 0.5 inches to about 4.0 inches, from about 0.5 inches to about 3.5 inches, from about 0.5 inches to about 3.0 inches, from about 0.5 inches to about 2.5 inches, from about 0.5 inches to about 2.0 inches, or from about 1.0 inches to about 2.0 inches (e.g., about 1.5 inches). In some embodiments, the size of the diameter may be critical for balancing the effectiveness of the inertial separators 82 with the velocity of the flow of the ambient air 92 as it passes through the inertial separators 82, which results in effective separation of the particles and/or liquid from the ambient air 92 and reducing the pressure drop of the ambient air 92 as it flows through the inertial separators 82. For example, the cross-sectional area of the inertial separators 82 may be based, at least in part, on one or more parameters, such as, for example, the desired volume flow rate of the at least partially filtered intake air 94 through the pre-cleaners 80, the available space for the pre-cleaners 80, the maximum desired pressure drop through the pre-cleaners 80, and/or the air flow velocity through the pre-cleaners 80 desired to generate sufficient centrifugal force to achieve desired particle separation efficiencies (e.g., for particle size ranges and/or particle types desired to be separated by the pre-cleaners 80). Other parameters are contemplated.


In some embodiments, the distance between the exterior panel 104 and the interior panel 106 of the pre-cleaners 80 may range from about 1.0 inch to about 10.0 inches, for example, from about 1.5 inches to about 9.5 inches, from about 2.0 inches to about 9.0 inches, from about 2.5 inches to about 8.5 inches, from about 3.0 inches to about 8.0 inches, from about 3.5 inches to about 7.5 inches, from about 4.0 inches to about 7.0 inches, from about 4.5 inches to about 6.5 inches, or from about 5.0 inches to about 6.0 inches (e.g., about 5.5 inches). In some embodiments, the distance between the exterior panel 104 and the interior panel 106, and thus, length of the inertial separators 82 may be critical for balancing the effectiveness of the inertial separators 82 with the velocity of the flow of the ambient air 92 as it passes through the inertial separators 82, which results in effective separation of the particles and/or liquid from the ambient air 92 and reducing the pressure drop of the ambient air 92 as it flows through the inertial separators 82.


In some embodiments, the ratio of the distance between the exterior panel 104 and the interior panel 106 of the pre-cleaners 80 to the diameter of the inertial separators 82 (e.g., measured at the air flow tube 138), for example, when the air flow tube 82 has a substantially circular cross-section) may range from about 1:1 to about 10:1, for example, from about 1:1 to about 9:1, from about 1:1 to about 8:1, from about 1:1 to about 7:1, from about 1:1 to about 6:1, from about 1:1 to about 5:1, from about 1:1 to about 4:1, from about 1.5:1 to about 4:1, from about 2:1 to about 4:1, from about 2.5:1 to about 4:1, or from about 3:1 to about 4:1 (e.g., about 3.5:1). In some embodiments, this ratio may be critical for balancing the effectiveness of the inertial separators 82 with the velocity of the flow of the ambient air 92 as it passes through the inertial separators 82, which results in effective separation of the particles and/or liquid from the ambient air 92 and reducing the pressure drop of the ambient air 92 as it flows through the inertial separators 82.


In some embodiments, the pre-cleaners 80 may be configured to separate particles and/or liquid present in the ambient air 92, where the particles and/or liquid include one or more of mud, rain, ice, snow, leaves, sawdust, chaff, sand, dust (e.g., silica dust), proppant materials, gels (e.g., guar), and/or other possible contaminates that may be present in the ambient air surrounding, for example, a hydraulic fracturing operation. In some embodiments, the pre-cleaners 80 may be configured to separate particles and/or liquid present in the ambient air 92 having a median particle size and/or a median droplet size ranging from about 1.0 micrometer (micron) to about 15 microns, for example, from about 1.5 microns to about 14 microns, from about 2.0 microns to about 13 microns, from about 2.5 microns to about 12 microns, from about 2.5 microns to about 11 microns, from about 2.5 microns to about 10 microns, from about 2.5 microns to about 9 microns, from about 2.5 microns to about 8 microns, from about 2.5 microns to about 7 microns, from about 2.5 microns to about 6 microns, from about 2.5 microns to about 5 microns, or from about 2.5 microns to about 4 microns (e.g., about 3 microns). In some embodiments, the pre-cleaners 80 may be configured to separate particles and/or liquid present in the ambient air 92 having a median particle size and/or a median droplet size of about 5.0 microns or less, for example, of about 4.5 microns or less, of about 4.0 microns or less, of about 3.5 microns or less, of about 3.0 microns or less, of about 2.5 microns or less, of about 2.0 microns or less, of about 1.5 microns or less, or of about 1.0 micron or less. In some embodiments, the particle size may be critical for sizing the cross-section of the inertial separators 82 (e.g., selecting the diameter of the inertial separators 82 (e.g., measured at the air flow tube 138)) and/or the distance between the exterior panel 104 and the interior panel 106 of the pre-cleaners 80, for example, to balance the effectiveness of the inertial separators 82 with the velocity of the flow of the ambient air 92 as it passes through the inertial separators 82, which may result in effective separation of the particles and/or liquid from the ambient air 92 and reducing the pressure drop of the ambient air 92 as it flows through the inertial separators 82.


In some embodiments, the pre-cleaners 80 may be configured to separate a percentage of particles and/or liquid present in the ambient air 92 ranging from about 87% to about 97% by weight, for example, from about 88% to about 96% by weight, from about 89% to about 96% by weight, or from about 90% to about 95% by weight, for example, for coarse particles and/or liquid present in the ambient air 92 having a median particle size and/or a median droplet size ranging from about 2.5 microns to about 10 microns. In some embodiments, the pre-cleaners 80 may be configured to separate a percentage of particles and/or liquid present in the ambient air 92 ranging from about 70% to about 90% by weight, for example, from about 71% to about 89% by weight, from about 72% to about 88% by weight, from about 73% to about 87% by weight, from about 74% to about 86% by weight, from about 75% to about 85% by weight, for example, for fine particles and/or liquid present in the ambient air 92 having a median particle size and/or a median droplet size of about 2.5 microns or less.



FIG. 6 is a graph 200 showing backpressure or pressure drop as a function of air velocity through an example inertial separator 82, according to embodiments of the disclosure. As shown by the example relationship 202 shown in FIG. 6, as the velocity of the ambient air flowing through the example inertial separator 82 increases, the resistance to flow through the inertial separator 82 also increases (e.g., the pressure drop through the example inertial separator 82 increases). Thus, as the velocity of the ambient air flowing through the example inertial separator 82 increases, the efficiency of operation of the GTE 16 may decrease and/or the power output of the GTE 16 may decrease, thereby potentially hindering operation of the GTE 16 and the hydraulic fracturing 3 operation.



FIG. 7 is a graph 300 showing inertial separator efficiency as a function of flow rate through an example inertial separator 82 for example coarse particles 302 and example fine particles 304, according to embodiments of the disclosure. As shown by the example relationships 302 and 304 shown in FIG. 7, as the flow rate of the ambient air flowing through the example inertial separator 82 increases, the efficiency of the separation of particles from the ambient air by the example inertial separator 82 also increases. In addition, comparing the relationships 302 and 304 for course and fine particles shows that as the size of the particles present in the ambient air increases, the efficiency of the separation of the particles from the ambient air also increases for a given flow rate of the ambient air through the example inertial separator. Thus, although increasing the flow rate of the ambient air flowing through the example inertial separator 82 results in increasing the efficiency of the separation of particles, as shown in FIG. 6, this also increases the resistance to air flow through the example inertial separator, which, in turn, may adversely the effect of operation of the GTE 16, reducing the efficiency and/or power output of the GTE 16. As noted herein, some embodiments of the assemblies and/or processes according to embodiments described herein, may mitigate and/or overcome these potential drawbacks, as well as possibly others.


Referring to FIGS. 8 and 9, another example intake air treatment assembly 14 is described for operation with an example GTE 16. In some embodiments, the GTE 16 may generally include, in serial flow arrangement, an inlet assembly 18 including an inlet for receiving and channeling ambient air 92 to a compressor of the GTE 16, which receives and compresses the ambient air 92, a combusting assembly that mixes fuel and the compressed ambient air 92, ignites the mixture, and allows for the gaseous by-product to flow to a turbine section, which transfers energy from the gaseous by-product to an output power. Other components of the GTE 16 may be used therein as will be understood by those skilled in the art.


In some embodiments, the intake air treatment assembly 14 may be incorporated into a hydraulic fracturing unit, for example, as described herein. For example, a hydraulic fracturing unit 12 may include a trailer 60 and a hydraulic fracturing pump 20 to pump fracturing fluid into a wellhead 42, with the hydraulic fracturing pump 20 connected to the trailer 60, for example, as described herein. The hydraulic fracturing unit 12 also may include the GTE 16 to drive the hydraulic fracturing pump 20, for example, via a transmission 22 (e.g., a reduction gearbox), and the intake air treatment assembly 14, in some embodiments, may be used to increase the efficiency of operation of the GTE 16.


A hydraulic fracturing operation may be performed generally at any geographic location and during any season of the year, often in harsh environmental conditions. As a result, hydraulic fracturing may occur under a wide variety of ambient temperatures and pressures, depending on the location and time of year. In addition, the load on hydraulic fracturing pumps and thus the GTEs may change or fluctuate greatly, for example, depending on the build-up and release of pressure in the formation being fractured during the fracturing operation. In some embodiments, the intake air treatment assembly 14 may be configured to increase the efficiency of operation of a GTE, for example, during operation in a wide variety of ambient conditions and/or under fluctuating loads. Performance losses may be expected at increased temperatures, increased altitude, and/or increased humidity when using a dual-fuel turbine system for a mobile hydraulic fracturing unit configured to drive a reciprocating hydraulic fracturing pump via a gearbox, or to drive a generator as part of a gen-set. These environmental conditions may lead to the air being less dense, which may adversely affect turbine system performance as the mass air flow through the air intake and one or more axial compression stages of the GTE are directly proportional to the power output of the GTE.


In some embodiments, as explained herein, the intake air treatment assembly 14 may include an air treatment housing 170, one or more pressure control assemblies 172, and one or more temperature control assemblies 174. In some embodiments, the filtration assembly 76 may be positioned between the one or more pressure control assemblies 170 and the inlet assembly 18 of the GTE 16. In some embodiments, the one or more pressure control assemblies 172 and/or one or more temperature control assemblies 174 may be configured to condition ambient air supplied to the GTE 16, for example, to cause a desired increase in the mass flow of air through the one or more axial compression stages of the GTE 16, thereby at least partially mitigating or overcoming any performance losses of the GTE 16 of a hydraulic fracturing unit 12 due to increased temperature, increased altitude, and/or increased humidity, while being able to respond to fluctuating loads.


As discussed herein, performance losses may be expected at increased temperature, increased altitude, and/or increased humidity, for example, when using a dual-fuel turbine system in a mobile application that is configured to drive a reciprocating hydraulic fracturing pump or drive a generator as part of a gen-set. These environmental conditions may lead to the air being less dense. The relative density of air may be an important factor for operation of a GTE as the mass air flow through the one or more axial compression stages may be directly proportional to the GTE's power output. The intake air treatment assembly 14, in some embodiments, may facilitate selective conditioning of intake air, which may cause a desired increase in air density of air entering the intake assembly of the GTE. For example, as described in more detail herein, in some embodiments, the intake air treatment assembly 14 may filter ambient air entering the intake air treatment assembly 14, may boost the pressure of ambient air entering the intake air treatment assembly 14, and/or may lower the temperature of the ambient air entering the intake air treatment assembly 14, for example, to increase the operating efficiency of the GTE.


For example, as schematically shown in FIG. 8, the example air treatment housing 170 may be configured to channel ambient air 92 towards the inlet assembly 18 of the GTE 16 and/or may be positioned upstream of the inlet assembly 18 of the GTE 16, which supplies a treated (e.g., filtered, pressure controlled, and/or temperature controlled (e.g., cooled)) flow of the ambient air to a compressor of the GTE 16. The air treatment housing 170 may include a filtration housing 78, a pressure control assembly 172, and/or a temperature control assembly 174 configured to facilitate structural integration into the inlet assembly 18 of the GTE 16. The integration of the inlet assembly 18 of the GTE 16 and the air treatment housing 170 may facilitate a more controlled flow of the ambient air flowing through pressure control assembly 172, the temperature control assembly 174, and/or the filtration assembly 76 and thereafter to the inlet assembly 18 of the GTE 16. The air treatment housing 170 may be connected to the inlet assembly 18 of the GTE 16 via, for example, a plenum and/or one or more connectors, such as, for example, one or more fasteners (e.g., screws, bolts, clamps, and/or rivets), adhesives, and/or welding. The air treatment housing 170 may be formed of, or may include, any one or more materials capable of supporting the air treatment housing 170. Such materials may include, for example, metal and/or other structural materials.


The pressure control assembly 172 may include one or more pre-cleaners 80 and one or more blower fans 176 configured to pressurize air entering the intake air treatment assembly 14. In some embodiments, the pressure control assembly 172 may be positioned at a proximal end 178 of the air treatment housing 170. The one or more pre-cleaners 80 may be in fluid communication with a first pressure control chamber 180 of the pressure control assembly 172, and the one or more blower fans 176 may be mounted in the first pressure control chamber 180 to pressurize air entering the first pressure control chamber 180 via the one or more pre-cleaners 80. In some embodiments, it is contemplated that the one or more pre-cleaners 80 separate or knock down debris, such as particles and/or liquid, present in the ambient air 92 entering the intake air treatment assembly 14, including mud, rain, ice, snow, leaves, sawdust, chaff, sand, dust (e.g., silica dust), proppant materials, gels (e.g., guar), and/or other possible contaminates. As shown in FIGS. 8 and 9, the pre-cleaners 80 may be, or include, inertial separators configured to continuously or intermittently eject particles and/or liquid before reaching a filtration assembly 76 that may be mounted internally within the air treatment housing 170, for example, without the need for further cleaning or shutting-down the associated hydraulic fracturing unit 12, for example, to replace one or more of the pre-cleaners 80.


In some embodiments, to at least partially compensate for any pressure drop through the one or more pre-cleaners 80 and/or to boost pressure and/or the flow rate of the air supplied to the GTE 16, the one or more blower fans 176, which may be operated by one or more motors, such as one or more electric motors, hydraulic motors, and/or pneumatic motors, may be provided and positioned to raise the overall air flow rate up to a desired air feed rate, such as, for example, about 28,000 cubic feet per minute (CFM), to increase an inlet pressure at the inlet of the GTE 16 with a resultant increase in efficiency of operation of the GTE 16. In some embodiments, for example, as schematically shown in FIG. 8, at least one of the one or more blower fans 176 may be connected to a motor 182 and may be positioned in the first pressure control chamber 180 of the pressure control assembly 172 to boost the pressure of intake air to a desired level after any pressure drop created as the ambient air 92 passes through the one or more pre-cleaners 80 and into the filtration assembly 76 downstream of the pressure control assembly 172. The one or more blower fans 176 may include a squirrel-cage blower fan and/or any other suitable types of blower fans, such as other conventional electrically, hydraulically, or pneumatically powered blower fans, such as vane axial fans. In some embodiments, the intake air treatment assembly 14 may be integrated with a bypass configured to circumvent the pressure control assembly 172, for example, to mitigate or reduce any pressure drop created when, for example, the pressure control assembly 172 is not operating.


In some embodiments, the one or more blower fans 176 may pressurize the air exiting the pressure control assembly 172 to a degree sufficient to at least partially overcome any pressure drop associated with air passing through the one or more pre-cleaners 80 positioned upstream and/or associated with the air passing through the pressure control assembly 172 positioned downstream relative to the pressure control assembly 172, and, if used, any downstream filtration assembly 76 positioned upstream of the pressure control assembly 172, as well as any other losses the system may encounter, such as rarefication of the inlet air to the one or more blower fans 176. For example, a downstream filter assembly 76 may include a pre-filter 88 and/or a final filter 90, such as a high-efficiency filter, a conventional vane inlet with a low cartridge-type pre-filter, and/or bag-type pre-filter that would be suitable for filtration, periodic cleaning, and/or replacement.


It is contemplated that the one or more blower fans 176 may be relatively oversized to allow for further pressurization of the air at the downstream inlet of the GTE 16. Such relative oversizing may allow for suitable compensation for the loss of atmospheric pressure and air density, for example, associated with higher geographic elevations. The change in pressure due to a change in elevation may be calculated via the following equation:






P
=



P
b

[


T
b



T
b

+


L
b

(

H
-

H
b


)



]




g
0


M



R
*



L
b










    • where:

    • P=local atmospheric pressure;

    • Pb=static pressure at sea level;

    • Tb=temperature at sea level;

    • Lb=temperature lapse rate;

    • Hb=elevation at sea level;

    • H=local elevation;

    • R*=universal gas constant;

    • g0=gravity; and

    • M=molar mass of air.





From the calculated pressure, a new or corrected density of the air at the constant atmospheric pressure may be calculated. FIG. 10 is a graph 400 showing the change in pressure as a function of increased elevation. It also shows the calculated density in reference to temperature change and elevation change.






ρ
=

p


R
sp


T








    • where:

    • P=absolute pressure;

    • ρ=density;

    • T=absolute temperature; and

    • RSP=specific gas constant.





Referring now to FIG. 11, the conventional factor for performance loss of the GTE 16 with increased temperature is a 0.4% to about 0.5% reduction in performance for every one degree Fahrenheit (F) increase over 59 degrees F. For example, as shown in the graph 400, at 500 feet elevation, reducing the air temperature from about 100 degrees F. to about 90 degrees F., results in an output power increase from an example GTE of about 140 horsepower, or about 4%. This example increase in output power results from the temperature decreasing while maintaining a constant air pressure. The ideal gas law equation may be used to calculate the density of the air as a function of the change in temperature.



