The subject matter described herein relates generally to systems, devices, and methods for analyte sensors. For example, methods for assembling a sensor subassembly, an on-body sensor puck assembly, and an applicator assembly are disclosed. A sensor including a in vivo portion, an ex vivo portion, and a neck that interconnects the in vivo portion and the ex vivo portion and methods of configuring a sensor are also disclosed. A sensor including electronic components mounted directly thereon is also disclosed.
The detection and/or monitoring of analyte levels, such as glucose, ketones, lactate, oxygen, hemoglobin AIC, or the like, can be vitally important to the health of an individual having diabetes. Patients suffering from diabetes mellitus can experience complications including loss of consciousness, cardiovascular disease, retinopathy, neuropathy, and nephropathy. Diabetics are generally required to monitor their glucose levels to ensure that they are being maintained within a clinically safe range, and may also use this information to determine if and/or when insulin is needed to reduce glucose levels in their bodies, or when additional glucose is needed to raise the level of glucose in their bodies.
Growing clinical data demonstrates a strong correlation between the frequency of glucose monitoring and glycemic control. Despite such correlation, however, many individuals diagnosed with a diabetic condition do not monitor their glucose levels as frequently as they should due to a combination of factors including convenience, testing discretion, pain associated with glucose testing, and cost.
To increase patient adherence to a plan of frequent glucose monitoring, in vivo analyte monitoring systems can be utilized, in which a sensor control device may be worn on the body of an individual who requires analyte monitoring. To increase comfort and convenience for the individual, the sensor control device may have a small form-factor, and can be assembled and applied by the individual with a sensor applicator. The application process includes inserting a sensor, such as a dermal sensor that senses a user's analyte level in a bodily fluid located in the dermal layer of the human body, using an applicator or insertion mechanism, such that the sensor comes into contact with a bodily fluid. The sensor control device may also be configured to transmit analyte data to another device, from which the individual or her health care provider (“HCP”) can review the data and make therapy decisions.
While current sensors can be convenient for users, they can be made more comfortable, convenient, and portable by further reducing the size of the on-body unit. Furthermore, by reducing the size of the on-body unit, and/or by reducing the number of internal components, the manufacturing cost of the on-body unit can be reduced. Lower manufacturing costs can be one means of reducing replacement costs for a patient, since the on-body unit can be a disposable, one-time use unit which needs regular replacement. One limit to such miniaturization is the need for a sensor substrate for the locating electrodes for sensing analyte concentration and separate substrate for locating electronic components for providing electrical power, processing sensor data, and transmitting sensor data to a remote device. However, previous manufacturing technologies prevent such components from being mounted directly to the sensor substrate.
Thus, a need exists for a continuous analyte monitoring system which has a reduced size and is economical to manufacture.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter is directed to a system for measuring an analyte level including an analyte sensor having an in vivo portion configured to be positioned in contact with the interstitial fluid of the user and an ex vivo portion. The analyte sensor can include a first substrate, at least one working electrode, and a reference electrode. The at least one working electrode can be located on the in vivo portion and can sense signals associated with an analyte level in the interstitial fluid of a user. The ex vivo portion can include a plurality of electronic components mounted thereon, and at least one of the plurality of electronic components can be configured to receive the generated signals associated with the analyte level.
As embodied herein, the electronic components can be electrically coupled to at least one of the working electrodes and the reference electrode. The plurality of electronic components can be further configured to transmit the signals associated with the analyte level to a remote device having a display screen. As embodied herein, the electronic components can be mounted to the ex vivo portion using photonic soldering.
As embodied herein, the first substrate can be a flexible monolithic unit. The first substrate can be polyamide or polyethylene terephthalate. The electronic components can include one or more processors and one or more batteries. As embodied herein, the electronic components can include a Wi-Fi antenna, NFC antenna, Bluetooth antenna, BTLE antenna, or GPS antenna. As embodied herein, the one or more batteries can be a printed battery. As embodied herein, the analyte sensor further can include a second substrate with at least one antenna.
As embodied herein, the remote device can be a display device, a mobile phone, or a wrist-mounted device. As embodied herein, the analyte sensor can be configured to sense at least one of lactate, glucose, or ketone.
As embodied herein, the ex vivo portion can include a first layer. The first layer can include a gradient mix of materials, and the gradient mix of materials can include fiberglass. As embodied herein, the first layer can be approximately 10% fiberglass and the in vivo portion can include PET. As embodied herein, the ex vivo portion can include at least a second layer. In some embodiments, each of the first layer and at least second layer can include a gradient mix of materials.
As embodied herein, the system can include a sensor control device for housing the analyte sensor and an applicator for delivering the analyte sensor, wherein the applicator can include a housing with a sensor carrier configured to secure the sensor control device within the interior of the applicator and an applicator cap removably coupled to the housing to seal the interior of the applicator.
The disclosed subject matter is also directed to a method of assembling a system for measuring an analyte level including providing an analyte sensor having an in vivo portion configured to be positioned in contact with the interstitial fluid of the user and an ex vivo portion. The analyte sensor can include a first substrate, at least one working electrode, and a reference electrode. The at least one working electrode and reference electrode can be located on the in vivo portion and can further generate signals associated with a analyte level. The electronic components can be mounted on the ex vivo portion and at least one of the electronic components can be configured to receive the generated signals associated with the analyte level.
As embodied herein, the first substrate can be flexible. The at least one working electrode and the reference electrode can be printed on a substrate. According to some embodiments, the method can include printing the working electrode on a first surface of the analyte sensor and printing the reference electrode on a second surface of the analyte sensor.
As embodied herein, the method can include connecting the electronic to the first surface of the analyte sensor using photonic soldering. As embodied herein, the method can include mounting the electronic components to a first surface photonic soldering. As embodied herein, the method can include masking a portion of the first substrate prior to photonic soldering. As embodied herein, the method can include coating the first substrate with a reflective coating prior to performing the photonic soldering. As embodied herein, during the photonic soldering process, the method can include using a vacuum to prevent the first substrate from warping.
As embodied herein, method can include sterilizing the analyte sensor. The analyte sensor can be sterilized using radiation sterilization, heat treatment, electronic-beam sterilization, gamma sterilization, x-ray sterilization, ethylene oxide sterilization, autoclave steam sterilization, chlorine dioxide gas sterilization, or hydrogen peroxide sterilization. Further, as embodied herein, the analyte sensor can be sterilized before mounting the electronic components to the ex vivo portion. As embodied herein, the analyte sensor can be sterilized after mounting the plurality of electronic components to the ex vivo portion.
The details of the subject matter set forth herein, both as to its structure and operation, may be apparent by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
Before the present subject matter is described in detail, it is to be understood that this disclosure is not limited to the particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Generally, embodiments of the present disclosure include systems, devices, and methods for the use of analyte sensor insertion applicators for use with in vivo analyte monitoring systems. An applicator can be provided to the user in a sterile package with an electronics housing of the sensor control device contained therein. According to some embodiments, a structure separate from the applicator, such as a container, can also be provided to the user as a sterile package with a sensor module and a sharp module contained therein. The user can couple the sensor module to the electronics housing, and can couple the sharp to the applicator with an assembly process that involves the insertion of the applicator into the container in a specified manner. In other embodiments, the applicator, sensor control device, sensor module, and sharp module can be provided in a single package. The applicator can be used to position the sensor control device on a human body with a sensor in contact with the wearer's bodily fluid. The embodiments provided herein are improvements to reduce the likelihood that a sensor is improperly inserted or damaged, or elicits an adverse physiological response. Other improvements and advantages are provided as well. The various configurations of these devices are described in detail by way of the embodiments which are only examples.
Furthermore, many embodiments include in vivo analyte sensors structurally configured so that at least a portion of the sensor is, or can be, positioned in the body of a user to obtain information about at least one analyte of the body. It should be noted, however, that the embodiments disclosed herein can be used with in vivo analyte monitoring systems that incorporate in vitro capability, as well as purely in vitro or ex vivo analyte monitoring systems, including systems that are entirely non-invasive.
Furthermore, for each and every embodiment of a method disclosed herein, systems and devices capable of performing each of those embodiments are covered within the scope of the present disclosure. For example, embodiments of sensor control devices are disclosed and these devices can have one or more sensors, analyte monitoring circuits (e.g., an analog circuit), memories (e.g., for storing instructions), power sources, communication circuits, transmitters, receivers, processors and/or controllers (e.g., for executing instructions) that can perform any and all method steps or facilitate the execution of any and all method steps. These sensor control device embodiments can be used and can be capable of use to implement those steps performed by a sensor control device from any and all of the methods described herein.
As mentioned, a number of embodiments of systems, devices, and methods are described herein that provide for the improved assembly and use of dermal sensor insertion devices for use with in vivo analyte monitoring systems. In particular, several embodiments of the present disclosure are designed to improve the method of sensor insertion with respect to in vivo analyte monitoring systems and, in particular, to prevent the premature retraction of an insertion sharp during a sensor insertion process. Some embodiments, for example, include a dermal sensor insertion mechanism with an increased firing velocity and a delayed sharp retraction. In other embodiments, the sharp retraction mechanism can be motion-actuated such that the sharp is not retracted until the user pulls the applicator away from the skin. Consequently, these embodiments can reduce the likelihood of prematurely withdrawing an insertion sharp during a sensor insertion process; decrease the likelihood of improper sensor insertion; and decrease the likelihood of damaging a sensor during the sensor insertion process, to name a few advantages. Several embodiments of the present disclosure also provide for improved insertion sharp modules to account for the small scale of dermal sensors and the relatively shallow insertion path present in a subject's dermal layer. In addition, several embodiments of the present disclosure are designed to prevent undesirable axial and/or rotational movement of applicator components during sensor insertion. Accordingly, these embodiments can reduce the likelihood of instability of a positioned dermal sensor, irritation at the insertion site, damage to surrounding tissue, and breakage of capillary blood vessels resulting in fouling of the dermal fluid with blood, to name a few advantages. In addition, to mitigate inaccurate sensor readings which can be caused by trauma at the insertion site, several embodiments of the present disclosure can reduce the end-depth penetration of the needle relative to the sensor tip during insertion.
Before describing these aspects of the embodiments in detail, however, it is first desirable to describe examples of devices that can be present within, for example, an in vivo analyte monitoring system, as well as examples of their operation, all of which can be used with the embodiments described herein.
There are various types of in vivo analyte monitoring systems. “Continuous Analyte Monitoring” systems (or “Continuous Glucose Monitoring” systems), for example, can transmit data from a sensor control device to a reader device continuously without prompting, e.g., automatically according to a schedule. “Flash Analyte Monitoring” systems (or “Flash Glucose Monitoring” systems or simply “Flash” systems), as another example, can transfer data from a sensor control device in response to a scan or request for data by a reader device, such as with a Near Field Communication (NFC) or Radio Frequency Identification (RFID) protocol. In vivo analyte monitoring systems can also operate without the need for finger stick calibration.
In vivo analyte monitoring systems can be differentiated from “in vitro” systems that contact a biological sample outside of the body (or “ex vivo”) and that typically include a meter device that has a port for receiving an analyte test strip carrying bodily fluid of the user, which can be analyzed to determine the user's blood sugar level.
