Systems, devices, and methods for assembling an applicator and sensor control device

Information

  • Patent Grant
  • 10213139
  • Patent Number
    10,213,139
  • Date Filed
    Friday, May 13, 2016
    8 years ago
  • Date Issued
    Tuesday, February 26, 2019
    5 years ago
Abstract
Systems, devices, and methods are provided for the assembly and subsequent delivery of an in vivo analyte sensor. An applicator with sensor electronics is inserted into a tray containing an assembly that includes a sharp and an analyte sensor. The insertion causes the assembly to couple with the sensor electronics and form a deliverable sensor control device retained within the applicator, which can then be placed in position on a body of a user to monitor that user's analyte levels.
Description
FIELD

The subject matter described herein relates generally to systems, devices, and methods for assembling an applicator and sensor control device for use in an in vivo analyte monitoring system.


BACKGROUND

Diabetes is a metabolic disease which relates to high blood sugar levels in the body and can be a result of the pancreas failing to produce enough insulin or cells in the body responding improperly to insulin produced. Numerous complications can arise if symptoms of diabetes are not carefully monitored and treated include diabetic ketoacidosis, nonketotick hypersmolar coma, cardiovascular disease, stroke, kidney failure, foot ulcers, eye damage and others. Traditionally, monitoring has involved an individual pricking a finger to draw blood and testing the blood for glucose levels. More recent advancements have allowed for long-term monitoring of blood glucose using sensors which are maintained in the body for periods of days, weeks, or longer.


Long-term monitoring of analytes in bodily fluid can be accomplished when a user assembles a sterile sensor control device with an applicator or insertion mechanism and inserts a sensor of the device into contact with a bodily fluid. While current sensors can be convenient for users, they can suffer from user errors which cause malfunctions. These malfunctions can be caused by improper use due to accidents, lack of education, poor coordination, complicated procedures and other issues. Some prior art systems suffer by relying too much on the precision assembly of a sensor control device and an applicator by the user, prior to actually deploying the sensor control device on the user's body.


Thus, needs exist for more reliable sensor application devices that are easy to use by the patient.


SUMMARY

Provided herein are example embodiments of systems, devices and methods for assembling an applicator and a sensor control device. An applicator can be provided to the user in a sterile package with an electronics housing of the sensor control device contained therein. A structure separate from the applicator, such as a container, can also be provided to the user as a sterile package with a sensor module and a sharp module contained therein. The user can couple the sensor module to the electronics housing and can couple the sharp to the applicator with an assembly process that involves insertion of the applicator into the container in a specified manner. The embodiments provided herein are improved to prevent or reduce the negative impact of the applicator tilting with respect to the container during a sensor assembly process. Other improvements and advantages are provided as well. The embodiments described herein can make the assembly process more reliable and easier to complete by the user. After assembly, the applicator can be used to position the sensor control device on a human body with a sensor in contact with the wearer's bodily fluid (e.g., interstitial fluid, dermal fluid, blood, etc.). The various configurations of these devices and variations to the assembly methods are described in detail by way of the embodiments which are only examples.


Other systems, devices, methods, features and advantages of the subject matter described herein will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, devices, methods, features and advantages be included within this description, be within the scope of the subject matter described herein, and be protected by the accompanying claims. In no way should the features of the example embodiments be construed as limiting the appended claims, absent express recitation of those features in the claims.





BRIEF DESCRIPTION OF THE FIGURES

The details of the subject matter set forth herein, both as to its structure and operation, may be apparent by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.



FIG. 1 is a system overview of a sensor applicator, reader device, monitoring system, network and remote system.



FIG. 2A is a block diagram depicting an example embodiment of a reader device.



FIG. 2B is a block diagram depicting an example embodiment of a sensor control device.



FIG. 3A is a proximal perspective view depicting an example embodiment of a user preparing a tray for an assembly.



FIG. 3B is a side view depicting an example embodiment of a user preparing an applicator device for an assembly.



FIG. 3C is a proximal perspective view depicting an example embodiment of a user inserting an applicator device into a tray during an assembly.



FIG. 3D is a proximal perspective view depicting an example embodiment of a user removing an applicator device from a tray during an assembly.



FIG. 3E is a proximal perspective view depicting an example embodiment of a patient applying a sensor using an applicator device.



FIG. 3F is a proximal perspective view depicting an example embodiment of a patient with an applied sensor and a used applicator device.



FIG. 4A is a side view depicting an example embodiment of an applicator device coupled with a cap.



FIG. 4B is a side perspective view depicting an example embodiment of an applicator device and cap decoupled.



FIG. 4C is a perspective view depicting an example embodiment of a distal end of an applicator device and electronics housing.



FIG. 5A is a proximal perspective view depicting an example embodiment of a tray with sterilization lid coupled.



FIG. 5B is a proximal perspective cutaway view depicting an example embodiment of a tray with sensor delivery components.



FIG. 5C is a proximal perspective view depicting sensor delivery components.



FIG. 6A is a side cross-section depicting an example embodiment of an applicator device and a tray.



FIG. 6B is a side cross-section depicting an example embodiment of an applicator device and a tray showing a first interaction between components.



FIG. 6C is a side cross-section depicting an example embodiment of an applicator device and tray showing a subsequent interaction between components.



FIG. 6D is a side cross-section depicting an example embodiment of an applicator device and tray showing a further interaction between components.



FIG. 6E is a side cross-section depicting an example embodiment of an applicator device and tray showing yet another interaction between components.



FIG. 6F is a side cross-section depicting an example embodiment of an applicator device and tray showing additional component interaction.



FIGS. 6G-H are side cross-section depictions of an example embodiment of an applicator device showing changes in sheath and housing orientation.



FIG. 7A is side view depicting an example embodiment of a housing.



FIG. 7B is a perspective view depicting an example embodiment of a distal end of a housing.



FIG. 7C is a side cross-section depicting an example embodiment of a housing.



FIG. 8A is a side view depicting an example embodiment of a sheath.



FIG. 8B is a perspective view depicting an example embodiment of a proximal end of a sheath.



FIG. 8C is a close-up perspective view depicting an example embodiment of a distal side of a detent snap of a sheath.



FIG. 8D is a side view depicting an example embodiment of features of a sheath.



FIG. 8E is an end view depicting an example embodiment of a proximal end of a sheath.



FIG. 9A is a proximal perspective view depicting an example embodiment of a sensor electronics carrier.



FIG. 9B is a distal perspective view depicting an example embodiment of a sensor electronics carrier.



FIG. 10A is a proximal perspective view depicting an example embodiment of a sharp carrier.



FIG. 10B is a side cross-section depicting an example embodiment of a sharp carrier.



FIG. 11 is a perspective cross-section view depicting an example embodiment of a cap.



FIG. 12A is a proximal perspective view depicting an example embodiment of a platform.



FIG. 12B is a side cross-section depicting an example embodiment of a platform.



FIG. 12C is an end view depicting an example embodiment of a distal end of a platform.



FIG. 12D is a proximal view depicting an example embodiment of a rib feature of a platform.



FIG. 12E is a side cross-section depicting an example embodiment of a sheath push surface of a platform.



FIG. 12F is a side cross-section depicting an example embodiment of a platform unlock rib of a platform.



FIG. 12G is a side view depicting an example embodiment of a sheath clearance unlock feature of a platform.



FIG. 13A is a proximal perspective view depicting an example embodiment of a tray.



FIG. 13B is a side cross-section depicting an example embodiment of a tray.



FIG. 13C is a close-up view depicting an example embodiment of a cutout and rib feature of a tray.



FIG. 14A is a distal perspective view depicting an example embodiment of a mount.



FIG. 14B is a proximal perspective view depicting an example embodiment of a mount.



FIG. 15A is a distal perspective view depicting an example embodiment of a shell.



FIG. 15B is a proximal perspective view depicting an example embodiment of a shell.



FIG. 16A is a top perspective view depicting an example embodiment of a module.



FIG. 16B is a bottom perspective view depicting an example embodiment of a module.



FIG. 17A is a perspective view depicting an example embodiment of a connector.



FIG. 17B is a compressed view depicting an example embodiment of a connector.



FIG. 18 is a perspective view depicting an example embodiment of a sensor.



FIG. 19 is a perspective view depicting an example embodiment of a sharp.



FIG. 20A is a side cross-section depicting an example embodiment of an applicator device.



FIG. 20B is a side cross-section depicting an example embodiment of an applicator device during an initial sensor delivery step.



FIG. 20C is a side cross-section depicting an example embodiment of an applicator device during a subsequent sensor delivery step.



FIG. 20D is a side cross-section depicting an example embodiment of an applicator device during a subsequent sensor delivery step, with a sharp disengaging.



FIG. 20E is a side cross-section depicting an example embodiment of an applicator device in a post-sensor delivery process configuration.



FIG. 21A is a perspective view depicting an example embodiment of a distal end of an assembled electronics housing.



FIG. 21B is a perspective view depicting an example embodiment of a proximal end of an assembled electronics housing.



FIG. 21C is a side view depicting an example embodiment of an assembled electronics housing.



FIG. 21D is a proximal view depicting an example embodiment of an assembled electronics housing.



FIG. 22A is a close-up side view of a portion of an example embodiment of an electronics housing carrier.



FIG. 22B is a close-up perspective view of a portion of an example embodiment of an electronics housing carrier.



FIG. 22C is a perspective view another example embodiment of an electronics housing carrier.





DETAILED DESCRIPTION

This disclosure is not limited to the particular embodiments described, as such may, of course, vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.



FIG. 1 is a conceptual diagram depicting an example embodiment of an analyte monitoring system 100 that includes a sensor applicator 150, a sensor control device 102, and a reader device 120. Here, sensor applicator 150 can be used to deliver sensor control device 102 to a monitoring location on a user's skin where a sensor 104 is maintained in position for a period of time by an adhesive patch 105. Sensor control device 102 is further described in FIG. 2B and can communicate with reader device 120 via a communication path 140 using a wired or wireless technique. Example wireless protocols include Bluetooth, Bluetooth Low Energy (BLE, BTLE, Bluetooth SMART, etc.), Near Field Communication (NFC) and others. Users can monitor applications installed in memory on reader device 120 using screen 122 and input 121 and the device battery can be recharged using power port 123. More detail about reader device 120 is set forth with respect to FIG. 2A below. Reader device 120 can communicate with local computer system 170 via a communication path 141 using a wired or wireless technique. Local computer system 170 can include one or more of a laptop, desktop, tablet, phablet, smartphone, set-top box, video game console, or other computing device and wireless communication can include any of a number of applicable wireless networking protocols including Bluetooth, Bluetooth Low Energy (BTLE), Wi-Fi or others. Local computer system 170 can communicate via communications path 143 with a network 190 similar to how reader device 120 can communicate via a communications path 142 with network 190, by wired or wireless technique as described previously. Network 190 can be any of a number of networks, such as private networks and public networks, local area or wide area networks, and so forth. A trusted computer system 180 can include a server and can provide authentication services and secured data storage and can communicate via communications path 144 with network 190 by wired or wireless technique.



