Systems, devices and methods for accessing a bodily opening

Information

  • Patent Grant
  • 9028523
  • Patent Number
    9,028,523
  • Date Filed
    Friday, May 15, 2009
    15 years ago
  • Date Issued
    Tuesday, May 12, 2015
    9 years ago
Abstract
Medical systems, devices and methods are provided for accessing a bodily opening that, among other things, are safe and reliable, and facilitate manipulation of a medical instrument. The medical access device generally includes an elongated flexible sheath and an expandable frame connected to the distal end of the flexible sheath. The sheath and expandable frame are operable between expanded and collapsed configurations to provide a pathway from a natural orifice to the bodily opening. Medical systems and methods are also provided for delivering the medical device.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical systems, devices and methods to access a bodily opening via a bodily lumen, such as an opening in a wall of the gastrointestinal tract, for deployment of an endoscope and/or other medical devices.


BACKGROUND OF THE INVENTION

Openings in bodily walls may be formed to gain access to adjacent structures of the body, such techniques being commonly referred to as translumenal procedures. For example, culdoscopy was developed over 70 years ago, and involves transvaginally accessing the peritoneal cavity by forming an opening in the cul de sac. This access to the peritoneal cavity allows medical professionals to visually inspect numerous anatomical structures, as well as perform various procedures such as biopsies, tubal ligations, or other operations, all in a minimally invasive manner. Many translumenal procedures for gaining access to various body cavities using other bodily lumens have also been developed. For example, the bodily lumens of the gastrointestinal tract are often endoscopically explored and can be utilized to provide access to the peritoneal cavity and other body cavities. U.S. patent application Ser. No. 12/025,985 filed Feb. 5, 2008, discloses such a procedure, and is incorporated herein by reference in its entirety.


Although translumenal procedures are minimally invasive, there are also various risks involved. For example, when an opening is formed in a bodily wall of the gastrointestinal tract, such as in the stomach or intestines, spillage of the stomach contents, intestinal contents or other bodily fluids into the adjacent body cavity can occur. Travel of bacteria laden fluids outside of the gastrointestinal tract may cause unwanted and sometimes deadly infection. Traditional overtubes have been used to protect the mouth and esophagus while delivering an endoscope to the stomach. However, these overtubes do not seal to the gastric wall. Furthermore, traditional overtubes are quite rigid and can restrict the ability to manipulate the endoscope as desired.


BRIEF SUMMARY OF THE INVENTION

The present invention provides medical systems, devices and methods for accessing a bodily opening that are, among other things, safe and reliable, and that aid in the manipulation of the endoscope of other medical tool. One embodiment of a medical device for forming a pathway from an external orifice to a bodily opening defined by tissue of an internal bodily lumen is provided in accordance with the teachings of the present invention, and generally includes an expandable frame and a flexible sheath. The expandable frame is operable between a collapsed configuration and an expanded configuration. The flexible sheath has a length suitable for forming the pathway and has a distal portion connected to the stent. The sheath is collapsible over a substantial portion of its length and is operable between a collapsed configuration and an expanded configuration.


According to more detailed aspects, the flexible sheath preferably folds onto itself in the collapsed configuration. The sheath has an expanded diameter in its expanded configuration, and the stent has an expanded diameter in its expanded configuration, wherein the expanded diameter of the sheath is about equal to the expanded diameter of the expandable frame. The expandable frame exerts a radially outward force on the sheath in their respective expanded configurations. Preferably, the expandable frame is a stent, and at least a portion of the stent has a cylindrical shape in its expanded configuration. In one manner, a distal portion of the sheath is connected to a distal end of the expandable frame. In another manner, a distal portion of the sheath wraps around a distal end of the expandable frame to enclose the expandable frame within the distal portion of the sheath. In yet another manner, the expandable frame includes at least one wire and a coating that encapsulates the at least wire, the coating extending beyond a proximal end of the wire to define a lip, and a distal end of the sheath is bonded to the lip of the coating.


A medical system for forming a pathway from an external orifice to a bodily opening defined by tissue of an internal bodily lumen, is also provided in accordance with the teachings of the present invention. One embodiment of the medical system includes an outer catheter, an inner catheter, and a medical device such as those summarized above and described herein. The outer catheter defines an outer catheter lumen. The medical device comprises a connection member and a flexible sheath, the flexible sheath defining a sheath lumen and having a length suitable for forming the pathway. The sheath has a distal portion connected to the connection member, and is operable between a collapsed configuration and an expanded configuration. The collapsed configuration of the sheath is sized to be received within the outer catheter lumen. The inner catheter is sized to be received within the sheath lumen in the collapsed configuration of the sheath. The inner catheter has a plurality of gripping members positioned on the outer periphery of the inner catheter for gripping the sheath.


According to more detailed aspects, the plurality of gripping members each extend around the outer periphery of the inner catheter. The plurality of gripping members are longitudinally spaced apart along the length of the inner catheter, and are preferably formed of an elastomeric material. The inner catheter defines an inner catheter lumen, and the system may further comprises a guiding catheter sized to be received within the inner catheter lumen. The guiding catheter defines a guiding lumen sized to receive a wire guide.