FIG. 11 illustrates, in tabular form, air properties at different elevations and temperatures. As shown in FIG. 11, for example, at an altitude of 500 feet, a decrease in air temperature from about 100 degrees F. to about 90 degrees F. will result in a density increase of 0.0013 lbm/ft3, or about a 1.8% increase in density. For at least some embodiments of GTE 16, for every percentage of air density increase, the power output efficiency of the GTE 16 may increase by about 2.2%.


As shown in FIG. 8, in some embodiments, the first pressure control chamber 180 of the pressure control assembly 172 may be in fluid communication with a filtration chamber 84 of a filtration housing 78 via at least one outlet 184 of the air conditioning assembly 172. In some embodiments, the pressure control assembly 172 may further include one or more drift eliminators and/or coalescer pads configured to, for example, reduce the amount of liquid in the air flowing through the pressure control assembly 172.


In some embodiments, the one or more temperature control assemblies 174 may be provided for adjusting the temperature of the airstream passing through the air treatment housing 170 and toward the inlet assembly 18 of the GTE 16, and, in some embodiments, may be positioned or mounted downstream of the pressure control assembly 172. The airstream may enter the one or more temperature control assemblies 174 at a first temperature and exits the one or more temperature control assemblies 174 a second temperature, for example, as a second temperature lower than the first temperature. In some embodiments, the one or more temperature control assemblies 174 may include, for example, one or more chillers and/or other devices (e.g., air conditioning units) configured to reduce the temperature of the air flowing through the one or more temperature control assemblies 174. In some embodiments, the specific form of the one or more temperature control assemblies 174 may be tailored based, at least in part, on the configuration of the GTE 16, for example.


In some embodiments, the one or more temperature control assemblies 174 may include one or more chiller assemblies 186. For example, the one or more chiller assemblies 186 may include an arrangement of condenser coils 188 disposed in the air treatment housing 170 and configured to at least partially span the width of the air treatment housing 170, such that, for example, the airstream passes through and/or around the condenser coils 188 to reduce the temperature of the airstream that is directed downstream toward the inlet assembly 18 of the GTE 16. The condenser coils 188 may be in fluid communication with a source of pressurized chilled refrigerant. The refrigerant may be any conventional refrigerant, such as, for example, R22, R410a, and/or similar refrigerants. In some embodiments, the refrigerant may be cooled to about 45 degrees F., although the refrigerant may be cooled to other desired temperature based at least partially on the operating conditions of the hydraulic fracturing unit 12 and/or the GTE 16.


It is contemplated that the one or more temperature control assemblies 174 may decrease the temperature of the airstream entering the inlet assembly 18 of the GTE 16 to increase the efficiency and/or power output of the GTE 16. For example, the one or more temperature control assemblies 174 may decrease a temperature of the airstream by an amount ranging from about 2 degrees F. to about 20 degrees F., for example, from about 5 degrees F. and about 10 degrees F. In some applications, increasing the efficiency and/or the power output of the GTE 16 may result in more efficient operations. For example, in a hydraulic fracturing operation including multiple hydraulic fracturing units 12, each operating a GTE 16 to supply power to drive respective hydraulic fracturing pumps 20, such increases in efficiency and/or power output may facilitate reducing the number the GTEs 16 and/or hydraulic fracturing units being operated, while still providing sufficient power to achieve or exceed desired fracturing fluid pressures and/or flow rates for completion of the hydraulic fracturing operation.


In some embodiments, in elevational cross-sectional view, the condenser coils 188 of the chiller assemblies 186 may have a substantially planar shape, may be W-shaped, V-shaped, or other geometric shapes. The chiller assemblies 186 further may be configured to provide a source of pressurized and/or chilled refrigerant. For example, the chiller assemblies 186 may include a one or more compressors 190 incorporated into a refrigeration cycle and configured to supply pressurized and/or chilled refrigerant to the condenser coils 188. The one or more compressors 190 may include one or more of the following types of compressors: a reciprocating compressor, a scroll compressor, a screw compressor, a rotary compressor, a centrifugal compressor, and/or other known compressor types suitable for providing compressed refrigerant. In some embodiments, the source of pressurized chilled supply may be provided by one or more chill lines carrying pressurized refrigerant, for example, that may be routed through and/or around a cooling source, such as, for example, at least one gas source in liquid form.


In some embodiments, the condenser coils 188 may be placed in an existing radiator package, for example, associated with the hydraulic fracturing unit 12 and/or the hydraulic fracturing operation, where lube coolers and/or engine coolers for the GTE 16 are housed. In some embodiments, the condenser coils 188 may be packaged along with the one or more compressors 190 and an expansion valve of a refrigeration cycle system.



FIG. 12 and FIG. 13 are schematic diagrams of an example electrical assembly 192 and an example hydraulic assembly 194, respectively, for operating examples of intake air treatment assemblies 14, according to embodiments of the disclosure. For example, in some embodiments, it is contemplated that the pressure control assembly 172 and/or one or more of the temperature control assemblies 174 may not be operated at a constant speed or power output. For example, during a cold day with low humidity and/or at a low elevation, the intake air treatment assembly 14 may only utilize the one or more pre-cleaners 80 and/or the one or more filters 86 of the filtration assembly 76. In some embodiments, the one or more blower fans 176 may be selectively engaged to increase the likelihood or ensure that any pressure drop across the pre-cleaners 80 and/or filters 86 is within the GTE manufacturer's guidelines, and/or that one or more of the blower fans 176 will not be run at the respective blower fan's flowrate rating (e.g., cubic feet per minute), nor will one or more of the temperature control assemblies 174 attempt to reduce the temperature of the air to an unnecessarily low temperature. For example, as shown in FIGS. 12 and 13, the pressure control assembly 172 and at least one temperature control assembly 174 may be selectively controlled via proportional motor control that may be operatively configured to function through a combination of the use of programmable VFDs, a PLC control system, an instrumentation, and/or a hydraulic control system.


In some embodiments, ISO conditions of 59 degrees F., 14.696 pounds per square inch atmospheric pressure, at sea level, and 60% relative humidity, may be used as baseline operating levels for control of the intake air treatment assembly 14, for example, because these parameters may often be used to rate a GTE for service.


As shown in FIG. 12, in some embodiments, the intake air treatment assembly 14 may be configured to use one or more signals from one or more sensors, such as atmospheric pressure sensors 196 and/or temperature sensors 198 to facilitate monitoring of, for example, air density through the data inputs and calculating, at a desired sample rate, the density in reference to temperature change and elevation change. It is contemplated that the pressure drop through the one or more pre-cleaners 80 and/or the one or more filters 86 may be monitored via two or more pressure sensors 196, which may be positioned, for example, at the intake of the one or more pre-cleaners 80 and/or filters 86, and at the intake assembly 18 of the GTE 16. A pressure differential between the pressure sensors 196 of the different locations may facilitate the intake air treatment assembly 14 to control operation of the one or more blower fans 176, for example, so that they operate at a desired speed to reduce, mitigate, or overcome any sensed pressure drop between the sensor locations.


In some embodiments, the intake air treatment assembly 14 may include a supervisory control system 199, which may be used to at least partially control operation of the pressure control assembly 172 and/or the temperature control assembly 174. In the event there is a loss of one or more control signals from the supervisory control system 199, the one or more chiller assemblies 186 and/or the one or more blower fans 176 may be configured to automatically revert to operation at maximum output as a failsafe and/or to ensure that operation of the GTE 16 is not ceased. During operation, the pressure sensors 196 and/or the temperature sensors 198 may be configured to provide continuous or intermittent feedback to the supervisory control system 199. In some embodiments, during normal operation, the supervisory control system 199 may be configured to detect a deficiency of the inlet airstream, such as a high temperature and/or a pressure drop, and may further be configured to generate one or more control signals to the blower fan motors and/or the one or more temperature control assemblies, for example, to condition the airstream to mitigate or overcome the environmental losses. In some embodiments, the supervisory control system 199 may include, for example, a PLC, micro-controllers, computer-based controllers, and the like as will be understood by those skilled in the art.



FIG. 13 schematically illustrates an example use of hydraulic power to operate one or more hydraulic motors connected to the one or more blower fans 176 (e.g., if hydraulically powered blower fans are used), and hydraulically-powered fans connected to the one or more temperature control assemblies 174 (e.g., if used). In some such embodiments, one or more proportional hydraulic control valves 201 may be provided and configured to receive operational input from the supervisory control system 199, for example, for selective operation of a spool to control the supply of hydraulic fluid to the temperature control system 174.


Having now described some illustrative embodiments of the disclosure, it should be apparent to those skilled in the art that the foregoing is merely illustrative and not limiting, having been presented by way of example only. Numerous modifications and other embodiments are within the scope of one of ordinary skill in the art and are contemplated as falling within the scope of the disclosure. In particular, although many of the examples presented herein involve specific combinations of method acts or system elements, it should be understood that those acts and those elements may be combined in other ways to accomplish the same objectives. Those skilled in the art should appreciate that the parameters and configurations described herein are exemplary and that actual parameters and/or configurations will depend on the specific application in which the systems, methods, and/or aspects or techniques of the disclosure are used. Those skilled in the art should also recognize or be able to ascertain, using no more than routine experimentation, equivalents to the specific embodiments of the disclosure. It is, therefore, to be understood that the embodiments described herein are presented by way of example only and that, within the scope of any appended claims and equivalents thereto, the disclosure may be practiced other than as specifically described.


This application is a continuation-in-part of U.S. Non-Provisional application Ser. No. 17/954,118, filed Sep. 27, 2022, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/403,373, filed Aug. 16, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/326,711, filed May 21, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,156,159, issued Oct. 26, 2021, which is a continuation U.S. Non-Provisional application Ser. No. 17/213,802, filed Mar. 26, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,060,455, issued Jul. 13, 2021, which is a continuation of U.S. Non-Provisional application Ser. No. 16/948,289, filed Sep. 11, 2020, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,002,189, issued May 11, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/704,565, filed May 15, 2020, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” and U.S. Provisional Application No. 62/900,291, filed Sep. 13, 2019, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM,” the disclosures of which are incorporated herein by reference in their entireties.


The scope of the present disclosure shall be construed to cover various modifications, combinations, additions, alterations, etc., above and to the above-described embodiments, which shall be considered to be within the scope of this disclosure. Accordingly, various features and characteristics as discussed herein may be selectively interchanged and applied to other illustrated and non-illustrated embodiment, and numerous variations, modifications, and additions further may be made thereto without departing from the spirit and scope of the present disclosure as set forth in the appended claims.