FIG. 2A is a block diagram depicting an example embodiment of a reader device configured as a smartphone. Here, reader device 120 can include a display 122, input component 121, and a processing core 206 including a communications processor 222 coupled with memory 223 and an applications processor 224 coupled with memory 225. Also included can be separate memory 230, RF transceiver 228 with antenna 229, and power supply 226 with power management module 238. Also included can be a multi-functional transceiver 232 which can communicate over Wi-Fi, NFC, Bluetooth, BTLE, and GPS with an antenna 234. As understood by one of skill in the art, these components are electrically and communicatively coupled in an appropriate manner to make a functional device.



FIG. 2B is a block diagram depicting an example embodiment of a sensor control device 102. Here, sensor device 120 can include an analyte sensor 104 coupled with an application specific integrated circuit (ASIC) 251, which is also coupled with an antenna 261 and power source 260. ASIC 251 can further include an analog front-end (AFE) 252, power management circuitry 254, communication circuitry 258, a processor 256 and memory 253. All elements are electrically and communicatively coupled as would be understood by one of skill in the art.


The components of sensor control device 102 can be acquired by a user in multiple packages requiring final assembly by the user before delivery to an appropriate user location. FIGS. 3A-3D depict an example embodiment of an assembly process for sensor control device 102 by a user, including preparation of separate components before coupling the components in order to ready the sensor for delivery. FIGS. 3E-3F depict an example embodiment of delivery of sensor control device 102 to an appropriate user location by selecting the appropriate delivery location and applying device 102 to the location.



FIG. 3A is a proximal perspective view depicting an example embodiment of a user preparing a container 810, configured here as a tray (although other packages can be used), for an assembly process. The user can accomplish this preparation by removing lid 812 from tray 810 to expose platform 808, for instance by peeling a non-adhered portion of lid 812 away from tray 810 such that adhered portions of lid 812 are removed. Removal of lid 812 can be appropriate in various embodiments so long as platform 808 is adequately exposed within tray 810. Lid 812 can then be placed aside.



FIG. 3B is a side view depicting an example embodiment of a user preparing an applicator device 150 for assembly. Applicator device 150 can be provided in a sterile package sealed by a cap 708. Preparation of applicator device 150 can include uncoupling housing 702 from cap 708 to expose sheath 704 (FIG. 3C). This can be accomplished by unscrewing (or otherwise uncoupling) cap 708 from housing 702. Cap 708 can then be placed aside.



FIG. 3C is a proximal perspective view depicting an example embodiment of a user inserting an applicator device 150 into a tray 810 during an assembly. Initially, the user can insert sheath 704 into platform 808 inside tray 810 after aligning housing orienting feature 922 (or slot or recess) and tray orienting feature 924 (an abutment or detent). Inserting sheath 704 into platform 808 temporarily unlocks sheath 704 relative to housing 702 and also temporarily unlocks platform 808 relative to tray 810. At this stage, removal of applicator device 150 from tray 810 will result in the same state prior to initial insertion of applicator device 150 into tray 810 (i.e., the process can be reversed or aborted at this point and then repeated without consequence).


Sheath 704 can maintain position within platform 808 with respect to housing 702 while housing 702 is distally advanced, coupling with platform 808 to distally advance platform 808 with respect to tray 810. This step unlocks and collapses platform 808 within tray 810. Sheath 704 can contact and disengage locking features (not shown) within tray 810 that unlock sheath 704 with respect to housing 702 and prevent sheath 704 from moving (relatively) while housing 702 continues to distally advance platform 808. At the end of advancement of housing 702 and platform 808, sheath 704 is permanently unlocked relative to housing 702. A sharp and sensor (not shown) within tray 810 can be coupled with an electronics housing (not shown) within housing 702 at the end of the distal advancement of housing 702. Operation and interaction of the applicator device 150 and tray 810 are further described below.



FIG. 3D is a proximal perspective view depicting an example embodiment of a user removing an applicator device 150 from a tray 810 during an assembly. A user can remove applicator 150 from tray 810 by proximally advancing housing 702 with respect to tray 810 or other motions having the same end effect of uncoupling applicator 150 and tray 810. The applicator device 150 is removed with sensor control device 102 (not shown) fully assembled (sharp, sensor, electronics) therein and position for delivery.



FIG. 3E is a proximal perspective view depicting an example embodiment of a patient applying sensor control device 102 using applicator device 150 to a target area of skin, for instance on an abdomen or other appropriate location. Advancing housing 702 distally collapses sheath 704 within housing 702 and applies the sensor to the target location such that an adhesive layer on the bottom side of device 102 adheres to the skin. The sharp is automatically retracted when housing 702 is fully advanced, while the sensor (not shown) is left in position to measure analyte levels.



FIG. 3F is a proximal perspective view depicting an example embodiment of a patient with sensor control device 102 in an applied position. The user can then remove applicator 150 from the application site.


System 100, described with respect to FIGS. 3A-3F and elsewhere herein, can provide a reduced or eliminated chance of accidental breakage, permanent deformation, or incorrect assembly of applicator components compared to prior art systems. Since applicator housing 702 directly engages platform 808 while sheath 708 unlocks, rather than indirect engagement via sheath 708, relative angularity between sheath 708 and housing 702 will not result in breakage or permanent deformation of the arms or other components. The potential for relatively high forces (such as in conventional devices) during assembly will be reduced, which in turn reduces the chance of unsuccessful user assembly.



FIG. 4A is a side view depicting an example embodiment of an applicator device 150 coupled with screw cap 708. This is an example of how applicator 150 is shipped to and received by a user, prior to assembly by the user with a sensor. FIG. 4B is a side perspective view depicting applicator 150 and cap 708 after being decoupled. FIG. 4C is a perspective view depicting an example embodiment of a distal end of an applicator device 150 with electronics housing 706 and adhesive patch 105 removed from the position they would have retained within sheath 104 when cap 708 is in place.



FIG. 5A is a proximal perspective view depicting an example embodiment of a tray 810 with sterilization lid 812 removably coupled thereto, which may be representative of how the package is shipped to and received by a user prior to assembly.



FIG. 5B is a proximal perspective cutaway view depicting sensor delivery components within tray 810. Platform 808 is slidably coupled within tray 810. Desiccant 502 is stationary with respect to tray 810. Sensor module 504 is mounted within tray 810.



FIG. 5C is a proximal perspective view depicting sensor module 504 in greater detail. Here, retention arm extensions 1834 of platform 808 releasably secure sensor module 504 in position. Module 2200 is coupled with connector 2300, sharp module 2500 and sensor (not shown) such that during assembly they can be removed together as sensor module 504.



FIGS. 6A-H are now referenced in describing multiple example embodiments of systems, devices, and methods for assembling sensor control device 102 (e.g., for mating electronics housing 706 with sensor module 504) and for attaching sharp module 2500 to applicator device 150. In these embodiments, the process is performed by insertion of applicator device 150 a predetermined distance into tray 810 by a user. These embodiments will make reference to numerous components of system 100 that are shown and described with respect to FIGS. 7A-21D. The full descriptions of those components will therefore follow.



FIG. 6A is a side cross-section depicting an example embodiment of an applicator device 150 and a tray 810. Here, tray 810 provides support and protection for components held inside platform 808. Platform 808 is slidably coupled within tray 810. In the initial position, one or more outer deflectable arms (or structures) 1808 of platform 808 are positioned between platform 808 and tray 810 (see also FIG. 12A) and are locked within a surface contour of tray 810. Here, the surface contour includes an anti-removal feature 1910 (see also FIG. 13A) and a platform initial lock ledge 1904 of a sloped detent 1912 (see FIG. 13B) of tray 810. Here, outer deflectable arms 1808 are configured as detent snaps 1808 and cooperate with feature 1910 to secure platform 808 in its initial position with respect to tray 810.


Sharp module 2500 can be coupled with tray 810 and/or sensor module 504. As described previously, applicator 150 includes exterior housing 702 slidably coupled with sheath 704. Housing 702 is coupled with electronics housing carrier 710 which engages spring 1104 and sharp module carrier 1102.



FIG. 6B is a side cross-section depicting an initial orientation of components when the user aligns sheath 704 and commences insertion of sheath 704 into platform 808 (see FIG. 3C) and tray 810. Sheath 704 includes deflectable locking arms (or structures) 1412 that have a proximally facing surface 1416 (a lock arms interface) which abuts an opposing surface 1502 (an opposing lock interface) on an outwardly extending ledge of electronics housing carrier 710. Lock arms interface 1416 of lock arms 1412 can be engaged with lock interface 1502 of electronics housing carrier 710 in an initial locked configuration prior to insertion of sheath 704 into platform 808. This configuration keeps sheath 704 in a locked position with respect to housing 702 and prevents sheath 704 from being retracted into housing 702. Platform 808 includes sheath unlock abutments, or ribs, 1812 that contact and push against the angled orientation or sloped surface of lock arms 1412 as sheath 704 is advanced distally.


In FIG. 6C, housing 702 has been advanced distally with sheath 704 moving in unison and a distal surface or edge of sheath 704 (for example, sheath push surface 1446 shown in FIG. 8A) can optionally engage a proximal surface of platform 808 (e.g., at the bottom of sheath receiving channel 1840 shown in FIG. 12E). The advancement of sheath 704 distally causes sheath unlock ribs 1812 to slidably engage and push against lock arms 1412 and force them away from their resting position (i.e., against their direction of bias).


Here, ribs 1812 push or move lock arms 1412 in a direction that is laterally outward from an interior of sheath 704, for example, generally in the direction from right-to-left as shown in FIG. 6C. In this embodiment, lock arms 1412 are moved outwardly while no force is applied against a distal surface or edge of sheath 704. For example, sheath push surface 1446 is not in contact with a nonmoving surface within container 810 that can resist the downward (proximal-to-distal) movement of applicator 150. As such, lock arms 1412 are disengaged while no significant or substantial load is applied to sheath 704 in a distal-to-proximal direction.


Once lock arms 1412 are moved such that proximally facing surface 1416 no longer contacts opposing surface 1502, sheath 704 is no longer locked in place with respect to housing 702 (e.g., sheath 704 and housing 702 transition from a state that resists sliding to a state where sheath 704 and housing 702 become relatively more slidable with respect to each other), although sheath 704 is still releasably maintained in position with respect to housing 702 by deflectable positioning arms (or structures) 1402 as described below. At the position of FIG. 6C, if the user ceases to apply force in a distal direction, i.e., stops pushing on housing 702, and removes applicator 150 from platform 808 (and tray 810), then lock arms 1412 will automatically return to their resting position where proximally facing surface 1416 contacts opposing surface 1502, again locking sheath 704 with respect to housing 702. Thus the assembly process can be aborted at this stage and initiated again later (without consequence) if necessary.