A method for accessing a bodily opening defined by tissue of an internal bodily lumen via an external orifice is also provided in accordance with the teachings of the present invention. The method includes the step of providing a medical device comprising an expandable member and a flexible sheath such as those summarized above and described herein. The distal end of the sheath and a portion of the expandable member are delivered within the perforation while the stent is in its collapsed configuration. The expandable member is operated to its expanded configuration such that the distal end of the sheath is pressed against the interior of the perforation formed in the bodily wall. According to more detailed aspects, the medical device forms part of a medical system such as those summarized above and described herein. The step of operating the expandable member to its expanded configuration preferably includes proximally retracting the outer catheter relative to the inner catheter. The gripping members on the inner catheter serve to hold the medical device in place during deployment.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a plan view of a medical device constructed in accordance with the teachings of the present invention;



FIG. 2 is a cross-sectional view of the medical device depicted in FIG. 1;



FIG. 3 is a cross-sectional view taken about the line 3-3 in FIG. 1;



FIG. 4 is a cross-sectional view of another embodiment of the medical device depicted in FIG. 1;



FIG. 5 is a cross-sectional view of another embodiment of the medical device depicted in FIG. 1;



FIGS. 6A, 6B and 6C are plan views of alternate embodiments of expandable frames that may for a portion of the medical devices depicted in FIGS. 1-5;



FIG. 7 is a cross-sectional view showing one embodiment of the collapsed configuration of the medical device depicted in FIG. 1;



FIG. 8 is a cross-section view of another embodiment of a collapsed configuration of the medical device depicted in FIG. 1;



FIG. 9 is an exploded view of a medical system for deploying the medical device depicted in FIGS. 1-5, constructed in accordance with the teachings of the present invention;



FIG. 10 is a cross-sectional view of the medical system depicted in FIG. 9;



FIGS. 11-15 depict a method of employing the medical systems and devices depicted in FIGS. 1-10;



FIG. 16 is a cross-sectional view, similar to FIG. 2, depicting another embodiment of a medical device constructed in accordance with the teachings of the present invention;



FIG. 17 is a perspective view and FIG. 18 is a cross-sectional view depicting yet another embodiment of a medical device constructed in accordance with the teachings of the present invention; and



FIG. 19 is a cross-section view, similar to FIG. 3, depicting a variation of the embodiments of the medical devices constructed in accordance with the teachings of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In the present application, the terms “proximal” and “proximally” refer to a position, direction, or orientation that is generally towards a physician during a medical procedure, while the terms “distal” and “distally” refer to a position, direction, or orientation that is generally away from the physician and towards a target site within a patent's anatomy during a medical procedure. Thus, “proximal” and “distal” portions of a device or bodily region may depend on the point of entry for the procedure (e.g., percutaneously or laparoscopically or endoscopically).


Turning now to the figures, FIGS. 1-3 depict a medical device 20 for forming a pathway from an external orifice to a bodily opening defined by tissue of an internal bodily lumen, constructed in accordance with the teachings of the present invention. As is known in the art, the external orifice typically is a natural orifice such as the mouth, anus, vagina, ears, nose, etc., although it will be recognized by those skilled in the art that the medical device 20 may also be employed through intentionally formed orifices such as those made during laparoscopic or similar procedures. Similarly, the bodily opening defined by the tissue of an internal bodily lumen may be intentionally formed or may be naturally occurring, and the internal bodily lumen may comprise a portion of the gastrointestinal tract or any other internal bodily lumen, as will be recognized by those skilled in the art.


The medical device 20 generally comprises an expandable frame 22 and a flexible sheath 24. The flexible sheath 24 generally extends from a proximal portion 26 to a distal portion 28 and has a length suitable for forming the pathway, i.e. its length is sized depending upon the particular orifice and bodily lumen being traversed. The sheath 24 defines a sheath lumen 30 through which an endoscope 100 (FIG. 11) or other medical instrument may be traversed for accessing the bodily opening. Likewise, the expandable frame 22 defines a frame lumen 32 through which the endoscope 100 or other medical instrument may pass.


The expandable frame 22 is connected to the distal portion 28 of the sheath 24, and more particularly within the sheath lumen 30 as shown, although the expandable frame 22 may be positioned on the exterior of the sheath 24. In one manner, a plurality of sutures 34 may be threaded through the sheath 24 and the struts 42 of the expandable frame 22, and the ends of the sutures 34 tied to connect the expandable frame 22 and sheath 24 together. In another manner, shown in FIG. 4, the distal portion 28 of the sheath 24 may wrap around a distal end 36 of the expandable frame 22 and extend proximally beyond the proximal end 38 of the expandable frame 22 where it is connected to the sheath 24 using conventional methods such as heat bonding, mechanical bonding, adhesives, fasteners, suturing or the like. As such, the distal portion 28 of the sheath 24 can form a pocket 40 sized to receive the expandable frame 22 and encapsulate it therein.


In yet another manner depicted in FIG. 5, the expandable frame 22 and its struts 42 may have a coating 44 (e.g. a polymeric coating) that is formed to extend beyond a proximal end 38 of the expandable frame 22 to define a lip 45. In this configuration, the distal portion 28 of the sheath 24 may be attached to the lip 45 (or any other portion of the coating 44) via conventional methods such as those mentioned above. The coating 44 may define a continuous outer layer, e.g. formed from a separate tubular sheet (of similar or dissimilar materials as the sheath 24), or may be applied to the individual struts 42 to leave spaces therebetween (e.g. in a dip coating process), and thus the surface of the lip 45 may be continuous or discontinuous.


In still yet another manner depicted in FIG. 16, the medical device 120 includes an expandable frame 122 having four cages 122a, 122b, 122c, 122d, only two of which (122c, 122d) are covered by the flexible sheath 24. The two distal cages 122a, 122b are exposed on their exterior to directly engage the tissue of the gastric wall 16 within the opening 18 (see, e.g. FIG. 15), thereby improving the friction and grip of the frame 122 to the wall 16. The covered portion of the expandable frame 122 (in the depicted embodiment cages 122c, 122d) may also press the sheath 24 into engagement with the wall 16, although in design and/or use only the uncovered portion of the expandable frame 122 may contact the wall 16. All of the cages in the frame may also be exposed (completely or partially) by attaching the distal end of the sheath to the proximal end of the frame (see, e.g., FIG. 15).