In vivo monitoring systems can include a sensor that, while positioned in vivo, makes contact with the bodily fluid of the user and senses the analyte levels contained therein. The sensor can be part of the sensor control device that resides on the body of the user and contains the electronics and power supply that enable and control the analyte sensing. The sensor control device, and variations thereof, can also be referred to as a “sensor control unit,” an “on-body electronics” device or unit, an “on-body” device or unit, or a “sensor data communication” device or unit, to name a few.
In vivo monitoring systems can also include a device that receives sensed analyte data from the sensor control device and processes and/or displays that sensed analyte data, in any number of forms, to the user. This device, and variations thereof, can be referred to as a “handheld reader device,” “reader device” (or simply a “reader”), “handheld electronics” (or simply a “handheld”), a “portable data processing” device or unit, a “data receiver,” a “receiver” device or unit (or simply a “receiver”), or a “remote” device or unit, to name a few. Other devices such as personal computers have also been utilized with or incorporated into in vivo and in vitro monitoring systems.
A memory 163 is also included within ASIC 161 and can be shared by the various functional units present within ASIC 161, or can be distributed amongst two or more of them. Memory 163 can also be a separate chip. Memory 163 can be volatile and/or non-volatile memory. In this embodiment, ASIC 161 is coupled with power source 170, which can be a coin cell battery, or the like. AFE 162 interfaces with in vivo analyte sensor 104 and receives measurement data therefrom and outputs the data to processor 166 in digital form, which in turn processes the data to arrive at the end-result glucose discrete and trend values, etc. This data can then be provided to communication circuitry 168 for sending, by way of one or more antennas 171, to reader device 120 (not shown), for example, where minimal further processing is needed by the resident software application to display the data.
The components of sensor control device 102 can be acquired by a user in multiple packages requiring final assembly by the user before delivery to an appropriate user location.
Sheath 704 can maintain position within platform 808 with respect to housing 702 while housing 702 is distally advanced, coupling with platform 808 to distally advance platform 808 with respect to tray 810. This step unlocks and collapses platform 808 within tray 810. Sheath 704 can contact and disengage locking features (not shown) within tray 810 that unlock sheath 704 with respect to housing 702 and prevent sheath 704 from moving (relatively) while housing 702 continues to distally advance platform 808. At the end of advancement of housing 702 and platform 808, sheath 704 is permanently unlocked relative to housing 702. A sharp and sensor (not shown) within tray 810 can be coupled with an electronics housing (not shown) within housing 702 at the end of the distal advancement of housing 702. Operation and interaction of the applicator device 150 and tray 810 are further described below.
System 100, described with respect to
Referring again to
One exemplary technique to reduce damage caused by bending the neck 2406 of the sensor 104 is to apply a sufficient amount of heat for a sufficient amount of time in temporal proximity to the time when the neck 2406 will be bent. These factors of the degree of heat, the length of time of exposure, and the nearness of the application of heat to the time when the bend is conducted, can be determined based on the type of material comprising the sensor 104 generally and the neck 2406 in particular with suitable examples provided below. Care must be taken, for example, to avoid damaging the contacts 2418 and the membrane covering the in vivo portion 2408.
The application of heat can be controlled by the manufacturing components used to bend the neck 2406. In one embodiment, the neck 2406 can be bent, or folded, by heating a portion of the neck 2406 of the sensor 104 to a predetermined temperature and bending the neck 2406 of the sensor 104 to form an angle between the in vivo portion 2408 of the sensor 104 and the ex vivo portion 2404 of the sensor. As mentioned, the predetermined temperature and length of heating can be determined based on properties of one or more of the materials comprising the neck 2406 of the sensor 104. The temperature and length of heating can be chosen based on being sufficient to improve malleability of the neck 2406 of the sensor 104 without damaging the rest of the sensor. Heating the neck 2406 of the sensor 104 can include heating only a region of the neck 2406 of the sensor 104, heating substantially all of the neck 2406, or heating one or more other components of the sensor 104.
The heating and bending can be performed by one or more heating and bending apparatuses. For example, the sensor 104 can be inserted in to a first configuration of a heading-bending apparatus that includes separate, dedicated components for heating the neck 2406 and bending the neck 2406. Configuring the sensor 104, then, includes heating the neck 2406 with the first component for heating the neck 2406 before passing the sensor 104 to the second component for bending the neck 2406 to the desired angle. Heating the neck 2406 can be performed by a heating element of a heating apparatus. The heating element can be raised to a desired temperature and can be made to contact, or be brought into close proximity with, the designated portion of the neck 2406 for a set period of time, causing the temperature of the neck 2406 to rise. Additionally, the local temperature around the sensor 104 can be raised to indirectly heat the neck 2406 without contacting the neck 2406 with a heating element directly.
Additionally, the heating and bending can be performed by a unified heated-bending apparatus where the necessary components to the heat the neck 2406 are integrated into the components to bend the neck 2406. Heat, therefore, can be applied during the bending in addition to before or after the bending process is complete. The degree of heat, e.g., the temperature being applied to the neck 2406 can remain consistent during the heating and/or heated-bending process by ensuring that the temperature of the heating element remains substantially consistent and that the distance between the heating element and the neck 2406 remains substantially consistent. Alternatively, the temperature of the neck 2406 can be caused to vary during the bending process. For example, the temperature of the next can be raised to a set threshold temperature, allowed to fall to a set threshold before bending is applied, and can be raised again after the bending process (e.g., to avoid microfractures). Where the heating element is integrated into the bending apparatus, the process can involve increasing or decreasing the temperature of the neck 2406 while the neck 2406 is being bent.
In addition, after bending the neck 2406 to form the desired angle, a step in manufacturing or manipulating the sensor 104 can include verifying the integrity of the sensor 104 after the bending by checking the neck 2406 for microfractures. If the number or intensity of microfractures exceeds a predetermined threshold, the sensor can be discarded. Other integrity checks can include check the sensitive components of the sensor 104 to ensure that they remain in a form that is consistent with their intended functions and have not been compromised by the bending process.
Referring to
According to another aspect of the embodiments, the hook and catch features 3106, 3506 operate in the following manner. Sensor 3104 includes a proximal sensor portion, coupled to sensor module 3504, as described above, and a distal sensor portion that is positioned beneath a skin surface in contact with a bodily fluid. As seen in
According to another aspect of the embodiments, sensor 3104 can be assembled with sensor module 3504 in the following manner. Sensor 3104 is loaded into sensor module 3504 by displacing the proximal sensor portion in a lateral direction to bring the hook feature 3106 in proximity to the catch feature 3506 of sensor module 3504. More specifically, displacing the proximal sensor portion in a lateral direction causes the proximal sensor portion to move into clearance area 3508 of sensor module 3504.
Although
The in vivo portion 11902 may be received within a hollow or recessed portion of a sharp (not shown) to at least partially circumscribe the in vivo portion 11902 of the sensor 11900. As illustrated, the in vivo portion 11902 may extend at an angle Q offset from horizontal. In some embodiments, the angle Q may be about 85°. Accordingly, in contrast to other sensor in vivo portions, the in vivo portion 11902 may not extend perpendicularly from the ex vivo portion 11904, but instead at an angle offset from perpendicular. This may prove advantageous in helping maintain the in vivo portion 11902 within the keep the recessed portion of the sharp.
The in vivo portion 11902 includes a first or bottom end 11908a and a second or top end 11908b opposite the top end 11908a. A tower 11910 may be provided at or near the top end 11908b and may extend vertically upward from the location where the neck 11906 interconnects the in vivo portion 11902 to the ex vivo portion 11904. During operation, if the sharp moves laterally, the tower 11910 will help pivot the in vivo portion 11902 toward the sharp and otherwise stay within the recessed portion of the sharp. Moreover, in some embodiments, the tower 11910 may provide or otherwise define a protrusion 11912 that extends laterally therefrom. When the sensor 11900 is mated with the sharp and the in vivo portion 11902 extends within the recessed portion of the sharp, the protrusion 11912 may engage the inner surface of the recessed portion. In operation, the protrusion 11912 may help keep the in vivo portion 11902 within the recessed portion.
The ex vivo portion 11904 may comprise a generally planar surface having one or more sensor contacts 11914 arranged thereon. The sensor contact(s) 11914 may be configured to align with a corresponding number of compliant carbon impregnated polymer modules encapsulated within a connector.
In some embodiments, as illustrated, the neck 11906 may provide or otherwise define a dip or bend 11916 extending between the ex vivo portion 11904 and the in vivo portion 11902. The bend 11916 may prove advantageous in adding flexibility to the sensor 11900 and helping prevent bending of the neck 11906.
In some embodiments, a notch 11918 (shown in dashed lines) may optionally be defined in the ex vivo portion near the neck 11906. The notch 11918 may add flexibility and tolerance to the sensor 11900 as the sensor 11900 is mounted to the mount. More specifically, the notch 11918 may help take up interference forces that may occur as the sensor 11900 is mounted within the mount.
In some embodiments, as illustrated in
Generally, the sensor can be understood as including a in vivo portion, a ex vivo portion, and a neck aligned along a planar surface having a vertical axis and a horizontal axis. The spring-like structure can be formed by various orientations of turns in the bend of the neck of a sensor. Between the in vivo portion and the ex vivo portion, the neck can include at least two turns in relation to the vertical axis providing a spring-like structure. The at least two turns can provide, in relation to an axis of the planar surface shared by the in vivo portion, the ex vivo portion, and the neck, overlapping layers of the structure of the neck, where the neck itself remains unbroken. These overlapping turns make up the spring-like structure. In some embodiments, the overlapping layers of the neck are vertically-oriented. In some embodiments, the overlapping layers of the neck are horizontally-oriented.
The turns of the neck can be formed by folding or bending the neck of the sensor from a larger neck structure, laser cutting the sensor from a sheet of the material or layers of material comprising the sensor, printing the sensor having the configuration with turns from a sheet of the material or layers of material of which the sensor is composed, stamping the sensor from a sheet of material or layers of material of which the sensor is composed, or other suitable manufacturing processes for providing precision bends in the neck.
Referring to
As best seen in
As best seen in
Furthermore, although many of the example embodiments described with respect to
Referring still to
Referring still to
Referring still to
In the above embodiments, the sharp can be made of stainless steel or a like flexible material (e.g., material used to manufacture acupuncture needles), and dimensioned such that the applicator provides for insertion of at least a portion of the dermal sensor into the dermal layer, but not through the dermal layer of the skin. According to certain embodiments, the sharp has a cross sectional diameter (width) of from 0.1 mm to 0.5 mm. For example, the sharp may have a diameter of from 0.1 mm to 0.3 mm, such as from 0.15 mm to 0.25 mm, e.g., 0.16 mm to 0.22 mm in diameter. A given sharp may have a constant, i.e., uniform, width along its entire length, or may have a varying, i.e., changing, width along at least a portion of its length, such as the tip portion used to pierce the surface of the skin. For example, with respect to the embodiment shown in
A sharp can also have a length to insert a dermal sensor just into the dermal layer, and no more. Insertion depth may be controlled by the length of the sharp, the configuration of the base and/or other applicator components that limit insertion depth. A sharp may have a length between 1.5 mm and 25 mm. For example, the sharp may have a length of from 1 mm to 3 mm, from 3 mm to 5 mm, from 5 mm to 7 mm, from 7 mm to 9 mm, from 9 mm to 11 mm, from 11 mm to 13 mm, from 13 mm to 15 mm, from 15 mm to 17 mm, from 17 mm to 19 mm, from 19 mm to 21 mm, from 21 mm to 23 mm, from 23 mm to 25 mm, or a length greater than 25 mm. It will be appreciated that while a sharp may have a length up to 25 mm, in certain embodiments the full length of the sharp is not inserted into the subject because it would extend beyond the dermal space. Non-inserted sharp length may provide for handling and manipulation of the sharp in an applicator set. Therefore, while a sharp may have a length up to 25 mm, the insertion depth of the sharp in the skin on a subject in those certain embodiments will be limited to the dermal layer, e.g., about 1.5 mm to 4 mm, depending on the skin location, as described in greater detail below. However, in all of the embodiments disclosed herein, the sharp can be configured to extend beyond the dermal space, such as into (or even fully through) subcutaneous tissue (e.g., 3 mm to 10 mm beneath the surface of the skin depending on the location of the skin on the body). Additionally, in some example embodiments, the sharps described herein can include hollow or partially hollow insertion needles, having an internal space or lumen. In other embodiments, however, the sharps described herein can include solid insertion needles, which do not have an internal space and/or lumen. Furthermore, a sharp of the subject applicator sets can also be bladed or non-bladed.