Turning to FIG. 6D, platform 808 can include one or more inner deflectable lock arms (or structures) 1815, each of which can include an unlock rib 1816 having a sloped surface 1817. The advancement of sheath 704 also causes sheath push surface 1446 (FIG. 8A) to contact sloped surface 1817 of a platform unlock rib 1816 and displace inner platform lock arm 1815 from engagement with a platform initial ledge lock 1904 of tray 810 (see also FIG. 13C). The advancement of sheath 704 has already caused lock arms interface 1416 to disengage from lock interface 1502, and this can occur before the release of inner platform lock arm 1815, substantially simultaneously with the release of inner platform lock arm 1815, or after the release of inner platform lock arm 1815. Like with lock arms 1412, if the user ceases to apply force in a distal direction, i.e., stops pushing on housing 702, and removes applicator 150 from platform 808 (and tray 810), then lock arms 1815 will automatically return to their resting position where they were contacting platform initial ledge lock 1904, again locking platform 808 with respect to tray 810. Thus the assembly process can be aborted at this stage and initiated again later (without consequence) if necessary.



FIG. 6E shows the system after release of both platform lock arms 1815 and sheath lock arms 1412. Here, platform collapse surface 1342 of housing 702 contacts or engages platform collapse surface 1838 of platform 808. This is also shown in FIG. 6F. In these embodiments, platform 808 is advanced distally by housing 702 and not sheath 704. In other words, in these embodiments, after housing platform collapse surface 1342 contacts platform collapse surface 1838, sheath 704 no longer transfers force from the user's pushing motion to platform 808. That function is performed directly by housing 702.


The force applied by the user to housing 702 against platform 808 should be sufficient to cause detent snap 1808 to move (deflect radially inwardly) from platform initial lock ledge 1904 and over detent 1912 (see FIG. 13B). This releases platform 808 with respect to tray 810 and allows platform 808 to slide distally within tray 810 from the position of FIG. 6E to that of FIG. 6F.


During advancement of housing 702 against platform 808, sheath 704 remains engaged with housing 702 and moves in unison with housing 702. As described with respect to FIG. 8C, sheath 704 can include one or more deflectable positioning arms 1402, configured here as detent snaps 1402 (although other configurations can be used), where each snap 1402 includes a bridge section 1408. Initially, a bridge section 1408 of each snap 1402 can rest in a locked groove 1332 of housing 702 (see FIG. 7C). Bridge section 1408 can be moved from groove 1332 to groove 1334 with sufficient force applied by the user. Thus, sheath 704 is releasably maintained in position by the interaction of bridge section 1408 and the various grooves, indentations, or contours on locking rib 1340. In certain embodiments, movement of bridge section 1408 along locking rib 1340 towards the proximal end of housing 702 is only permitted once lock arms 1412 have been deflected and unlocked by moving proximally facing surface 1416 out of contact with opposing surface 1502 as shown in FIG. 6C.


Turning to FIG. 6F, as platform 808 moves distally, sheath 704 comes into contact with a sheath unlock rib 1936 that impedes further distal movement of sheath 704. The surface of sheath 704 the contacts sheath unlock rib 1936 can be any distal or distally-facing surface or edge, including the distal-most edge of sheath 704, which is sheath push surface 1446.


As housing 702 is advanced distally and sheath 704 is prevented from advancing by sheath unlock rib 1936 as shown in FIG. 6F (e.g., further advancement of applicator 150 in the proximal-to-distal direction causes a force to be exerted by the nonmoving sheath unlock rib 1936 against sheath 704), detent snaps 1402 move from locked groove 1332, as shown in FIG. 6G, over a detent or outwardly extending ridge to un-locked groove 1334 as shown in FIG. 6H. The user can sense the movement of sheath 704 from groove 1332 to 1334 and this, as well as the cessation of movement of platform 808, can serve as tactile feedback that the sensor assembly process is complete. FIG. 6F also shows that proximally facing surface 1416 of lock arms 1412 have moved past opposing surface 1502 of carrier 710 and cannot return to the locked position because sheath 704 has moved proximally with respect to carrier 710 and carrier 710 now holds lock arms 1412 in the unlocked position.


Referring back to FIG. 5B, in the initial position, sensor module 504 is beneath one or more retention arm extensions 1834 of platform 808. As platform 808 is moved distally, retention arm extensions 1834 are pushed against sensor module 504 and move radially outward to expose sensor module 504. In the embodiment depicted in FIGS. 12A-D, there are two retention arm extensions 1834 that are positioned opposite to each other. FIG. 5C depicts one of these arm extensions after having been deflected outward by passage over sensor module 504. The distal movement of platform 808 has exposed sharp module 2500 and module snaps 2202 (see also FIG. 16A) of module 2200 as shown in FIG. 5C.


The profile of sensor module 504 can match or be shaped in complementary fashion to the sensor module receptacle 2002 at the base of electronics housing 706 (see FIGS. 14A-B and 21A-D). Receptacle 2002 includes module snap ledges 2010 (see FIG. 14B) that interface and lock with module snaps 2202.


As housing 702 pushes against platform 808 it exposes sharp module 2500 and module snaps 2202. Although not shown here, at the stage of advancement depicted in FIG. 6G, module snaps 2202 have moved into receptacle 2002 and hub 2516 of sharp module 2500 (FIG. 19) is in close proximity with sharp assembly lead-in surface 1624 of sharp retention clip 1620 (FIG. 10B). Further movement of housing 702 towards the position depicted in FIG. 6H causes sensor module 504 to connect with (e.g., snap into) electronics housing 706 as module snaps 2202 slide past module snap ledges 2010 and then deflect outwardly towards their position of normal bias (the position of FIG. 16B). At substantially the same time, the sloped surface of hub 2516 of sharp module 2500 contacts and slides against a complementary sloped lead-in surface 1624 at the base of each retention clip 1620, which pushes clips 1620 radially outwardly away from their position of normal bias until hub 2516 passes the base of each retention clip 1620 and those clips 1620 deflect back towards their position of normal bias. A stop surface 1627 at the distal terminus of each arm 1618 can be a planar face perpendicular to the direction of advancement. This stop surface 1627 can contact a proximal planar face of hub push cylinder 2508 (FIG. 19) and stop the axial advancement of sharp carrier 1102 with respect to sharp module 2500. This stop surface 1627 can also act as the backstop for sharp module 2500 during the sharp insertion process.


Thus, in one embodiment, just before detent snap 1402 passes into unlocked recess 1334 as depicted in FIG. 6H or, in another embodiment, at substantially the same time as detent snap 1402 passes into unlocked recess 1334 as depicted in FIG. 6H, retention clips 1620 capture sharp hub 2516 and lock (or secure) sharp module 2500 to applicator 150, and module snaps 2202 enter into a locked relationship with electronics housing 706 and lock (or secure) sensor module 504 to housing 706, forming a complete sensor control device 102. This position is also depicted in FIG. 3D. At this point applicator 150 can be withdrawn from tray 810 in the direction of the arrows of FIG. 3D and used in the sensor control device delivery process as shown in FIGS. 3E-F and also described with respect to FIGS. 20A-E.


Turning now to a detailed description of various components of system 100, FIG. 7A is side view depicting an example embodiment of housing 702 that can include an internal cavity with support structures for applicator function. A user can push housing 702 in a distal direct to activate the applicator assembly process and then also to cause delivery of sensor control device 102, after which the cavity of housing 702 can act as a receptacle for a sharp. In the example embodiment various features are shown including housing orienting feature 1302 for orienting the device during assembly and use. Tamper ring groove 1304 can be a recess located around an outer circumference of housing 702, distal to a tamper ring protector 1314 and proximal to a tamper ring retainer 1306. Tamper ring groove 1304 can retain a tamper ring so users can identify whether the device has been tampered with or otherwise used. Housing threads 1310 can secure housing 702 to cap 708 by aligning with complimentary cap threads 1708 as shown in FIG. 11A and rotating in a clockwise or counterclockwise direction. A side grip zone 1316 of housing 702 can provide an exterior surface location where a user can grip housing 702 in order to use it. Grip overhang 1318 is a slightly raised ridge with respect to side grip zone 1316 which can aid in ease of removal of housing 702 from cap 708. A shark tooth 1320 can be a raised section with a flat side located on a clockwise edge to shear off a tamper ring 1702 and hold tamper ring 1702 in place after a user has unscrewed cap 708 and housing 702. In the example embodiment four shark teeth 1320 are shown although more or less can be used as desired.



FIG. 7B is a perspective view depicting a distal end of housing 702. Here, three housing guide structures 1321 are located at 120 degree angles with respect to each other and at 60 degree angles with respect to locking structures 1340, of which there are also three at 120 degree angles with respect to each other. Other angular orientations, either symmetric or asymmetric, can be used, as well as any number of one or more structures 1321 and 1340. Here, each structure 1321 and 1340 is configured as a planar rib, although other shapes can be used. Each guide rib 1321 includes a guide edge 1326 that can pass along a surface of sheath 704 (e.g., guide rail 1418 described with respect to FIG. 8A). An insertion hard stop 1322 can be a flat, distally facing surface of housing guide rib 1321 located near a proximal end of housing guide rib 1321. Insertion hard stop 1322 provides a surface for a sensor electronics carrier travel limiter face 1420 of a sheath 704 (FIG. 8B) to abut during use, preventing sensor electronics carrier travel limiter face 1420 from moving any further in a proximal direction. A carrier interface post 1327 passes through an aperture 1510 (FIG. 9A) of housing carrier 710 during an assembly. A sensor electronics carrier interface 1328 can be a rounded, distally facing surface of housing guide ribs 1321 which interfaces with electronics housing carrier 710.



FIG. 7C is a side cross-section depicting an example embodiment of a housing. In the example embodiment side cross sectional profiles of housing guide rib 1321 and locking rib 1340 are shown. Locking rib 1340 includes sheath snap lead-in feature 1330 near a distal end of locking rib 1340 which flares outward from central axis 1346 of housing 702 distally. Each sheath snap lead-in feature 1330 causes detent snap round 1404 of detent snap 1402 of sheath 704 as shown in FIG. 8C to bend inward toward central axis 1346 as sheath 704 moves into housing 702. Once past a distal point of sheath snap lead-in feature 1330, detent snap 1402 of sheath 704 is locked into place in locked groove 1332. As such, detent snap 1402 cannot be easily moved in a distal direction due to a surface with a near perpendicular plane to central axis 1346, shown as detent snap flat 1406 in FIG. 8C.


When housing 702 has been moved further distally with respect to sheath 704 to shift detent snaps 1402 into the un-locked grooves 1334, applicator 150 is in an “armed” position, ready for use. Thus, when a user applies distal pressure to housing 702 while sheath 704 is pressed against the skin, detent snap 1402 passes over firing detent 1344. This begins a firing sequence (as described with respect to FIGS. 20A-C) due to release of stored energy in the deflected detent snaps 1402 and detent snap 1402 travels proximally toward sheath stopping ramp 1338 which is slightly flared outward with respect to central axis 1346 and slows sheath 704 movement during the firing sequence. The next groove encountered by detent snap 1402 after un-locked groove 1334 is final lockout groove 1336 which detent snap 1402 enters at the end of the stroke or pushing sequence performed by the user. Final lockout recess 1336 can be proximal to a surface oriented perpendicular to central axis 1346 which, after detent snap 1402 passes, engages a detent snap flat 1406 and prevents reuse of the device by securely holding sheath 704 in place with respect to housing 702.