Either or both of the covered and uncovered portions of the expandable frame 122 may also include small barbs 123 which further assist in engaging and gripping the tissue of the wall 16. The barbs 123 project from cages and preferably include sharp edges or points. The barbs 123 may be formed of wire, metal or plastics, and may integrally formed by the material of the frame 122 or separately formed. The barbs 123 may also be formed by removal of material to improve the friction of the exterior of the frame 122, for example a roughened surface. Both large voids and micro sized voids can be formed. Similarly, the distal portion of the sheath 24 itself can also include barbs or roughed materials/surfaces, integrally or separately formed, to improve friction, gripping and retention of the device 20. Further variations in view of the foregoing embodiments will be recognized by the skilled artisan.


It will be recognized that the expandable frame 22 may take many forms and constructions. The expandable frame 22 is preferably an expandable stent, and most preferably a self-expanding stent such as the zig-zag wire metal stents of the Gianturco type as described in U.S. Pat. No. 4,580,568, the disclosure of which is incorporated by reference herein in its entirety. The expandable frame 22 may also be a balloon expandable stent. The expandable frame 22 may have numerous types of geometries, such as coil designs, open cell designs, multi-cell closed-cell designs, and woven designs. The geometric shapes of the expandable frame 22 may also be of various constructions such as cylindrical (FIG. 2), butterfly shape (e.g. made by two tapering cages 22a, 22b connected together as shown in FIG. 6A), or bow-tie shape (e.g. two tapering cages 22a and 22b interconnected by a cylindrical cage 22c as shown in FIG. 6B), or a flared shape (e.g. a first cylindrical cage 22 having a second tapering cage 22c at its proximal or distal end as shown in FIG. 6C), to name a few. An outer or inner sheath, coating, sutures, bonding or welding techniques may be used to connect multiple cages, as is known in the art. The frame 22 and its expandable struts 42 are preferably formed of a material having a rigidity greater than the sheath 24, e.g. a metal or alloy such as nitinol, or plastics having sufficient rigidity and flexure strength.


The expandable frame 22 is generally operable between a collapsed configuration (see e.g., FIGS. 9 and 10) and an expanded configuration (see e.g., FIGS. 1-3 and 13 and 14). Similarly, the sheath 24 is operable between a collapsed configuration (see, e.g., FIGS. 7 and 8), and an expanded configuration (see, e.g., FIGS. 1-3 and 13 and 14). The flexible sheath 24 is preferably formed of a flexible material such as a polymer so that it is collapsible over a substantial portion of its length. That is, the sheath 24 should be collapsible over at least the portion that is intended to be located within the body, which will include the distal portion and generally be at least half the overall length of the sheath 24. Accordingly, the sheath 24 preferably has a rigidity less than traditional overtubes and trocar sleeves. Generally, the sheath 24 folds onto itself in the collapsed configuration. As shown in FIG. 7, one collapsed configuration of the sheath 24 may include one or more large folds 50 which reduces the outer diameter of the sheath 24. As shown in FIG. 8, the sheath 24 may include a series of smaller folds 52, such as folding the sheath 24 in an accordion-style, to reduce its outer diameter in the collapsed configuration.


The flexible nature and collapsibility of the sheath 24 should be designed not only so that it may take a collapsed configuration such as those depicted, but also so that it does not restrict operability of an endoscope or other medical instrument passed through the sheath lumen 30. This can be controlled through selection of the plastic material, e.g. based on its durometer and thickness. Preferably, the sheath 24 has a thickness in the range of about 0.001 inches to about 0.1 inches, and has a sheet-like quality (in-fact, a sheet may be rolled and its edges connected to form the sheath 24). Suitable materials include fluoroplastics such as polytetrafluorethylene (PTFE) or Teflon™, polyethylenes (high, medium or low density), polyethylene ether ketones (PEEK), polyurethanes, silicones or polyamides such as Nylon™. Most preferably, the sheath 24 is formed of low density polyurethane. The structure of the flexible sheath 24 can include multi-layer or single layer constructions with or without reinforcement wires, coils or filaments. Likewise, a polyvinylchloride (PVC) coating may also be employed for increased durability, without making the sheath 24 too rigid.


By utilizing a flexible polymer or elastomer, manipulation and operation of the endoscope 100 or other medical instrument is not compromised. Accordingly, not only can the medical device 20 facilitate operation of the medical instrument, but navigation deeper within the gastrointestinal tract via a natural bodily opening is possible. At the same time, the medical device 20 is easy to deploy and provides a secure engagement and fluidic seal with the internal bodily opening in the tissue that can prevent unwanted travel of bacteria laden fluids. Preferably, the sheath 24 has a diameter about equal to or greater than an estimated diameter of the bodily lumen (such as the esophagus 12), and collapses under a radial force that is less than the radial force anticipated from the bodily lumen. In such a configuration, the sheath 24 will not itself cause dilation or expansion of the esophagus 12 or other bodily lumen.


Turning now to FIGS. 9 and 10, a medical system 60 for forming the pathway from an external orifice to a bodily opening is provided in accordance with the teachings of the present invention. The medical system 60 generally includes a medical device 20, such as those previously described, although it will be recognized that the medical system 60 may also be used with other medical devices 20 having an elongated sheath and a radially expandable member attached to a distal end of the sheath. The medical system 60 includes an outer catheter 62 defining an outer catheter lumen 64 sized to receive the medical device 20 in its collapsed configuration (shown in solid lines in FIG. 9). An inner catheter 70 is sized to be received within the sheath lumen 30 and stent lumen 32. The inner catheter 70 defines an inner catheter lumen 72. A plurality of gripping members 74 are positioned on the exterior of the inner catheter 70 and are longitudinally spaced apart. Preferably, the gripping members 74 each comprise an O-ring, gasket or other elastomeric member that may be fitted on the exterior of the inner catheter 70 by way of adhesives, bonding or simple friction fit. The gripping members 74 may have a circular cross-sectional shape, or non-circular cross-sectional shapes such as square, rectangular, triangular, oval or oblong, etc. As will be discussed in further detail herein, the gripping members 74 serve to grasp the medical device 20, and in particular the flexible sheath 24, and hold it in place while the outer catheter 62 is retracted to deploy the stent 22 and medical device 20.