Likewise, in the above embodiments, a dermal sensor is sized so that at least a portion of the sensor is positioned in the dermal layer and no more, and a portion extends outside the skin in the transcutaneously positioned embodiments. That is, a dermal sensor is dimensioned such that when the dermal sensor is entirely or substantially entirely inserted into the dermal layer, the distal-most portion of the sensor (the insertion portion or insertion length) is positioned within the dermis of the subject and no portion of the sensor is inserted beyond a dermal layer of the subject when the sensor is operably dermally positioned.
The dimensions (e.g., the length) of the sensor may be selected according to the body site of the subject in which the sensor is to be inserted, as the depth and thickness of the epidermis and dermis exhibit a degree of variability depending on skin location. For example, the epidermis is only about 0.05 mm thick on the eyelids, but about 1.5 mm thick on the palms and the soles of the feet. The dermis is the thickest of the three layers of skin and ranges from about 1.5 mm to 4 mm thick, depending on the skin location. For implantation of the distal end of the sensor into, but not through, the dermal layer of the subject, the length of the inserted portion of the dermal sensor should be greater than the thickness of the epidermis, but should not exceed the combined thickness of the epidermis and dermis. Methods may include determining an insertion site on a body of a user and determining the depth of the dermal layer at the site, and selecting the appropriately-sized applicator set for the site.
In certain aspects, the sensor is an elongate sensor having a longest dimension (or “length”) of from 0.25 mm to 4 mm. The length of the sensor that is inserted, in the embodiments in which only a portion of a sensor is dermally inserted, ranges from 0.5 mm to 3 mm, such as from 1 mm to 2 mm, e.g., 1.5 mm. The dimensions of the sensor may also be expressed in terms of its aspect ratio. In certain embodiments, a dermal sensor has an aspect ratio of length to width (diameter) of about 30:1 to about 6:1. For example, the aspect ratio may be from about 25:1 to about 10:1, including 20:1 and 15:1. The inserted portion of a dermal sensor has sensing chemistry.
However, all of the embodiments disclosed herein can be configured such that at least a portion of the sensor is positioned beyond the dermal layer, such as into (or through) the subcutaneous tissue (or fat). For example, the sensor can be dimensioned such that when the sensor is entirely or substantially entirely inserted into the body, the distal-most portion of the sensor (the insertion portion or insertion length) is positioned within the subcutaneous tissue (beyond the dermis of the subject) and no portion of the sensor is inserted beyond the subcutaneous tissue of the subject when the sensor is operably positioned. As mentioned, the subcutaneous tissue is typically present in the region that is 3 mm to 10 mm beneath the outer skin surface, depending on the location of the skin on the body.
Referring briefly again to
According to embodiments of the present disclosure, the sensor control device 102 may be modified to provide a one-piece architecture that may be subjected to sterilization techniques specifically designed for a one-piece architecture sensor control device. A one-piece architecture allows the sensor applicator 150 and the sensor control device 102 to be shipped to the user in a single, sealed package that does not require any final user assembly steps. Rather, the user need only open one package and subsequently deliver the sensor control device 102 to the target monitoring location. The one-piece system architecture described herein may prove advantageous in eliminating component parts, various fabrication process steps, and user assembly steps. As a result, packaging and waste are reduced, and the potential for user error or contamination to the system is mitigated.
Unlike the sensor control device 102 of
As illustrated, the sensor control device 5002 includes an electronics housing 5004 that is generally disc-shaped and may have a circular cross-section. In other embodiments, however, the electronics housing 2004 may exhibit other cross-sectional shapes, such as ovoid or polygonal, without departing from the scope of the disclosure. The electronics housing 5004 may be configured to house or otherwise contain various electrical components used to operate the sensor control device 5002. In at least one embodiment, an adhesive patch (not shown) may be arranged at the bottom of the electronics housing 5004. The adhesive patch may be similar to the adhesive patch 105 of
As illustrated, the sensor control device 5002 includes an electronics housing 5004 that includes a shell 5006 and a mount 5008 that is matable with the shell 5006. The shell 5006 may be secured to the mount 5008 via a variety of ways, such as a snap fit engagement, an interference fit, sonic welding, one or more mechanical fasteners (e.g., screws), a gasket, an adhesive, or any combination thereof. In some cases, the shell 5006 may be secured to the mount 5008 such that a sealed interface is generated therebetween.
The sensor control device 5002 may further include a sensor 5010 (partially visible) and a sharp 5012 (partially visible), used to help deliver the sensor 5010 transcutaneously under a user's skin during application of the sensor control device 5002. As illustrated, corresponding portions of the sensor 5010 and the sharp 5012 extend distally from the bottom of the electronics housing 5004 (e.g., the mount 5008). The sharp 5012 may include a sharp hub 5014 configured to secure and carry the sharp 5012. As best seen in
The sensor control device 5002 may further include a sensor cap 5018, shown exploded or detached from the electronics housing 5004 in
The sensor cap 5018 may be removably coupled to the electronics housing 5004 at or near the bottom of the mount 5008. More specifically, the sensor cap 5018 may be removably coupled to the mating member 5016, which extends distally from the bottom of the mount 5008. In at least one embodiment, for example, the mating member 5016 may define a set of external threads 5026a (
In some embodiments, the sensor cap 5018 may comprise a monolithic (singular) structure extending between the first and second ends 5020a, b. In other embodiments, however, the sensor cap 5018 may comprise two or more component parts. In the illustrated embodiment, for example, the sensor cap 5018 may include a seal ring 5028 positioned at the first end 5020a and a desiccant cap 5030 arranged at the second end 5020b. The seal ring 5028 may be configured to help seal the inner chamber 5022, as described in more detail below. In at least one embodiment, the seal ring 5028 may comprise an elastomeric O-ring. The desiccant cap 5030 may house or comprise a desiccant to help maintain preferred humidity levels within the inner chamber 5022. The desiccant cap 5030 may also define or otherwise provide the engagement feature 5024 of the sensor cap 5018.
The sensor control device 5002 may provide or otherwise include a sealed subassembly that includes, among other component parts, the shell 5006, the sensor 5010, the sharp 5012, and the sensor cap 5018. The sealed subassembly of the sensor control device 5002 may help isolate the sensor 5010 and the sharp 5012 within the inner chamber 5022 (
The sensor 5010 may include a in vivo portion 5104 that extends out an aperture 5106 (
The sharp tip 5108 may be advanced through the electronics housing 5004 until the sharp hub 5014 engages an upper surface of the shell 5006 and the mating member 5016 extends out the aperture 5106 in the bottom 5102 of the mount 5008. In some embodiments, a seal member (not shown), such as an O-ring or seal ring, may interpose the sharp hub 5014 and the upper surface of the shell 5006 to help seal the interface between the two components. In some embodiments, the seal member may comprise a separate component part, but may alternatively form an integral part of the shell 5006, such as being a co-molded or overmolded component part.
The sealed subassembly may further include a collar 5112 that is positioned within the electronics housing 5004 and extends at least partially into the aperture 5106. The collar 5112 may be a generally annular structure that defines or otherwise provides an annular ridge 5114 on its top surface. In some embodiments, as illustrated, a groove 5116 may be defined in the annular ridge 5114 and may be configured to accommodate or otherwise receive a portion of the sensor 5010 extending laterally within the electronics housing 5004.
In assembling the sealed subassembly, a bottom 5118 of the collar 5112 may be exposed at the aperture 5106 and may sealingly engage the first end 5020a of the sensor cap 5018 and, more particularly, the seal ring 5028. In contrast, the annular ridge 5114 at the top of the collar 5112 may sealingly engage an inner surface (not shown) of the shell 5006. In at least one embodiment, a seal member (not shown) may interpose the annular ridge 5114 and the inner surface of the shell 5006 to form a sealed interface. In such embodiments, the seal member may also extend (flow) into the groove 5116 defined in the annular ridge 5114 and thereby seal about the sensor 5010 extending laterally within the electronics housing 5004. The seal member may comprise, for example, an adhesive, a gasket, or an ultrasonic weld, and may help isolate the enzymes and other chemistry included on the in vivo portion 5104.
The collar 5112 may then be received over (about) the mating member 5016 and advanced toward an inner surface 5204 of the shell 5006 to enable the annular ridge 5114 to engage the inner surface 5204. A seal member 5206 may interpose the annular ridge 5114 and the inner surface 5204 and thereby form a sealed interface. The seal member 5206 may also extend (flow) into the groove 5116 (
The sensor cap 5018 may be removably coupled to the sensor control device 5002 by threadably mating the internal threads 5026b of the sensor cap 5018 with the external threads 5026a of the mating member 5016. Tightening (rotating) the mated engagement between the sensor cap 5018 and the mating member 5016 may urge the first end 5020a of the sensor cap 5018 into sealed engagement with the bottom 5118 of the collar 5112. Moreover, tightening the mated engagement between the sensor cap 5018 and the mating member 5016 may also enhance the sealed interface between the sharp hub 5014 and the top of the shell 5006, and between the annular ridge 5114 and the inner surface 5204 of the shell 5006.
The inner chamber 5022 may be sized and otherwise configured to receive the in vivo portion 5104 and the sharp tip 5108. Moreover, the inner chamber 5022 may be sealed to isolate the in vivo portion 5104 and the sharp tip 5108 from substances that might adversely interact with the chemistry of the in vivo portion 5104. In some embodiments, a desiccant 5208 (shown in dashed lines) may be present within the inner chamber 5022 to maintain proper humidity levels.
In an exemplary step of the manufacturing process, as illustrated in
As illustrated in
As illustrated in
The adhesive is then cured to fix the collar 5112 to the sensor mount 5008, as illustrated in
While curing the adhesive, in certain embodiments, the collar 5112 and sensor mount 5008 can act to shield the sensor 5010 from exposure to curing agents that might otherwise damage the sensor 5010 or other components of the sealed subassembly 5200. Additionally, other temporary components can be used to further protect the sensor 5010. As an example, the collar 5112 can block exposure of chemical agents, heat, or UV light sources while curing the adhesive. Furthermore, depending on the adhesive and curing method, the materials making up the sensor mount 5008 or collar 5112 can be chosen to partially allow curing agents to selectively passthrough to the adhesive.