Housing platform collapse surface 1342 is a distal surface of housing 702 which a user uses to engage a platform collapse surface 1838 of platform 808 as shown in FIG. 12A. Insertion hard stop 1322 prevents sheath 704 from advancing proximally with respect to housing 702 by engaging sensor electronics carrier travel limiter face 1420.



FIGS. 8A and 8B are a side view and perspective view, respectively, depicting an example embodiment of sheath 704. In this example embodiment, sheath 704 can stage sensor control device 102 above a user's skin surface prior to application. Sheath 704 can also contain features that help retain a sharp in a position for proper application of a sensor, determine the force required for sensor application, and guide sheath 704 relative to housing 702 during application. Detent snaps 1402 are near a proximal end of sheath 704, described further with respect to FIG. 8C below. Sheath 704 can have a generally cylindrical cross section with a first radius in a proximal section (closer to top of figure) that is shorter than a second radius in a distal section (closer to bottom of figure). Also shown are a plurality of detent clearances 1410, three in the example embodiment. Sheath 704 can include one or more detent clearances 1410, each of which can be a cutout with room for sheath snap lead-in feature 1330 to pass distally into until a distal surface of locking rib 1340 contacts a proximal surface of detent clearance 1410.


Guide rails 1418 are disposed between a sensor electronics carrier traveler limiter face 1420 at a proximal end of sheath 704 and a cutout around lock arms 1412. Each guide rail 1418 can be a channel between two ridges where the guide edge 1326 of housing guide rib 1321 can slide distally with respect to sheath 704.


Lock arms 1412 are disposed near a distal end of sheath 704 and can include an attached distal end and a free proximal end, which can be lock arm interface 1416. Lock arms 1412 can lock sensor electronics carrier 710 to sheath 704 when lock arm interface 1416 of lock arms 1412 engage lock interface 1502 of sensor electronics carrier 710. Lock arm strengthening ribs 1414 can be disposed near a central location of each lock arm 1412 and can act as a strengthening point for an otherwise weak point of each lock arm 1412 to prevent lock arm 1412 from bending excessively or breaking.


Detent snap stiffening features 1422 can be located along the distal section of detent snaps 1402 and can provide reinforcement to detent snaps 1402. Alignment notch 1424 can be a cutout near the distal end of sheath 704, which provides an opening for user alignment with sheath orientation feature of platform 808. Stiffening ribs 1426 can include buttresses, that are triangularly shaped here, which provide support for detent base 1436. Housing guide rail clearance 1428 can be a cutout for a distal surface of housing guide rib 1321 to slide during use.



FIG. 8C is a close-up perspective view depicting an example embodiment of a distal side of a detent snap 1402 of sheath 704. Detent snap 1402 can include a detent snap bridge 1408 located near or at its proximal end. Detent snap 1402 can have a proximal feature which includes a detent snap flat 1406 on a distal side of detent snap bridge 1408. A proximal surface and outer surface of detent snap bridge 1408 can be detent snap rounds which are rounded surfaces, allowing for easier movement of detent snap bridge 1408 across some interior surfaces of housing 702.



FIG. 8D is a side view depicting an example embodiment of sheath 704. Here, alignment notch 1424 can be relatively close to detent clearance 1410. Detent clearance 1410 is in a relatively proximal location on distal portion of sheath 704. Additionally, a distal portion of sheath 704 can be relatively short enough so that sheath 704 does not contact a platform or at least is not the primary advancement surface of an applicator but rather housing 702 in order to prevent alignment issues.



FIG. 8E is an end view depicting an example embodiment of a proximal end of sheath 704. Here, a back wall for guide rails 1446 can provide a channel for housing guide rib 1321 of housing 702 to slidable couple with. Sheath rotation limiter 1448 can be notches which reduce or prevent rotation of the sheath 704.



FIG. 9A is a proximal perspective view depicting an example embodiment of sensor electronics carrier 710 that can retain sensor electronics within applicator 150. It can also retain introducer carrier 1102 with sharp module 2500. In this example embodiment sensor electronics carrier 710 generally has a hollow round flat cylindrical shape, and can include one or more deflectable introducer carrier lock arms (or structures) 1524 (e.g., three) extending proximally from a proximal surface surrounding a centrally located spring alignment ridge 1516 (for maintaining alignment of spring 1104 as seen in FIG. 6A). Each lock arm 1524 has a detent or retention feature 1526 located at or near its proximal end. Shock lock 1534 can be a tab located on an outer circumference of sensor electronics carrier 710 extending outward and can lock sensor electronics carrier 710 for added safety prior to firing. Rotation limiter 1506 can be a proximally extending relatively short protrusion on a proximal surface of sensor electronics carrier 710 which limits rotation of carrier 710. Introducer carrier lock arms 1524 can interface with carrier 1102 as described with reference to FIGS. 10A-10B below.



FIG. 9B is a distal perspective view of sensor electronics carrier 710. Here, one or more sensor electronics retention spring arms (or structures) 1518 (e.g., three) are normally biased towards the position shown and include a detent 1519 that can pass over the distal surface of electronics housing 706 of device 102 when housed within recess or cavity 1521. In certain embodiments, after sensor control device 102 has been adhered to the skin with applicator 150, the user pulls applicator 150 proximally away from the skin. The adhesive force retains sensor control device 102 on the skin and overcomes the lateral force applied by spring arms 1518. As a result, spring arms 1518 deflect radially outwardly and disengage detents 1519 from sensor control device 102 thereby releasing sensor control device 102 from applicator 150.



FIGS. 10A and 10B are a proximal perspective view and side cross-section view, respectively, depicting an example embodiment of sharp carrier 1102. Sharp carrier 1102 can grasp and retain sharp module 2500 within applicator 150. It can also automatically retract as a result of a spring changing from a compressed to an extended state during an insertion process, as described with respect to FIG. 20D. Near a distal end of sharp carrier 1102 can be anti-rotation slots 1608 which prevent sharp carrier 1102 from rotating when located within a central area of introducer carrier lock arms 1524. Anti-rotation slots 1608 can be located between sections of sharp carrier base chamfer 1610 which can ensure full retraction of sharp carrier 1102 through sheath 704 upon retraction of sharp carrier 1102 at the end of the deployment procedure.


Sharp retention arms (or structures) 1618 can be located in an interior of sharp carrier 1102 about a central axis and can include a sharp retention clip 1620 at a distal end of each arm 1618. Sharp retention clips 1620 can have a proximal surface which can be nearly perpendicular to the central axis and can abut a distally facing surface of sharp hub 2516 (FIG. 19).



FIG. 11 is a perspective cross-section view depicting an example embodiment of cap 708, which, when coupled with housing 702 via threads 1708 can create a sterile or at least dust-free environment during shipping and storage and can protect electronics housing 706 and prevent adhesive layer 105 from becoming dirty. Tamper ring 1702 can be at a distal end of cap 708. A sensor electronics support 1712 can support electronics housing 706 while retained within carrier 710.



FIGS. 12A and 12B are a proximal perspective view and side cross-sectional view, respectively, depicting an example embodiment of platform 808 that can retain and protect sharp module 2500 and sensor module 504 within a loader assembly such as tray 810. Platform 808 can have various features to engage sheath 704. These can include a platform collapse surface 1838, which can engage housing platform collapse surface 1342. A sheath push surface 1810 can provide a proximal surface for distal sheath push surface 1446. One or more sheath unlock members or ribs 1812 of platform 808 can extend radially outward from a central region or surface of platform 808 into sheath receiving channel 1840 to engage lock arms 1412 of sheath 704. In other embodiments, the orientation of the parts can be reversed such that ribs 1812 can extend radially inward from the platform sidewall and lock arms 1412 deflect inwardly into a free space to unlock sheath 704. In all embodiments, ribs 1812 can have any desired structure and/or shape that functions to oppose the sloped surface of lock arms 1412 and cause them to deflect away from their resting position (i.e., the position to which they are biased).


One or more tilt reducing members or ribs 1828 and one or more outside diameter members or ribs 1818 can reduce the likelihood of sheath 704 tilting within sheath receiving channel 1840 due to a thickness which is greater than a standard wall thickness of platform 808. Sheath orientation feature (e.g., a ridge) 1802 can interface with alignment notch 1424 of sheath 704. A cutout or space 1830 can provide a clearance for sheath unlock rib 1936 (FIG. 13A) in a distal surface of platform 808.


Platform 808 can also have various features to engage tray 810. One or more detent arms or snaps 1808 can maintain a platform orientation and engagement within tray by interfacing with platform assembly lead in 1908, platform initial lock ledge 1904, and detent rib 1912 of tray 810. A motion guide member 1822 can maintain alignment with a tray 810 during use. One or more introducer retention arms 1820 each with a retention arm extension 1834 can maintain a position of sharp module 2500 within tray 810.



FIG. 12C is a bottom up view depicting a distal end of platform 808. An orientation feature core out 1804 can ensure that sheath orientation feature 1802 does not interfere with alignment and distal pushing of sheath 704 when performing a sharp capture operation. A deflectable tab 1832 can maintain a module assembly in place for drop and shock robustness. Clearance 1822 for introducer retention features 1820 allows retention features to swing clear during distal movement of platform 808. As such, clearance 1822 provides room for a sensor module to be captured by an applicator during assembly. FIG. 12D is a top down view depicting a proximal end of platform 808, showing sheath unlock ribs 1812, platform unlock ribs 1816, and lock snaps 1814, the functions of which were described with respect to FIGS. 6A-H.



FIG. 12E is a side cross-section of platform 808. Alignment and orientation surfaces 1806 can be located at regular or irregular intervals around an exterior circumference of sheath 808. These are typically channels with walls extending from a proximal to a distal end of sheath 808 and open at the distal end and proximal end. The alignment and orientation features 1806 can engage guide ribs 1906 of tray 810.



FIG. 12F is a side cross-sectional view depicting platform 808. In certain embodiments, a stepped down surface can serve as a patch clearance feature 1836 that can provide clearance for an adhesive patch to ensure it does not become adhered to this proximal surface or face of platform 808 during the assembly process. Similarly, platform unlock ribs 1816 can be set further distally in order to delay a contact between sheath 704 and platform unlock ribs.



FIG. 12G is a side view depicting platform 808. Here, one or more clearances or cutouts 1830 for sheath unlock ribs 1836 can be extended further distally than prior designs. This can provide additional clearance for sheath 704 since upon reaching this area sheath 704 is no longer a pushing surface for platform 808 yet unlocking of sheath 704 is desirable for proper applicator use.



FIG. 13A is a proximal perspective view depicting an example embodiment of tray or container 810. Tray 810 and lid 812 can create a sterile environment for a sensor and sharp. Here, a foil seal surface 1920 can be a proximal surface that seals with lid 812 using a standard adhesive or a heat-activated adhesive for sterilization purposes. Lock ribs 1902 can contain geometry allowing a platform 808 to lock into a pre-use position. A platform initial lock ledge 1904 can be flat and interact with platform 808 to lock platform 808 from accidental collapse prior to assembly of applicator to loader. Guide ribs 1906 can be ribs that act to orient and guide platform 808 prior and during assembly of applicator and loader. Anti-removal feature 1910 can prevent removal of platform 808 from tray 810 after it has been initially installed. Sheath unlock rib (platform) clearance ledge 1918 can clear sheath unlock ribs on platform 808 when platform 808 is in a collapsed state within tray 810. Desiccant engaging rib 1926 can flex out to allow for desiccant assembly and ensure that desiccant stays in place during drop, shock or vibration. Sharp clearance hole 1930 can be a hole which provides clearance for sharp tip 2502 (FIG. 19) so that the tip is not damaged during shipping or other movement. Module locating post 1932 can be a post that locates sensor module 504 within tray 810. Module support 1934 can set the height of sensor module 504 and sharp module 2500 within tray 810. Alignment mark 1940 can aid a user in aligning an applicator to a container during assembly.