The medical system 60 may optionally include a guiding catheter 80 which defines a guiding lumen 82 sized to receive a wire guide 90. The guiding catheter 80 may include a bulb-shaped distal end 84 that assists with loading and deploying the medical system 60, and delivering the same over the wire guide 90 to the bodily opening. Also shown in FIG. 9 is a funnel 92 having a slot 94 which is used for loading the medical system 60 (the loaded state is shown in FIG. 10), as will now be described. Generally, the guiding catheter 80 is loaded within the inner catheter lumen 72 of the inner catheter 70. In turn, the inner catheter 70 and guiding catheter 80 are loaded within the lumens 30, 32 of the medical device 20 in its expanded configuration (shown in dotted lines in FIG. 9). The funnel 92 is attached to a distal end 66 of the outer catheter 62 and the proximal end of the medical device 20 (namely proximal portion 26 of sheath 24) and inner catheter 70 and guiding catheter 80 may be moved through the outer catheter lumen 64 towards its proximal end. Due to the flexible and collapsible nature of the sheath 24, it will naturally take its collapsed configuration as it is positioned within the outer catheter lumen 64, although the sheath may be manually folded or otherwise manipulated as it is loaded within the outer catheter 62 to have any preferred collapsed configuration. The outer catheter 62 will be shorter than the medical device 20, inner catheter 70 and guiding catheter 80, so that their proximal ends may be grasped and pulled proximally. This causes the stent 22 of the medical device 20 to pass through the funnel 92, causing it to take its collapsed configuration and be received within the outer catheter lumen 64 of the outer catheter 62. Once the medical device 20 and inner catheter 70 (and optionally guiding catheter 80) are loaded within the outer catheter 62, such as is shown in FIG. 10, the funnel 92 may be removed from the outer catheter 62.


One preferred method for utilizing the medical system 60 and deploying the medical device 20 will now be described with reference to FIGS. 11-15. As shown in FIG. 11, an upper portion of the gastrointestinal tract 10, such as the esophagus 12 and stomach 14, may be accessed via the mouth (not shown). An endoscope 100 may be introduced into the stomach 14, and a cutting instrument 102 may be employed through a working channel of the endoscope 100 to form an opening 18 in the gastric tissue or gastric wall 16. As shown in FIG. 12, the wire guide 90 may be placed through the opening 18, and a dilator 104 may be introduced over the wire guide 90. Generally, the dilator 104 may include an inflation balloon 106 or other radially expandable member to enlarge the opening 18 formed in the gastric wall 16.


As shown in FIG. 13, the endoscope 100 and dilator 104 may be removed while leaving the wire guide 90 in place, and the medical system 60 advanced distally over the wire guide 90 to a position proximate the opening 18. More particularly, the medical system 60 is preferably positioned such that a portion of the expandable frame 22 of the medical device 20 is positioned within the opening 18. To accomplish this, fluoroscopic or ultrasonic monitoring techniques may be employed, whereby the expandable frame 22 may serve as the viewable element, although the outer catheter 62, the distal portion 28 of the sheath 24, or even the inner catheter 70, may include markings such as radiopaque bands or the like that facilitate visualization. Similarly, a catheter-based fiber-optic visualization system or a smaller endoscope (such as a pediatric endoscope), may be placed through the mouth and esophagus 12 into the stomach 14 (parallel to the medical system 60) for direct visualization of the medical system 60.


As shown in FIG. 14, the outer catheter 62 is retracted proximally relative to the inner catheter 70, which is preferably held in place. The gripping members 74 of the outer catheter 70 serve to engage the medical device 20, and in particular the sheath 24, to maintain its position and prevent it from sliding or folding or kinking due to its flexible nature, while the outer catheter 62 is retracted. As the expandable frame 22 becomes exposed beyond the distal end 66 of the outer catheter 62, it will take its expanded configuration and press against the tissue 16 defining the opening 18. Through appropriate sizing of the expandable frame 22, the medical device 20 will be firmly affixed to the gastric wall 16 and within the opening 18, thereby forming a port and passageway from the mouth to the bodily opening 18. The expandable frame 22 exerts a radially outward force on the flexible sheath 24 and the gastric wall tissue 16 sufficient to open and hold-open the opening 18, as well as affix the flexible sheath 24 and medical device 20 to the gastric wall 16. Visualization of the sutures 34 holding the expandable frame 22 and sheath 24 together can assist in confirming complete deployment of the expandable frame 22.


With the medical device 20 in place, the outer catheter 62 and inner catheter 70 and guiding catheter 80 may be retracted proximally and disposed of. Then, the endoscope 100 or a new endoscope may be advanced distally through the flexible sheath 24 of the medical device 20 and through the opening 18 formed in the gastric wall 16 for performing a translumenal procedure. It will be recognized by those skilled in the art that many other medical devices, in addition to or in conjunction with, an endoscope may be employed through the passageway of the medical device 20. When it is desired to remove the medical device 24, the suture 35 (see FIGS. 2 and 15) may be pulled proximally to collapse the cages of the expandable frame 22, allowing the expandable frame 22 and device 20 to be removed from the opening 18 in the gastric wall 16.