As illustrated in
As illustrated in
Attaching the sensor cap 5018 to the sensor mount 5008 can be performed by forcibly mating the sensor cap 5018 to the sensor mount 5008. For example, the sensor mount 5008 or sharp hub 5104 may define a set of external threads matable with a set of internal threads defined by the sensor cap 5018. The external and internal threads may comprise a flat thread design (e.g., lack of helical curvature), which may prove advantageous in molding the parts. The sensor cap 5018 may be removably coupled to the sensor mount 5018 via other types of engagements including, but not limited to, an interference or friction fit, or a frangible member or substance that may be broken with minimal separation force (e.g., axial or rotational force). The sensor cap 5018 can be locked into position manually or using machine tools, such as a pneumatic actuator, to force the sensor cap 5018 to mate with the sensor mount 5008.
As illustrated in
The manufacturing process can include dispensing adhesive to one or more surfaces of the sharp hub 5014. For example, the manufacturing process can include dispensing adhesive to a top surface of the sharp hub 5014, viewing the sensor subassembly 5200 with the sharp cap 5018 oriented downward. The manufacturing process can include dispensing adhesive to a region of the sharp hub 5014 where the sharp hub 5014 interfaces with the sensor mount 5008. The process can further include curing the adhesive. Curing the adhesive can fix the sharp hub 5014 to the sensor mount 5008. Curing the adhesive can seal the sharp hub to reduce leaks between the sharp hub 5014 and the sharp. The adhesive can be dispensed and cured in a manner similar to how the adhesive is dispensed to the mount channel 4025 and subsequently cured. The adhesive can be used to fix the sharp hub 5014 to the sensor mount 5008. The adhesive, when cured, can further promote the sealing of the sensor subassembly 5200.
The manufacturing process can further include testing the sealed sensor subassembly 5200 for leaks. The testing can be performed using a pressure-decay leak test, vacuum-decay leak test, tracer gas leak test, signature analysis test, or mass-flow leak test. In particular embodiments, the leak test can be automated using dedicated machine tooling to facilitate testing of an individual sealed sensor subassembly 5200 or multiple sealed sensor subassemblies simultaneously. If the sealed sensor subassembly fails the leak test, it can be discarded.
Once properly assembled, the sealed subassembly 5200 may be subjected to a sterilization process such as any of the radiation sterilization processes mentioned herein to properly sterilize the sensor 5010 and the sharp 5012. The sterilization process can further include heat treatment, electronic-beam sterilization, gamma sterilization, x-ray sterilization, ethylene oxide sterilization, autoclave steam sterilization, chlorine dioxide gas sterilization, hydrogen peroxide sterilization. In particular, the sterilization process can be configured using appropriate machine tools to facilitate sterilization of multiple seal subassemblies 5200 simultaneously. For example, a plurality of sealed subassemblies 5200 can be loaded into a tray for subsequent sterilization.
This sterilization step may be undertaken apart from the remaining portions of the sensor control device (
In the illustrated embodiment, the applicator cap 1404 may again be inverted and may define or otherwise provide a cap post 1602 sized to receive the distal ends of a sensor 1316 and a sharp 1318 extending from the bottom of the electronics housing 1304. Moreover, a radiation shield 1416 may be positioned external to the sensor applicator 102 and may extend into the inverted portion of the applicator cap 1404. More specifically, the radiation shield 1416 may extend into the inverted portion of the applicator cap 1404 and to the bottom of the cap post 1602, which may be open ended. As embodied herein, a cap seal 1604 may be arranged at the interface between the cap post 1602 and the radiation shield 1416 to seal off the open end of the cap post 1602.
As embodied herein, a cap fill 1606 may be positioned within the applicator cap 1404. In one or more embodiments, the cap fill 1606 may comprise an integral part or extension of the applicator cap 1404, such as being molded with or overmolded onto the applicator cap 1404. In other embodiments, the cap fill 1606 may comprise a separate structure fitted within or otherwise attached to the applicator cap 1404, without departing from the scope of the disclosure. The cap fill 1606 may also provide or otherwise define an internal collimator 1608 that may help focus the radiation 1412 toward the components to be sterilized. In at least one embodiment, as illustrated, the cap post 1602 may be received within the internal collimator 1608.
The external and internal collimators 1418, 1608 may cooperatively define a sterilization zone 1610 that focuses radiation 1412 toward the sensor 1316 and the sharp 1318. The propagating radiation 1412 may traverse the sterilization zone 1610 to impinge upon and sterilize the sensor 1316 and the sharp 1318. However, the cap fill 1606 and the radiation shield 1416 may each be made of any of the materials mentioned herein that substantially prevent the radiation 1412 from penetrating the inner wall(s) of the sterilization zone 1610 and thereby damaging the radiation sensitive component 1408 within the housing 1304. In at least one embodiment, the cap fill 1606 may be made of machined or 3D printed polypropylene and the radiation shield 1416 may be made of stainless steel. Further, in some sensor embodiments such as those depicted in
The external and internal collimators 1418, 1608 can exhibit any suitable cross-sectional shape necessary to properly focus the radiation 1412 toward the sensor 1316 and the sharp 1318 for sterilization. In the illustrated embodiment, for example, the external collimator 1418 exhibits a circular cross-section, and the internal collimator 1608 is substantially cylindrical with internal walls that are substantially parallel. In other embodiments, however, the external and internal collimators 1418, 1608 may exhibit other cross-sectional shapes, without departing from the scope of the disclosure.
In the illustrated embodiment, the external collimator 1418 defines a first aperture 1612a that permits the radiation 1412 to enter the sterilization zone 1610 and a second aperture 1612b positioned at or near the bottom opening to the cap post 1602 to focus the radiation 1412 at the sensor 1316 and the sharp 1318 positioned within the cap post 1602.
The cap seal 1604 may be arranged at the interface between the radiation shield 1416 and the cap post 1602 and/or the cap fill 1606. The cap seal 1604 may seal off a portion of the sterilization zone 1610 to help form part of the sealed region 1430 configured to isolate the sensor 1316 and the sharp 1318 from external contamination. The sealed region 1430 may include (encompass) select portions of the interior of the electronics housing 1304 and the sterilization zone 1610. In the illustrated embodiment, the sealed region 1430 may be defined and otherwise formed by the cap post 1602 and the top and bottom seals 1432a,b, which create corresponding barriers at their respective sealing locations. The bottom seal 1432b may be arranged to seal an interface between the applicator cap 1404 and the bottom of electronics housing 1304.
Further details regarding embodiments of applicators, their components, methods of sterilizing such embodiments, and variants thereof, are described in U.S. Patent Publication No. 2021/0161437, all of which is incorporated by reference herein in its entirety and for all purposes.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In certain embodiments, the sensor mount 5008 and shell cap 5006 comprise material that partially allow curing agents to selectively pass through to the first adhesive 4130 and the second adhesive 4135. The sensor mount 5008 and shall cap 5006 can also act to shield the sensor 5010, PCB 4100 and other components of the electronics housing 5004 from exposure to curing agents that might otherwise damage the components of the electronics housing 5004 and sealed subassembly 5200. Additionally, other temporary components can be used to further protect the components.
In some embodiments, the PCB 4100 includes a radio component and the manufacturing process further includes writing data to the radio component of the PCB 4100. For example, data to be written to the radio component of the PCB 4100 can be read from the sensor subassembly 5200, PCB 4100, a shell cap 5004, mount 5006 or other component associated with the electronics housing 5004. The data can then be written to the radio component of the PCB 4100.
In some embodiments, the manufacturing process can further include testing the electronics housing 5004 (e.g., the on-body sensor puck assembly) for leaks. The test can include using a pressure-decay leak test, vacuum-decay leak test, tracer gas leak test, signature analysis test, or mass-flow leak test. If the on-body sensor puck assembly fails the leak test, it can be discarded.
In
As illustrated, the sheath 212 is also positioned within the sensor applicator 102, and the sensor applicator 102 may include a sheath locking mechanism 5310 configured to ensure that the sheath 212 does not prematurely collapse during a shock event. In the illustrated embodiment, the sheath locking mechanism 5310 may comprise a threaded engagement between the applicator cap 210 and the sheath 212. More specifically, one or more internal threads 5312a may be defined or otherwise provided on the inner surface of the applicator cap 210, and one or more external threads 5312b may be defined or otherwise provided on the sheath 212. The internal and external threads 5312a,b may be configured to threadably mate as the applicator cap 210 is threaded to the sensor applicator 102 at the threads 5308. The internal and external threads 5312a,b may have the same thread pitch as the threads 5308 that enable the applicator cap 210 to be screwed onto the housing 208.
In
With the sensor control device 5002 loaded within the sensor applicator 102 and the applicator cap 210 properly secured, the sensor control device 5002 may then be subjected to a gaseous chemical sterilization configured to sterilize the electronics housing 5004 and any other exposed portions of the sensor control device 5002. Since the distal portions of the sensor 5010 and the sharp 5012 are sealed within the sensor cap 5018, the chemicals used during the gaseous chemical sterilization process are unable to interact with the enzymes, chemistry, and biologies provided on the in vivo portion 5104, and other sensor components, such as membrane coatings that regulate analyte influx.
As illustrated, the cap post 5314 may define a receiver feature 5402 configured to receive the engagement feature 5024 of the sensor cap 5018 upon coupling (e.g., threading) the applicator cap 210 (
Many design variations of the receiver feature 5402 may be employed, without departing from the scope of the disclosure. In the illustrated embodiment, the receiver feature 5402 includes one or more compliant members 5404 (two shown) that are expandable or flexible to receive the engagement feature 5024 (
The compliant member(s) 5404 may further provide or otherwise define corresponding ramped surfaces 5406 configured to interact with one or more opposing camming surfaces 5408 provided on the outer wall of the engagement feature 5024. The configuration and alignment of the ramped surface(s) 5406 and the opposing camming surface(s) 5408 is such that the applicator cap 210 is able to rotate relative to the sensor cap 5018 in a first direction A (e.g., clockwise), but the cap post 5314 binds against the sensor cap 5018 when the applicator cap 210 is rotated in a second direction B (e.g., counter clockwise). More particularly, as the applicator cap 210 (and thus the cap post 5314) rotates in the first direction A, the camming surfaces 5408 engage the ramped surfaces 5406, which urge the compliant members 5404 to flex or otherwise deflect radially outward and results in a ratcheting effect. Rotating the applicator cap 210 (and thus the cap post 5314) in the second direction B, however, will drive angled surfaces 5410 of the camming surfaces 5408 into opposing angled surfaces 5412 of the ramped surfaces 5406, which results in the sensor cap 5018 binding against the compliant member(s) 5404.
As the applicator cap 210 is threaded to (screwed onto) the housing 208 (
To remove the applicator cap 210, the applicator cap 210 is rotated in the second direction B, which correspondingly rotates the cap post 5314 in the same direction and causes the camming surfaces 5408 (i.e., the angled surfaces 5410 of
Referring first to
The sensor carrier 5602 may also include one or more carrier arms 5608 (one shown) configured to interact with a corresponding one or more grooves 5610 (one shown) defined on the sharp carrier 5306. A spring 5612 may be arranged within a cavity defined by the sharp carrier 5306 and may passively bias the sharp carrier 5306 upward within the housing 208. When the carrier arm(s) 5608 are properly received within the groove(s) 5610, however, the sharp carrier 5306 is maintained in position and prevented from moving upward. The carrier arm(s) 5608 interpose the sheath 212 and the sharp carrier 5306, and a radial shoulder 5614 defined on the sheath 212 may be sized to maintain the carrier arm(s) 5608 engaged within the groove(s) 5610 and thereby maintain the sharp carrier 5306 in position.