One or more transition features 1938 can be included that extend proximally from module support 1934. These features 1938 can also be seen in FIGS. 5C and 13B. Transition features 1938 can have various shapes. Here there are two that are configured as projections with inner sidewalls that can lie flush against sensor module 504 and provide added support and resistance to tilting or lateral motion. Projections 1938 can have a sloped or rounded outed surface and can be positioned directly beneath retention arm extensions 1834 when in the resting position of FIG. 12B. As platform 808 moves distally, retention arm extensions 1834 come into contact with and slide over the rounded or sloped outer surface of transition features 1938. The rounded or sloped surfaces help retention arm extensions 1834 deflect and transition over sensor module 504 and onto tray 810 without disrupting or adjusting the position of module 504.



FIG. 13B is a side cross-sectional view depicting tray 810. Platform assembly lead-in 1908 can be a lead-in chamfer to aid in assembly of platform 808 to tray 810. Detent rib 1912 can be a rib or member that includes curved surface 1914. Surface 1914 can allow platform 808 to build a predetermined force prior to distal movement during assembly of the applicator and sensor control device 102. Friction reducing undercut surface 1916 can be an undercut that lowers the total friction seen by platform 808 as it collapses during assembly of the applicator to the loader. Platform motion guide surface 1928 can be a running surface that guides motion of platform 808 with respect to tray 810 during assembly of loader to applicator.



FIG. 13C is a close-up view depicting an example embodiment of sheath unlock rib 1936 of tray 810. Unlock rib 1936 can have any desired shape and/or structure that functions as a rigid stop for the advancement of sheath 704, e.g., an abutment formed in or extending from the base or bottom of tray 810.


A platform initial lock ledge 1904 can support platform 808 and ensure it is not accidentally pushed or collapsed distally. Sheath unlock rib (platform) clearance feature 1918 can be short as not to impact unlock ribs 1812 of platform 808 early during a distal advancement by a user. Likewise, a lock rib 1902 can be relatively short. If a user were to proximally retreat housing 702 and its coupled components, lock arms 1412 would re-engage lock interface 1502 as in the primary configuration shown in FIG. 6A. This feature can prevent misfiring of the applicator by dropping or incorrectly aligning when re-assembling applicator with cap. A cutout 1942 can allow clearance for lock arms 1815 of platform 808.



FIGS. 14A and 14B are a distal perspective view and a proximal perspective view, respectively, depicting an example embodiment of a distal portion of electronics housing 706. Shown here is a receptacle 2002 for receiving sensor module 504. One or more carrier grips or recesses 2008 can interface with retention detents 1519 of carrier 710 for coupling housing 706 to carrier 710. One or more module snap ledges 2010 can engage deflectable module arms or snaps 2202 (FIG. 16A).



FIGS. 15A and 15B are a distal perspective view and a proximal perspective view, respectively, depicting an example embodiment of a proximal portion of housing 706 that can be securely coupled with the distal portion of housing 706 depicted in FIGS. 14A-B. An aperture 2102 is present through which distal tip 2502 of the sharp can pass through during assembly of applicator 150 and retraction of sharp after insertion of the sensor.



FIGS. 16A and 16B are a top perspective view and a bottom perspective view, respectively, depicting an example embodiment of sensor module 504. Module 504 can hold a connector 2300 (FIGS. 17A-B) and a sensor 104 (FIG. 18). Module 504 is capable of being securely coupled with electronics housing 706. One or more deflectable arms or module snaps 2202 can snap into the corresponding features 2010 of housing 706. A sharp slot 2208 can provide a location for sharp tip 2502 to pass through and sharp shaft 2504 to temporarily reside. A sensor ledge 2212 can define a sensor position in a horizontal plane, prevent a sensor from lifting connector 2300 off of posts and maintain sensor 104 parallel to a plane of connector seals. It can also define sensor bend geometry and minimum bend radius. It can limit sensor travel in a vertical direction and prevent a tower from protruding above an electronics housing surface and define a sensor tail length below a patch surface. A sensor wall 2216 can constrain a sensor and define a sensor bend geometry and minimum bend radius.



FIGS. 17A and 17B are perspective views depicting an example embodiment of connector 2300 in an open state and a closed state, respectively. Connector 2300 can be made of silicone rubber that encapsulates compliant carbon impregnated polymer modules that serve as electrical conductive contacts 2302 between sensor 104 and electrical circuitry contacts for the electronics within housing 706. The connector can also serve as a moisture barrier for sensor 104 when assembled in a compressed state after transfer from a container to an applicator and after application to a user's skin. A plurality of seal surfaces 2304 can provide a watertight seal for electrical contacts and sensor contacts. One or more hinges 2208 can connect two distal and proximal portions of connector 2300.



FIG. 18 is a perspective view depicting an example embodiment of sensor 104. A neck 2406 can be a zone which allows folding of the sensor, for example ninety degrees. A membrane on tail 2408 can cover an active analyte sensing element of the sensor 104. Tail 2408 can be the portion of sensor 104 that resides under a user's skin after insertion. A flag 2404 can contain contacts and a sealing surface. A biasing tower 2412 can be a tab that biases the tail 2408 into sharp slot 2208. A bias fulcrum 2414 can be an offshoot of biasing tower 2412 that contacts an inner surface of a needle to bias a tail into a slot. A bias adjuster 2416 can reduce a localized bending of a tail connection and prevent sensor trace damage. Contacts 2418 can electrically couple the active portion of the sensor to connector 2300. A service loop 2420 can translate an electrical path from a vertical direction ninety degrees and engage with sensor ledge 2212 (FIG. 16B).



FIG. 19 is a perspective view depicting an example embodiment of sharp module 2500. A sharp tip 2502 can penetrate the skin while carrying sensor tail 2408 in a hollow or recess of shaft 2504 to put the active surface into contact with bodily fluid. A hub push cylinder 2508 can provide a surface for a sharp carrier to push during insertion. A hub small cylinder 2512 can provide a space for the extension of sharp hub contact faces 1622 (FIG. 10B). A hub snap pawl locating cylinder 2514 can provide a cylindrical surface of a snap pawl for faces 1622 to abut. A hub snap pawl 2514 can be a conical surface that opens clip 1620 during installation of sharp module 2500.



FIGS. 20A-20E are side cross-sectional views depicting an example embodiment of an applicator 150 during deployment of sensor control device 102. FIG. 20A shows applicator 150 in a state ready to be positioned against a user's skin. In FIG. 20B, housing 702 has been advanced with respect to sheath 704 but the sharp has not yet exited applicator 150. Here, the housing has been advanced in a proximal-to-distal direction along a longitudinal axis of applicator 150. In FIG. 20C, housing 702 has been fully advanced by the user's manual push force, and the sharp and sensor are extending their maximum distance from the distal end of sheath 704. Also, the introducer carrier retention features 1526 of arms 1524 have cleared an inner diameter of sheath 704 and are free to move as shown in FIG. 20D.


In FIG. 20D, sharp carrier 1102 is no longer constrained by electronics housing carrier arms 1524. Thus, spring 1104 is free to expand from its compressed orientation in a proximal direction and push the proximal end of electronics housing carrier arms 1524 radially outward as it expands. This causes sharp module 2500 to retract from the user's skin and into a central area of spring 1104 within housing 702.


In FIG. 20E, spring 1104 has expanded until a proximal end of sharp carrier 1102 reaches a distal surface of sheath 704 and thus the whole device is locked in position. An adhesive on distal surface of an electronics housing causes it to remain on the user's skin with the sensor in the skin when the user proximally removes the device from the skin.



FIGS. 21A-D are distal perspective, proximal perspective, side, and distal end views, respectively, depicting an additional example embodiment of electronics housing 706. Here, receptacle 2002 can be seen where sensor module 504 can be received during assembly. Adhesive 2102 is present on adhesive layer 105. Outer seal 2028 can protect the electronics in the interior of electronics housing 706.



FIG. 22A is a close-up side view of an example embodiment of a retention detent 1519 on the interior surface of a retention spring arm 1518 of electronics housing carrier 710. FIG. 22B is a close-up perspective view of this example embodiment and FIG. 22C is a perspective view of an example embodiment of carrier 710 with three arms 1518 and retention detents 1519 visible on the interior of two of the three arms 1518 (the third is obscured).


In these embodiments, retention detents 1519 each have a partially conical (projecting) proximal (or upper) surface 2201 and a distal (or lower or underside) surface 2202. Partially conical upper surface 2201 slopes away from the interior surface of each arm 1518 such that the proximal terminus of surface 2201 is closer to the interior surface of arm 1518 than a point along the distal edge of surface 2201. After sensor control device 102 is adhered to the surface of the body, this sloped or tapered surface 2201 slides along a similarly shaped but complementary (recessed) surface of carrier grip 2008 (FIG. 21C) and causes the respective arm 1518 to deflect radially outwards (against its bias), thereby releasing sensor control device 102.


The distal edge 2203 of proximal surface 2201 (at the transition to distal surface 2202) is not perpendicular to the direction of axial movement of sensor control device 102 with respect to carrier 1102 (i.e., the proximal-distal direction P-D shown in FIG. 22A) but is rather transverse or at an angle to the proximal-distal direction. Here, the angle is approximately 45 degrees, although greater and lesser angles can be used (e.g., 30 degrees, 60 degrees, etc.).


This angling reduces the chance that edge 2203 will catch on a portion of sensor control device 102 after adhesive attachment to the skin, such as gap or groove 2009 shown in FIG. 21C, which may be a seam or interface between a distal portion of electronics housing 706 (as depicted in FIGS. 14A-B) and a proximal portion of electronics housing 706 (as depicted in FIGS. 15A-B) and can be perpendicular or otherwise transverse to direction P-D. Edge 2203 is preferably transverse to a longitudinal axis of an elongate gap, groove, seam, or interface on sensor control device that is proximal to carrier grip 2008. Catching of edge 2203 on sensor control device 102 could adversely remove sensor control device 102 from the skin when applicator 150 is removed. There is no similarly angled groove or edge on sensor control device 102 that can catch edge 2203 when angled as shown. Distal surface 2202 is planar or substantially planar, here, although other shapes or contours can be used so long as edge 2203 remains angled.


In another example embodiment, the configurations just described can be reversed such that retention detents 1519 with the partially conical surface and the complementary carrier grips 2008 can be reversed such that the retention detents 1519 are present on sensor control device 102 and the complementary grips 2008 are present on applicator 150, such as on arms 1518. In such an embodiment, the orientation of detents 1519 and grips 2008 are inverted (turned upside down) to allow proper deflection of arms 1518 upon withdrawal of applicator 150.