Claims
  • 1. A pre-cleaner to enhance the efficiency of separation of one or more of particles or fluid from intake air supplied to a gas turbine engine, the pre-cleaner comprising: a first panel positioned to face outward from a filtration assembly;a second panel opposite the first panel, the first panel and the second panel at least partially defining a separator cavity therebetween; andone or more inertial separators extending between the first panel and the second panel, the one or more inertial separators being positioned to separate a portion of one or more of particles or liquid from ambient air, thereby to provide at least partially filtered intake air for supply to the gas turbine engine, the one or more inertial separators comprising: an air flow tube having a proximal end connected to the first panel, extending toward the second panel, and terminating at a distal end, the air flow tube defining an interior cross-sectional area;a diverter connected to the air flow tube and positioned to cause ambient air entering the air flow tube to swirl as the ambient air flows from the proximal end of the air flow tube to the distal end of the air flow tube; anda separator tube connected to the second panel and extending from the second panel toward the distal end of the air flow tube, the separator tube having an exterior cross-sectional area smaller than the interior cross-sectional area of the air flow tube.
  • 2. The pre-cleaner of claim 1, wherein the separator tube is positioned relative to the distal end of the air flow tube to provide: a first separator flow path for the at least partially filtered intake air to exit the pre-cleaner through an interior passage of the separator tube; anda second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path passing between an exterior surface of the separator tube and an interior surface of the air flow tube.
  • 3. The pre-cleaner of claim 1, wherein the diverter comprises one or more stator blades presenting one or more curved surfaces to cause the ambient air entering the air flow tube to swirl as the ambient air passes the one or more stator blades and flows from the proximal end of the air flow tube to the distal end of the air flow tube.
  • 4. The pre-cleaner of claim 1, wherein the second panel at least partially defines an interior hole, and the separator tube is connected to the second panel such that an interior passage of the separator tube provides a first separator flow path for the at least partially filtered intake air to exit the inertial separator through the interior passage of the separator tube and the interior hole of the second panel.
  • 5. The pre-cleaner of claim 4, wherein the air flow tube is connected to an exterior surface of the separator tube and at least partially defines a second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path being positioned to deposit the first portion of the one or more of particles or liquid into the separator cavity.
  • 6. The pre-cleaner of claim 5, wherein the distal end of the air flow tube terminates between the first panel and the second panel, thereby at least partially defining the second separator flow path.
  • 7. The pre-cleaner of claim 1, further comprising a pre-cleaner bypass connected to one or more of the first panel or the second panel and positioned to receive a portion of the ambient air not flowing through the second panel and the portion of the one or more of particles or liquid separated from the ambient air.
  • 8. The pre-cleaner of claim 1, wherein one or more of an interior passage of the air flow tube, an interior passage of the separator tube, or an exterior surface of the separator tube has a substantially circular cross-sectional shape.
  • 9. The pre-cleaner of claim 1, wherein: the pre-cleaner comprises a plurality of inertial separators; andone or more of the first panel or the second panel at least partially defines an upper end and a lower end, and the plurality of inertial separators are arranged in groups extending diagonally between the upper end and the lower end of the pre-cleaner.
  • 10. The pre-cleaner of claim 1, wherein the pre-cleaner comprises one or more flanges extending outward from a perimeter of the pre-cleaner and providing a connection for connecting the pre-cleaner to a filtration assembly via the one or more flanges.
  • 11. An intake air treatment assembly to enhance the efficiency of operation of a gas turbine engine including an inlet assembly positioned to supply intake air to the gas turbine engine, the intake air treatment assembly comprising: a turbine housing configured to at least partially enclose the gas turbine engine and the inlet assembly and positioned to facilitate supply of intake air to the inlet assembly of the gas turbine engine;a filtration assembly connected to the turbine housing and positioned to provide a flow path to supply at least partially filtered intake air to the inlet assembly of the gas turbine engine, the filtration assembly comprising: a pre-cleaner positioned to receive ambient air drawn into the filtration assembly via operation of the gas turbine engine and comprising one or more inertial separators configured to separate a first portion of one or more of particles or liquid from the ambient air, thereby to provide at least partially filtered intake air; andone or more filters positioned in the flow path downstream of the pre-cleaner and configured to separate a second portion of the one or more of particles or liquid from the at least partially filtered intake air, thereby to provide the at least partially filtered intake air to the inlet assembly of the gas turbine engine.
  • 12. The intake air treatment assembly of claim 11, wherein the pre-cleaner comprises: an exterior panel facing outward from the filtration assembly; andan interior panel opposite the exterior panel and facing inward toward an interior of the filtration assembly, the one or more inertial separators extending between the exterior panel and the interior panel.
  • 13. The intake air treatment assembly of claim 12, wherein the one or more inertial separators comprise: an air flow tube having a proximal end connected to the exterior panel, extending toward the interior panel, and terminating at a distal end, the air flow tube defining an interior cross-sectional area;a diverter connected to the air flow tube and positioned to cause ambient air entering the air flow tube to swirl as the ambient air flows from the proximal end of the air flow tube to the distal end of the air flow tube; anda separator tube connected to the interior panel and extending from the interior panel toward the distal end of the air flow tube, the separator tube having an exterior cross-sectional area smaller than the interior cross-sectional area of the air flow tube.
  • 14. The intake air treatment assembly of claim 13, wherein the separator tube is positioned relative to the distal end of the air flow tube to provide: a first separator flow path for the at least partially filtered intake air to exit the pre-cleaner through an interior passage of the separator tube; anda second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path passing between an exterior surface of the separator tube and an interior surface of the air flow tube.
  • 15. The intake air treatment assembly of claim 13, wherein the diverter comprises one or more stator blades presenting one or more curved surfaces to cause the ambient air entering the air flow tube to swirl as the ambient air passes the one or more stator blades and flows from the proximal end of the air flow tube to the distal end of the air flow tube.
  • 16. The intake air treatment assembly of claim 13, wherein the interior panel at least partially defines an interior hole, and the separator tube is connected to the interior panel such that an interior passage of the separator tube provides a first separator flow path for the at least partially filtered intake air to exit the inertial separator through the interior passage of the separator tube and the interior hole of the interior panel.
  • 17. The intake air treatment assembly of claim 16, wherein: the exterior panel and the interior panel at least partially define a separator cavity therebetween; andthe air flow tube is connected to an exterior surface of the separator tube and at least partially defines a second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path being positioned to deposit the first portion of the one or more of particles or liquid into the separator cavity.
  • 18. The intake air treatment assembly of claim 17, wherein the distal end of the air flow tube terminates between the exterior panel and the interior panel, thereby at least partially defining the second separator flow path.
  • 19. The intake air treatment assembly of claim 13, wherein one or more of an interior passage of the air flow tube, an interior passage of the separator tube, or an exterior surface of the separator tube has a substantially circular cross-sectional shape.
  • 20. The intake air treatment assembly of claim 11, further comprising a pre-cleaner collector connected to the pre-cleaner and positioned to receive the first portion of the one or more of particles or liquid separated from the ambient air.
  • 21. The intake air treatment assembly of claim 11, wherein the one or more filters comprise one or more of a pre-filter or a final filter.
  • 22. The intake air treatment assembly of claim 21, wherein the one or more filters comprise the pre-filter downstream of the pre-cleaner and the final filter downstream of the pre-filter.
  • 23. The intake air treatment assembly of claim 21, wherein the one or more of a pre-filter or a final filter comprises one or more of a medium-efficiency intermediate filter or a high-efficiency final filter.
  • 24. The intake air treatment assembly of claim 21, wherein the one or more of a pre-filter or a final filter comprises one or more of a cartridge-type pre-filter or a bag-type pre-filter.
  • 25. The intake air treatment assembly of claim 11, wherein the pre-cleaner comprises a plurality of inertial separators.
  • 26. The intake air treatment assembly of claim 25, wherein: the pre-cleaner comprises an exterior panel facing outward from the filtration assembly and an interior panel opposite the exterior panel and facing inward toward an interior of the filtration assembly; andone or more of the exterior panel or the interior panel at least partially defines an upper end and a lower end, and the plurality of inertial separators are arranged in groups extending diagonally between the upper end and the lower end of the pre-cleaner.
  • 27. The intake air treatment assembly of claim 11, wherein the pre-cleaner comprises one or more flanges extending outward from a perimeter of the pre-cleaner, and the pre-cleaner is connected to the filtration assembly via the one or more flanges.
  • 28. The intake air treatment assembly of claim 11, wherein the filtration assembly comprises a plurality of pre-cleaners.
  • 29. The intake air treatment assembly of claim 28, wherein: the filtration assembly comprises a filtration housing connected to the turbine housing, the filtration housing and the plurality of pre-cleaners at least partially defining a filtration chamber; andthe one or more filters are positioned in the filtration chamber.
  • 30. The intake air treatment assembly of claim 29, further comprising one or more sound attenuation baffles positioned in the filtration chamber to attenuate sound generated during operation of the gas turbine engine.
  • 31. The intake air treatment assembly of claim 29, wherein the filtration housing comprises one or more access panels positioned to facilitate access to the filtration chamber.
  • 32. A hydraulic fracturing unit to enhance flow of fracturing fluid into a wellhead during a high-pressure fracturing operation, the hydraulic fracturing unit comprising: a chassis having a longitudinal chassis axis and a width perpendicular to the longitudinal chassis axis;a gas turbine engine supported by the chassis;an inlet assembly connected to the gas turbine engine to supply intake air to the gas turbine engine;a hydraulic fracturing pump connected to the gas turbine engine; andan intake air treatment assembly associated with the intake assembly to enhance the efficiency of operation of the gas turbine engine, the intake air treatment assembly comprising: a turbine housing at least partially enclosing the gas turbine engine and the inlet assembly and positioned to facilitate supply of intake air to the inlet assembly of the gas turbine engine;a filtration assembly connected to the turbine housing and positioned to provide a flow path to supply at least partially filtered intake air to the inlet assembly, the filtration assembly comprising: a pre-cleaner positioned to receive ambient air drawn into the filtration assembly via operation of the gas turbine engine and comprising one or more inertial separators configured to separate a first portion of one or more of particles or liquid from the ambient air, thereby to provide at least partially filtered intake air; andone or more filters positioned in the flow path downstream of the pre-cleaner and configured to separate a second portion of the one or more of particles or liquid from the at least partially filtered intake air, thereby to provide the at least partially filtered intake air to the inlet assembly of the gas turbine engine.
  • 33. The hydraulic fracturing unit of claim 32, wherein the pre-cleaner comprises: an exterior panel facing outward from the filtration assembly; andan interior panel opposite the exterior panel and facing inward toward an interior of the filtration assembly, the one or more inertial separators extending between the exterior panel and the interior panel.
  • 34. The hydraulic fracturing unit of claim 33, wherein the one or more inertial separators comprise: an air flow tube having a proximal end connected to the exterior panel, extending toward the interior panel, and terminating at a distal end, the air flow tube defining an interior cross-sectional area;a diverter connected to the air flow tube and positioned to cause ambient air entering the air flow tube to swirl as the ambient air flows from the proximal end of the air flow tube to the distal end of the air flow tube; anda separator tube connected to the interior panel and extending from the interior panel toward the distal end of the air flow tube, the separator tube having an exterior cross-sectional area smaller than the interior cross-sectional area of the air flow tube.
  • 35. The hydraulic fracturing unit of claim 34, wherein the separator tube is positioned relative to the distal end of the air flow tube to provide: a first separator flow path for the at least partially filtered intake air to exit the pre-cleaner through an interior passage of the separator tube; anda second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path passing between an exterior surface of the separator tube and an interior surface of the air flow tube.
  • 36. The hydraulic fracturing unit of claim 34, wherein the diverter comprises one or more stator blades presenting one or more curved surfaces to cause the ambient air entering the air flow tube to swirl as the ambient air passes the one or more stator blades and flows from the proximal end of the air flow tube to the distal end of the air flow tube.
  • 37. The hydraulic fracturing unit of claim 34, wherein the interior panel at least partially defines an interior hole, and the separator tube is connected to the interior panel such that an interior passage of the separator tube provides a first separator flow path for the at least partially filtered intake air to exit the inertial separator through the interior passage of the separator tube and the interior hole of the interior panel.
  • 38. The hydraulic fracturing unit of claim 37, wherein: the exterior panel and the interior panel at least partially define a separator cavity therebetween; andthe air flow tube is connected to an exterior surface of the separator tube and at least partially defines a second separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator, the second separator flow path being positioned to deposit the first portion of the one or more of particles or liquid into the separator cavity.
  • 39. The hydraulic fracturing unit of claim 38, wherein the distal end of the air flow tube terminates between the exterior panel and the interior panel, thereby at least partially defining the second separator flow path.
  • 40. The hydraulic fracturing unit of claim 32, further comprising a pre-cleaner collector connected to the pre-cleaner and positioned to receive the first portion of the one or more of particles or liquid separated from the ambient air.
  • 41. The hydraulic fracturing unit of claim 32, wherein one or more of an interior passage of the air flow tube, an interior passage of the separator tube, or an exterior surface of the separator tube has a substantially circular cross-sectional shape.
  • 42. The hydraulic fracturing unit of claim 32, wherein the one or more filters comprise one or more of a pre-filter or a final filter.
  • 43. The hydraulic fracturing unit of claim 42, wherein the one or more filters comprise the pre-filter downstream of the pre-cleaner and the final filter downstream of the pre-filter.
  • 44. The hydraulic fracturing unit of claim 42, wherein the one or more of a pre-filter or a final filter comprises one or more of a medium-efficiency intermediate filter or a high-efficiency final filter.
  • 45. The hydraulic fracturing unit of claim 42, wherein the one or more of a pre-filter or a final filter comprises one or more of a cartridge-type pre-filter or a bag-type pre-filter.
  • 46. The hydraulic fracturing unit of claim 32, wherein the pre-cleaner comprises a plurality of inertial separators.
  • 47. The hydraulic fracturing unit of claim 46, wherein: the pre-cleaner comprises an exterior panel facing outward from the filtration assembly and an interior panel opposite the exterior panel and facing inward toward the interior of the filtration assembly; andone or more of the exterior panel or the interior panel at least partially defines an upper end and a lower end, and the plurality of inertial separators are arranged in groups extending diagonally between the upper end and the lower end of the pre-cleaner.
  • 48. The hydraulic fracturing unit of claim 32, wherein the pre-cleaner comprises one or more flanges extending outward from a perimeter of the pre-cleaner, and the pre-cleaner is connected to the filtration assembly via the one or more flanges.
  • 49. The hydraulic fracturing unit of claim 32, wherein the filtration assembly comprises a plurality of pre-cleaners.
  • 50. The hydraulic fracturing unit of claim 49, wherein: the filtration assembly comprises a filtration housing connected to the turbine housing, the filtration housing and the plurality of pre-cleaners at least partially defining a filtration chamber; andthe one or more filters are positioned in the filtration chamber.
  • 51. The hydraulic fracturing unit of claim 50, further comprising one or more sound attenuation baffles positioned in the filtration chamber to attenuate sound generated during operation of the gas turbine engine.
  • 52. The hydraulic fracturing unit of claim 50, wherein the filtration housing comprises one or more access panels positioned to facilitate access to the filtration chamber.
  • 53. A method to enhance efficiency of operation of a gas turbine engine, the method comprising: causing ambient air to flow toward an inlet assembly connected to the gas turbine engine;passing the ambient air through one or more pre-cleaners to cause the ambient air to swirl and separate a first portion of one or more of particles or liquid from the ambient air, thereby to provide at least partially filtered intake air;passing the at least partially filtered intake air through one or more filters to separate a second portion of the one or more of particles or liquid from the at least partially filtered intake air, thereby to provide further filtered intake air; andsupplying the further filtered intake air to the intake assembly.
  • 54. The method of claim 53, wherein passing the ambient air through one or more pre-cleaners comprises: passing the ambient air through an air flow tube and a diverter connected to the air flow tube and positioned to cause the ambient air entering the air flow tube to swirl as the ambient air flows from a proximal end of the air flow tube to a distal end of the air flow tube to thereby generate swirling ambient air;passing the swirling ambient air to a separator tube extending from the distal end of the air flow tube; andseparating the first portion of the one or more of particles or liquid from the swirling ambient air via the separator tube.
  • 55. The method of claim 54, wherein passing the ambient air through an air flow tube and the diverter comprises passing the ambient air through one or more stator blades presenting one or more curved surfaces to cause the ambient air entering the air flow tube to swirl.
  • 56. The method of claim 55, wherein passing the at least partially filtered intake air through the one or more filters comprises passing the at least partially filtered intake air through one or more of a pre-filter or a final filter.
  • 57. The method of claim 56, wherein passing the at least partially filtered intake air through the one or more of a pre-filter or a final filter comprises one or more of: passing the at least partially filtered intake air through a pre-filter downstream of the pre-cleaner and the final filter downstream of the pre-filter;passing the at least partially filtered intake air through one or more of a medium-efficiency intermediate filter or a high-efficiency final filter; orpassing the at least partially filtered intake air through one or more of a cartridge-type pre-filter or a bag-type pre-filter.
  • 58. The method of claim 54, wherein separating the first portion of the one or more of particles or liquid from the swirling ambient air via the separator tube comprises: passing the at least partially filtered intake air through an interior passage of the separator tube; andpassing the first portion of the one or more of particles or liquid or tube around an exterior surface of the separator tube.
  • 59. The method of claim 58, further comprising causing the first portion of the one or more of particles or liquid to be deposited into a separator cavity of the one or more pre-cleaners.
  • 60. The method of claim 59, wherein causing the first portion of the one or more of particles or liquid to be deposited into the separator cavity comprises causing the first portion of the one or more of particles or liquid to pass between an exterior panel of the pre-cleaner and an interior panel of the pre-cleaner.
  • 61. The method of claim 60, further comprising: connecting the proximal end of the air flow tube to the exterior panel; andconnecting the separator tube to the interior panel, such that the separator tube extends toward the distal end of the air flow tube and provides flow communication between an interior passage of the air flow tube and an interior passage of the separator tube and an exterior surface of the separator tube.
  • 62. The method of claim 61, further comprising connecting the air flow tube to an exterior surface of the separator tube to at least partially define a separator flow path for the first portion of the one or more of particles or liquid to be separated from the ambient air entering the inertial separator and to be received in the separator cavity.
  • 63. The method of claim 60, further comprising causing the first portion of the one or more of particles or liquid to pass through the separator cavity into a pre-cleaner collector connected to the pre-cleaner and positioned to receive the first portion of the one or more of particles or liquid separated from the ambient air.
  • 64. The method of claim 53, wherein passing the ambient air through the one or more pre-cleaners comprises passing the ambient air through a plurality of inertial separators.
  • 65. The method of claim 53, further comprising passing the further filtered intake air through one or more sound attenuation baffles to attenuate sound generated during operation of the gas turbine engine.
PRIORITY CLAIMS