In
As the sharp carrier 5306 moves upward within the housing 208, the sharp hub 5014 may correspondingly move in the same direction, which may cause partial retraction of the mating member 5016 such that it becomes flush, substantially flush, or sub-flush with the bottom of the sensor control device 5002. As will be appreciated, this ensures that the mating member 5016 does not come into contact with the user's skin, which might otherwise adversely impact sensor insertion, cause excessive pain, or prevent the adhesive patch (not shown) positioned on the bottom of the sensor control device 5002 from properly adhering to the skin.
In the illustrated embodiment, the sheath arms 5604 of the sheath 212 may be configured to interact with a first detent 5702a and a second detent 5702b defined within the interior of the housing 208. The first detent 5702a may alternately be referred to a “locking” detent, and the second detent 5702b may alternately be referred to as a “firing” detent. When the sensor control device 5002 is initially installed in the sensor applicator 102, the sheath arms 5604 may be received within the first detent 5702a. As discussed below, the sheath 212 may be actuated to move the sheath arms 5604 to the second detent 5702b, which places the sensor applicator 102 in firing position.
In
Similar to the embodiment of
In
As the applicator cap 210 is unscrewed from the housing 208, the ribs 5704 defined on the sheath 212 may slidingly engage the tops of the ribs 5706 defined on the applicator cap 210. The tops of the ribs 5706 may provide corresponding ramped surfaces that result in an upward displacement of the sheath 212 as the applicator cap 210 is rotated, and moving the sheath 212 upward causes the sheath arms 5604 to flex out of engagement with the first detent 5702a to be received within the second detent 5702b. As the sheath 212 moves to the second detent 5702b, the radial shoulder 5614 moves out of radial engagement with the carrier arm(s) 5608, which allows the passive spring force of the spring 5612 to push upward on the sharp carrier 5306 and force the carrier arm(s) 5608 out of engagement with the groove(s) 5610. As the sharp carrier 5306 moves upward within the housing 208, the mating member 5016 may correspondingly retract until it becomes flush, substantially flush, or sub-flush with the bottom of the sensor control device 5002. At this point, the sensor applicator 102 in firing position. Accordingly, in this embodiment, removing the applicator cap 210 correspondingly causes the mating member 5016 to retract.
In the illustrated embodiment, the sensor carrier 5602 may be configured to hold the sensor control device 5002 in place both axially (e.g., once the sensor cap 5018 is removed) and circumferentially. To accomplish this, the sensor carrier 5602 may include or otherwise define one or more support ribs 5806 and one or more flexible arms 5808. The support ribs 5806 extend radially inward to provide radial support to the sensor control device 5002. The flexible arms 5808 extend partially about the circumference of the sensor control device 5002 and the ends of the flexible arms 5808 may be received within corresponding grooves 5810 defined in the side of the sensor control device 5002. Accordingly, the flexible arms 5808 may be able to provide both axial and radial support to the sensor control device 5002. In at least one embodiment, the ends of the flexible arms 5808 may be biased into the grooves 5810 of the sensor control device 5002 and otherwise locked in place with corresponding sheath locking ribs 5812 provided by the sheath 212.
In some embodiments, the sensor carrier 5602 may be ultrasonically welded to the housing 208 at one or more points 5814. In other embodiments, however, the sensor carrier 5602 may alternatively be coupled to the housing 208 via a snap-fit engagement, without departing from the scope of the disclosure. This may help hold the sensor control device 5002 in place during transport and firing.
In the illustrated embodiment, the arms 5304 of the sharp carrier 5306 may be stiff enough to control, with greater refinement, radial and bi-axial motion of the sharp hub 5014. In some embodiments, for example, clearances between the sharp hub 5014 and the arms 5304 may be more restrictive in both axial directions as the relative control of the height of the sharp hub 5014 may be more critical to the design.
In the illustrated embodiment, the sensor carrier 5602 defines or otherwise provides a central boss 5904 sized to receive the sharp hub 5014. In some embodiments, as illustrated, the sharp hub 5014 may provide one or more radial ribs 5906 (two shown). In at least one embodiment, the inner diameter of the central boss 5904 helps provide radial and tilt support to the sharp hub 5014 during the life of sensor applicator 102 and through all phases of operation and assembly. Moreover, having multiple radial ribs 5906 increases the length-to-width ratio of the sharp hub 5014, which also improves support against tilting.
In some embodiments, additional features may be provided within the interior of the applicator cap 210 to hold a desiccant component that maintains proper moisture levels through shelf life. Such additional features may be snaps, posts for press-fitting, heat-staking, ultrasonic welding, etc.
The threaded engagement between the applicator cap 210 and the housing 208 results in a sealed engagement that protects the inner components against moisture, dust, etc. In some embodiments, the housing 208 may define or otherwise provide a stabilizing feature 6012 configured to be received within a corresponding groove 1914 defined on the applicator cap 210. The stabilizing feature 6012 may help stabilize and stiffen the applicator cap 210 once the applicator cap 210 is snapped onto the housing 208. This may prove advantageous in providing additional drop robustness to the sensor applicator 102. This may also help increase the removal torque of the applicator cap 210.
Referring to both
The matable protrusions 6104 and indentations 6106 may prove advantageous in rotationally locking the sensor cap 5018 to prevent unintended unscrewing of the sensor cap 5018 from the collar 5112 (and thus the sensor control device 5002) during the life of the sensor applicator 102 and through all phases of operation/assembly. In some embodiments, as illustrated, the indentations 6106 may be formed or otherwise defined in the general shape of a kidney bean. This may prove advantageous in allowing for some over-rotation of the sensor cap 5018 relative to the collar 5112. Alternatively, the same benefit may be achieved via a flat end threaded engagement between the two parts.
Embodiments disclosed herein include:
A. A sensor control device that includes an electronics housing, a sensor arranged within the electronics housing and having a in vivo portion extending from a bottom of the electronics housing, a sharp extending through the electronics housing and having a sharp tip extending from the bottom of the electronics housing, and a sensor cap removably coupled at the bottom of the electronics housing and defining a sealed inner chamber that receives the in vivo portion and the sharp.
B. An analyte monitoring system that includes a sensor applicator, a sensor control device positioned within the sensor applicator and including an electronics housing, a sensor arranged within the electronics housing and having a in vivo portion extending from a bottom of the electronics housing, a sharp extending through the electronics housing and having a sharp tip extending from the bottom of the electronics housing, and a sensor cap removably coupled at the bottom of the electronics housing and defining an engagement feature and a sealed inner chamber that receives the in vivo portion and the sharp. The analyte monitoring system may further include a cap coupled to the sensor applicator and providing a cap post defining a receiver feature that receives the engagement feature upon coupling the cap to the sensor applicator, wherein removing the cap from the sensor applicator detaches the sensor cap from the electronics housing and thereby exposes the in vivo portion and the sharp tip.
C. A method of preparing an analyte monitoring system that includes loading a sensor control device into a sensor applicator, the sensor control device including an electronics housing, a sensor arranged within the electronics housing and having a in vivo portion extending from a bottom of the electronics housing, a sharp extending through the electronics housing and having a sharp tip extending from the bottom of the electronics housing, and a sensor cap removably coupled at the bottom of the electronics housing and defining a sealed inner chamber that receives the in vivo portion and the sharp. The method further including securing a cap to the sensor applicator, sterilizing the sensor control device with gaseous chemical sterilization while the sensor control device is positioned within the sensor applicator, and isolating the in vivo portion and the sharp tip within the inner chamber from the gaseous chemical sterilization.
Each of embodiments A, B, and C may have one or more of the following additional elements in any combination: Element 1: wherein the sensor cap comprises a cylindrical body having a first end that is open to access the inner chamber, and a second end opposite the first end and providing an engagement feature engageable with a cap of a sensor applicator, wherein removing the cap from the sensor applicator correspondingly removes the sensor cap from the electronics housing and thereby exposes the in vivo portion and the sharp tip. Element 2: wherein the electronics housing includes a shell matable with a mount, the sensor control device further comprising a sharp and sensor locator defined on an inner surface of the shell, and a collar received about the sharp and sensor locator, wherein the sensor cap is removably coupled to the collar. Element 3: wherein the sensor cap is removably coupled to the collar by one or more of an interference fit, a threaded engagement, a frangible member, and a frangible substance. Element 4: wherein an annular ridge circumscribes the sharp and sensor locator and the collar provides a column and an annular shoulder extending radially outward from the column, and wherein a seal member interposes the annular shoulder and the annular ridge to form a sealed interface. Element 5: wherein the annular ridge defines a groove and a portion of the sensor is seated within the groove, and wherein the seal member extends into the groove to seal about the portion of the sensor. Element 6: wherein the seal member is a first seal member, the sensor control device further comprising a second seal member interposing the annular shoulder and a portion of the mount to form a sealed interface. Element 7: wherein the electronics housing includes a shell matable with a mount, the sensor control device further comprising a sharp hub that carries the sharp and is engageable with a top surface of the shell, and a mating member defined by the sharp hub and extending from the bottom of the electronics housing, wherein the sensor cap is removably coupled to the mating member. Element 8: further comprising a collar at least partially receivable within an aperture defined in the mount and sealingly engaging the sensor cap and an inner surface of the shell. Element 9: wherein a seal member interposes the collar and the inner surface of the shell to form a sealed interface. Element 10: wherein the collar defines a groove and a portion of the sensor is seated within the groove, and wherein the seal member extends into the groove to seal about the portion of the sensor.
Element 11: wherein the receiver feature comprises one or more compliant members that flex to receive the engagement feature, and wherein the one or more compliant members prevent the engagement feature from exiting the cap post upon removing the cap from the sensor applicator. Element 12: further comprising a ramped surface defined on at least one of the one or more compliant members, and one or more camming surfaces provided by the engagement feature and engageable with the ramped surface, wherein the ramped surface and the one or more camming surfaces allow the cap and the cap post to rotate relative to the sensor cap in a first direction, but prevent the cap and the cap post from rotating relative to the sensor cap in a second direction opposite the first direction. Element 13: wherein the electronics housing includes a shell matable with a mount, the sensor control device further comprising a sharp hub that carries the sharp and is engageable with a top surface of the shell, and a mating member defined by the sharp hub and extending from the bottom of the electronics housing, wherein the sensor cap is removably coupled to the mating member and rotating the cap in the second direction detaches the sensor cap from the mating member. Element 14: wherein the electronics housing includes a shell matable with a mount and the sensor control device further includes a sharp and sensor locator defined on an inner surface of the shell, and a collar received about the sharp and sensor locator, wherein the sensor cap is removably coupled to the collar.
Element 15: wherein the cap provides a cap post defining a receiver feature and the sensor cap defines an engagement feature, the method further comprising receiving the engagement feature with the receiver feature as the cap is secured to the sensor applicator. Element 16: further comprising removing the cap from the sensor applicator, and engaging the engagement feature on the receiver feature as the cap is being removed and thereby detaching the sensor cap from the electronics housing and exposing the in vivo portion and the sharp tip. Element 17: wherein loading the sensor control device into a sensor applicator is preceded by sterilizing the in vivo portion and the sharp tip with radiation sterilization, and sealing the in vivo portion and the sharp tip within the inner chamber.