A number of deflectable structures are described herein, including but not limited to deflectable positioning arms 1402, deflectable locking arms 1412, introducer carrier lock arms 1524, sharp retention arms 1618, outer deflectable arms 1808, inner deflectable lock arms 1815, retention arm extensions 1834, and module snaps 2202. These deflectable structures are composed of a resilient material such as plastic or metal (or others) and operate in a manner well known to those of ordinary skill in the art. The deflectable structures each has a resting state or position that the resilient material is biased towards. If a force is applied that causes the structure to deflect or move from this resting state or position, then the bias of the resilient material will cause the structure to return to the resting state or position once the force is removed (or lessened). In many instances these structures are configured as arms with detents, or snaps, but other structures or configurations can be used that retain the same characteristics of deflectability and ability to return to a resting position, including but not limited to a leg, a clip, a catch, an abutment on a deflectable member, and the like.


As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


It should be noted that all features, elements, components, functions, and steps described with respect to any embodiment provided herein are intended to be freely combinable and substitutable with those from any other embodiment. If a certain feature, element, component, function, or step is described with respect to only one embodiment, then it should be understood that that feature, element, component, function, or step can be used with every other embodiment described herein unless explicitly stated otherwise. This paragraph therefore serves as antecedent basis and written support for the introduction of claims, at any time, that combine features, elements, components, functions, and steps from different embodiments, or that substitute features, elements, components, functions, and steps from one embodiment with those of another, even if the following description does not explicitly state, in a particular instance, that such combinations or substitutions are possible. It is explicitly acknowledged that express recitation of every possible combination and substitution is overly burdensome, especially given that the permissibility of each and every such combination and substitution will be readily recognized by those of ordinary skill in the art.


While the embodiments are susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It should be understood, however, that these embodiments are not to be limited to the particular form disclosed, but to the contrary, these embodiments are to cover all modifications, equivalents, and alternatives falling within the spirit of the disclosure. Furthermore, any features, functions, steps, or elements of the embodiments may be recited in or added to the claims, as well as negative limitations that define the inventive scope of the claims by features, functions, steps, or elements that are not within that scope.

Claims
  • 1. A method of assembling an in vivo analyte sensor control device, comprising: orienting an applicator with respect to a container, wherein the applicator comprises a housing, a sheath, and an electronics housing of the sensor control device, the sheath being slidably coupled with the housing and comprising (a) a deflectable lock arm in contact with the housing such that the housing is prevented from moving distally with respect to the sheath and (b) a deflectable positioning arm having a detent releasably positioned within a first groove of the housing, andwherein the container holds a sensor module and a sharp module and comprises a platform having a sheath unlock abutment located thereon;distally advancing the applicator into the container such that the sheath unlock abutment contacts a sloped surface of the deflectable lock arm and causes the lock arm to deflect from contact with the housing, whereby the sheath is unlocked from the housing and releasably maintained in position with respect to the housing by the deflectable positioning arm;distally advancing the housing against the platform to move the platform into the container until contact of the container against the sheath causes the sheath to move with respect to the housing such that the detent of the deflectable positioning arm moves from the first groove to a releasable position within a second groove and the deflectable lock arm is held in an unlocked position.
  • 2. The method of claim 1, wherein the sensor module couples with the electronics housing to assemble the sensor control device when the detent moves from the first groove to the second groove.
  • 3. The method of claim 2, wherein the sharp module couples with the applicator when the detent moves from the first groove to the second groove.
  • 4. The method of claim 3, further comprising: removing the applicator from the container after the detent moves from the first groove to the second groove; anddelivering the sensor control device to a user's body with the applicator.
  • 5. The method of claim 4, wherein the sensor module couples with the electronics housing to assemble the sensor control device and the sharp module couples with the applicator at substantially the same time as the detent enters the second groove.
  • 6. The method of claim 4, wherein the first and second grooves are in the housing, and wherein delivering the sensor control device to the user's body with the applicator comprises: placing a surface of the sheath against the user's body; andadvancing the housing with respect to the sheath to cause the detent to move from the second groove along a surface of the housing to a third groove, wherein upon entering the third groove the sheath is locked in position with respect to the housing.
  • 7. The method of claim 1, wherein the platform comprises an inner deflectable lock arm having a sloped surface, and wherein distal advancement of the applicator into the container causes the sheath to contact the sloped surface of the platform's inner deflectable lock arm and causes the platform's inner deflectable lock arm to deflect from contact with the container.
  • 8. The method of claim 7, wherein an outer deflectable lock arm of the platform releasably holds the platform in position with respect to the container until distal advancement of the housing against the platform causes the outer deflectable lock arm of the platform to disengage from a surface contour of the container, whereby the platform is free to move into the container.
  • 9. The method of claim 8, wherein distal advancement of the housing against the platform moves the platform into the container until a sheath unlock rib of the container contacts the sheath through an opening in the platform and causes the sheath to move with respect to the housing such that the detent of the deflectable positioning arm moves from the first groove to a releasable position within the second groove and the deflectable lock arm is held in the unlocked position.
  • 10. The method of claim 1, wherein the sensor module comprises a sensor adapted to measure a glucose level when placed in contact with a bodily fluid of a user.
  • 11. An in vivo analyte monitoring system, comprising: an applicator comprising a housing, a sheath, and an electronics housing of a sensor control device, the sheath being slidably coupled with the housing and comprising (a) a deflectable lock arm configured to contact the housing and releasably lock the housing in position with respect to the sheath and (b) a deflectable positioning arm comprising a detent releasably positioned within a first groove of the housing, the deflectable positioning arm being configured to releasably maintain the sheath in position with respect to the housing after the deflectable lock arm is unlocked; anda container holding a sensor module and a sharp module therein and comprising a platform having a sheath unlock abutment located thereon,wherein the sheath unlock abutment is positioned on the platform such that, when the applicator is inserted into the container, the sheath unlock abutment is capable of contacting a sloped surface of the deflectable lock arm and causing the deflectable lock arm to deflect from contact with the housing to unlock the sheath from the housing, andwherein the applicator and container are configured such that distal advancement of the housing against the platform moves the platform into the container until contact of the container against the sheath causes the sheath to move with respect to the housing such that the detent of the deflectable positioning arm moves from the first groove to a releasable position within a second groove and the deflectable lock arm is held in an unlocked position.
  • 12. The system of claim 11, wherein the applicator and container are configured such that the sensor module can couple with the electronics housing to assemble the sensor control device when the detent moves from the first groove to the second groove.
  • 13. The system of claim 12, wherein the applicator and container are configured such that the sharp module can couple with the applicator when the detent moves from the first groove to the second groove.
  • 14. The system of claim 13, wherein the applicator is configured to deliver the sensor control device to a user's body once the detent moves from the first groove to the second groove.
  • 15. The system of claim 14, wherein the applicator and container are configured such that the sensor module couples with the electronics housing to assemble the sensor control device and the sharp module couples with the applicator at substantially the same time as the detent enters the second groove.
  • 16. The system of claim 14, wherein the first and second grooves are in the housing, and wherein the applicator is configured such that the housing can be moved with respect to the sheath to cause the detent to move from the second groove along a surface of the housing to a third groove, wherein upon entering the third groove the sheath is locked in position with respect to the housing.
  • 17. The system of claim 11, wherein the platform comprises an inner deflectable lock arm having a sloped surface, and the applicator and container are configured such that distal advancement of the applicator into the container causes the sheath to contact the sloped surface of the platform's inner deflectable lock arm and causes the platform's inner deflectable lock arm to deflect from contact with the container.
  • 18. The system of claim 17, wherein an outer deflectable lock arm of the platform is configured to releasably hold the platform in position with respect to the container, and wherein the applicator and container are configured such that distal advancement of the housing against the platform causes the outer deflectable lock arm of the platform to disengage from a surface contour of the container, whereby the platform is free to move into the container.
  • 19. The system of claim 18, wherein the applicator and container are configured such that distal advancement of the housing against the platform moves the platform into the container until a sheath unlock rib of the container contacts the sheath through an opening in the platform and causes the sheath to move with respect to the housing such that the detent of the deflectable positioning arm moves from the first groove to a releasable position within the second groove and the deflectable lock arm is held in the unlocked position.
  • 20. The system of claim 11, wherein the sensor module comprises a sensor adapted to measure a glucose level when placed in contact with a bodily fluid of a user.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/161,778, filed May 14, 2014, U.S. Provisional Application Ser. No. 62/199,912, filed Jul. 31, 2015, and U.S. Provisional Application Ser. No. 62/203,565, filed Aug. 11, 2015. All of the foregoing applications are incorporated by reference herein in their entirety for all purposes.