This application is a continuation-in-part of U.S. Non-Provisional application Ser. No. 17/954,118, filed Sep. 27, 2022, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/403,373, filed Aug. 16, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/326,711, filed May 21, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,156,159, issued Oct. 26, 2021, which is a continuation U.S. Non-Provisional application Ser. No. 17/213,802, filed Mar. 26, 2021, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,060,455, issued Jul. 13, 2021, which is a continuation of U.S. Non-Provisional application Ser. No. 16/948,289, filed Sep. 11, 2020, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” now U.S. Pat. No. 11,002,189, issued May 11, 2021, which claims priority to and the benefit of U.S. Provisional Application No. 62/704,565, filed May 15, 2020, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM AND ASSOCIATED METHODS,” and U.S. Provisional Application No. 62/900,291, filed Sep. 13, 2019, titled “MOBILE GAS TURBINE INLET AIR CONDITIONING SYSTEM,” the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (1051)
Number Name Date Kind
1442239 Stoltz Jan 1923 A
1563413 Whitcomb Dec 1925 A
1716049 Greve Jun 1929 A
1726633 Smith Sep 1929 A
2178662 Lars Nov 1939 A
2427638 Vilter Sep 1947 A
2498229 Adler Feb 1950 A
2535703 Smith et al. Dec 1950 A
2572711 Fischer Oct 1951 A
2820341 Amann Jan 1958 A
2868004 Runde Jan 1959 A
2940377 Darnell et al. Jun 1960 A
2947141 Russ Aug 1960 A
2956738 Rosenschold Oct 1960 A
3068796 Pfluger et al. Dec 1962 A
3191517 Solzman Jun 1965 A
3257031 Dietz Jun 1966 A
3274768 Klein Sep 1966 A
3378074 Kiel Apr 1968 A
3382671 Ehni, III May 1968 A
3401873 Privon Sep 1968 A
3463612 Whitsel Aug 1969 A
3496880 Wolff Feb 1970 A
3550696 Kenneday Dec 1970 A
3560053 Ortloff Feb 1971 A
3586459 Zerlauth Jun 1971 A
3632222 Cronstedt Jan 1972 A
3656582 Alcock Apr 1972 A
3667868 Brunner Jun 1972 A
3692434 Schnear Sep 1972 A
3695808 Beneze et al. Oct 1972 A
3739872 McNair Jun 1973 A
3757581 Mankin Sep 1973 A
3759063 Bendall Sep 1973 A
3765173 Harris Oct 1973 A
3771916 Flanigan et al. Nov 1973 A
3773438 Hall et al. Nov 1973 A
3781135 Nickell Dec 1973 A
3786835 Finger Jan 1974 A
3791682 Mitchell Feb 1974 A
3796045 Foster Mar 1974 A
3801394 Alexander et al. Apr 1974 A
3814549 Cronstedt Jun 1974 A
3820922 Buse et al. Jun 1974 A
3847511 Cole Nov 1974 A
3866108 Yannone Feb 1975 A
3875380 Rankin Apr 1975 A
3963372 McLain et al. Jun 1976 A
4010613 McInerney Mar 1977 A
4019477 Overton Apr 1977 A
4031407 Reed Jun 1977 A
4050862 Buse Sep 1977 A
4059045 McClain Nov 1977 A
4086976 Holm et al. May 1978 A
4117342 Melley, Jr. Sep 1978 A
4147230 Ormond Apr 1979 A
4173121 Yu Nov 1979 A
4204808 Reese et al. May 1980 A
4209079 Marchal et al. Jun 1980 A
4209979 Woodhouse et al. Jul 1980 A
4222229 Uram Sep 1980 A
4239396 Arribau et al. Dec 1980 A
4269569 Hoover May 1981 A
4311395 Douthitt et al. Jan 1982 A
4330237 Battah May 1982 A
4341508 Rambin, Jr. Jul 1982 A
4357027 Zeitlow Nov 1982 A
4383478 Jones May 1983 A
4402504 Christian Sep 1983 A
4430047 Ilg Feb 1984 A
4442665 Fick Apr 1984 A
4457325 Green Jul 1984 A
4470771 Hall et al. Sep 1984 A
4483684 Black Nov 1984 A
4505650 Hannett et al. Mar 1985 A
4574880 Handke Mar 1986 A
4584654 Crane Apr 1986 A
4620330 Izzi, Sr. Nov 1986 A
4672813 David Jun 1987 A
4697668 Barker Oct 1987 A
4754607 Mackay Jul 1988 A
4782244 Wakimoto Nov 1988 A
4796777 Keller Jan 1989 A
4804162 Rice Feb 1989 A
4869209 Young Sep 1989 A
4913625 Gerlowski Apr 1990 A
4983259 Duncan Jan 1991 A
4990058 Eslinger Feb 1991 A
5032065 Yamamuro Jul 1991 A
5135361 Dion Aug 1992 A
5167493 Kobari Dec 1992 A
5245970 Iwaszkiewicz et al. Sep 1993 A
5291842 Sallstrom et al. Mar 1994 A
5326231 Pandeya Jul 1994 A
5362219 Paul et al. Nov 1994 A
5511956 Hasegawa Apr 1996 A
5537813 Davis et al. Jul 1996 A
5553514 Walkowc Sep 1996 A
5560195 Anderson et al. Oct 1996 A
5586444 Fung Dec 1996 A
5622245 Reik Apr 1997 A
5626103 Haws et al. May 1997 A
5634777 Albertin Jun 1997 A
5651400 Corts et al. Jul 1997 A
5678460 Nalkowc Oct 1997 A
5717172 Griffin, Jr. et al. Feb 1998 A
5720598 de Chizzelle Feb 1998 A
5761084 Edwards Jun 1998 A
5811676 Spalding et al. Sep 1998 A
5839888 Harrison Nov 1998 A
5846062 Yanagisawa et al. Dec 1998 A
5875744 Vallejos Mar 1999 A
5983962 Gerardot Nov 1999 A
5992944 Hara Nov 1999 A
6041856 Thrasher et al. Mar 2000 A
6050080 Horner Apr 2000 A
6067962 Bartley et al. May 2000 A
6071188 O'Neill et al. Jun 2000 A
6074170 Bert et al. Jun 2000 A
6123751 Nelson et al. Sep 2000 A
6129335 Yokogi Oct 2000 A
6145318 Kaplan et al. Nov 2000 A
6230481 Jahr May 2001 B1
6250068 Tajima et al. Jun 2001 B1
6279309 Lawlor, II et al. Aug 2001 B1
6321860 Reddoch Nov 2001 B1
6334746 Nguyen et al. Jan 2002 B1
6388317 Reese May 2002 B1
6401472 Pollrich Jun 2002 B2
6530224 Conchieri Mar 2003 B1
6543395 Green Apr 2003 B2
6655922 Flek Dec 2003 B1
6669453 Breeden Dec 2003 B1
6765304 Baten et al. Jul 2004 B2
6786051 Kristich et al. Sep 2004 B2
6832900 Leu Dec 2004 B2
6851514 Han et al. Feb 2005 B2
6859740 Stephenson et al. Feb 2005 B2
6901735 Lohn Jun 2005 B2
6962057 Kurokawa et al. Nov 2005 B2
7007966 Campion Mar 2006 B2
7047747 Tanaka May 2006 B2
7065953 Kopko Jun 2006 B1
7143016 Discenzo et al. Nov 2006 B1
7222015 Davis et al. May 2007 B2
7281519 Schroeder Oct 2007 B2
7388303 Seiver Jun 2008 B2
7404294 Sundin Jul 2008 B2
7442239 Armstrong et al. Oct 2008 B2
7524173 Cummins Apr 2009 B2
7545130 Latham Jun 2009 B2
7552903 Dunn et al. Jun 2009 B2
7563076 Brunet et al. Jul 2009 B2
7563413 Naets et al. Jul 2009 B2
7574325 Dykstra Aug 2009 B2
7581379 Yoshida et al. Sep 2009 B2
7594424 Fazekas Sep 2009 B2
7614239 Herzog et al. Nov 2009 B2
7627416 Batenburg et al. Dec 2009 B2
7677316 Butler et al. Mar 2010 B2
7721521 Kunkle et al. May 2010 B2
7730711 Kunkle et al. Jun 2010 B2
7779961 Matte Aug 2010 B2
7789452 Dempsey et al. Sep 2010 B2
7836949 Dykstra Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7861679 Lemke et al. Jan 2011 B2
7886702 Jerrell et al. Feb 2011 B2
7900724 Promersberger et al. Mar 2011 B2
7921914 Bruins et al. Apr 2011 B2
7938151 Höckner May 2011 B2
7955056 Pettersson Jun 2011 B2
7980357 Edwards Jul 2011 B2
8056635 Shampine et al. Nov 2011 B2
8083504 Williams et al. Dec 2011 B2
8099942 Alexander Jan 2012 B2
8167980 Hiner et al. May 2012 B2
8186334 Ooyama May 2012 B2
8196555 Keda et al. Jun 2012 B2
8202354 Iijima Jun 2012 B2
8292216 Rumberger, Jr. Oct 2012 B1
8316936 Roddy et al. Nov 2012 B2
8336631 Shampine et al. Dec 2012 B2
8388317 Sung Mar 2013 B2
8414673 Raje et al. Apr 2013 B2
8469826 Brosowske Jun 2013 B2
8491687 Wann Jul 2013 B1
8500215 Gastauer Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8575873 Peterson et al. Nov 2013 B2
8616005 Cousino, Sr. et al. Dec 2013 B1
8621873 Robertson et al. Jan 2014 B2
8641399 Mucibabic Feb 2014 B2
8656990 Kajaria et al. Feb 2014 B2
8672606 Glynn et al. Mar 2014 B2
8673040 Handley et al. Mar 2014 B2
8707853 Dille et al. Apr 2014 B1
8708667 Collingborn Apr 2014 B2
8714253 Sherwood et al. May 2014 B2
8757918 Ramnarain et al. Jun 2014 B2
8763583 Hofbauer et al. Jul 2014 B2
8770329 Spitler Jul 2014 B2
8784081 Blume Jul 2014 B1
8789601 Broussard et al. Jul 2014 B2
8794307 Coquilleau et al. Aug 2014 B2
8801394 Anderson Aug 2014 B2
8840364 Warton et al. Sep 2014 B2
8851186 Shampine et al. Oct 2014 B2
8851441 Acuna et al. Oct 2014 B2
8894356 Lafontaine et al. Nov 2014 B2
8905056 Kendrick Dec 2014 B2
8951019 Hains et al. Feb 2015 B2
8973560 Krug Mar 2015 B2
8997904 Cryer et al. Apr 2015 B2
9011111 Lesko Apr 2015 B2
9016383 Shampine et al. Apr 2015 B2
9032620 Frassinelli et al. May 2015 B2
9057247 Kumar et al. Jun 2015 B2
9097249 Petersen Aug 2015 B2
9103193 Coli et al. Aug 2015 B2
9121257 Coli et al. Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9175810 Hains Nov 2015 B2
9187982 Dehring et al. Nov 2015 B2
9206667 Khvoshchev et al. Dec 2015 B2
9212643 Deliyski Dec 2015 B2
9222346 Walls Dec 2015 B1
9249733 Hallam et al. Feb 2016 B2
9324049 Thomeer et al. Apr 2016 B2
9341055 Weightman et al. May 2016 B2
9346662 Van Vliet et al. May 2016 B2
9366114 Coli et al. Jun 2016 B2
9376786 Numasawa Jun 2016 B2
9394829 Cabeen et al. Jul 2016 B2
9395049 Vicknair et al. Jul 2016 B2
9401670 Minato et al. Jul 2016 B2
9410410 Broussard et al. Aug 2016 B2
9410546 Jaeger et al. Aug 2016 B2
9429078 Crowe et al. Aug 2016 B1
9435333 McCoy et al. Sep 2016 B2
9488169 Cochran et al. Nov 2016 B2
9493997 Liu et al. Nov 2016 B2
9512783 Veilleux et al. Dec 2016 B2
9534473 Morris et al. Jan 2017 B2
9546652 Yin Jan 2017 B2
9550501 Ledbetter Jan 2017 B2
9556721 Jang et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9570945 Fischer Feb 2017 B2
9579980 Cryer et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9593710 Laimboeck et al. Mar 2017 B2
9611728 Oehring Apr 2017 B2
9617808 Liu et al. Apr 2017 B2
9638101 Crowe et al. May 2017 B1
9638194 Wiegman et al. May 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9656762 Kamath et al. May 2017 B2
9689316 Crom Jun 2017 B1
9695808 Giessbach et al. Jul 2017 B2
9739130 Young Aug 2017 B2
9764266 Carter Sep 2017 B1
9777748 Lu et al. Oct 2017 B2
9803467 Tang et al. Oct 2017 B2
9803793 Davi et al. Oct 2017 B2
9809308 Aguilar et al. Nov 2017 B2
9829002 Crom Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9845730 Betti et al. Dec 2017 B2
9850422 Lestz et al. Dec 2017 B2
9856131 Moffitt Jan 2018 B1
9863279 Laing et al. Jan 2018 B2
9869305 Crowe et al. Jan 2018 B1
9871406 Churnock et al. Jan 2018 B1
9879609 Crowe et al. Jan 2018 B1
RE46725 Case et al. Feb 2018 E
9893500 Oehring et al. Feb 2018 B2
9893660 Peterson et al. Feb 2018 B2
9897003 Motakef et al. Feb 2018 B2
9920615 Zhang et al. Mar 2018 B2
9945365 Hernandez et al. Apr 2018 B2
9964052 Millican et al. May 2018 B2
9970278 Broussard et al. May 2018 B2
9981840 Shock May 2018 B2
9995102 Dillie et al. Jun 2018 B2
9995218 Oehring et al. Jun 2018 B2
10008880 Vicknair et al. Jun 2018 B2
10008912 Davey et al. Jun 2018 B2
10018096 Wallimann et al. Jul 2018 B2
10020711 Oehring et al. Jul 2018 B2
10024123 Steffenhagen et al. Jul 2018 B2
10029289 Wendorski et al. Jul 2018 B2
10030579 Austin et al. Jul 2018 B2
10036238 Oehring Jul 2018 B2
10040541 Wilson et al. Aug 2018 B2
10060293 Del Bono Aug 2018 B2
10060349 Álvarez et al. Aug 2018 B2
10077933 Nelson et al. Sep 2018 B2
10082137 Graham et al. Sep 2018 B2
10094366 Marica Oct 2018 B2
10100827 Devan et al. Oct 2018 B2
10107084 Coli et al. Oct 2018 B2
10107085 Coli et al. Oct 2018 B2
10114061 Frampton et al. Oct 2018 B2
10119381 Oehring et al. Nov 2018 B2
10125750 Pfaff Nov 2018 B2
10134257 Zhang et al. Nov 2018 B2
10138098 Sorensen et al. Nov 2018 B2
10151244 Giancotti et al. Dec 2018 B2
10161423 Rampen Dec 2018 B2
10174599 Shampine et al. Jan 2019 B2
10184397 Austin et al. Jan 2019 B2
10196258 Kalala et al. Feb 2019 B2
10221856 Hernandez et al. Mar 2019 B2
10227854 Glass Mar 2019 B2
10227855 Coli et al. Mar 2019 B2
10246984 Payne et al. Apr 2019 B2
10247182 Zhang et al. Apr 2019 B2
10254732 Oehring et al. Apr 2019 B2
10267439 Pryce et al. Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287943 Schiltz May 2019 B1
10288519 De La Cruz May 2019 B2
10303190 Shock May 2019 B2
10305350 Johnson et al. May 2019 B2
10316832 Byrne Jun 2019 B2
10317875 Pandurangan et al. Jun 2019 B2
10337402 Austin et al. Jul 2019 B2
10358035 Cryer Jul 2019 B2
10371012 Davis et al. Aug 2019 B2
10374485 Morris et al. Aug 2019 B2
10378326 Morris et al. Aug 2019 B2
10393108 Chong et al. Aug 2019 B2
10407990 Oehring et al. Sep 2019 B2
10408031 Oehring et al. Sep 2019 B2
10415348 Zhang et al. Sep 2019 B2
10415557 Crowe et al. Sep 2019 B1
10415562 Kajita et al. Sep 2019 B2
10415563 Robinson et al. Sep 2019 B2
RE47695 Case et al. Nov 2019 E
10465689 Crom Nov 2019 B2
10478753 Elms et al. Nov 2019 B1
10526882 Oehring et al. Jan 2020 B2
10563649 Zhang et al. Feb 2020 B2
10577910 Stephenson Mar 2020 B2
10584645 Nakagawa et al. Mar 2020 B2
10590805 Kersey et al. Mar 2020 B2
10590867 Thomassin et al. Mar 2020 B2
10598258 Oehring et al. Mar 2020 B2
10610842 Chong Apr 2020 B2
10648531 Maienschein et al. May 2020 B2
10655516 Kulkarni et al. May 2020 B2
10662749 Hill et al. May 2020 B1
10711787 Darley Jul 2020 B1
10738580 Fischer et al. Aug 2020 B1
10753153 Fischer et al. Aug 2020 B1
10753165 Fischer et al. Aug 2020 B1
10760556 Crom et al. Sep 2020 B1
10794165 Fischer et al. Oct 2020 B2
10794166 Reckels et al. Oct 2020 B2
10801311 Cui et al. Oct 2020 B1
10815764 Yeung et al. Oct 2020 B1
10815978 Glass Oct 2020 B2
10830032 Zhang et al. Nov 2020 B1
10830104 Rochin et al. Nov 2020 B2
10830225 Repaci Nov 2020 B2
10859203 Cui et al. Dec 2020 B1
10864487 Han et al. Dec 2020 B1
10865624 Cui et al. Dec 2020 B1
10865631 Zhang et al. Dec 2020 B1
10870093 Zhong et al. Dec 2020 B1
10871045 Fischer et al. Dec 2020 B2
10895202 Yeung et al. Jan 2021 B1
10900475 Weightman et al. Jan 2021 B2
10907459 Yeung et al. Feb 2021 B1
10907698 Moreno Castro Feb 2021 B2
10927774 Cai et al. Feb 2021 B2
10927802 Oehring Feb 2021 B2
10954770 Yeung et al. Mar 2021 B1
10954855 Ji et al. Mar 2021 B1
10961614 Yeung et al. Mar 2021 B1
10961908 Yeung et al. Mar 2021 B1
10961912 Yeung et al. Mar 2021 B1
10961914 Yeung et al. Mar 2021 B1
10961993 Ji et al. Mar 2021 B1
10961995 Mayorca Mar 2021 B2
10892596 Yeung et al. Apr 2021 B2
10968837 Yeung et al. Apr 2021 B1
10982523 Hill et al. Apr 2021 B1
10982596 Yeung et al. Apr 2021 B1
10989019 Cai et al. Apr 2021 B2
10989180 Yeung et al. Apr 2021 B2
10995564 Miller et al. May 2021 B2
11002189 Yeung et al. May 2021 B2
11008950 Ethier et al. May 2021 B2
11014444 Wetzel May 2021 B2
11015423 Yeung et al. May 2021 B1
11015536 Yeung et al. May 2021 B2
11015594 Yeung et al. May 2021 B2
11022526 Yeung et al. Jun 2021 B1
11028677 Yeung et al. Jun 2021 B1
11035213 Dusterhoft et al. Jun 2021 B2
11035214 Cui et al. Jun 2021 B2