By way of non-limiting example, exemplary combinations applicable to A, B, and C include: Element 2 with Element 3; Element 2 with Element 4; Element 4 with Element 5; Element 4 with Element 6; Element 7 with Element 8; Element 8 with Element 9; Element 9 with Element 10; Element 11 with Element 12; and Element 15 with Element 16.
Example Embodiments of Seal Arrangement for Analyte Monitoring Systems
As illustrated, the sensor control device 9102 includes an electronics housing 9104, which may be generally disc-shaped and have a circular cross-section. In other embodiments, however, the electronics housing 9104 may exhibit other cross-sectional shapes, such as ovoid, oval, or polygonal, without departing from the scope of the disclosure. The electronics housing 9104 includes a shell 9106 and a mount 9108 that is matable with the shell 9106. The shell 9106 may be secured to the mount 9108 via a variety of ways, such as a snap fit engagement, an interference fit, sonic welding, laser welding, one or more mechanical fasteners (e.g., screws), a gasket, an adhesive, or any combination thereof. In some cases, the shell 9106 may be secured to the mount 9108 such that a sealed interface is generated therebetween. An adhesive patch 9110 may be positioned on and otherwise attached to the underside of the mount 9108. Similar to the adhesive patch 105 of
The sensor control device 9102 may further include a sensor 9112 and a sharp 9114 used to help deliver the sensor 9112 transcutaneously under a user's skin during application of the sensor control device 9102. Corresponding portions of the sensor 9112 and the sharp 9114 extend distally from the bottom of the electronics housing 9104 (e.g., the mount 9108). A sharp hub 9116 may be overmolded onto the sharp 9114 and configured to secure and carry the sharp 9114. As best seen in
The sensor control device 9102 may further include a sensor cap 9120, shown detached from the electronics housing 9104 in
The sensor cap 9120 may be removably coupled to the electronics housing 9104 at or near the bottom of the mount 9108. More specifically, the sensor cap 9120 may be removably coupled to the mating member 9118, which extends distally from the bottom of the mount 9108. In at least one embodiment, for example, the mating member 9118 may define a set of external threads 9128a (
In some embodiments, the sensor cap 9120 may comprise a monolithic (singular) structure extending between the first and second ends 9122a,b. In other embodiments, however, the sensor cap 9120 may comprise two or more component parts. In the illustrated embodiment, for example, the body of the sensor cap 9120 may include a desiccant cap 9130 arranged at the second end 9122b. The desiccant cap 9130 may house or comprise a desiccant to help maintain preferred humidity levels within the inner chamber 9124. Moreover, the desiccant cap 9130 may also define or otherwise provide the engagement feature 9126 of the sensor cap 9120. In at least one embodiment, the desiccant cap 9130 may comprise an elastomeric plug inserted into the bottom end of the sensor cap 9120.
The shell 9106 may define a first aperture 9202a and the mount 9108 may define a second aperture 9202b, and the apertures 9202a, b may align when the shell 9106 is properly mounted to the mount 9108. As best seen in
The mount 9108 may comprise a molded part made of a rigid material, such as plastic or metal. In some embodiments, a seal 9208 may be overmolded onto the mount 9108 and may be made of an elastomer, rubber, a -polymer, or another pliable material suitable for facilitating a sealed interface. In embodiments where the mount 9108 is made of a plastic, the mount 9108 may be molded in a first “shot” of injection molding, and the seal 9208 may be overmolded onto the mount 9108 in a second “shot” of injection molding. Accordingly, the mount 9108 may be referred to or otherwise characterized as a “two-shot mount.”
In the illustrated embodiment, the seal 9208 may be overmolded onto the mount 9108 at the pedestal 9204 and also on the bottom of the mount 9108. More specifically, the seal 9208 may define or otherwise provide a first seal element 9210a overmolded onto the pedestal 9204, and a second seal element 9210b (
The sensor control device 9102 may further include a collar 9212, which may be a generally annular structure that defines a central aperture 9214. The central aperture 9214 may be sized to receive the first seal element 9210a and may align with both the first and second apertures 9202a, b when the sensor control device 9102 is properly assembled. The shape of the central aperture 9214 may generally match the shape of the second aperture 9202b and the first seal element 9210a.
In some embodiments, the collar 9212 may define or otherwise provide an annular lip 9216 on its bottom surface. The annular lip 9216 may be sized and otherwise configured to mate with or be received into the channel 9206 defined on the inner surface of the mount 9108. In some embodiments, a groove 9218 may be defined on the annular lip 9216 and may be configured to accommodate or otherwise receive a portion of the sensor 9112 extending laterally within the mount 9108. In some embodiments, the collar 9212 may further define or otherwise provide a collar channel 9220 (
The sensor 9112 may include a in vivo portion 9224 that extends through the second aperture 9202b defined in the mount 9108 to be transcutaneously received beneath a user's skin. The in vivo portion 9224 may have an enzyme or other chemistry included thereon to help facilitate analyte monitoring. The sharp 9114 may include a sharp tip 9226 extendable through the first aperture 9202a defined by the shell 9106. As the sharp tip 9226 penetrates the electronics housing 9104, the in vivo portion 9224 of the sensor 9112 may be received within a hollow or recessed portion of the sharp tip 9226. The sharp tip 9226 may be configured to penetrate the skin while carrying the in vivo portion 9224 to put the active chemistry of the in vivo portion 9224 into contact with bodily fluids.
The sensor control device 9102 may provide a sealed subassembly that includes, among other component parts, portions of the shell 9106, the sensor 9112, the sharp 9114, the seal 9208, the collar 9212, and the sensor cap 9120. The sealed subassembly may help isolate the sensor 9112 and the sharp 9114 within the inner chamber 9124 (
Once the sensor 9112 is properly located, the collar 9212 may be installed on the mount 9108. More specifically, the collar 9212 may be positioned such that the first seal element 9210a of the seal 9208 is received within the central aperture 9214 defined by the collar 9212 and the first seal element 9210a generates a radial seal against the collar 9212 at the central aperture 9214. Moreover, the annular lip 9216 defined on the collar 9212 may be received within the channel 9206 defined on the mount 9108, and the groove 9218 defined through the annular lip 9216 may be aligned to receive the portion of the sensor 9112 that traverses the channel 9206 laterally within the mount 9108. In some embodiments, an adhesive may be injected into the channel 9206 to secure the collar 9212 to the mount 9108. The adhesive may also facilitate a sealed interface between the two components and generate a seal around the sensor 9112 at the groove 9218, which may isolate the in vivo portion 9224 from the interior of the electronics housing 9104.
The shell 9106 may then be mated with or otherwise coupled to the mount 9108. In some embodiments, as illustrated, the shell 9106 may mate with the mount 9108 via a tongue-and-groove engagement 9308 at the outer periphery of the electronics housing 9104. An adhesive may be injected (applied) into the groove portion of the engagement 9308 to secure the shell 9106 to the mount 9108, and also to create a sealed engagement interface. Mating the shell 9106 to the mount 9108 may also cause the annular ridge 9222 defined on the inner surface of the shell 9106 to be received within the collar channel 9220 defined on the upper surface of the collar 9212. In some embodiments, an adhesive may be injected into the collar channel 9220 to secure the shell 9106 to the collar 9212, and also to facilitate a sealed interface between the two components at that location. When the shell 9106 mates with the mount 9108, the first seal element 9210a may extend at least partially through (into) the first aperture 9202a defined in the shell 9106.
The sharp 9114 may then be coupled to the sensor control device 9102 by extending the sharp tip 9226 through the aligned first and second apertures 9202a, b defined in the shell 9106 and the mount 9108, respectively. The sharp 9114 may be advanced until the sharp hub 9116 engages the seal 9208 and, more particularly, engages the first seal element 9210a. The mating member 9118 may extend (protrude) out the second aperture 9202b at the bottom of the mount 9108 when the sharp hub 9116 engages the first seal element 9210a.
The sensor cap 9120 may then be removably coupled to the sensor control device 9102 by threadably mating the internal threads 9128b of the sensor cap 9120 with the external threads 9128a of the mating member 9118. The inner chamber 9124 may be sized and otherwise configured to receive the in vivo portion 9224 and the sharp tip 9226 extending from the bottom of the mount 9108. Moreover, the inner chamber 9124 may be sealed to isolate the in vivo portion 9224 and the sharp tip 9226 from substances that might adversely interact with the chemistry of the in vivo portion 9224. In some embodiments, a desiccant (not shown) may be present within the inner chamber 9124 to maintain proper humidity levels.
Tightening (rotating) the mated engagement between the sensor cap 9120 and the mating member 9118 may urge the first end 9122a of the sensor cap 9120 into sealed engagement with the second seal element 9210b in an axial direction (e.g., along the centerline of the apertures 9202a, b), and may further enhance the sealed interface between the sharp hub 9116 and the first seal element 9210a in the axial direction. Moreover, tightening the mated engagement between the sensor cap 9120 and the mating member 9118 may compress the first seal element 9210a, which may result in an enhanced radial sealed engagement between the first seal element 9210a and the collar 9212 at the central aperture 9214. Accordingly, in at least one embodiment, the first seal element 9210a may help facilitate axial and radial sealed engagements.
As mentioned above, the first and second seal elements 9210a,b may be overmolded onto the mount 9108 and may be physically linked or otherwise interconnected. Consequently, a single injection molding shot may flow through the second aperture 9202b of the mount 9108 to create both ends of the seal 9208. This may prove advantageous in being able to generate multiple sealed interfaces with only a single injection molded shot. An additional advantage of a two-shot molded design, as opposed to using separate elastomeric components (e.g., O-rings, gaskets, etc.), is that the interface between the first and second shots is a reliable bond rather than a mechanical seal. Hence, the effective number of mechanical sealing barriers is effectively cut in half. Moreover, a two-shot component with a single elastomeric shot also has implications to minimizing the number of two-shot components needed to achieve all the necessary sterile barriers. Once properly assembled, the sealed subassembly 9302 may be subjected to a radiation sterilization process to sterilize the sensor 9112 and the sharp 9114. The sealed subassembly 9302 may be subjected to the radiation sterilization prior to or after coupling the sensor cap 9120 to the sharp hub 9116. When sterilized after coupling the sensor cap 9120 to the sharp hub 9116, the sensor cap 9120 may be made of a material that permits the propagation of radiation therethrough. In some embodiments, the sensor cap 9120 may be transparent or translucent, but can otherwise be opaque, without departing from the scope of the disclosure.
As shown in
In
Securing the applicator cap 9506 to the housing 9504 may also cause the second end 9122b of the sensor cap 9120 to be received within a cap post 9510 located within the interior of the applicator cap 9506 and extending proximally from the bottom thereof. The cap post 9510 may be configured to receive at least a portion of the sensor cap 9120 as the applicator cap 9506 is coupled to the housing 9504.
Many design variations of the receiver feature 9602 may be employed, without departing from the scope of the disclosure. In the illustrated embodiment, the receiver feature 9602 includes one or more compliant members 9604 (two shown) that are expandable or flexible to receive the engagement feature 9126. The engagement feature 9126 may comprise, for example, an enlarged head and the compliant member(s) 9604 may comprise a collet-type device that includes a plurality of compliant fingers configured to flex radially outward to receive the enlarged head.