US Referenced Citations (1093)
Number Name Date Kind
3132123 Harris, Jr. et al. May 1964 A
3260656 Ross, Jr. Jul 1966 A
3522807 Millenbach Aug 1970 A
3581062 Aston May 1971 A
3653841 Klein Apr 1972 A
3670727 Reiterman Jun 1972 A
3719564 Lilly, Jr. et al. Mar 1973 A
3776832 Oswin et al. Dec 1973 A
3837339 Aisenberg et al. Sep 1974 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
3972320 Kalman Aug 1976 A
3979274 Newman Sep 1976 A
4008717 Kowarski Feb 1977 A
4016866 Lawton Apr 1977 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4059406 Fleet Nov 1977 A
4076596 Connery et al. Feb 1978 A
4098574 Dappen Jul 1978 A
4100048 Pompei et al. Jul 1978 A
4120292 LeBlanc, Jr. et al. Oct 1978 A
4129128 McFarlane Dec 1978 A
4151845 Clemens May 1979 A
4168205 Danniger et al. Sep 1979 A
4172770 Semersky et al. Oct 1979 A
4178916 McNamara Dec 1979 A
4206755 Klein Jun 1980 A
4224125 Nakamura et al. Sep 1980 A
4240438 Updike et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4247297 Berti et al. Jan 1981 A
4294258 Bernard Oct 1981 A
4327725 Cortese et al. May 1982 A
4340458 Lerner et al. Jul 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4352960 Dormer et al. Oct 1982 A
4353888 Sefton Oct 1982 A
4356074 Johnson Oct 1982 A
4365637 Johnson Dec 1982 A
4366033 Richter et al. Dec 1982 A
4373527 Fischell Feb 1983 A
4375399 Havas et al. Mar 1983 A
4384586 Christiansen May 1983 A
4390621 Bauer Jun 1983 A
4401122 Clark, Jr. Aug 1983 A
4404066 Johnson Sep 1983 A
4418148 Oberhardt Nov 1983 A
4425920 Bourland et al. Jan 1984 A
4427004 Miller et al. Jan 1984 A
4427770 Chen et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4436094 Cerami Mar 1984 A
4440175 Wilkins Apr 1984 A
4450842 Zick et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4461691 Frank Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478976 Goertz et al. Oct 1984 A
4484987 Gough Nov 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4522690 Venkatsetty Jun 1985 A
4524114 Samuels et al. Jun 1985 A
4526661 Steckhan et al. Jul 1985 A
4527240 Kvitash Jul 1985 A
4534356 Papadakis Aug 1985 A
4538616 Rogoff Sep 1985 A
4543955 Schroeppel Oct 1985 A
4545382 Higgins et al. Oct 1985 A
4552840 Riffer Nov 1985 A
4560534 Kung et al. Dec 1985 A
4571292 Liu et al. Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4581336 Malloy et al. Apr 1986 A
4595011 Phillips Jun 1986 A
4619754 Niki et al. Oct 1986 A
4619793 Lee Oct 1986 A
4627445 Garcia et al. Dec 1986 A
4627842 Katz Dec 1986 A
4627908 Miller Dec 1986 A
4633878 Bombardien Jan 1987 A
4637403 Garcia et al. Jan 1987 A
4650547 Gough Mar 1987 A
4654197 Lilja et al. Mar 1987 A
4655880 Liu Apr 1987 A
4655885 Hill et al. Apr 1987 A
4663824 Kenmochi May 1987 A
4671288 Gough Jun 1987 A
4679562 Luksha Jul 1987 A
4680268 Clark, Jr. Jul 1987 A
4682602 Prohaska Jul 1987 A
4684537 Graetzel et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685466 Rau Aug 1987 A
4698057 Joishy Oct 1987 A
4703756 Gough et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711247 Fishman Dec 1987 A
4717673 Wrighton et al. Jan 1988 A
4721601 Wrighton et al. Jan 1988 A
4721677 Clark, Jr. Jan 1988 A
4726378 Kaplan Feb 1988 A
4726716 McGuire Feb 1988 A
4729672 Takagi Mar 1988 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4755173 Konopka Jul 1988 A
4758323 Davis et al. Jul 1988 A
4759371 Franetzki Jul 1988 A
4759828 Young et al. Jul 1988 A
4764416 Ueyama et al. Aug 1988 A
4776944 Janata et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Gough Oct 1988 A
4781683 Wozniak et al. Nov 1988 A
4781798 Gough Nov 1988 A
4784736 Lonsdale et al. Nov 1988 A
4795707 Niiyama et al. Jan 1989 A
4796634 Huntsman et al. Jan 1989 A
4805624 Yao et al. Feb 1989 A
4813424 Wilkins Mar 1989 A
4815469 Cohen et al. Mar 1989 A
4820399 Senda et al. Apr 1989 A
4822337 Newhouse et al. Apr 1989 A
4830959 McNeil et al. May 1989 A
4832797 Vadgama et al. May 1989 A
RE32947 Dormer et al. Jun 1989 E
4840893 Hill et al. Jun 1989 A
4848351 Finch Jul 1989 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4871440 Nagata et al. Oct 1989 A
4874500 Madou et al. Oct 1989 A
4890622 Gough Jan 1990 A
4894137 Takizawa et al. Jan 1990 A
4895147 Bodicky et al. Jan 1990 A
4897162 Lewandowski et al. Jan 1990 A
4897173 Nankai et al. Jan 1990 A
4909908 Ross et al. Mar 1990 A
4911794 Parce et al. Mar 1990 A
4917800 Lonsdale et al. Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919767 Vadgama et al. Apr 1990 A
4921199 Villavecs May 1990 A
4923586 Katayama et al. May 1990 A
4925268 Iyer et al. May 1990 A
4927516 Yamaguchi et al. May 1990 A
4934369 Maxwell Jun 1990 A
4935105 Churchouse Jun 1990 A
4935345 Guibeau et al. Jun 1990 A
4938860 Wogoman Jul 1990 A
4944299 Silvian Jul 1990 A
4950378 Nagara Aug 1990 A
4953552 DeMarzo Sep 1990 A
4954129 Giuliani et al. Sep 1990 A
4969468 Byers et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974929 Curry Dec 1990 A
4986271 Wilkins Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4994167 Shults et al. Feb 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5001054 Wagner Mar 1991 A
5013161 Zaragoza et al. May 1991 A
5019974 Beckers May 1991 A
5035860 Kleingeld et al. Jul 1991 A
5036860 Leigh et al. Aug 1991 A
5047044 Smith et al. Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5058592 Whisler Oct 1991 A
5070535 Hochmair et al. Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5082786 Nakamoto Jan 1992 A
5089112 Skotheim et al. Feb 1992 A
5095904 Seligman et al. Mar 1992 A
5101814 Palti Apr 1992 A
5106365 Hernandez Apr 1992 A
5108564 Szuminsky et al. Apr 1992 A
5108889 Smith et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5120420 Nankai et al. Jun 1992 A
5122925 Inpyn Jun 1992 A
5126034 Carter et al. Jun 1992 A
5133856 Yamaguchi et al. Jul 1992 A
5135003 Souma Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5141868 Shanks et al. Aug 1992 A
5161532 Joseph Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5190041 Palti Mar 1993 A
5192416 Wang et al. Mar 1993 A
5198367 Aizawa et al. Mar 1993 A
5202261 Musho et al. Apr 1993 A
5205920 Oyama et al. Apr 1993 A
5208154 Weaver et al. May 1993 A
5209229 Gilli May 1993 A
5217595 Smith et al. Jun 1993 A
5229282 Yoshioka et al. Jul 1993 A
5234835 Nestor et al. Aug 1993 A
5238729 Debe Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5250439 Musho et al. Oct 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264103 Yoshioka et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5264106 McAleer et al. Nov 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson Jan 1994 A
5284156 Schramm et al. Feb 1994 A
5285792 Sjoquist et al. Feb 1994 A
5286362 Hoenes et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5288636 Pollmann et al. Feb 1994 A
5293546 Tadros et al. Mar 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320098 Davidson Jun 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5337747 Neftei Aug 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5352348 Young et al. Oct 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5368028 Palti Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5372427 Padovani et al. Dec 1994 A
5376251 Kaneko et al. Dec 1994 A
5378628 Gratzel et al. Jan 1995 A
5379238 Stark Jan 1995 A
5387327 Khan Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5395504 Saurer et al. Mar 1995 A
5400782 Beaubiah Mar 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425361 Fenzlein et al. Jun 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5437999 Dieboid et al. Aug 1995 A
5462645 Albery et al. Oct 1995 A
5469846 Khan Nov 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5527288 Gross et al. Jun 1996 A
5531878 Vadgama et al. Jul 1996 A
5545191 Mann et al. Aug 1996 A
5549368 Shields Aug 1996 A
5551427 Altman Sep 1996 A
5560357 Faupei et al. Oct 1996 A
5562713 Silvian Oct 1996 A
5565085 Ikeda et al. Oct 1996 A
5567302 Song et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5575563 Chiu et al. Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5582698 Flaherty et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5586553 Halli et al. Dec 1996 A
5589326 Deng et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5596150 Arndt et al. Jan 1997 A
5601435 Quy Feb 1997 A
5609575 Larson et al. Mar 1997 A
5613978 Harding Mar 1997 A
5617851 Lipkovker Apr 1997 A
5628310 Rao et al. May 1997 A
5628890 Carter et al. May 1997 A
5632557 Simons May 1997 A
5638832 Singer et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5651869 Yoshioka et al. Jul 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665071 Wyrick Sep 1997 A
5665222 Heller et al. Sep 1997 A
5670031 Hintsche et al. Sep 1997 A
5680858 Hansen et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5695623 Michel et al. Dec 1997 A
5708247 McAleer et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711297 Iliff et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711862 Sakoda et al. Jan 1998 A
5733044 Rose et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5749656 Boehm et al. May 1998 A
5766131 Kondo et al. Jun 1998 A
5771001 Cobb Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5791344 Schulman et al. Aug 1998 A
5800420 Gross et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5814020 Gross Sep 1998 A
5820551 Hill et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5827184 Netherly et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5842983 Abel et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5865804 Bachynsky Feb 1999 A
5885211 Eppstein et al. Mar 1999 A
5899855 Brown May 1999 A
5924979 Sedlow et al. Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5948006 Mann Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954643 Van Antwerp Sep 1999 A
5954685 Tierny Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5993411 Choi Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6017335 Burnham Jan 2000 A
6022368 Gavronsky et al. Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6026321 Miyata et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6049727 Crothall Apr 2000 A
6056718 Funderburk et al. May 2000 A
6068399 Tseng May 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderbunk et al. Jul 2000 A
6102896 Roser Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6134461 Say et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6186982 Gross et al. Feb 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254536 DeVito Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6283982 Levaughn et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6348640 Navot et al. Feb 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6409740 Kuhr et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6437679 Roques Aug 2002 B1
6440068 Brown et al. Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6478736 Mault Nov 2002 B1
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6522927 Bishay et al. Feb 2003 B1
6551494 Heller et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572566 Effenhauser Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6589229 Connelly et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6613015 Sandstrom et al. Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6659948 Lebel et al. Dec 2003 B2
6666849 Marshall et al. Dec 2003 B1
6668196 Villegas et al. Dec 2003 B1
6675030 Ciurczak et al. Jan 2004 B2
6676290 Lu Jan 2004 B1
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6837858 Cunningham et al. Jan 2005 B2
6837885 Koblish et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6854882 Chen Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895265 Silver May 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6959211 Rule et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6971999 Py et al. Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7005857 Stiene et al. Feb 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097637 Triplett et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7171274 Starkweather et al. Jan 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7335294 Heller et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7340309 Miazga et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7407493 Cane Aug 2008 B2
7416541 Yuzhakov et al. Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7582059 Funderburk Sep 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604592 Freeman et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7666149 Simons et al. Feb 2010 B2
7682338 Griffin Mar 2010 B2
7697967 Stafford Apr 2010 B2
7699807 Faust et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7757022 Kato et al. Jul 2010 B2
7763042 Iio et al. Jul 2010 B2
7822454 Alden et al. Oct 2010 B1
7850652 Liniger et al. Dec 2010 B2
7896844 Thalmann et al. Mar 2011 B2
7955297 Radmer et al. Jun 2011 B2
7985203 Haueter et al. Jul 2011 B2
8172805 Mogensen et al. May 2012 B2
8262618 Scheurer Sep 2012 B2
8409145 Raymond et al. Apr 2013 B2
8641674 Bobroff et al. Feb 2014 B2
8870822 Thalmann et al. Oct 2014 B2
8880138 Cho Nov 2014 B2
9007781 Moein et al. Apr 2015 B2
9215992 Donnay et al. Dec 2015 B2
9295786 Gottlieb et al. Mar 2016 B2
20010056262 Cabiri et al. Dec 2001 A1
20020013538 Teller Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020019606 Lebel et al. Feb 2002 A1
20020022855 Bobroff et al. Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020055711 Lavi et al. May 2002 A1
20020057993 Maisey et al. May 2002 A1
20020066764 Perry et al. Jun 2002 A1
20020076966 Carron et al. Jun 2002 A1
20020082487 Kollias et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020124017 Mault Sep 2002 A1
20020128594 Das et al. Sep 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020151796 Koulik Oct 2002 A1
20020151816 Rich et al. Oct 2002 A1
20020154050 Krupp et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020165462 Westbrook et al. Nov 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020198444 Ughigaki et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030032867 Crothall et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069510 Semler Apr 2003 A1
20030078481 McIvor et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030083686 Freeman et al. May 2003 A1
20030097092 Flaherty May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030109775 O'Neil et al. Jun 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030144581 Conn et al. Jul 2003 A1