Another embodiment a medical device 220, constructed in accordance with the teachings of the present invention, is shown in FIGS. 17-18. Similar to prior embodiments, the device 220 includes an expandable frame 222 connected to a flexible sheath 224, such as those described above. In this embodiment, the expandable frame 222 includes four cages 222a, 222b, 222c, 222d. The first, second and fourth cages 222a, 222b, 222d are formed as stents, e.g. from zig-zag shaped struts as described above. The third cage 222c is simply formed from two or more strands 223, three strands being shown in FIGS. 18-19. The strands 223 extend longitudinally between the second and fourth cages 222b, 222d to connect these cages while spacing them apart. The strands 223 may extend linearly or be curved, and may be formed from metal wires, plastic strips or the like. Cages 222a, 222b, 222d have been shown as encapsulated by the sheath 224, and the third cage includes a separate coating 224d, although the cages 222a, 222b, 222d may be left exposed as described above. As such, the strands 223 may connect to either the struts of the cages 222b, 222d, or to the sheath/coating 224, 224d.


As best seen in FIG. 18, the strands 223 are exposed to directly engage the tissue of the gastric wall 16 within the opening 18. By virtue of the other cages 222a, 222b, 222d expanding while the natural elasticity of the wall 16 tends to close the opening 18, the strands 223 of the cage 222c are pressed into the wall 16 to firmly secure the medical device 220. The strands 223 are constructed with some flexibility and natural resiliency, and thus the other cages 222a, 222b, 222d tend to have a larger diameter than the opening 18 in their expanded configuration. Preferably the strands 223 extend longitudinally a distance greater than a thickness of the gastric wall 16. At the same time, due to the large spaces between the strands 223, the tissue of the gastric wall 16 tends to extend through the exterior of the cage 222c and into the interior space of the expandable frame 222. Due to the natural elasticity of the wall 16, the tissue may extend inwardly until the tissue edges 17 (defining the opening 18 in the wall 16) contact each other. As such, the tissue of the wall 16 thus defines a valve that restricts the flow of fluids and the like through the interior of the expandable frame 222 and sheath 224. When an elongate medical device, such as an endoscope, is moved distally through the sheath 224 and frame 222, the device will separate the tissue as it extends distally beyond the wall 16 and device 220, and can similarly seal to the edges 17 in the area of the third cage 222c.


Similarly, it will also be recognized by those skilled in the art that in any of the embodiments, a separate valve member may be employed within the interior of the device 20, 120, 220, preferably at its distal end. For example, as shown in FIG. 20, a flap valve 333 may extend within the opening 332 of the expandable frame 322 and sheath 324, and the flap valve may have one or more flexible flaps 335 that contact each other and the interior wall of the device 320. The flaps 335, three being shown in FIG. 20, bend or rotate in response to sufficient longitudinal force (e.g. from an endoscope but not from fluid pressure), and therefore serve as a seal to restrict the movement of fluids and the like through the device 320.


In view of the foregoing description of various embodiments of the medical devices, systems and methods, it will be recognized that by utilizing a flexible sheath in forming the medical device, manipulation and operation of the endoscope 100 or other medical instrument is not compromised. Accordingly, not only can the medical devices facilitate operation of the medical instrument, but navigation deeper within the gastrointestinal tract via a natural bodily opening is possible. At the same time, the medical devices are easy to deploy and provides a secure engagement and fluidic seal with the internal bodily opening in the tissue that can prevent unwanted travel of bacteria laden fluids. The medical devices, systems, and methods provide reliable and safe access to an internal bodily opening via an external orifice such as a natural orifice.


The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise embodiments disclosed. Numerous modifications or variations are possible in light of the above teachings. The embodiments discussed were chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly, legally, and equitably entitled.