11047379 Li et al. Jun 2021 B1
11053853 Li et al. Jul 2021 B2
11060455 Yeung et al. Jul 2021 B1
11066915 Yeung et al. Jul 2021 B1
11068455 Shabi et al. Jul 2021 B2
11085281 Yeung et al. Aug 2021 B1
11085282 Mazrooee et al. Aug 2021 B2
11092152 Yeung et al. Aug 2021 B2
11098651 Yeung et al. Aug 2021 B1
11105250 Zhang et al. Aug 2021 B1
11105266 Zhou et al. Aug 2021 B2
11109508 Yeung et al. Aug 2021 B1
11111768 Yeung et al. Sep 2021 B1
11125066 Yeung et al. Sep 2021 B1
11125156 Zhang et al. Sep 2021 B2
11129295 Yeung et al. Sep 2021 B1
11143000 Li et al. Oct 2021 B2
11143005 Dusterhoft et al. Oct 2021 B2
11143006 Zhang et al. Oct 2021 B1
11149533 Yeung et al. Oct 2021 B1
11149726 Yeung et al. Oct 2021 B1
11156159 Yeung et al. Oct 2021 B1
11168681 Boguski Nov 2021 B2
11174716 Yeung et al. Nov 2021 B1
11193360 Yeung et al. Dec 2021 B1
11193361 Yeung et al. Dec 2021 B1
11205880 Yeung et al. Dec 2021 B1
11205881 Yeung et al. Dec 2021 B2
11208879 Yeung et al. Dec 2021 B1
11208953 Yeung et al. Dec 2021 B1
11220895 Yeung et al. Jan 2022 B1
11236739 Yeung et al. Feb 2022 B2
11242737 Zhang et al. Feb 2022 B2
11242802 Yeung et al. Feb 2022 B2
11243509 Cai et al. Feb 2022 B2
11251650 Liu et al. Feb 2022 B1
11261717 Yeung et al. Mar 2022 B2
11268346 Yeung et al. Mar 2022 B2
11280266 Yeung et al. Mar 2022 B2
11280331 Yeung et al. Mar 2022 B2
11306835 Dille et al. Apr 2022 B1
RE49083 Case et al. May 2022 E
11339638 Yeung et al. May 2022 B1
11346200 Cai et al. May 2022 B2
11373058 Jaaskelainen et al. Jun 2022 B2
RE49140 Case et al. Jul 2022 E
11377943 Kriebel et al. Jul 2022 B2
RE49155 Case et al. Aug 2022 E
RE49156 Case et al. Aug 2022 E
11401927 Li et al. Aug 2022 B2
11415056 Yeung et al. Aug 2022 B1
11428165 Yeung et al. Aug 2022 B2
11441483 Li et al. Sep 2022 B2
11448122 Feng et al. Sep 2022 B2
11459954 Yeung et al. Oct 2022 B2
11466680 Yeung et al. Oct 2022 B2
11480040 Han et al. Oct 2022 B2
11492887 Cui et al. Nov 2022 B2
11499405 Zhang et al. Nov 2022 B2
11506039 Zhang et al. Nov 2022 B2
11512570 Yeung Nov 2022 B2
11519395 Zhang et al. Dec 2022 B2
11519405 Deng et al. Dec 2022 B2
11530602 Yeung et al. Dec 2022 B2
11549349 Wang et al. Jan 2023 B2
11555390 Cui et al. Jan 2023 B2
11555756 Yeung et al. Jan 2023 B2
11557887 Ji et al. Jan 2023 B2
11560779 Mao et al. Jan 2023 B2
11560845 Yeung et al. Jan 2023 B2
11560848 Yeung et al. Jan 2023 B2
11572775 Mao et al. Feb 2023 B2
11575249 Ji et al. Feb 2023 B2
11592020 Chang et al. Feb 2023 B2
11596047 Liu et al. Feb 2023 B2
11598263 Yeung et al. Mar 2023 B2
11603797 Zhang et al. Mar 2023 B2
11607982 Tian et al. Mar 2023 B2
11608726 Zhang et al. Mar 2023 B2
11624326 Yeung et al. Apr 2023 B2
11629583 Yeung et al. Apr 2023 B2
11629584 Yeung et al. Apr 2023 B2
11629589 Lin et al. Apr 2023 B2
11649766 Yeung et al. May 2023 B1
11655763 Yeung et al. May 2023 B1
11662384 Liu et al. May 2023 B2
11668173 Zhang et al. Jun 2023 B2
11668289 Chang et al. Jun 2023 B2
11677238 Liu et al. Jun 2023 B2
11767791 Yeung et al. Sep 2023 B2
11859482 Yeung et al. Jan 2024 B2
20020126922 Cheng et al. Sep 2002 A1
20020197176 Kondo Dec 2002 A1
20030031568 Stiefel Feb 2003 A1
20030061819 Kuroki et al. Apr 2003 A1
20030161212 Neal et al. Aug 2003 A1
20040016245 Pierson Jan 2004 A1
20040074238 Wantanabe et al. Apr 2004 A1
20040076526 Fukano et al. Apr 2004 A1
20040187950 Cohen et al. Sep 2004 A1
20040219040 Kugelev et al. Nov 2004 A1
20040255783 Graham Dec 2004 A1
20050051322 Speer Mar 2005 A1
20050056081 Gocho Mar 2005 A1
20050139286 Poulter Jun 2005 A1
20050196298 Manning Sep 2005 A1
20050226754 Orr et al. Oct 2005 A1
20050274134 Ryu et al. Dec 2005 A1
20060061091 Osterloh Mar 2006 A1
20060062914 Garg et al. Mar 2006 A1
20060196251 Richey Sep 2006 A1
20060211356 Grassman Sep 2006 A1
20060228225 Rogers Oct 2006 A1
20060260331 Andreychuk Nov 2006 A1
20060272333 Sundin Dec 2006 A1
20070029090 Andreychuk et al. Feb 2007 A1
20070041848 Wood et al. Feb 2007 A1
20070066406 Keller et al. Mar 2007 A1
20070098580 Petersen May 2007 A1
20070107981 Sicotte May 2007 A1
20070125544 Robinson et al. Jun 2007 A1
20070169543 Fazekas Jul 2007 A1
20070181212 Fell Aug 2007 A1
20070277982 Shampine et al. Dec 2007 A1
20070295569 Manzoor et al. Dec 2007 A1
20080006089 Adnan et al. Jan 2008 A1
20080098891 Feher May 2008 A1
20080161974 Alston Jul 2008 A1
20080187431 Brown et al. Aug 2008 A1
20080212275 Waryck et al. Sep 2008 A1
20080229757 Alexander et al. Sep 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080298982 Pabst Dec 2008 A1
20090064685 Busekros et al. Mar 2009 A1
20090068031 Gambier et al. Mar 2009 A1
20090092510 Williams et al. Apr 2009 A1
20090124191 Van Becelaere et al. May 2009 A1
20090178412 Spytek Jul 2009 A1
20090212630 Flegel et al. Aug 2009 A1
20090249794 Wilkes et al. Oct 2009 A1
20090252616 Brunet et al. Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100019626 Stout et al. Jan 2010 A1
20100071899 Coquilleau et al. Mar 2010 A1
20100119304 Nelson et al. May 2010 A1
20100218508 Brown et al. Sep 2010 A1
20100300683 Looper et al. Dec 2010 A1
20100310384 Stephenson et al. Dec 2010 A1
20110041681 Duerr Feb 2011 A1
20110052423 Gambier et al. Mar 2011 A1
20110054704 Karpman et al. Mar 2011 A1
20110083419 Upadhyay et al. Apr 2011 A1
20110085924 Shampine et al. Apr 2011 A1
20110146244 Farman et al. Jun 2011 A1
20110146246 Farman et al. Jun 2011 A1
20110173991 Dean Jul 2011 A1
20110197988 Van Vliet et al. Aug 2011 A1
20110241888 Lu et al. Oct 2011 A1
20110265443 Ansari Nov 2011 A1
20110272158 Neal Nov 2011 A1
20120000168 Chaudhari et al. Jan 2012 A1
20120023973 Mayorca Feb 2012 A1
20120048242 Sumilla et al. Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120124961 Jarrier et al. May 2012 A1
20120137699 Montagne et al. Jun 2012 A1
20120179444 Ganguly et al. Jul 2012 A1
20120192542 Chillar et al. Aug 2012 A1
20120199001 Chillar et al. Aug 2012 A1
20120204627 Anderl et al. Aug 2012 A1
20120255734 Coli et al. Oct 2012 A1
20120310509 Pardo et al. Dec 2012 A1
20120324843 Saraswathi et al. Dec 2012 A1
20120324903 Dewis et al. Dec 2012 A1
20130068307 Hains et al. Mar 2013 A1
20130087045 Sullivan et al. Apr 2013 A1
20130087945 Kusters et al. Apr 2013 A1
20130134702 Boraas et al. May 2013 A1
20130174764 Warton et al. Jul 2013 A1
20130189915 Hazard Jul 2013 A1
20130205798 Kwok et al. Aug 2013 A1
20130233165 Matzner et al. Sep 2013 A1
20130255953 Tudor Oct 2013 A1
20130259707 Yin Oct 2013 A1
20130284455 Kajaria et al. Oct 2013 A1
20130300341 Gillette Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20140000668 Lessard Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140013768 Laing et al. Jan 2014 A1
20140032082 Gehrke et al. Jan 2014 A1
20140044517 Saha et al. Feb 2014 A1
20140048253 Andreychuk Feb 2014 A1
20140090729 Coulter et al. Apr 2014 A1
20140090742 Coskrey et al. Apr 2014 A1
20140094105 Lundh et al. Apr 2014 A1
20140095114 Thomeer et al. Apr 2014 A1
20140095554 Thomeer et al. Apr 2014 A1
20140102301 Marks et al. Apr 2014 A1
20140123621 Driessens et al. May 2014 A1
20140130422 Laing et al. May 2014 A1
20140138079 Broussard et al. May 2014 A1
20140144641 Chandler May 2014 A1
20140147291 Burnette May 2014 A1
20140158345 Jang et al. Jun 2014 A1
20140174097 Hammer et al. Jun 2014 A1
20140196459 Futa et al. Jul 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140219824 Burnette Aug 2014 A1
20140250845 Jackson et al. Sep 2014 A1
20140251129 Upadhyay et al. Sep 2014 A1
20140251143 Hawkinson et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140277772 Lopez et al. Sep 2014 A1
20140290266 Veilleux, Jr. et al. Oct 2014 A1
20140318638 Harwood et al. Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20140360370 Eyers et al. Dec 2014 A1
20150007720 Vu et al. Jan 2015 A1
20150027730 Hall et al. Jan 2015 A1
20150078924 Zhang et al. Mar 2015 A1
20150082758 Saraswathi et al. Mar 2015 A1
20150101344 Jarrier et al. Apr 2015 A1
20150107199 Smith et al. Apr 2015 A1
20150114229 Rout et al. Apr 2015 A1
20150114652 Lestz et al. Apr 2015 A1
20150129210 Chong et al. May 2015 A1
20150135659 Jarrier et al. May 2015 A1
20150159553 Kippel et al. Jun 2015 A1
20150192117 Bridges Jul 2015 A1
20150204148 Liu et al. Jul 2015 A1
20150204322 Tund et al. Jul 2015 A1
20150211512 Wiegman et al. Jul 2015 A1
20150214816 Raad Jul 2015 A1
20150217672 Shampine et al. Aug 2015 A1
20150226140 Zhang et al. Aug 2015 A1
20150240720 Brubber Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150275891 Chong et al. Oct 2015 A1
20150337730 Kupiszewski et al. Nov 2015 A1
20150340864 Compton Nov 2015 A1
20150345385 Santini Dec 2015 A1
20150369351 Hermann et al. Dec 2015 A1
20160017861 Sigurdsson Jan 2016 A1
20160032703 Broussard et al. Feb 2016 A1
20160032836 Hawkinson et al. Feb 2016 A1
20160059168 Bataille Mar 2016 A1
20160076447 Merlo et al. Mar 2016 A1
20160096134 Santini et al. Apr 2016 A1
20160102581 Del Bono Apr 2016 A1
20160105022 Oehring et al. Apr 2016 A1
20160108713 Dunaeva et al. Apr 2016 A1
20160123185 Le Pache et al. May 2016 A1
20160168979 Zhang et al. Jun 2016 A1
20160177675 Morris et al. Jun 2016 A1
20160177945 Byrne et al. Jun 2016 A1
20160186671 Austin et al. Jun 2016 A1
20160195082 Wiegman et al. Jul 2016 A1
20160215774 Oklejas et al. Jul 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160244314 Van Vliet et al. Aug 2016 A1
20160248230 Tawy et al. Aug 2016 A1
20160253634 Thomeer et al. Sep 2016 A1
20160258267 Payne et al. Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273346 Tang et al. Sep 2016 A1
20160290114 Oehring et al. Oct 2016 A1
20160319650 Oehring et al. Nov 2016 A1
20160326845 Djikpesse et al. Nov 2016 A1
20160348479 Oehring et al. Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170009905 Arnold Jan 2017 A1
20170016433 Chong et al. Jan 2017 A1
20170030177 Oehring et al. Feb 2017 A1
20170038137 Turney Feb 2017 A1
20170045055 Hoefel et al. Feb 2017 A1
20170052087 Faqihi et al. Feb 2017 A1
20170074074 Joseph et al. Mar 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170074089 Agarwal et al. Mar 2017 A1
20170082110 Lammers Mar 2017 A1
20170089189 Norris et al. Mar 2017 A1
20170114613 Lecerf et al. Apr 2017 A1
20170114625 Norris et al. Apr 2017 A1
20170122310 Ladron de Guevara May 2017 A1
20170131174 Enev et al. May 2017 A1
20170145918 Oehring et al. May 2017 A1
20170191350 Johns et al. Jul 2017 A1
20170218727 Oehring et al. Aug 2017 A1
20170226839 Broussard et al. Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170226998 Zhang et al. Aug 2017 A1
20170227002 Mikulski et al. Aug 2017 A1
20170233103 Teicholz et al. Aug 2017 A1
20170234165 Kersey et al. Aug 2017 A1
20170234308 Buckley Aug 2017 A1
20170241336 Jones et al. Aug 2017 A1
20170241671 Ahmad Aug 2017 A1
20170248034 Dzieciol et al. Aug 2017 A1
20170248208 Tamura Aug 2017 A1
20170248308 Makarychev-Mikhailov et al. Aug 2017 A1
20170275149 Schmidt Sep 2017 A1
20170288400 Williams Oct 2017 A1
20170292409 Aguilar et al. Oct 2017 A1
20170302135 Cory Oct 2017 A1
20170305736 Haile et al. Oct 2017 A1
20170306847 Suciu et al. Oct 2017 A1
20170306936 Dole Oct 2017 A1
20170322086 Luharuka Nov 2017 A1
20170333086 Jackson Nov 2017 A1
20170334448 Schwunk Nov 2017 A1
20170335842 Robinson et al. Nov 2017 A1
20170350471 Steidl et al. Dec 2017 A1
20170356470 Jaffrey Dec 2017 A1
20170370199 Witkowski et al. Dec 2017 A1
20170370480 Witkowski et al. Dec 2017 A1
20180034280 Pedersen Feb 2018 A1
20180038328 Louven et al. Feb 2018 A1
20180041093 Miranda Feb 2018 A1
20180045202 Crom Feb 2018 A1
20180038216 Zhang et al. Mar 2018 A1
20180058171 Roesner et al. Mar 2018 A1
20180087499 Zhang et al. Mar 2018 A1
20180087996 De La Cruz Mar 2018 A1
20180156210 Oehring et al. Jun 2018 A1
20180172294 Owen Jun 2018 A1
20180183219 Oehring et al. Jun 2018 A1
20180186442 Maier Jul 2018 A1
20180187662 Hill et al. Jul 2018 A1
20180209415 Zhang et al. Jul 2018 A1
20180223640 Keihany et al. Aug 2018 A1
20180224044 Penney Aug 2018 A1
20180229998 Shock Aug 2018 A1
20180258746 Broussard et al. Sep 2018 A1
20180266412 Stokkevag et al. Sep 2018 A1
20180278124 Oehring et al. Sep 2018 A1
20180283102 Cook Oct 2018 A1
20180283618 Cook Oct 2018 A1
20180284817 Cook et al. Oct 2018 A1
20180290877 Shock Oct 2018 A1
20180291781 Pedrini Oct 2018 A1
20180298731 Bishop Oct 2018 A1
20180298735 Conrad Oct 2018 A1
20180307255 Bishop Oct 2018 A1
20180313456 Bayyouk et al. Nov 2018 A1
20180328157 Bishop Nov 2018 A1
20180334893 Oehring Nov 2018 A1
20180363435 Coli et al. Dec 2018 A1
20180363436 Coli et al. Dec 2018 A1
20180363437 Coli et al. Dec 2018 A1
20180363438 Coli et al. Dec 2018 A1
20190003272 Morris et al. Jan 2019 A1
20190003329 Morris et al. Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190011051 Yeung Jan 2019 A1
20190048993 Akiyama et al. Feb 2019 A1
20190063263 Davis et al. Feb 2019 A1
20190063326 Davis Feb 2019 A1
20190063341 Davis Feb 2019 A1
20190067991 Davis et al. Feb 2019 A1
20190071992 Feng Mar 2019 A1
20190072005 Fisher et al. Mar 2019 A1
20190078471 Braglia et al. Mar 2019 A1
20190088845 Sugi et al. Mar 2019 A1
20190091619 Huang Mar 2019 A1
20190106316 Van Vliet et al. Apr 2019 A1
20190106970 Oehring Apr 2019 A1
20190112908 Coli et al. Apr 2019 A1
20190112910 Oehring et al. Apr 2019 A1
20190119096 Haile et al. Apr 2019 A1
20190120024 Oehring et al. Apr 2019 A1
20190120031 Gilje Apr 2019 A1
20190120134 Goleczka et al. Apr 2019 A1
20190128247 Douglas, III May 2019 A1
20190128288 Konada et al. May 2019 A1
20190131607 Gillette May 2019 A1
20190136677 Shampine et al. May 2019 A1
20190153843 Headrick May 2019 A1
20190153938 Hammoud May 2019 A1
20190154020 Glass May 2019 A1
20190155318 Meunier May 2019 A1
20190264667 Byrne May 2019 A1
20190178234 Beisel Jun 2019 A1
20190178235 Coskrey et al. Jun 2019 A1
20190185312 Bush et al. Jun 2019 A1
20190203572 Morris et al. Jul 2019 A1
20190204021 Morris et al. Jul 2019 A1
20190211661 Reckles et al. Jul 2019 A1
20190211814 Weightman et al. Jul 2019 A1