The compliant member(s) 9604 may further provide or otherwise define corresponding ramped surfaces 9606 configured to interact with one or more opposing camming surfaces 9608 provided on the outer wall of the engagement feature 9126. The configuration and alignment of the ramped surface(s) 9606 and the opposing camming surface(s) 9608 is such that the applicator cap 9506 is able to rotate relative to the sensor cap 9120 in a first direction A (e.g., clockwise), but the cap post 9510 binds against the sensor cap 9120 when the applicator cap 9506 is rotated in a second direction B (e.g., counter clockwise). More particularly, as the applicator cap 9506 (and thus the cap post 9510) rotates in the first direction A, the camming surfaces 9608 engage the ramped surfaces 9606, which urge the compliant members 9604 to flex or otherwise deflect radially outward and results in a ratcheting effect. Rotating the applicator cap 9506 (and thus the cap post 9510) in the second direction B, however, will drive angled surfaces 9610 of the camming surfaces 9608 into opposing angled surfaces 9612 of the ramped surfaces 9606, which results in the sensor cap 9120 binding against the compliant member(s) 9604.
As the applicator cap 9506 is threaded to (screwed onto) the housing 9504 (
To remove the applicator cap 9506, the applicator cap 9506 is rotated in the second direction B, which correspondingly rotates the cap post 9510 in the same direction and causes the camming surfaces 9608 (i.e., the angled surfaces 9610 of
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As illustrated in
In particular embodiments, a tamper-evident sticker or other method of detecting that the applicator housing 702 has been opened can be applied to the interior or exterior of the applicator housing 708. As illustrated in
Embodiments disclosed herein include:
D. A sensor control device that includes an electronics housing including a shell that defines a first aperture and a mount that defines a second aperture alignable with the first aperture when the shell is coupled to the mount, a seal overmolded onto the mount at the second aperture and comprising a first seal element overmolded onto a pedestal protruding from an inner surface of the mount, and a second seal element interconnected with the first seal element and overmolded onto a bottom of the mount, a sensor arranged within the electronics housing and having a in vivo portion extending through the second aperture and past the bottom of the mount, and a sharp that extends through the first and second apertures and past the bottom of the electronics housing.
E. An assembly that includes a sensor applicator, a sensor control device positioned within the sensor applicator and including an electronics housing including a shell that defines a first aperture and a mount that defines a second aperture alignable with the first aperture when the shell is mated to the mount, a seal overmolded onto the mount at the second aperture and comprising a first seal element overmolded onto a pedestal protruding from an inner surface of the mount, and a second seal element interconnected with the first seal element and overmolded onto a bottom of the mount, a sensor arranged within the electronics housing and having a in vivo portion extending through the second aperture and past the bottom of the mount, and a sharp that extends through the first and second apertures and past the bottom of the electronics housing. The assembly further including a sensor cap removably coupled to the sensor control device at the bottom of the mount and defining a sealed inner chamber that receives the in vivo portion and the sharp, and an applicator cap coupled to the sensor applicator.
Each of embodiments D and E may have one or more of the following additional elements in any combination: Element 1: wherein the mount comprises a first injection molded part molded in a first shot, and the seal comprises a second injection molded part overmolded onto the first injection molded part in a second shot. Element 2: further comprising a sharp hub that carries the sharp and sealingly engages the first seal element, and a sensor cap removably coupled to the sharp hub at the bottom of the mount and sealingly engaging the second seal element, wherein the sensor cap defines an inner chamber that receives the in vivo portion and the sharp. Element 3: wherein the sharp hub provides a mating member that extends past the bottom of the mount and the sensor cap is removably coupled to the mating member. Element 4: further comprising one or more pockets defined on the bottom of the mount at the second aperture, and one or more projections defined on an end of the sensor cap and receivable within the one or more pockets when the sensor cap is coupled to the sharp hub. Element 5: further comprising a collar positioned within the electronics housing and defining a central aperture that receives and sealingly engages the first seal element in a radial direction. Element 6: further comprising a channel defined on the inner surface of the mount and circumscribing the pedestal, an annular lip defined on an underside of the collar and matable with the channel, and an adhesive provided in the channel to secure and seal the collar to the mount at the channel. Element 7: further comprising a groove defined through the annular lip to accommodate a portion of the sensor extending laterally within the mount, wherein the adhesive seals about the sensor at the groove. Element 8: further comprising a collar channel defined on an upper surface of the collar, an annular ridge defined on an inner surface of the shell and matable with the collar channel, and an adhesive provided in the collar channel to secure and seal the shell to the collar. Element 9: wherein one or both of the first and second seal elements define at least a portion of the second aperture. Element 10: wherein the first seal element extends at least partially through the first aperture when the shell is coupled to the mount.
Element 11: wherein the sensor control device further includes a sharp hub that carries the sharp and sealingly engages the first seal element, and wherein the sensor cap is removably coupled to the sharp hub at the bottom of the mount and sealingly engages the second seal element. Element 12: wherein the sensor control device further includes one or more pockets defined on the bottom of the mount at the second aperture, and one or more projections defined on an end of the sensor cap and receivable within the one or more pockets when the sensor cap is coupled to the sharp hub. Element 13: wherein the sensor control device further includes a collar positioned within the electronics housing and defining a central aperture that receives and sealingly engages the first seal element in a radial direction. Element 14: wherein the sensor control device further includes a channel defined on the inner surface of the mount and circumscribing the pedestal, an annular lip defined on an underside of the collar and matable with the channel, and an adhesive provided in the channel to secure and seal the collar to the mount at the channel. Element 15: wherein the sensor control device further includes a groove defined through the annular lip to accommodate a portion of the sensor extending laterally within the mount, and wherein the adhesive seals about the sensor at the groove. Element 16: wherein the sensor control device further includes a collar channel defined on an upper surface of the collar, an annular ridge defined on an inner surface of the shell and matable with the collar channel, and an adhesive provided in the collar channel to secure and seal the shell to the collar. Element 17: wherein one or both of the first and second seal elements define at least a portion of the second aperture. Element 18: wherein the first seal element extends at least partially through the first aperture.
By way of non-limiting example, exemplary combinations applicable to D and E include: Element 2 with Element 3; Element 2 with Element 4; Element 5 with Element 6; Element 6 with Element 7; Element 5 with Element 8; Element 11 with Element 12; Element 13 with Element 14; Element 14 with Element 15; and Element 13 with Element 16.
Additional details of suitable devices, systems, methods, components and the operation thereof along with related features are set forth in International Publication No. WO2018/136898 to Rao et. al., International Publication No. WO2019/236850 to Thomas et. al., International Publication No. WO2019/236859 to Thomas et. al., International Publication No. WO2019/236876 to Thomas et. al., and U.S. patent application Ser. No. 16/433,931, filed Jun. 6, 2019, each of which is incorporated by reference in its entirety herein.
Example embodiments of sensor structures and related manufacturing processes will now be described, as depicted in
Because the on-body unit can be mounted to the body of the patient, increasing the flexibility of the substrate, and in turn the ex vivo portion, can increase the on-body unit's resistance to forces resulting from the patient's movements. To achieve the desired flexibility, the substrate can be made from polyamide or polyethylene terephthalate (PET). In some embodiments, a PET substrate can have the material properties shown below.
Additionally, the substrate can be made of one or more layers. The one or more layers can comprise a variety of materials, including Polyamide or PET, copper, fiberglass, and/or a gradient mix of materials, including any of the above-referenced materials. For example, the gradient mix of materials can include approximately 10% fiberglass. As another example, the gradient mix of materials can include fiberglass and/or another material, including materials having a melting temperature which is 5° F., 10° F., 15° F., 20° F., or any other melting temperature, higher than the melting temperature of fiberglass and/or PET. The in vivo portion 4002 can also include one or more layer, each of which also optionally having a gradient mix of materials. In one non-limiting example, a layer of the in vivo portion can include PET and a layer of the ex vivo portion can be approximately 10% fiberglass. Because of the substrate's flexibility, and because the electronic components are mounted directly onto the substrate without the need for a connector, the substrate can be folded in half such that the size of the on-body unit can be further decreased. To additionally reduce height, the one or more batteries can be disposed such that the solder contacts are soldered to the substrate, but the battery itself is offset from the substrate. As can be seen in
According to embodiments, as described above, the sensor of the disclosed subject matter can include an in vivo portion having a substrate, at least one working electrode, and a reference electrode configured such that the electrodes are printed on the substrate. Exemplary embodiment and methods of printed analyte sensors having one or more electrodes are disclosed in U.S. patent application Ser. No. 17/661,531, which is incorporated herein by reference in its entirety. According to embodiments disclosed herein, the at least one working electrode can include one or more working electrodes. For example, the at least one or more working electrodes can include two, three, four or more working electrodes. Each working electrode can be configured to measure an analyte of interest (such as, without limitation, glucose, ketone, lactate, etc.) can be printed on the first surface of the in vivo portion 4002 and the reference electrode can be printed on the second surface of the in vivo portion 4002. More specifically, in some embodiments, the working electrodes can all be printed on a first side of in vivo portion 4002, and the reference electrode can be printed on a second side of the in vivo portion 4002; alternatively, in some embodiments, one working electrode can be printed on the first side of the in vivo portion 4002 and a second working electrode can be printed on the second side of the in vivo portion 4002. In yet another embodiment, a third working electrode can be printed on the first or the second side of the in vivo portion 4002, along with the first or second electrode, respectively. According to embodiments, in vivo portion 4002 can include four, five, or more electrodes. According to embodiments, analyte sensor (including in vivo 4002 portion and ex vivo portion 4004) can include a wire sensor (for example, not limitation, a platinum sensor, an analyte sensor with a platinum core as a working electrode, etc.).
According to disclosed embodiments, as can be seen in
In accordance with disclosed subject matter, the electronic components can be mounted onto the substrate using photonic soldering. Photonic soldering can allow the electronic components to be mounted without damaging the substrate during the mounting process, which can occur due to heat exposure in the reflow oven, as described further herein. More specifically, because of the different material properties of the solder and substrate, the light can cause the solder to heat and reflow without causing the substrate to become heated. By contrast, a traditional reflow oven subjects the substrate higher temperature levels, which can cause the substrate to melt or experience other damage. The use of photonic soldering can also enable high volume automated assembly. Furthermore, photonic soldering can be used to mount a wire sensor on the substrate. For example, not limitation, a wire sensor can include a platinum sensor, a sensor have a platinum working electrode as a core, etc.
Photonic soldering uses flashes of light to reflow the solder paste in a molten state, thereby creating a permanent connection between the substrate and the electronic components. In particular, this can occur when the substrate is a lighter color than the electronic components and/or solder paste, thus causing the darker components to absorb more light and therefore reach the requisite heat for soldering without affecting the lighter colored components. For example, without limitation, the substrate can be clear or white to allow light to pass through or reflect, thereby improving the performance of the photonic soldering process. The amount of light and energy delivered to the substrate and electrical components can be well controlled by controlling the power of the lamp used, the wavelengths of the light generated, the duration and frequency of the pulses generated, and the area being exposed to light. The process of rapid heating and cooling via flashes of light allows reflow of the solder without damage to the polymer substrate. Although photonic soldering can be done with a laser focused on the solder tabs of individual components, a flash lamp provides a larger exposure area allowing multiple components to be soldered at the same time and facilitates high volume manufacturing. By contrast, during traditional reflow soldering, solder paste is used to temporarily attach electronic components to a substrate, and is subsequently molten in a reflow oven, thereby creating permanent connections between the electronic components and the substrate. Certain flexible substrate materials, such as polyamide or PET, can be damaged during reflow soldering by the heat of the reflow oven.