Claims
  • 1. A medical device for forming a longitudinal pathway from an external orifice to a bodily opening having a length and a diameter defined by tissue of an internal bodily lumen, the medical device comprising: an expandable member operable between a collapsed configuration and an expanded configuration, the expandable member having a proximal end and a distal end; anda flexible sheath having a length suitable for forming the pathway, the flexible sheath including a proximal portion and a distal portion, the distal portion of the sheath connected to the expandable member, the proximal portion of the sheath not connected to the expandable member, the sheath collapsible over a substantial portion of its length and operable between a collapsed configuration and an expanded configuration;wherein the expandable member includes first, second and third cages, and wherein the first and third cages are stents, and wherein the second cage comprises a plurality of strands extending longitudinally between the first and third cages to connect the cages and space the cages apart, the first and third cage configured to have an outer diameter larger than the diameter of the bodily opening in an expanded configuration of the stents, the plurality of strands of the second cage configured to have a length greater than the length of the bodily opening.
  • 2. The medical device of claim 1, wherein the flexible sheath folds onto itself in the collapsed configuration.
  • 3. The medical device of claim 1, wherein the sheath has an expanded diameter in its expanded configuration, and the expandable member has an expanded diameter in its expanded configuration, the expanded diameter of the sheath being about equal to the expanded diameter of the expandable member.
  • 4. The medical device of claim 1 wherein the expandable member exerts a radially outward force on the sheath in their respective expanded configurations.
  • 5. The medical device of claim 4, wherein the radially outward force is sufficient to affix the distal end of the sheath to the tissue.
  • 6. The medical device of claim 1, wherein the expandable member has a cylindrical portion connected to a first conical portion.
  • 7. The medical device of claim 6, the expandable member further comprising a second conical portion, the first and second conical portions being attached on opposite sides of the cylindrical portion.
  • 8. The medical device of claim 1, wherein the distal portion of the sheath is connected to the distal end of the expandable member.
  • 9. The medical device of claim 1, wherein a distal portion of the sheath wraps around a distal end of the expandable member to enclose the expandable member within the distal portion of the sheath.
  • 10. The medical device of claim 1, wherein the expandable frame includes at least one wire and a coating that encapsulates the at least one wire, the coating extending beyond a proximal end of the at least one wire to define a lip, a distal end of the sheath being bonded to the lip of the coating.
  • 11. The medical device of claim 1, wherein the expandable member does not extend longitudinally along a majority of a length of the flexible sheath.
  • 12. The medical device of claim 1, wherein the expandable member has a longitudinal length that is substantially shorter than a longitudinal length of the flexible sheath.
  • 13. The medical device of claim 1, wherein the external orifice is a natural orifice.
  • 14. The medical device of claim 1, wherein the distal portion of the sheath is directly connected to the proximal end of the expandable member.
  • 15. The medical device of claim 1, wherein the expandable member includes sharp barbs projecting outwardly.
  • 16. The medical device of claim 1, wherein the strands define spaces therebetween and an interior space such that adjacent tissue will extend through the spaces between the strands and into the interior space.
  • 17. The medical device of claim 1, wherein the plurality of strands are separately formed and attached to the first and third cages.
  • 18. The medical device of claim 17, wherein the plurality of strands are formed of a material different than a material of the first and third cages.
  • 19. A medical system for forming a pathway from an external orifice to a bodily opening defined by tissue of an internal bodily lumen, the medical system comprising: an outer catheter defining an outer catheter lumen;a medical device comprising a connection member and a flexible sheath, the flexible sheath defining a sheath lumen and having a length suitable for forming the pathway, the sheath having a distal portion connected to the connection member, the sheath operable between a collapsed configuration and an expanded configuration, the collapsed configuration of the sheath sized to be received within the outer catheter lumen; andan inner catheter sized to be received within the sheath lumen in the collapsed configuration of the sheath, the inner catheter having a plurality of gripping members positioned on an outer periphery of the inner catheter for gripping the sheath, wherein the plurality of gripping members are each formed by an elastomeric ring fitted to an exterior of the inner catheter, wherein the gripping members contact the sheat proximal to the connection member.
  • 20. The medical system of claim 19, wherein the plurality of gripping members are longitudinally spaced apart along the length of the inner catheter.
  • 21. The medical system of claim 19, wherein the plurality of gripping members are immoveably fixed to the inner catheter.
  • 22. The medical system of claim 21, wherein the elastomeric rings are separately formed from the inner catheter.
  • 23. The medical system of claim 19, wherein the inner catheter defines an inner catheter lumen, and further comprising a guiding catheter sized to be received within the inner catheter lumen, the guiding catheter defining a guiding lumen sized to receive a wire guide.
  • 24. The medical system of claim 19, wherein the plurality of gripping members are compressible.
  • 25. The medical system of claim 19, wherein the sheath is formed of a plastic material having a thickness in the range of about 0.001inches to about 0.1 inches.
  • 26. The medical system of claim 19, wherein the system includes: a delivery configuration with the flexible sheath being in the collapsed configuration within the outer catheter and the gripping members being disposed radially inward of the flexible sheath and in contact with an inner surface of the flexible sheath to hold the flexible sheath in place; a partially deployed configuration, where the outer catheter is retracted a first distance relative to the flexible sheath, at least one of the gripping members is spaced radially away from and not in contact with the flexible sheath, at least a portion of the flexible sheath is in the expanded configuration, and at least one of the gripping members remains in contact with the flexible sheath; and a fully deployed configuration, where the outer catheter is retracted a further distance relative to the flexible sheath, the gripping members are spaced radially away from and not in contact with the flexible sheath, and the flexible sheath is in the expanded configuration.
  • 27. A method for accessing a bodily opening defined by tissue of an internal bodily lumen via an external orifice, the method comprising: providing a medical device system comprising an outer catheter, an inner catheter, and a medical device having an expandable member and a flexible sheath, the flexible sheath defining a sheath lumen and having a length suitable for forming the pathway, the sheath having a distal portion connected to the expandable member, the sheath operable between a collapsed configuration and an expanded configuration, the expandable member operable between a collapsed configuration and an expanded configuration, the outer catheter defining an outer catheter lumen receiving the sheath in the collapsed configuration, the inner catheter received within the sheath lumen in the collapsed configuration, the inner catheter having a plurality of gripping members positioned on an outer periphery of the inner catheter for gripping the sheath;delivering the distal end of the sheath and a portion of the expandable member within the bodily opening while the expandable member is in its collapsed configuration; andoperating the expandable member to its expanded configuration by translating the outer catheter relative to the inner catheter while the gripping members of the inner catheter engage the medical device such that the distal end of the sheath is placed in contact with an interior of the bodily opening formed in the bodily wall, and the sheath extends proximally back through the external orifice.
  • 28. The method of claim 27, wherein the sheath is pressed against the interior of the bodily opening to create a fluidic seal.
  • 29. The method of claim 27, wherein the step of operating the expandable member to its expanded configuration includes proximally retracting the outer catheter relative to the inner catheter.
  • 30. The method of claim 27, wherein the esophagus forms part of the bodily lumen, and wherein the sheath has a diameter greater than a diameter of the esophagus.
  • 31. The method of claim 30, wherein the sheath is structured to collapse under a radial force that is less than the radial force exerted by the esophagus on the sheath.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 61/053,426 filed on May 15, 2008, entitled “SYSTEMS, DEVICES AND METHODS FOR ACCESSING A BODILY OPENING” the entire contents of which are incorporated herein by reference.