20190217258 Bishop Jul 2019 A1
20190226317 Payne et al. Jul 2019 A1
20190245348 Hinderliter et al. Aug 2019 A1
20190249652 Stephenson et al. Aug 2019 A1
20190249754 Oehring et al. Aug 2019 A1
20190257297 Botting et al. Aug 2019 A1
20190277279 Byrne et al. Sep 2019 A1
20190277295 Clyburn et al. Sep 2019 A1
20190309585 Miller et al. Oct 2019 A1
20190316447 Oehring et al. Oct 2019 A1
20190316456 Beisel et al. Oct 2019 A1
20190322390 Merrit et al. Oct 2019 A1
20190323337 Glass et al. Oct 2019 A1
20190330923 Gable et al. Oct 2019 A1
20190331117 Gable et al. Oct 2019 A1
20190337392 Joshi et al. Nov 2019 A1
20190338762 Curry et al. Nov 2019 A1
20190345920 Surjaatmadja et al. Nov 2019 A1
20190353103 Roberge Nov 2019 A1
20190353303 Morris et al. Nov 2019 A1
20190356199 Morris et al. Nov 2019 A1
20190376449 Carrell Dec 2019 A1
20190383123 Hinderliter Dec 2019 A1
20200003205 Stokkevåg et al. Jan 2020 A1
20200011165 George et al. Jan 2020 A1
20200040705 Morris et al. Feb 2020 A1
20200040878 Morris Feb 2020 A1
20200049136 Stephenson Feb 2020 A1
20200049153 Headrick et al. Feb 2020 A1
20200071998 Oehring et al. Mar 2020 A1
20200072201 Marica Mar 2020 A1
20200088202 Sigmar et al. Mar 2020 A1
20200095854 Hinderliter Mar 2020 A1
20200109610 Husoy et al. Apr 2020 A1
20200109616 Oehring et al. Apr 2020 A1
20200132058 Mollatt Apr 2020 A1
20200141219 Oehring et al. May 2020 A1
20200141326 Redford et al. May 2020 A1
20200141907 Meck et al. May 2020 A1
20200166026 Marica May 2020 A1
20200206704 Chong Jul 2020 A1
20200208733 Kim Jul 2020 A1
20200223648 Herman et al. Jul 2020 A1
20200224645 Buckley Jul 2020 A1
20200232454 Chretien et al. Jul 2020 A1
20200256333 Surjaatmadja Aug 2020 A1
20200263498 Fischer et al. Aug 2020 A1
20200263525 Reid Aug 2020 A1
20200263526 Fischer et al. Aug 2020 A1
20200263527 Fischer et al. Aug 2020 A1
20200263528 Fischer et al. Aug 2020 A1
20200267888 Putz Aug 2020 A1
20200291731 Haiderer et al. Sep 2020 A1
20200295574 Batsch-Smith Sep 2020 A1
20200300050 Oehring et al. Sep 2020 A1
20200309027 Rytkonen Oct 2020 A1
20200309113 Hunter et al. Oct 2020 A1
20200325752 Clark et al. Oct 2020 A1
20200325760 Markham Oct 2020 A1
20200325761 Williams Oct 2020 A1
20200325791 Himmelmann Oct 2020 A1
20200325893 Kraige et al. Oct 2020 A1
20200332784 Zhang et al. Oct 2020 A1
20200332788 Cui et al. Oct 2020 A1
20200340313 Fischer et al. Oct 2020 A1
20200340340 Oehring et al. Oct 2020 A1
20200340344 Reckels et al. Oct 2020 A1
20200340404 Stockstill Oct 2020 A1
20200347725 Morris et al. Nov 2020 A1
20200354928 Wehler et al. Nov 2020 A1
20200355055 Dusterhoft et al. Nov 2020 A1
20200362760 Morenko et al. Nov 2020 A1
20200362764 Saintignan et al. Nov 2020 A1
20200370394 Cai et al. Nov 2020 A1
20200370408 Cai et al. Nov 2020 A1
20200370429 Cai et al. Nov 2020 A1
20200371490 Cai et al. Nov 2020 A1
20200340322 Sizemore et al. Dec 2020 A1
20200386169 Hinderliter et al. Dec 2020 A1
20200386222 Pham et al. Dec 2020 A1
20200388140 Gomez et al. Dec 2020 A1
20200392826 Cui et al. Dec 2020 A1
20200392827 George et al. Dec 2020 A1
20200393088 Sizemore et al. Dec 2020 A1
20200398238 Zhong et al. Dec 2020 A1
20200400000 Ghasripoor et al. Dec 2020 A1
20200400005 Han et al. Dec 2020 A1
20200407625 Stephenson Dec 2020 A1
20200408071 Li et al. Dec 2020 A1
20200408144 Feng et al. Dec 2020 A1
20200408147 Zhang et al. Dec 2020 A1
20200408149 Li et al. Dec 2020 A1
20210025324 Morris et al. Jan 2021 A1
20210025383 Bodishbaugh et al. Jan 2021 A1
20210032961 Hinderliter et al. Feb 2021 A1
20210054727 Floyd Feb 2021 A1
20210071503 Ogg et al. Mar 2021 A1
20210071574 Feng et al. Mar 2021 A1
20210071579 Li et al. Mar 2021 A1
20210071654 Brunson Mar 2021 A1
20210071752 Cui et al. Mar 2021 A1
20210079758 Yeung et al. Mar 2021 A1
20210079851 Yeung et al. Mar 2021 A1
20210086851 Zhang et al. Mar 2021 A1
20210087883 Zhang et al. Mar 2021 A1
20210087916 Zhang et al. Mar 2021 A1
20210087925 Heidari et al. Mar 2021 A1
20210087943 Cui et al. Mar 2021 A1
20210088042 Zhang et al. Mar 2021 A1
20210123425 Cui et al. Apr 2021 A1
20210123434 Cui et al. Apr 2021 A1
20210123435 Cui et al. Apr 2021 A1
20210131409 Cui et al. May 2021 A1
20210140416 Buckley May 2021 A1
20210148208 Thomas et al. May 2021 A1
20210156240 Cicci et al. May 2021 A1
20210156241 Cook May 2021 A1
20210172282 Wang et al. Jun 2021 A1
20210180517 Zhou et al. Jun 2021 A1
20210190045 Zhang et al. Jun 2021 A1
20210199110 Albert et al. Jul 2021 A1
20210222690 Beisel Jul 2021 A1
20210231119 Boguski et al. Jul 2021 A1
20210239112 Buckley Aug 2021 A1
20210246774 Cui et al. Aug 2021 A1
20210270261 Zhang et al. Sep 2021 A1
20210270264 Byrne Sep 2021 A1
20210285311 Ji et al. Sep 2021 A1
20210285432 Ji et al. Sep 2021 A1
20210301807 Cui et al. Sep 2021 A1
20210301815 Chretien et al. Sep 2021 A1
20210306720 Sandoval et al. Sep 2021 A1
20210308638 Zhong et al. Oct 2021 A1
20210324718 Anders Oct 2021 A1
20210348475 Yeung et al. Nov 2021 A1
20210348476 Yeung et al. Nov 2021 A1
20210348477 Yeung et al. Nov 2021 A1
20210355927 Jian et al. Nov 2021 A1
20210372394 Bagulayan et al. Dec 2021 A1
20210372395 Li et al. Dec 2021 A1
20210376413 Asfha Dec 2021 A1
20210388760 Feng et al. Dec 2021 A1
20220082007 Zhang et al. Mar 2022 A1
20220090476 Zhang et al. Mar 2022 A1
20220090477 Zhang et al. Mar 2022 A1
20220090478 Zhang et al. Mar 2022 A1
20220112892 Cui et al. Apr 2022 A1
20220120262 Ji et al. Apr 2022 A1
20220127944 Chapman et al. Apr 2022 A1
20220145740 Yuan et al. May 2022 A1
20220154775 Liu et al. May 2022 A1
20220155373 Liu et al. May 2022 A1
20220162931 Zhong et al. May 2022 A1
20220162991 Zhang et al. May 2022 A1
20220181859 Ji et al. Jun 2022 A1
20220186724 Chang et al. Jun 2022 A1
20220213777 Cui et al. Jul 2022 A1
20220220836 Zhang et al. Jul 2022 A1
20220224087 Ji et al. Jul 2022 A1
20220228468 Cui et al. Jul 2022 A1
20220228469 Zhang et al. Jul 2022 A1
20220235639 Zhang et al. Jul 2022 A1
20220235640 Mao et al. Jul 2022 A1
20220235641 Zhang et al. Jul 2022 A1
20220235642 Zhang et al. Jul 2022 A1
20220235802 Jiang et al. Jul 2022 A1
20220242297 Tian et al. Aug 2022 A1
20220243613 Ji et al. Aug 2022 A1
20220243724 Li et al. Aug 2022 A1
20220250000 Zhang et al. Aug 2022 A1
20220255319 Liu et al. Aug 2022 A1
20220258659 Cui et al. Aug 2022 A1
20220259947 Li et al. Aug 2022 A1
20220259964 Zhang et al. Aug 2022 A1
20220268201 Feng et al. Aug 2022 A1
20220282606 Zhong et al. Sep 2022 A1
20220282726 Zhang et al. Sep 2022 A1
20220290549 Zhang et al. Sep 2022 A1
20220294194 Cao et al. Sep 2022 A1
20220298906 Zhong et al. Sep 2022 A1
20220307359 Liu et al. Sep 2022 A1
20220307424 Wang et al. Sep 2022 A1
20220314248 Ge et al. Oct 2022 A1
20220315347 Liu et al. Oct 2022 A1
20220316306 Liu et al. Oct 2022 A1
20220316362 Zhang et al. Oct 2022 A1
20220316461 Wang et al. Oct 2022 A1
20220325608 Zhang et al. Oct 2022 A1
20220330411 Liu et al. Oct 2022 A1
20220333471 Zhong et al. Oct 2022 A1
20220339646 Yu et al. Oct 2022 A1
20220341358 Ji et al. Oct 2022 A1
20220341362 Feng et al. Oct 2022 A1
20220341415 Deng et al. Oct 2022 A1
20220345007 Liu et al. Oct 2022 A1
20220349345 Zhang et al. Nov 2022 A1
20220353980 Liu et al. Nov 2022 A1
20220361309 Liu et al. Nov 2022 A1
20220364452 Wang et al. Nov 2022 A1
20220364453 Chang et al. Nov 2022 A1
20220372865 Lin et al. Nov 2022 A1
20220376280 Shao et al. Nov 2022 A1
20220381126 Cui et al. Dec 2022 A1
20220389799 Mao Dec 2022 A1
20220389803 Zhang et al. Dec 2022 A1
20220389804 Cui et al. Dec 2022 A1
20220389865 Feng et al. Dec 2022 A1
20220389867 Li et al. Dec 2022 A1
20220412196 Cui et al. Dec 2022 A1
20220412199 Mao et al. Dec 2022 A1
20220412200 Zhang et al. Dec 2022 A1
20220412258 Li et al. Dec 2022 A1
20220412379 Wang et al. Dec 2022 A1
20230001524 Jiang et al. Jan 2023 A1
20230003238 Du et al. Jan 2023 A1
20230015132 Feng et al. Jan 2023 A1
20230015529 Zhang et al. Jan 2023 A1
20230015581 Ji et al. Jan 2023 A1
20230017968 Deng et al. Jan 2023 A1
20230029574 Zhang et al. Feb 2023 A1
20230029671 Han et al. Feb 2023 A1
20230036118 Xing et al. Feb 2023 A1
20230040970 Liu et al. Feb 2023 A1
20230042379 Zhang et al. Feb 2023 A1
20230047033 Fu et al. Feb 2023 A1
20230048551 Feng et al. Feb 2023 A1
20230049462 Zhang et al. Feb 2023 A1
20230064964 Wang et al. Mar 2023 A1
20230074794 Liu et al. Mar 2023 A1
20230085124 Zhong et al. Mar 2023 A1
20230092506 Zhong et al. Mar 2023 A1
20230092705 Liu et al. Mar 2023 A1
20230106683 Zhang et al. Apr 2023 A1
20230107300 Huang et al. Apr 2023 A1
20230107791 Zhang et al. Apr 2023 A1
20230109018 Du et al. Apr 2023 A1
20230116458 Liu et al. Apr 2023 A1
20230117362 Zhang et al. Apr 2023 A1
20230119725 Wang et al. Apr 2023 A1
20230119876 Mao et al. Apr 2023 A1
20230119896 Zhang et al. Apr 2023 A1
20230120810 Fu et al. Apr 2023 A1
20230121251 Cui et al. Apr 2023 A1
20230124444 Chang et al. Apr 2023 A1
20230138582 Li et al. May 2023 A1
20230144116 Li et al. May 2023 A1
20230145963 Zhang et al. May 2023 A1
20230151722 Cui et al. May 2023 A1
20230151723 Ji et al. May 2023 A1
20230152793 Wang et al. May 2023 A1
20230160289 Cui et al. May 2023 A1
20230160510 Bao et al. May 2023 A1
20230163580 Ji et al. May 2023 A1
20230167776 Cui et al. Jun 2023 A1
20230182063 Lennhager et al. Jun 2023 A1
Foreign Referenced Citations (629)
Number Date Country
9609498 Jul 1999 AU
737970 Sep 2001 AU
2043184 Aug 1994 CA
2829762 Sep 2012 CA
2737321 Sep 2013 CA
2876687 May 2014 CA
2693567 Sep 2014 CA
2964597 Oct 2017 CA
2876687 Apr 2019 CA
3138533 Nov 2020 CA
2919175 Mar 2021 CA
2622404 Jun 2004 CN
2779054 May 2006 CN
2890325 Apr 2007 CN
200964929 Oct 2007 CN
101323151 Dec 2008 CN
201190660 Feb 2009 CN
201190892 Feb 2009 CN
201190893 Feb 2009 CN
101414171 Apr 2009 CN
201215073 Apr 2009 CN
201236650 May 2009 CN
201275542 Jul 2009 CN
201275801 Jul 2009 CN
201333385 Oct 2009 CN
201443300 Apr 2010 CN
201496415 Jun 2010 CN
201501365 Jun 2010 CN
201507271 Jun 2010 CN
101323151 Jul 2010 CN
201560210 Aug 2010 CN
201581862 Sep 2010 CN
201610728 Oct 2010 CN
201610751 Oct 2010 CN
201618530 Nov 2010 CN
201661255 Dec 2010 CN
101949382 Jan 2011 CN
201756927 Mar 2011 CN
101414171 May 2011 CN
102128011 Jul 2011 CN
102140898 Aug 2011 CN
102155172 Aug 2011 CN
102182904 Sep 2011 CN
202000930 Oct 2011 CN
202055781 Nov 2011 CN
202082265 Dec 2011 CN
202100216 Jan 2012 CN
202100217 Jan 2012 CN
202100815 Jan 2012 CN
202124340 Jan 2012 CN
202140051 Feb 2012 CN
202140080 Feb 2012 CN
202144789 Feb 2012 CN
202144943 Feb 2012 CN
202149354 Feb 2012 CN
102383748 Mar 2012 CN
202156297 Mar 2012 CN
202158355 Mar 2012 CN
202163504 Mar 2012 CN
202165236 Mar 2012 CN
202180866 Apr 2012 CN
202181875 Apr 2012 CN
202187744 Apr 2012 CN
202191854 Apr 2012 CN
202250008 May 2012 CN
101885307 Jul 2012 CN
102562020 Jul 2012 CN
202326156 Jul 2012 CN
202370773 Aug 2012 CN
202417397 Sep 2012 CN
202417461 Sep 2012 CN
102729335 Oct 2012 CN
202463955 Oct 2012 CN
202463957 Oct 2012 CN
202467739 Oct 2012 CN
202467801 Oct 2012 CN
202531016 Nov 2012 CN
202544794 Nov 2012 CN
102825039 Dec 2012 CN
202578592 Dec 2012 CN
202579164 Dec 2012 CN
202594808 Dec 2012 CN
202594928 Dec 2012 CN
202596615 Dec 2012 CN
202596616 Dec 2012 CN
102849880 Jan 2013 CN
102889191 Jan 2013 CN
202641535 Jan 2013 CN
202645475 Jan 2013 CN
202666716 Jan 2013 CN
202669645 Jan 2013 CN
202669944 Jan 2013 CN
202671336 Jan 2013 CN
202673269 Jan 2013 CN
202751982 Feb 2013 CN
102963629 Mar 2013 CN
202767964 Mar 2013 CN
202789791 Mar 2013 CN
202789792 Mar 2013 CN
202810717 Mar 2013 CN
202827276 Mar 2013 CN
202833093 Mar 2013 CN
202833370 Mar 2013 CN
102140898 Apr 2013 CN
202895467 Apr 2013 CN
202926404 May 2013 CN
202935216 May 2013 CN
202935798 May 2013 CN
202935816 May 2013 CN
202970631 Jun 2013 CN
103223315 Jul 2013 CN
203050598 Jul 2013 CN
103233714 Aug 2013 CN
103233715 Aug 2013 CN
103245523 Aug 2013 CN
103247220 Aug 2013 CN
103253839 Aug 2013 CN
103277290 Sep 2013 CN
103321782 Sep 2013 CN
203170270 Sep 2013 CN
203172509 Sep 2013 CN
203175778 Sep 2013 CN
203175787 Sep 2013 CN
102849880 Oct 2013 CN
203241231 Oct 2013 CN
203244941 Oct 2013 CN
203244942 Oct 2013 CN
203303798 Nov 2013 CN
102155172 Dec 2013 CN
102729335 Dec 2013 CN
103420532 Dec 2013 CN
203321792 Dec 2013 CN
203412658 Jan 2014 CN
203420697 Feb 2014 CN
203480755 Mar 2014 CN
103711437 Apr 2014 CN
103764252 Apr 2014 CN
203531815 Apr 2014 CN
203531871 Apr 2014 CN
203531883 Apr 2014 CN
203556164 Apr 2014 CN
203558809 Apr 2014 CN
203559861 Apr 2014 CN
203559893 Apr 2014 CN
203560189 Apr 2014 CN
102704870 May 2014 CN
203611843 May 2014 CN
203612531 May 2014 CN
203612843 May 2014 CN
203614062 May 2014 CN
203614388 May 2014 CN
203621045 Jun 2014 CN
203621046 Jun 2014 CN
203621051 Jun 2014 CN
203640993 Jun 2014 CN
203655221 Jun 2014 CN
103899280 Jul 2014 CN
103923670 Jul 2014 CN
203685052 Jul 2014 CN
203716936 Jul 2014 CN
103990410 Aug 2014 CN
103993869 Aug 2014 CN
203754009 Aug 2014 CN
203754025 Aug 2014 CN
203754341 Aug 2014 CN
203756614 Aug 2014 CN
203770264 Aug 2014 CN
203784519 Aug 2014 CN
203784520 Aug 2014 CN
104057864 Sep 2014 CN
203819819 Sep 2014 CN
203823431 Sep 2014 CN
203835337 Sep 2014 CN
104074500 Oct 2014 CN
203876633 Oct 2014 CN
203876636 Oct 2014 CN
203877364 Oct 2014 CN
203877365 Oct 2014 CN
203877375 Oct 2014 CN
203877424 Oct 2014 CN
203879476 Oct 2014 CN
203879479 Oct 2014 CN
203890292 Oct 2014 CN
203899476 Oct 2014 CN
203906206 Oct 2014 CN
104150728 Nov 2014 CN
104176522 Dec 2014 CN
104196464 Dec 2014 CN
104234651 Dec 2014 CN
203971841 Dec 2014 CN
203975450 Dec 2014 CN
204020788 Dec 2014 CN
204021980 Dec 2014 CN
204024625 Dec 2014 CN
204051401 Dec 2014 CN
204060661 Dec 2014 CN
104260672 Jan 2015 CN
104314512 Jan 2015 CN
204077478 Jan 2015 CN
204077526 Jan 2015 CN
204078307 Jan 2015 CN
204083051 Jan 2015 CN
204113168 Jan 2015 CN
104340682 Feb 2015 CN
104358536 Feb 2015 CN
104369687 Feb 2015 CN
104402178 Mar 2015 CN
104402185 Mar 2015 CN
104402186 Mar 2015 CN
204209819 Mar 2015 CN
204224560 Mar 2015 CN