As embodied herein, the photonic soldering process can use pulses of light (for example, without limitation, xenon light), to reflow the solder paste. The light can be delivered to the targeted components using multiple, repeated light pulses to controllably increase the solder paste temperature. As embodied herein, a user can vary the photonic soldering process by controlling the input power, the pulse duration, the number of pulses, and/or the flash rate of the pulses. As embodied herein, the electronic components can be hand-placed on the substrate or can be machine-placed on the substrate. Further, the components can be soldered either individually or simultaneously. The components can also be mounted on the first surface of the sensor; as embodied herein, this can occur after printing the electrodes.
Further information regarding photonic soldering, and methods of uses thereof, are described in Photonic Flash Soldering on Flex Foils for Flexible Electronic Systems, by Arutinov et. al., (G. Arutinov, R. Hendriks and J. Van Den Brand, “Photonic Flash Soldering on Flex Foils for Flexible Electronic Systems,” 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), 2016, pp. 95-100, doi: 10.1109/ECTC.2016.179.), which is incorporated by reference herein in its entirety and for all purposes.
In some embodiments, multiple substrates can be subject to the photonic soldering at the same time. For example, a sheet of substrate material can have an array of 2×2, 3×3, 4×4, 5×5, or any other arrangement of substrate blanks. Next, to print carbon traces prior to photonic soldering, the substrate can be etched to outline the contacts and the contacts can then be masked to prevent light absorption as described herein In some embodiments, as described above, the electrodes can be printed on the substrate using a carbon ink and include contacts (e.g., contacts 2418 as shown in
Source: Electra Technical Datasheet for Carapace EMP110 W-LED Photoimageable Soldermask for LED, EMP110 W-LED (cool-white/extra-cool-white/warm-white)_rev5, which can be accessed https://electrapolymers.com/wp-content/uploads/sds_files/EMP110%20 W-LED.pdf. In some embodiments, the mask can be applied using a silk screen. Additionally or alternatively, the substrate can be coated with a reflective coating prior to the photonic soldering process and/or the light source can used with a UV light filter to prevent light from penetrating the substrate material. The printed traces may also be at risk of heat damage from the light exposure caused by photonic soldering. Molten reflow from heated solder may also pose a risk of shorting the carbon traces. Therefore, a metal-based removable mask can be applied over the circuit board traces to prevent light absorption in the traces and block solder reflow from shorting the traces. After masking the traces, solder material can be dispensed on the substrate, and the electronic components can be disposed on the solder either manually or in an automated fashion. In some embodiments, the one or more batteries can be manually soldered to the substrate because the battery solder tabs can be non-coplanar, thus causing them to heat at different rates. Then, the substrate and electronic components can undergo the photonic soldering process described above. After the soldering process has been completed, the substrates can be laser cut out of the sheet to constitute a final product, and the in vivo portion 4002 of the sensor can be dipped in a membrane material to form the membrane.
According to embodiments disclosed herein, in order to prevent movement of the substrate during the photonic soldering process due to potential warping, the substrate can be secured to the work bench or other work surface using a vice, clips or any clamping means. The substrate can also be secured to the work surface using a vacuum. The photonic soldering process can be conducted with any type of known, commercially available solder. In some embodiments, however, solders with relatively low melting points can be used in the photonic soldering process. For example, PET panels have a melting point of approximately 260° C., and standard solder having a tin-copper-silver alloy has a melting point of approximately 220° C. Although the PET panels have a higher melting point than standard solder, heating the standard solder to its melting point risks causing damage to the PET panels. By contrast, low temperature solders—for example, a solder having a bismuth-tin-silver alloy which has a melting point of approximately 140° C.—require lower temperatures to be melted, thus decreasing the likelihood of damaging the PET panels. For example and not limitation, additional solder types having the below listed alloys and properties may also be used with substrates having suitably high melting ranges.
Further details on solder alloys can be found in Kestser Alloy Temperature Chart, which is incorporated herein by reference in its entirety for all purposes.
Turning now to
In
In
With the sharp 1030 fully retracted as shown in
Operation of the applicator 216 when applying the sensor control device 222 is designed to provide the user with a sensation that both the insertion and retraction of the sharp 1030 is performed automatically by the internal mechanisms of the applicator 216. In other words, the present invention avoids the user experiencing the sensation that he is manually driving the sharp 1030 into his skin. Thus, once the user applies sufficient force to overcome the resistance from the detent features of the applicator 216, the resulting actions of the applicator 216 are perceived to be an automated response to the applicator being “triggered.” The user does not perceive that he is supplying additional force to drive the sharp 1030 to pierce his skin despite that all the driving force is provided by the user and no additional biasing/driving means are used to insert the sharp 1030. As shown above in
With respect to any of the applicator embodiments described herein, as well as any of the components thereof, including but not limited to the sharp, sharp module and sensor module embodiments, those of skill in the art will understand that said embodiments can be dimensioned and configured for use with sensors configured to sense an analyte level in a bodily fluid in the epidermis, dermis, or subcutaneous tissue of a subject. In some embodiments, for example, sharps and distal portions of analyte sensors disclosed herein can both be dimensioned and configured to be positioned at a particular end-depth (i.e., the furthest point of penetration in a tissue or layer of the subject's body, e.g., in the epidermis, dermis, or subcutaneous tissue). With respect to some applicator embodiments, those of skill in the art will appreciate that certain embodiments of sharps can be dimensioned and configured to be positioned at a different end-depth in the subject's body relative to the final end-depth of the analyte sensor. In some embodiments, for example, a sharp can be positioned at a first end-depth in the subject's epidermis prior to retraction, while a distal portion of an analyte sensor can be positioned at a second end-depth in the subject's dermis. In other embodiments, a sharp can be positioned at a first end-depth in the subject's dermis prior to retraction, while a distal portion of an analyte sensor can be positioned at a second end-depth in the subject's subcutaneous tissue. In still other embodiments, a sharp can be positioned at a first end-depth prior to retraction and the analyte sensor can be positioned at a second end-depth, wherein the first end-depth and second end-depths are both in the same layer or tissue of the subject's body.
Additionally, with respect to any of the applicator embodiments described herein, those of skill in the art will understand that an analyte sensor, as well as one or more structural components coupled thereto, including but not limited to one or more spring-mechanisms, can be disposed within the applicator in an off-center position relative to one or more axes of the applicator. In some applicator embodiments, for example, an analyte sensor and a spring mechanism can be disposed in a first off-center position relative to an axis of the applicator on a first side of the applicator, and the sensor electronics can be disposed in a second off-center position relative to the axis of the applicator on a second side of the applicator. In other applicator embodiments, the analyte sensor, spring mechanism, and sensor electronics can be disposed in an off-center position relative to an axis of the applicator on the same side. Those of skill in the art will appreciate that other permutations and configurations in which any or all of the analyte sensor, spring mechanism, sensor electronics, and other components of the applicator are disposed in a centered or off-centered position relative to one or more axes of the applicator are possible and fully within the scope of the present disclosure.
A number of deflectable structures are described herein, including but not limited to deflectable detent snaps 1402, deflectable locking arms 1412, sharp carrier lock arms 1524, sharp retention arms 1618, and module snaps 2202. These deflectable structures are composed of a resilient material such as plastic or metal (or others) and operate in a manner well known to those of ordinary skill in the art. The deflectable structures each has a resting state or position that the resilient material is biased towards. If a force is applied that causes the structure to deflect or move from this resting state or position, then the bias of the resilient material will cause the structure to return to the resting state or position once the force is removed (or lessened). In many instances these structures are configured as arms with detents, or snaps, but other structures or configurations can be used that retain the same characteristics of deflectability and ability to return to a resting position, including but not limited to a leg, a clip, a catch, an abutment on a deflectable member, and the like.
In summary, a system is described for measurement of an analyte level including an analyte sensor having an in vivo portion in contact with the interstitial fluid of a user and an ex vivo portion. The sensor further includes at least one working electrode and a reference electrode located on the in vivo portion, and a first substrate. The at least one working electrode and reference electrode generate signals associated with a measured analyte level. Further, the ex vivo portion includes a plurality of electronic components mounted thereon, and at least one of the electronic components are configured to receive the generated signals associated with the measured analyte level. The electronic components are mounted to the ex vivo portion using photonic soldering.
Additional details of suitable devices, systems, methods, components and the operation thereof along with related features are set forth in International Publication No. WO2018/136898 to Rao et. al., International Publication No. WO2019/236850 to Thomas et. al., International Publication No. WO2019/236859 to Thomas et. al., International Publication No. WO2019/236876 to Thomas et. al., and U.S. Patent Publication No. 2020/0196919, filed Jun. 6, 2019, each of which is incorporated by reference in its entirety herein. Further details regarding embodiments of applicators, their components, and variants thereof, are described in U.S. Patent Publication Nos. 2013/0150691, 2016/0331283, and 2018/0235520, all of which are incorporated by reference herein in their entireties and for all purposes. Further details regarding embodiments of sharp modules, sharps, their components, and variants thereof, are described in U.S. Patent Publication No. 2014/0171771, which is incorporated by reference herein in its entirety and for all purposes.
It should be noted that all features, elements, components, functions, and steps described with respect to any embodiment provided herein are intended to be freely combinable and substitutable with those from any other embodiment. If a certain feature, element, component, function, or step is described with respect to only one embodiment, then it should be understood that that feature, element, component, function, or step can be used with every other embodiment described herein unless explicitly stated otherwise. This paragraph therefore serves as antecedent basis and written support for the introduction of claims, at any time, that combine features, elements, components, functions, and steps from different embodiments, or that substitute features, elements, components, functions, and steps from one embodiment with those of another, even if the following description does not explicitly state, in a particular instance, that such combinations or substitutions are possible. Thus, the foregoing description of specific embodiments of the disclosed subject matter has been presented for purposes of illustration and description. It is explicitly acknowledged that express recitation of every possible combination and substitution is overly burdensome, especially given that the permissibility of each and every such combination and substitution will be readily recognized by those of ordinary skill in the art.
While the embodiments are susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It will be apparent to those skilled in the art that various modifications and variations can be made in the method and system of the disclosed subject matter without departing from the spirit or scope of the disclosed subject matter. Thus, it is intended that the disclosed subject matter include modifications and variations that are within the scope of the appended claims and their equivalents. Furthermore, any features, functions, steps, or elements of the embodiments may be recited in or added to the claims, as well as negative limitations that define the inventive scope of the claims by features, functions, steps, or elements that are not within that scope.
This application claims priority to U.S. Provisional Application No. 63/306,872 filed Feb. 4, 2022, entitled “Systems, Devices, and Methods For an Analyte Sensor,” the disclosures of which is incorporated herein by reference for all purposes.
Number | Date | Country | |
---|---|---|---|
63306872 | Feb 2022 | US |