US Referenced Citations (214)
Number Name Date Kind
2313164 Nelson Mar 1943 A
3664345 Dabbs et al. May 1972 A
3766610 Thorsbakken Oct 1973 A
3774608 Wohler, Jr. Nov 1973 A
3915171 Shermeta Oct 1975 A
3952377 Morell Apr 1976 A
4023559 Gaskell May 1977 A
4059333 Mixon, Jr. Nov 1977 A
4224929 Furihata Sep 1980 A
4235238 Ogiu et al. Nov 1980 A
4249535 Hargest, III Feb 1981 A
4315509 Smit Feb 1982 A
4327736 Inoue May 1982 A
4532926 O'Holla Aug 1985 A
4538606 Whited Sep 1985 A
4664114 Ghodsian May 1987 A
4669473 Richards et al. Jun 1987 A
4676778 Nelson, Jr. Jun 1987 A
4686965 Bonnet et al. Aug 1987 A
4719671 Ito et al. Jan 1988 A
4765314 Kolditz et al. Aug 1988 A
4773394 Reichstein et al. Sep 1988 A
5002532 Gaiser et al. Mar 1991 A
5025778 Silverstein et al. Jun 1991 A
5158543 Lazarus Oct 1992 A
5197971 Bonutti Mar 1993 A
5217001 Nakao et al. Jun 1993 A
5254126 Filipi et al. Oct 1993 A
5258015 Li et al. Nov 1993 A
5279565 Klein et al. Jan 1994 A
5282832 Toso et al. Feb 1994 A
5354302 Ko Oct 1994 A
5380304 Parker Jan 1995 A
5383882 Buess et al. Jan 1995 A
5389074 Parker et al. Feb 1995 A
5400770 Nakao et al. Mar 1995 A
5423860 Lizardi et al. Jun 1995 A
5443498 Fontaine Aug 1995 A
5443500 Sigwart Aug 1995 A
5464427 Curtis et al. Nov 1995 A
5486197 Le et al. Jan 1996 A
5531763 Mastri et al. Jul 1996 A
5584835 Greenfield Dec 1996 A
5630824 Hart May 1997 A
5693060 Martin Dec 1997 A
5707355 Zimmon Jan 1998 A
5755781 Jayaraman May 1998 A
5769882 Fogarty et al. Jun 1998 A
5814073 Bonutti Sep 1998 A
5846182 Wolcott Dec 1998 A
5876325 Mizuno et al. Mar 1999 A
5882345 Yoon Mar 1999 A
5906579 Vander Salm et al. May 1999 A
5931844 Thompson et al. Aug 1999 A
5948000 Larsen et al. Sep 1999 A
6004328 Solar Dec 1999 A
6030365 Laufer Feb 2000 A
6086608 Ek et al. Jul 2000 A
6156006 Brosens et al. Dec 2000 A
6200329 Fung et al. Mar 2001 B1
6234958 Snoke et al. May 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6315733 Zimmon Nov 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6432123 Schwartz et al. Aug 2002 B2
6485510 Camrud et al. Nov 2002 B1
6488692 Spence et al. Dec 2002 B1
6511491 Grudem et al. Jan 2003 B2
6535764 Imran et al. Mar 2003 B2
6551270 Bimbo et al. Apr 2003 B1
6572629 Kalloo et al. Jun 2003 B2
6652492 Bell et al. Nov 2003 B1
6689062 Mesallum Feb 2004 B1
6818015 Hankh et al. Nov 2004 B2
6918871 Schulze Jul 2005 B2
6984244 Perez et al. Jan 2006 B2
6988987 Ishikawa Jan 2006 B2
7033379 Peterson Apr 2006 B2
7033380 Schwartz et al. Apr 2006 B2
7118600 Dua et al. Oct 2006 B2
7128708 Saadat et al. Oct 2006 B2
7147652 Bonutti et al. Dec 2006 B2
7204841 Green Apr 2007 B2
7273451 Sekine et al. Sep 2007 B2
7300451 Crombie et al. Nov 2007 B2
7335221 Collier et al. Feb 2008 B2
7371244 Chatlynne et al. May 2008 B2
7575548 Takemoto et al. Aug 2009 B2
7615003 Stefanchik et al. Nov 2009 B2
7615005 Stefanchik et al. Nov 2009 B2
7637905 Saadat et al. Dec 2009 B2
7637919 Ishikawa et al. Dec 2009 B2
7654951 Ishikawa Feb 2010 B2
7717847 Smith May 2010 B2
7721742 Kalloo et al. May 2010 B2
7735489 Mikkaichi et al. Jun 2010 B2
7758598 Conlon et al. Jul 2010 B2
7785251 Wilk Aug 2010 B2
7785333 Miyamoto et al. Aug 2010 B2
7785348 Kuhns et al. Aug 2010 B2
7815589 Meade et al. Oct 2010 B2
7815591 Levine et al. Oct 2010 B2
20010049503 Estabrook et al. Dec 2001 A1
20020022764 Smith et al. Feb 2002 A1
20020022851 Kalloo et al. Feb 2002 A1
20020193806 Moenning et al. Dec 2002 A1
20030065359 Weller et al. Apr 2003 A1
20030093104 Bonner et al. May 2003 A1
20030216613 Suzuki et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20030229296 Ishikawa et al. Dec 2003 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20050056292 Cooper Mar 2005 A1
20050101837 Kalloo et al. May 2005 A1
20050107664 Kalloo et al. May 2005 A1
20050113851 Swain et al. May 2005 A1
20050149078 Vargas et al. Jul 2005 A1
20050251176 Swanstrom et al. Nov 2005 A1
20050277945 Saadat et al. Dec 2005 A1
20060015006 Laurence et al. Jan 2006 A1
20060052750 Lenker et al. Mar 2006 A1
20060064120 Levine et al. Mar 2006 A1
20060100480 Ewers et al. May 2006 A1
20060135971 Swanstrom et al. Jun 2006 A1
20060135984 Kramer et al. Jun 2006 A1
20060135985 Cox et al. Jun 2006 A1
20060178560 Saadat et al. Aug 2006 A1
20060200004 Wilk Sep 2006 A1
20060211919 Wilk Sep 2006 A1
20060212063 Wilk Sep 2006 A1
20060229653 Wilk Oct 2006 A1
20060237022 Chen et al. Oct 2006 A1