204225813 Mar 2015 CN
204225839 Mar 2015 CN
104533392 Apr 2015 CN
104563938 Apr 2015 CN
104563994 Apr 2015 CN
104563995 Apr 2015 CN
104563998 Apr 2015 CN
104564033 Apr 2015 CN
204257122 Apr 2015 CN
204283610 Apr 2015 CN
204283782 Apr 2015 CN
204297682 Apr 2015 CN
204299810 Apr 2015 CN
103223315 May 2015 CN
104594857 May 2015 CN
104595493 May 2015 CN
104612647 May 2015 CN
104612928 May 2015 CN
104632126 May 2015 CN
204325094 May 2015 CN
204325098 May 2015 CN
204326983 May 2015 CN
204326985 May 2015 CN
204344040 May 2015 CN
204344095 May 2015 CN
104727797 Jun 2015 CN
204402414 Jun 2015 CN
204402423 Jun 2015 CN
204402450 Jun 2015 CN
103247220 Jul 2015 CN
104803568 Jul 2015 CN
204436360 Jul 2015 CN
204457524 Jul 2015 CN
204472485 Jul 2015 CN
204473625 Jul 2015 CN
204477303 Jul 2015 CN
204493095 Jul 2015 CN
204493309 Jul 2015 CN
103253839 Aug 2015 CN
104820372 Aug 2015 CN
104832093 Aug 2015 CN
104863523 Aug 2015 CN
204552723 Aug 2015 CN
204553866 Aug 2015 CN
204571831 Aug 2015 CN
204703814 Oct 2015 CN
204703833 Oct 2015 CN
204703834 Oct 2015 CN
105092401 Nov 2015 CN
103233715 Dec 2015 CN
103790927 Dec 2015 CN
105207097 Dec 2015 CN
204831952 Dec 2015 CN
204899777 Dec 2015 CN
102602323 Jan 2016 CN
105240064 Jan 2016 CN
204944834 Jan 2016 CN
205042127 Feb 2016 CN
205172478 Apr 2016 CN
103993869 May 2016 CN
105536299 May 2016 CN
105545207 May 2016 CN
205260249 May 2016 CN
103233714 Jun 2016 CN
104340682 Jun 2016 CN
205297518 Jun 2016 CN
205298447 Jun 2016 CN
205391821 Jul 2016 CN
205400701 Jul 2016 CN
103277290 Aug 2016 CN
104260672 Aug 2016 CN
205477370 Aug 2016 CN
205479153 Aug 2016 CN
205503058 Aug 2016 CN
205503068 Aug 2016 CN
205503089 Aug 2016 CN
105958098 Sep 2016 CN
205599180 Sep 2016 CN
205599180 Sep 2016 CN
106121577 Nov 2016 CN
205709587 Nov 2016 CN
104612928 Dec 2016 CN
106246120 Dec 2016 CN
205805471 Dec 2016 CN
106321045 Jan 2017 CN
205858306 Jan 2017 CN
106438310 Feb 2017 CN
205937833 Feb 2017 CN
104563994 Mar 2017 CN
206129196 Apr 2017 CN
104369687 May 2017 CN
106715165 May 2017 CN
106761561 May 2017 CN
105240064 Jun 2017 CN
206237147 Jun 2017 CN
206287832 Jun 2017 CN
206346711 Jul 2017 CN
104563995 Sep 2017 CN
107120822 Sep 2017 CN
107143298 Sep 2017 CN
107159046 Sep 2017 CN
107188018 Sep 2017 CN
206496016 Sep 2017 CN
104564033 Oct 2017 CN
107234358 Oct 2017 CN
107261975 Oct 2017 CN
206581929 Oct 2017 CN
104820372 Dec 2017 CN
105092401 Dec 2017 CN
107476769 Dec 2017 CN
107520526 Dec 2017 CN
206754664 Dec 2017 CN
107605427 Jan 2018 CN
106438310 Feb 2018 CN
107654196 Feb 2018 CN
107656499 Feb 2018 CN
107728657 Feb 2018 CN
206985503 Feb 2018 CN
207017968 Feb 2018 CN
107859053 Mar 2018 CN
207057867 Mar 2018 CN
207085817 Mar 2018 CN
105545207 Apr 2018 CN
107883091 Apr 2018 CN
107902427 Apr 2018 CN
107939290 Apr 2018 CN
107956708 Apr 2018 CN
207169595 Apr 2018 CN
207194873 Apr 2018 CN
207245674 Apr 2018 CN
108034466 May 2018 CN
108036071 May 2018 CN
108087050 May 2018 CN
207380566 May 2018 CN
108103483 Jun 2018 CN
108179046 Jun 2018 CN
108254276 Jul 2018 CN
108311535 Jul 2018 CN
207583576 Jul 2018 CN
207634064 Jul 2018 CN
207648054 Jul 2018 CN
207650621 Jul 2018 CN
108371894 Aug 2018 CN
207777153 Aug 2018 CN
108547601 Sep 2018 CN
108547766 Sep 2018 CN
108555826 Sep 2018 CN
108561098 Sep 2018 CN
108561750 Sep 2018 CN
108590617 Sep 2018 CN
207813495 Sep 2018 CN
207814698 Sep 2018 CN
207862275 Sep 2018 CN
108687954 Oct 2018 CN
207935270 Oct 2018 CN
207961582 Oct 2018 CN
207964530 Oct 2018 CN
108789848 Nov 2018 CN
108799473 Nov 2018 CN
108868675 Nov 2018 CN
208086829 Nov 2018 CN
208089263 Nov 2018 CN
208169068 Nov 2018 CN
108979569 Dec 2018 CN
109027662 Dec 2018 CN
109058092 Dec 2018 CN
208179454 Dec 2018 CN
208179502 Dec 2018 CN
208253147 Dec 2018 CN
208260574 Dec 2018 CN
109114418 Jan 2019 CN
109141990 Jan 2019 CN
208313120 Jan 2019 CN
208330319 Jan 2019 CN
208342730 Jan 2019 CN
208430982 Jan 2019 CN
208430986 Jan 2019 CN
109404274 Mar 2019 CN
109429610 Mar 2019 CN
109491318 Mar 2019 CN
109515177 Mar 2019 CN
109526523 Mar 2019 CN
109534737 Mar 2019 CN
208564504 Mar 2019 CN
208564516 Mar 2019 CN
208564525 Mar 2019 CN
208564918 Mar 2019 CN
208576026 Mar 2019 CN
208576042 Mar 2019 CN
208650818 Mar 2019 CN
208669244 Mar 2019 CN
109555484 Apr 2019 CN
109682881 Apr 2019 CN
208730959 Apr 2019 CN
208735264 Apr 2019 CN
208746733 Apr 2019 CN
208749529 Apr 2019 CN
208750405 Apr 2019 CN
208764658 Apr 2019 CN
109736740 May 2019 CN
109751007 May 2019 CN
208868428 May 2019 CN
208870761 May 2019 CN
109869294 Jun 2019 CN
109882144 Jun 2019 CN
109882372 Jun 2019 CN
209012047 Jun 2019 CN
209100025 Jul 2019 CN
110080707 Aug 2019 CN
110118127 Aug 2019 CN
110124574 Aug 2019 CN
110145277 Aug 2019 CN
110145399 Aug 2019 CN
110152552 Aug 2019 CN
110155193 Aug 2019 CN
110159225 Aug 2019 CN
110159432 Aug 2019 CN
110159432 Aug 2019 CN
110159433 Aug 2019 CN
110208100 Sep 2019 CN
110252191 Sep 2019 CN
110284854 Sep 2019 CN
110284972 Sep 2019 CN
209387358 Sep 2019 CN
110374745 Oct 2019 CN
209534736 Oct 2019 CN
110425105 Nov 2019 CN
110439779 Nov 2019 CN
110454285 Nov 2019 CN
110454352 Nov 2019 CN
110467298 Nov 2019 CN
110469312 Nov 2019 CN
110469314 Nov 2019 CN
110469405 Nov 2019 CN
110469654 Nov 2019 CN
110485982 Nov 2019 CN
110485983 Nov 2019 CN
110485984 Nov 2019 CN
110486249 Nov 2019 CN
110500255 Nov 2019 CN
110510771 Nov 2019 CN
110513097 Nov 2019 CN
209650738 Nov 2019 CN
209653968 Nov 2019 CN
209654004 Nov 2019 CN
209654022 Nov 2019 CN
209654128 Nov 2019 CN
209656622 Nov 2019 CN
107849130 Dec 2019 CN
108087050 Dec 2019 CN
110566173 Dec 2019 CN
110608030 Dec 2019 CN
110617187 Dec 2019 CN
110617188 Dec 2019 CN
110617318 Dec 2019 CN
209740823 Dec 2019 CN
209780827 Dec 2019 CN
209798631 Dec 2019 CN
209799942 Dec 2019 CN
209800178 Dec 2019 CN
209855723 Dec 2019 CN
209855742 Dec 2019 CN
209875063 Dec 2019 CN
110656919 Jan 2020 CN
107520526 Feb 2020 CN
110787667 Feb 2020 CN
110821464 Feb 2020 CN
110833665 Feb 2020 CN
110848028 Feb 2020 CN
210049880 Feb 2020 CN
210049882 Feb 2020 CN
210097596 Feb 2020 CN
210105817 Feb 2020 CN
210105818 Feb 2020 CN
210105993 Feb 2020 CN
110873093 Mar 2020 CN
210139911 Mar 2020 CN
110947681 Apr 2020 CN
111058810 Apr 2020 CN
111075391 Apr 2020 CN
210289931 Apr 2020 CN
210289932 Apr 2020 CN
210289933 Apr 2020 CN
210303516 Apr 2020 CN
211412945 Apr 2020 CN
111089003 May 2020 CN
111151186 May 2020 CN
111167769 May 2020 CN
111169833 May 2020 CN
111173476 May 2020 CN
111185460 May 2020 CN
111185461 May 2020 CN
111188763 May 2020 CN
111206901 May 2020 CN
111206992 May 2020 CN
111206994 May 2020 CN
210449044 May 2020 CN
210460875 May 2020 CN
210522432 May 2020 CN
210598943 May 2020 CN
210598945 May 2020 CN
210598946 May 2020 CN
210599194 May 2020 CN
210599303 May 2020 CN
210600110 May 2020 CN
111219326 Jun 2020 CN
111350595 Jun 2020 CN
210660319 Jun 2020 CN
210714569 Jun 2020 CN
210769168 Jun 2020 CN
210769169 Jun 2020 CN
210769170 Jun 2020 CN
210770133 Jun 2020 CN
210825844 Jun 2020 CN
210888904 Jun 2020 CN
210888905 Jun 2020 CN
210889242 Jun 2020 CN
111397474 Jul 2020 CN
111412064 Jul 2020 CN
111441923 Jul 2020 CN
111441925 Jul 2020 CN
111503517 Aug 2020 CN
111515898 Aug 2020 CN
111594059 Aug 2020 CN
111594062 Aug 2020 CN
111594144 Aug 2020 CN
211201919 Aug 2020 CN
211201920 Aug 2020 CN
211202218 Aug 2020 CN
111608965 Sep 2020 CN
111664087 Sep 2020 CN
111677476 Sep 2020 CN
111677647 Sep 2020 CN
111692064 Sep 2020 CN
111692065 Sep 2020 CN
211384571 Sep 2020 CN
211397553 Sep 2020 CN
211397677 Sep 2020 CN
211500955 Sep 2020 CN
211524765 Sep 2020 CN
4004854 Aug 1991 DE
4241614 Jun 1994 DE
102009022859 Dec 2010 DE
102012018825 Mar 2014 DE
102013111655 Dec 2014 DE
102015103872 Oct 2015 DE
102013114335 Dec 2020 DE
0835983 Apr 1998 EP
1378683 Jan 2004 EP
2143916 Jan 2010 EP
2613023 Jul 2013 EP
3095989 Nov 2016 EP
3211766 Aug 2017 EP
3049642 Apr 2018 EP
3354866 Aug 2018 EP
3075946 May 2019 EP
2795774 Jun 1999 FR
474072 Oct 1937 GB
1438172 Jun 1976 GB
857135212 Feb 1984 JP
20020026398 Apr 2002 KR
20170134281 Dec 2017 KR
13562 Apr 2000 RU
1993020328 Oct 1993 WO
2006025886 Mar 2006 WO
2009023042 Feb 2009 WO
20110133821 Oct 2011 WO
2012139380 Oct 2012 WO
2013158822 Oct 2013 WO
PCTCN2012074945 Nov 2013 WO
2013185399 Dec 2013 WO
2015158020 Oct 2015 WO
2016014476 Jan 2016 WO
2016033983 Mar 2016 WO
2016078181 May 2016 WO
2016101374 Jun 2016 WO
2016112590 Jul 2016 WO
WO-2016130450 Aug 2016 WO
2016186790 Nov 2016 WO
2017123656 Jul 2017 WO
2017146279 Aug 2017 WO
2017213848 Dec 2017 WO
2018031029 Feb 2018 WO
2018038710 Mar 2018 WO
2018044293 Mar 2018 WO
2018044307 Mar 2018 WO
2018071738 Apr 2018 WO
2018101909 Jun 2018 WO
2018101912 Jun 2018 WO
2018106210 Jun 2018 WO
2018106225 Jun 2018 WO
2018106252 Jun 2018 WO
2018132106 Jul 2018 WO
2018156131 Aug 2018 WO
2018075034 Oct 2018 WO
2018187346 Oct 2018 WO
2018031031 Feb 2019 WO
2019045691 Mar 2019 WO
2019046680 Mar 2019 WO
2019060922 Mar 2019 WO
2019117862 Jun 2019 WO
2019126742 Jun 2019 WO
2019147601 Aug 2019 WO
2019169366 Sep 2019 WO
2019195651 Oct 2019 WO
2019200510 Oct 2019 WO
2019210417 Nov 2019 WO
2020018068 Jan 2020 WO
2020046866 Mar 2020 WO
2020072076 Apr 2020 WO
2020076569 Apr 2020 WO
2020097060 May 2020 WO
2020104088 May 2020 WO
2020131085 Jun 2020 WO
2020211083 Oct 2020 WO
2020211086 Oct 2020 WO
2021038604 Mar 2021 WO
2021041783 Mar 2021 WO
Non-Patent Literature Citations (116)
Entry
US 11,555,493 B2, 01/2023, Chang et al. (withdrawn)
Youtube: “Jereh Fracturing Equipment,” Jereh Group, Jun. 8, 2015, 1 Page, Retrieved from URL: https://www.youtube.com/watch?v=m0vMiq84P4Q.
Final written decision of PGR2021-00102 dated Feb. 6, 2023.
Final written decision of PGR2021-00103 dated Feb. 6, 2023.
De Gevigney et al., “Analysis of no-load dependent power losses in a planetary gear train by using thermal network method”, International Gear Conference 2014: Aug. 26-28, 2014, Lyon, pp. 615-624.
Special-Purpose Couplings for Petroleum, Chemical, and Gas Industry Services, API Standard 671 (4th Edition) (2010).
The Application of Flexible Couplings for Turbomachinery, Jon R.Mancuso et al., Proceedings of the Eighteenthturbomachinery Symposium (1989).
Pump Control With Variable Frequency Drives, Kevin Tory, Pumps & Systems: Advances in Motors and Drives, Reprint from Jun. 2008.
Fracture Design and Stimulation, Mike Eberhard, P.E., Wellconstruction & Operations Technical Workshop Insupport of the EPA Hydraulic Fracturing Study, Mar. 10-11, 2011.
General Purpose vs. Special Purpose Couplings, Jon Mancuso, Proceedings of the Twenty-Third Turbomachinerysymposium (1994).
Overview of Industry Guidance/Best Practices on Hydraulic Fracturing (HF), American Petroleum Institute, © 2012.
API Member Companies, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20130424080625/http://api.org/globalitems/globalheaderpages/membership/api-member-companies, accessed Jan. 4, 2021.
API's Global Industry Services, American Petroleum Institute, © Aug. 2020.
About API, American Petroleum Institute, https://www.api.org /about, accessed Dec. 30, 2021.
About API, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110422104346 / http:/api.org/aboutapi/, captured Apr. 22, 2011.
Publications, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110427043936 / http://www.api.org:80/Publications/, captured Apr. 27, 2011.
Procedures for Standards Development, American Petroleum Institute, Third Edition (2006).
WorldCat Library Collections Database Records for API Standard 671 and API Standard 674, https://www.worldcat.org/title/positive-displacement-pumps-reciprocating/oclc/ 858692269&referer=brief_results, accessed Dec. 30, 2021; and https://www.worldcat.org/title/special-purpose-couplings-for-petroleum-chemical-and-gas-industry-services/oclc/871254217&referer-brief_results, accessed Dec. 22, 2021.
2011 Publications and Services, American Petroleum Institute (2011).
Standards, American Petroleum Institute, WaybackMachine Capture, https://web.archive.org/web/20110207195046/http:/www.api.org/Standards/, captured Feb. 7, 2011; and https://web.archive.org/web/20110204112554/http://global.ihs.com/?RID=API1, captured Feb. 4, 2011.
IHS Markit Standards Store, https://global.ihs.com/doc_ detail.cfm?document_name=API%20STD%20674&item_s_key=00010672#doc-detail-history-anchor, accessed Dec. 30, 2021; and https://global.ihs.com/doc_detail.cfm?&input _doc_number=671&input_doc_title=&document_name=API%20STD%20671&item_s_key=00010669&item_key_date=890331&origin=DSSC, accessed Dec. 30, 2021.
Dziubak, Tadeusz, “Experimental Studies of Dust Suction Irregularity from Multi-Cyclone Dust Collector of Two-Stage Air Filter”, Energies 2021, 14, 3577, 28 pages.
Rigmaster Machinery Ltd., Model: 2000 RMP-6-PLEX, brochure, downloaded at https://www.rigmastermachinery.com/_files/ugd/431e62_eaecd77c9fe54af8b13d08396072da67.pdf.
Europump and Hydrualic Institute, Variable Speed Pumping: A Guide to Successful Applications, Elsevier Ltd, 2004.
Capstone Turbine Corporation, Capstone Receives Three Megawatt Order from Large Independent Oil & Gas Company in Eagle Ford Shale Play, Dec. 7, 2010.
Wikipedia, Westinghouse Combustion Turbine Systems Division, https://en.wikipedia.org/wiki/Westinghouse_Combustion_Turbine_Systems_Division, circa 1960.
Wikipedia, Union Pacific GTELs, https://en.wikipedia.org/wiki/Union_Pacific_GTELs, circa 1950.
HCI Jet Frac, Screenshots from YouTube, Dec. 11, 2010. https://www.youtube.com/watch?v=6HjXkdbFaFQ.
AFD Petroleum Ltd., Automated Hot Zone, Frac Refueling System, Dec. 2018.
Eygun, Christiane, et al., URTeC: 2687987, Mitigating Shale Gas Developments Carbon Footprint: Evaluating and Implementing Solutions in Argentina, Copyright 2017, Unconventional Resources Technology Conference.
Walzel, Brian, Hart Energy, Oil, Gas Industry Discovers Innovative Solutions to Environmental Concerns, Dec. 10, 2018.
Frac Shack, Bi-Fuel FracFueller brochure, 2011.
Pettigrew, Dana, et al., High Pressure Multi-Stage Centrifugal Pump for 10,000 psi Frac Pump—HPHPS Frac Pump, Copyright 2013, Society of Petroleum Engineers, SPE 166191.