20060237023 Cox et al. Oct 2006 A1
20060241344 Wilk Oct 2006 A1
20060241480 Wilk Oct 2006 A1
20060241570 Wilk Oct 2006 A1
20060241651 Wilk Oct 2006 A1
20060252997 Wilk Nov 2006 A1
20060253123 Wilk Nov 2006 A1
20060253144 Mikkaichi et al. Nov 2006 A1
20060258909 Saadat et al. Nov 2006 A1
20060286664 McAllister et al. Dec 2006 A1
20070038224 Ortiz Feb 2007 A1
20070043381 Furst et al. Feb 2007 A1
20070051380 Pasricha Mar 2007 A1
20070106313 Golden et al. May 2007 A1
20070156223 Vaughan Jul 2007 A1
20070163596 Mikkaichi et al. Jul 2007 A1
20070167675 Miyamoto et al. Jul 2007 A1
20070167676 Miyamoto et al. Jul 2007 A1
20070167967 Mikkaichi et al. Jul 2007 A1
20070260117 Zwolinski et al. Nov 2007 A1
20080021277 Stefanchik Jan 2008 A1
20080039786 Epstein et al. Feb 2008 A1
20080051735 Measamer et al. Feb 2008 A1
20080058650 Saadat et al. Mar 2008 A1
20080058865 Wilk Mar 2008 A1
20080097157 Ortiz et al. Apr 2008 A1
20080119868 Sharp et al. May 2008 A1
20080161644 Ghabrial Jul 2008 A1
20080183039 Long et al. Jul 2008 A1
20080195226 Williams et al. Aug 2008 A1
20080228029 Mikkaichi et al. Sep 2008 A1
20080249358 Motai et al. Oct 2008 A1
20080249416 Sato Oct 2008 A1
20080249474 Baker Oct 2008 A1
20080255422 Kondoh et al. Oct 2008 A1
20080255423 Kondo et al. Oct 2008 A1
20080262294 Ewers et al. Oct 2008 A1
20080262300 Ewers Oct 2008 A1
20080262302 Azarbarzin et al. Oct 2008 A1
20080287743 Smith et al. Nov 2008 A1
20080287963 Rogers et al. Nov 2008 A1
20080287983 Smith et al. Nov 2008 A1
20080300547 Bakos Dec 2008 A1
20080319258 Thompson Dec 2008 A1
20090054728 Trusty Feb 2009 A1
20090112062 Bakos Apr 2009 A1
20090125038 Ewers et al. May 2009 A1
20090143643 Weitzner et al. Jun 2009 A1
20090149714 Bonadio Jun 2009 A1
20090192465 Smith Jul 2009 A1
20090259141 Ewers et al. Oct 2009 A1
20090259172 Yamaoka et al. Oct 2009 A1
20090275798 Naito Nov 2009 A1
20090275967 Stokes et al. Nov 2009 A1
20090276055 Harris et al. Nov 2009 A1
20100010298 Bakos et al. Jan 2010 A1
20100010299 Bakos et al. Jan 2010 A1
20100010303 Bakos Jan 2010 A1
20100036200 Okada Feb 2010 A1
20100042078 Okada Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100069716 Chin et al. Mar 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081871 Widenhouse et al. Apr 2010 A1
20100081877 Vakharia Apr 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081882 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100106166 Cropper et al. Apr 2010 A1
20100114033 Fischvogt May 2010 A1
20100121349 Meier et al. May 2010 A1
20100130817 Conlon May 2010 A1
20100130821 Rosemurgy et al. May 2010 A1
20100160729 Smith et al. Jun 2010 A1
20100160735 Bakos Jun 2010 A1
20100168519 Matsuo Jul 2010 A1
20100168522 Wenchell et al. Jul 2010 A1
20100174296 Vakharia et al. Jul 2010 A1
Foreign Referenced Citations (13)
Number Date Country
1062966 Jan 2004 EP
1985226 Oct 2008 EP
2145932 Apr 1985 GB
2000051361 Feb 2000 JP
2001009037 Jan 2001 JP
WO 9850104 Nov 1998 WO
WO 04000410 Dec 2003 WO
WO 2004037097 May 2004 WO
WO 2005023358 Mar 2005 WO
WO 2006029370 Mar 2006 WO
WO 2007019117 Feb 2007 WO
WO 2007038715 Apr 2007 WO
WO 2009140594 Nov 2009 WO
Non-Patent Literature Citations (11)
Entry
International Search Report/Written Opinion for PCT/US2009/036173 mailed May 29, 2009.
Article 34 Amendments in PCT/US2009/036173.
Supplemental Letter and Amendments Under Article 34 for PCT/US2009/036173.
International Preliminary Report on Patentability for PCT/US2009/026173 mailed May 7, 2010.
International Search Report/Written Opinion for PCT/US2010/022572 mailed May 21, 2010.
E. Dubcenco, et al., The development of a novel intracolonic occlusion balloon for transcolonic natural orifice transluminal endoscopic surgery: description of the technique and early experience in a porcine model (with Videos); Gastrointestinal Endoscopy, vol. 68, No. 4, 2008, pp. 760-766.
International Search Report/Written Opinion for PCT/US2008/079199 mailed Jan. 22, 2009.
Article 34 Amendments in PCT/US2008/079199.
International Preliminary Report on Patentability for PCT/US2008/079199 mailed Jan. 15, 2010.
International Search Report in PCT/US09/044143 dated Jan. 18, 2011.
International Preliminary Report on Patentability in PCT/US09/044143 issued Jan. 25, 2011.
Related Publications (1)
Number Date Country
20090312788 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
61053426 May 2008 US