Elle Seybold, et al., Evolution of Dual Fuel Pressure Pumping for Fracturing: Methods, Economics, Field Trial Results and Improvements in Availability of Fuel, Copyright 2013, Society of Petroleum Engineers, SPE 166443.
Wallace, E.M., Associated Shale Gas: From Flares to Rig Power, Copyright 2015, Society of Petroleum Engineers, SPE-173491-MS.
Williams, C.W. (Gulf Oil Corp. Odessa Texas), The Use of Gas-turbine Engines in an Automated High-Pressure Water-Injection Stations; American Petroleum Institute; API-63-144 (Jan. 1, 1963).
Neal, J.C. (Gulf Oil Corp. Odessa Texas), Gas Turbine Driven Centrifugal Pumps for High Pressure Water Injection; American Institute of Mining, Metallurgical and Petroleum Engineers, Inc.; SPE-1888 (1967).
Porter, John A. (Solar Division International Harvester Co.), Modern Industrial Gas Turbines for the Oil Field; American Petroleum Institute; Drilling and Production Practice; API-67-243 (Jan. 1, 1967).
Cooper et al., Jet Frac Porta-Skid—A New Concept in Oil Field Service Pump Equipments[sic]; Halliburton Services; SPE-2706 (1969).
Ibragimov, É.S., Use of gas-turbine engines in oil field pumping units; Chem Petrol Eng; (1994) 30: 530. https://doi.org/10.1007/BF01154919. (Translated from Khimicheskaya i Neftyanoe Mashinostroenie, No. 11, pp. 24-26, Nov. 1994.).
Kas'yanov et al., Application of gas-turbine engines in pumping units complexes of hydraulic fracturing of oil and gas reservoirs; Exposition Oil & Gas; (Oct. 2012) (published in Russian).
American Petroleum Institute. API 674: Positive Displacement Pumps—Reciprocating. 3rd ed. Washington, DC: API Publishing Services, 2010.
American Petroleum Institute. API 616: Gas Turbines for the Petroleum, Chemical, and Gas Industry Services. 5th ed. Washington, DC: API Publishing Services, 2011.
Karassik, Igor, Joseph Messina, Paul Cooper, and Charles Heald. Pump Handbook. 4th ed. New York: McGraw-Hill Education, 2008.
Weir SPM. Weir SPM General Catalog: Well Service Pumps, Flow Control Products, Manifold Trailers, Safety Products, Post Sale Services. Ft. Worth, TX: Weir Oil & Gas. May 28, 2016. https://www.pumpfundamentals.com/pumpdatabase2/weir-spm-general.pdf.
The Weir Group, Inc. Weir SPM Pump Product Catalog. Ft. Worth, Tx: S.P.M. Flow Control, Inc. Oct. 30, 2017. https://manage.global.weir/assets/files/product%20brochures/SPM_2P140706_Pump_Product_Catalogue_View.pdf.
Shandong Saigao Group Corporation. Q4 (5W115) Quintuplex Plunger Pump. Jinan City, Shandong Province, China: Saigao. Oct. 20, 2014. https://www.saigaogroup.com/product/q400-5w115-quintuplex-plunger-pump.html.
Marine Turbine. Turbine Powered Frac Units. Franklin, Louisiana: Marine Turbine Technologies, 2020.
Rotating Right. Quintuplex Power Pump Model Q700. Edmonton, Alberta, Canada: Weatherford International Ltd. https://www.rotatingright.com/pdf/weatherford/RR%2026-Weatherford%20Model%20Q700.pdf, 2021.
CanDyne Pump Services, Inc. Weatherford Q700 Pump. Calgary, Alberta, Canada: CanDyne Pump Services. Aug. 15, 2015. http://candyne.com/wp-content/uploads/2014/10/181905-94921.q700-quintuplex-pump.pdf.
Arop, Julius Bankong. Geomechanical review of hydraulic fracturing technology. Thesis (M. Eng.). Cambridge, MA: Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering. Oct. 29, 2013. https://dspace.mit.edu/handle/1721.1/82176.
AFGlobal Corporation, Durastim Hydraulic Fracturing Pump, A Revolutionary Design for Continuous Duty Hydraulic Fracturing, 2018.
SPM® QEM 5000 E-Frac Pump Specification Sheet, Weir Group (2019) (“Weir 5000”).
Green Field Energy Services Natural Gas Driven Turbine Frac Pumps HHP Summit Presentation, Yumpu (Sep. 2012), https://www.yumpu.com/en/document/read/49685291/turbine-frac-pump-assembly-hhp (“Green Field”).
Jereh Debut's Super-power Turbine Fracturing Pump, Leading the Industrial Revolution, Jereh Oilfield Services Group (Mar. 19, 2014), https://www.prnewswire.com/news-releases/jereh-debuts-super-power-turbine-fracturing-pump-leading-the-industrial-revolution-250992111.html.
Jereh Apollo 4500 Turbine Frac Pumper Finishes Successful Field Operation in China, Jereh Group (Feb. 13, 2015), as available on Apr. 20, 2015, https://web.archive.org/web/20150420220625/https://www. prnewswire.com/news-releases/jereh-apollo-4500-turbine-frac-pumper-finishes-successful-field-operation-in-china-300035829.html.
35% Economy Increase, Dual-fuel System Highlighting Jereh Apollo Frac Pumper, Jereh Group (Apr. 13, 2015), https://www.jereh.com/en/news/press-release/news-detail-7345.htm.
Hydraulic Fracturing: Gas turbine proves successful in shale gas field operations, Vericor (2017), https://www.vericor.com/wp-content/ uploads/2020/02/7.-Fracing-4500hp-Pump-China-En.pdf (“Vericor Case Study”).
Jereh Apollo Turbine Fracturing Pumper Featured on China Central Television, Jereh Group (Mar. 9, 2018), https://www.jereh.com/en/ news/press-release/news-detail-7267.htm.
Jereh Unveiled New Electric Fracturing Solution at OTC 2019, Jereh Group (May 7, 2019), as available on May 28, 2019, https://web.archive.org/web/20190528183906/https://www.prnewswire .com/news-releases/jereh-unveiled-new-electric-fracturing-solution-at-otc-2019-300845028.html.
Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015), https://www.youtube.com/watch?v=PIkDbU5dE0o.
Transcript of Jereh Group, Jereh Fracturing Unit, Fracturing Spread, YouTube (Mar. 30, 2015).
Jereh Group, Jereh Fracturing Equipment. YouTube (Jun. 8, 2015), https://www.youtube.com/watch?=v=m0vMiq84P4Q.
Transcript of Jereh Group, Jereh Fracturing Equipment, YouTube (Jun. 8, 2015), https://www.youtube.com/watch?v=m0vMiq84P4Q.
Ferdinand P. Beer et al., Mechanics of Materials (6th ed. 2012).
Weir Oil & Gas Introduces Industry's First Continuous Duty 5000-Horsepower Pump, Weir Group (Jul. 25, 2019), https://www.global. weir/newsroom/news-articles/weir-oil-and-gas-introduces-industrys-first-continuous-duty-5000-horsepower-pump/.
2012 High Horsepower Summit Agenda, Natural Gas for High Horsepower Applications (Sept. 5, 2012).
Review of HHP Summit 2012, Gladstein, Neandross & Associates https://www.gladstein.org/gna-conferences/high-horsepower-summit-2012/.
Green Field Energy Services Deploys Third New Hydraulic Fracturing System, Green Field Energy Services, Inc. (Jul. 11, 2012), https://www.prnewswire.com/news-releases/green-field-energy-services-deploys-third-new-hydraulic-fracturing-spread-162113425.
Karen Boman, Turbine Technology Powers Green Field Multi-Fuel Frack Pump, Rigzone (Mar. 7, 2015), as available on Mar. 14, 2015, https://web.archive.org/web/20150314203227/https://www.rigzone.co m/news/oil-gas/a/124883/Turbine_Technology_Powers_Green_Field_ MultiFuel_Frack_Pump.
“Turbine Frac Units,” WMD Squared (2012), https://wmdsquared.com/ work/gfes-turbine-frac-units/.
Leslie Turj, Green Field asset sale called ‘largest disposition industry has seen,’ The INDsider Media (Mar. 19, 2014), http://theind.com/ article-16497-green-field-asset-sale-called-%E2%80%98largest-disposition-industry-has-seen%60. html.
“Honghua developing new-generation shale-drilling rig, plans testing of frac pump”; Katherine Scott; Drilling Contractor May 23, 2013; accessed at https://www.drillingcontractor.org/honghua-developing-new-generation-shale-drilling-rig-plans-testing-of-frac-pump-23278.
Researchgate, Answer by Byron Woolridge, found at https://www.researchgate.net/post/How_can_we_improve_the_efficiency_of_the_gas_turbine_cycles, Jan. 1, 2013.
Filipović, Ivan, Preliminary Selection of Basic Parameters of Different Torsional Vibration Dampers Intended for use in Medium-Speed Diesel Engines, Transactions of Famena XXXVI-3 (2012).
Marine Turbine Technologies, 1 MW Power Generation Package, http://marineturbine.com/power-generation, 2017.
Business Week: Fiber-optic cables help fracking, cablinginstall.com. Jul. 12, 2013. https://www.cablinginstall.com/cable/article/16474208/businessweek-fiberoptic-cables-help-fracking.
Fracking companies switch to electric motors to power pumps, iadd-intl.org. Jun. 27, 2019. https://www.iadd-intl.org/articles/fracking-companies-switch-to-electric-motors-to-power-pumps/.
The Leader in Frac Fueling, suncoastresources.com. Jun. 29, 2015. https://web.archive.org/web/20150629220609/https://www.suncoastresources.com/oilfield/fueling-services/.
Mobile Fuel Delivery, atlasoil.com. Mar. 6, 2019. https://www.atlasoil.com/nationwide-fueling/onsite-and-mobile-fueling.
Frac Tank Hose (FRAC), 4starhose.com. Accessed: Nov. 10, 2019. http://www.4starhose.com/product/frac_tank_hose_frac.aspx.
PLOS One, Dynamic Behavior of Reciprocating Plunger Pump Discharge Valve Based on Fluid Structure Interaction and Experimental Analysis. Oct. 21, 2015.
FMC Technologies, Operation and Maintenance Manual, L06 Through L16 Triplex Pumps Doc No. OMM50000903 Rev: E p. 1 of 66. Aug. 27, 2009.
Lekontsev, Yu M., et al. “Two-side sealer operation.” Journal of Mining Science 49.5 (2013): 757-762.
FTS International's Dual Fuel Hydraulic Fracturing Equipment Increases Operational Efficiencies, Provides Cost Benefits, Jan. 3, 2018.
CNG Delivery, Fracturing with natural gas, dual-fuel drilling with CNG, Aug. 22, 2019.
PbNG, Natural Gas Fuel for Drilling and Hydraulic Fracturing, Diesel Displacement / Dual Fuel & Bi-Fuel, May 2014.
Integrated Flow, Skid-mounted Modular Process Systems, Jul. 15, 2017, https://ifsolutions.com/why-modular/.
Cameron, A Schlumberger Company, Frac Manifold Systems, 2016.
ZSi-Foster, Energy | Solar | Fracking | Oil and Gas, Aug. 2020, https://www.zsi-foster.com/energy-solar-fracking-oil-and-gas.html.
JBG Enterprises, Inc., WS-Series Blowout Prevention Safety Coupling—Quick Release Couplings, Sep. 11, 2015, http://www.jgbhose.com/products/WS-Series-Blowout-Prevention-Safety-Coupling.asp.
Halliburton, Vessel-based Modular Solution (VMS), 2015.
Chun, M. K., H. K. Song, and R. Lallemand. “Heavy duty gas turbines in petrochemical plants: Samsung's Daesan blant (Korea) beats fuel flexibility records with over 95% hydrogen in process gas.” Proceedings of PowerGen Asia Conference, Singapore. 1999.
Wolf, Jürgen J., and Marko A. Perkavec. “Safety Aspects and Environmental Considerations for a 10 MW Cogeneration Heavy Duty Gas Turbine Burning Coke Oven Gas with 60% Hydrogen Content.” ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 1992.
Ginter, Timothy, and Thomas Bouvay. “Uprate options for the MS7001 heavy duty gas turbine.” GE paper GER-3808C, GE Energy 12 (2006).
Chaichan, Miqdam Tariq. “The impact of equivalence ratio on performance and emissions of a hydrogen-diesel dual fuel engine with cooled exhaust gas recirculation.” International Journal of Scientific & Engineering Research 6.6 (2015): 938-941.
Ecob, David J., et al. “Design and Development of a Landfill Gas Combustion System for the Typhoon Gas Turbine.” ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers Digital Collection, 1996.
II-VI Marlow Industries, Thermoelectric Technologies in Oil, Gas, and Mining Industries, blog.marlow.com (Jul. 24, 2019).
B.M. Mahlalela, et al., .Electric Power Generation Potential Based on Waste Heat and Geothermal Resources in South Africa, pangea.stanford.edu (Feb. 11, 2019).
Department of Energy, United States of America, The Water-Energy Nexus: Challenges and Opportunities ourenergypolicy.org (Jun. 2014).
Ankit Tiwari, Design of a Cooling System for a Hydraulic Fracturing Equipment, The Pennsylvania State University, The Graduate School, College of Engineering, 2015.
Jp Yadav et al., Power Enhancement of Gas Turbine Plant by Intake Air Fog Cooling, Jun. 2015.
Mee Industries: Inlet Air Fogging Systems for Oil, Gas and Petrochemical Processing, Verdict Media Limited Copyright 2020.
M. Ahmadzadehtalatapeh et al.Performance enhancement of gas turbine units by retrofitting with inlet air cooling technologies (IACTs): an hour-by-hour simulation study, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Mar. 2020.
Advances in Popular Torque-Link Solution Offer OEMs Greater Benefit, Jun. 21, 2018.
Emmanuel Akita et al., Mewbourne College of Earth & Energy, Society of Petroleum Engineers; Drilling Systems Automation Technical Section (DSATS); 2019.
PowerShelter Kit II, nooutage.com, Sep. 6, 2019.
EMPengineering.com, HEMP Resistant Electrical Generators / Hardened Structures HEMP/GMD Shielded Generators, Virginia, Nov. 3, 2012.
Blago Minovski, Coupled Simulations of Cooling and Engine Systems for Unsteady Analysis of the Benefits of Thermal Engine Encapsulation, Department of Applied Mechanics, Chalmers University of Technology Göteborg, Sweden 2015.
J. Porteiro et al., Feasibility of a new domestic CHP trigeneration with heat pump: II. Availability analysis. Design and development, Applied Thermal Engineering 24 (2004) 1421-1429.
ISM, What is Cracking Pressure, 2019.
Swagelok, The right valve for controlling flow direction? Check, 2016.
Technology.org, Check valves how do they work and what are the main type, 2018.
Dowell: “B908 Turbine Pumper,” Operator's Manual, 9 Pages, 1980.
GD Energy Products: “GD 3000 Well Service Pump,” GD Energy Products Frac Pumps, 2021, 2 Pages, [retrieved on Feb. 6, 2025] Retrieved from the Internet: https://gdenergyproducts.com/products/pumps/frac-pumps/gd-3000#info.
Hausfeld T., et al., “TM2500+ Power for Hydraulic Fracturing,” Evolution Well Services, GE Imagination at Work, 2013, 20 Pages.
Related Publications (1)
Number Date Country
20230086680 A1 Mar 2023 US
Provisional Applications (2)
Number Date Country
62704565 May 2020 US
62900291 Sep 2019 US
Continuations (4)
Number Date Country
Parent 17403373 Aug 2021 US
Child 17954118 US
Parent 17326711 May 2021 US
Child 17403373 US
Parent 17213802 Mar 2021 US
Child 17326711 US
Parent 16948289 Sep 2020 US
Child 17213802 US
Continuation in Parts (1)
Number Date Country
Parent 17954118 Sep 2022 US
Child 17989601 US