20030144608 Kojima et al. Jul 2003 A1
20030155656 Chiu et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030199910 Boecker et al. Oct 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225361 Sabra Dec 2003 A1
20040002382 Kovelman et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040096959 Stiene et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116865 Bengtsson Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122489 Mazar et al. Jun 2004 A1
20040133164 Funderbunk et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138544 Ward et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040138688 Giraud Jul 2004 A1
20040147996 Miazga et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171910 Moore-Steele Sep 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040210122 Sleburg Oct 2004 A1
20040223985 Dunfield et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040267300 Mace et al. Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050085872 Yanagihara et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090850 Thoes et al. Apr 2005 A1
20050106713 Phan et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050154410 Conway et al. Jul 2005 A1
20050165404 Miller Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050222518 Dib Oct 2005 A1
20050222599 Czernecki et al. Oct 2005 A1
20050235156 Drucker et al. Oct 2005 A1
20050236277 Imran et al. Oct 2005 A9
20050239154 Feldman et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050277164 Drucker et al. Dec 2005 A1
20050283114 Bresina et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060004303 Weidenhaupt et al. Jan 2006 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060047220 Sakata et al. Mar 2006 A1
20060081469 Lee Apr 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060155210 Beckman et al. Jul 2006 A1
20060155317 List et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060189939 Gonnelli et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060200181 Fukuzawa et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224171 Sakata et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258929 Goode, Jr. et al. Nov 2006 A1
20060264888 Moberg et al. Nov 2006 A1
20060276724 Freeman et al. Dec 2006 A1
20060282042 Walters et al. Dec 2006 A1
20060287591 Ocvirk et al. Dec 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070060814 Stafford Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070088377 Levaughn et al. Apr 2007 A1
20070106135 Sloan et al. May 2007 A1
20070110124 Zaragoza et al. May 2007 A1
20070123819 Mernoe et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173741 Deshmukh et al. Jul 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244368 Bayloff et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080004512 Funderburk et al. Jan 2008 A1
20080004573 Kaufmann et al. Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080009805 Ethelfeld Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080027474 Curry et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080031941 Pettersson Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033318 Mace et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080064944 VanAntwerp et al. Mar 2008 A1
20080065646 Zhang et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097246 Stafford Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080112848 Huffstodt et al. May 2008 A1
20080114280 Stafford May 2008 A1
20080119707 Stafford May 2008 A1
20080133702 Sharma et al. Jun 2008 A1
20080154205 Wojcik Jun 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080167578 Bryer et al. Jul 2008 A1
20080183061 Goode, Jr. et al. Jul 2008 A1
20080183399 Goode, Jr. et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode, Jr. et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode, Jr. et al. Aug 2008 A1
20080194937 Goode, Jr. et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode, Jr. et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200897 Hoss et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214481 Challoner et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269673 Butoi et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080283396 Wang et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080294096 Uber et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300476 Stafford Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312859 Skyggebjerg et al. Dec 2008 A1
20090005659 Kollias et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090036915 Karbowniczek et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048499 Glejbol Feb 2009 A1
20090054866 Teisen-Simony et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076359 Peyser Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090088614 Taub Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090102678 Mazza et al. Apr 2009 A1
20090105569 Stafford Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode, Jr. et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090124979 Raymond et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielson May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090171182 Stafford Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090212766 Olson et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090259201 Hwang et al. Oct 2009 A1
20090259202 Leeflang et al. Oct 2009 A1
20090270765 Ghesquire et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090292184 Funderburk et al. Nov 2009 A1
20090292185 Funderburk et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100004597 Gryn et al. Jan 2010 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100022863 Mogensen et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100036281 Doi Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049014 Funderburk et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100106088 Yodfat et al. Apr 2010 A1
20100113894 Brenneman et al. May 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100152674 Kavazov et al. Jun 2010 A1
20100168677 Gabriel et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174164 Brister et al. Jul 2010 A1
20100174165 Brister et al. Jul 2010 A1
20100174166 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode, Jr. et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179402 Goode, Jr. et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode, Jr. et al. Jul 2010 A1
20100186069 Brister et al. Jul 2010 A1
20100186070 Brister et al. Jul 2010 A1
20100186071 Simpson et al. Jul 2010 A1
20100186072 Goode, Jr. et al. Jul 2010 A1
20100186075 Brister et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198033 Krulevitch et al. Aug 2010 A1
20100198034 Thomas et al. Aug 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100198036 Kamath et al. Aug 2010 A1
20100204653 Gryn et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode, Jr. et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100217557 Kamath et al. Aug 2010 A1
20100223013 Kamath et al. Sep 2010 A1
20100223022 Kamath et al. Sep 2010 A1
20100223023 Kamath et al. Sep 2010 A1
20100228109 Kamath et al. Sep 2010 A1
20100228497 Kamath et al. Sep 2010 A1
20100240975 Goode, Jr. et al. Sep 2010 A1
20100240976 Goode, Jr. et al. Sep 2010 A1
20100151987 Kamath et al. Oct 2010 A1
20100256471 Say et al. Oct 2010 A1
20100262201 He et al. Oct 2010 A1
20100274107 Boock et al. Oct 2010 A1
20100280341 Boock et al. Nov 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100298684 Leach et al. Nov 2010 A1
20100324392 Yee et al. Dec 2010 A1
20100324403 Brister et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20100331644 Neale et al. Dec 2010 A1
20100331647 Shah et al. Dec 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331653 Stafford Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110004085 Mensinger et al. Jan 2011 A1
20110009727 Mensinger et al. Jan 2011 A1
20110021889 Hoss et al. Jan 2011 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110046456 Hordum et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110240256 Bobroff et al. Feb 2011 A1
20110240263 Hordum et al. Feb 2011 A1
20110054275 Stafford Mar 2011 A1
20110060196 Stafford Mar 2011 A1
20110073475 Kastanos et al. Mar 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110082484 Saravia et al. Apr 2011 A1
20110106126 Love et al. May 2011 A1
20110118579 Goode, Jr. et al. May 2011 A1
20110118580 Goode, Jr. et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode, Jr. et al. May 2011 A1
20110125410 Goode, Jr. et al. May 2011 A1
20110130970 Goode, Jr. et al. Jun 2011 A1
20110130971 Goode, Jr. et al. Jun 2011 A1
20110130998 Goode, Jr. et al. Jun 2011 A1
20110137257 Gyrn et al. Jun 2011 A1
20110144465 Shults et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110184258 Stafford Jul 2011 A1
20110190603 Stafford Aug 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110191044 Stafford Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110201911 Johnson et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231107 Brauker et al. Sep 2011 A1
20110231140 Goode, Jr. et al. Sep 2011 A1
20110231141 Goode, Jr. et al. Sep 2011 A1
20110231142 Goode, Jr. et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110257521 Fraden Oct 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270062 Goode, Jr. et al. Nov 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275919 Petisce et al. Nov 2011 A1
20110288574 Curry et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319729 Donnay Dec 2011 A1
20110319733 Stafford Dec 2011 A1
20110319738 Woodruff et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120010642 Lee et al. Jan 2012 A1
20120035445 Boock et al. Feb 2012 A1
20120040101 Tapsak et al. Feb 2012 A1
20120046534 Simpson et al. Feb 2012 A1
20120078071 Bohm et al. Mar 2012 A1
20120095406 Gyrn et al. Apr 2012 A1
20120108934 Valdes et al. May 2012 A1
20120108983 Banet et al. May 2012 A1
20120123385 Edwards et al. May 2012 A1
20120143135 Cole et al. Jun 2012 A1
20120184909 Gyrn et al. Jul 2012 A1
20120197222 Donnay Aug 2012 A1
20120296327 Hutchins et al. Nov 2012 A1
20130047981 Bacon Feb 2013 A1
20130150691 Pace et al. Jun 2013 A1
20140228760 Ethelfeld Aug 2014 A1
Foreign Referenced Citations (14)
Number Date Country
1202872 May 2005 CN
0320109 Jun 1989 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
2060284 May 2009 EP
2201969 Jun 2010 EP
2335587 Jun 2011 EP
WO-1992013271 Aug 1992 WO
WO-1994020602 Sep 1994 WO
WO-2000059370 Oct 2000 WO
WO-2001052935 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2003082091 Oct 2003 WO
WO-2009068661 Jun 2009 WO
Non-Patent Literature Citations (80)
Entry
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325.
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycaemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1071.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33.
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696.
Bindra, D. S., et al., “Pulsed Amperometric Detection of Glucose in Biological Fluids at a Surface-Modified Gold Electrode”, Analytical Chemistry, vol. 61, No. 22, 1989, pp. 2566-2570.
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463.
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671.
Claremont, D. J., et al., “Biosensors for Continuous In Vivo Glucose Monitoring”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 10, 1988.
Clark Jr., L. C., et al., “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Annals New York Academy of Sciences, 1962, pp. 29-43.
Clark Jr., L. C., et al., “Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice”, American Society of Artificial Internal Organs Transactions, vol. XXXIV, 1988, pp. 259-265.
Csöregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Csöregi, E., et al., “Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode”, Analytical Chemistry, vol. 66, No. 19, 1994, pp. 3131-3138.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263.
Gunasingham, et al., “Electrochemically Modulated Optrode for Glucose”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 353-359.
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007.
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587.
Heller, A., “Electrical Wiring of Redox Enzymes”, Accounts of Chemical Research, 1990, vol. 23, No. 5, pp. 128-134.
Ikeda, T., et al., “Artificial Pancreas—Investigation of the Stability of Glucose Sensors Using a Telemetry System” (English translation of abstract), Jpn. J. Artif. Organs, vol. 19, No. 2, 1990, pp. 889-892.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, K. W., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 1989.
Johnson, K. W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, Diabetologia, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Koudelka, M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 31-36.
Lager, W., et al., “Implantable Electrocatalytic Glucose Sensor”, Hormone Metabolic Research, vol. 26, 1994, pp. 526-530.
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896.
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Minimed Technologies, “Tape Tips and Other Infusion Site Information”, 1995, pp. 1-10.
Moatti-Sirat, D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 345-352.
Moatti-Sirat, D., et al., “Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man”, Diabetologia, vol. 37, 1994, pp. 610-616.
Moatti-Sirat, D., et al., “Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensoriImplanted for several days in rat subcutaneous tissue”, Diabetologia, vol. 35, 1992, pp. 224-230.
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2C1]+/2+ Complexed Poly(1-vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517.
Olievier, C. N., et al., “In vivo Measurement of Carbon Dioxide Tension with a Miniature Electrode”, Pflügers Archiv: European Journal of Physiology, vol. 373, 1978, pp. 269-272.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/1988, pp. 335-346.
Pickup, J., “Developing glucose sensors for in vivo use”, Tibtech, vol. 11, 1993, pp. 285-291.
Pickup, J., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability”, Biosensors, vol. 4, 1989, pp. 109-119.
Pickup, J., et al., “In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Poitout, V., et al., “A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit”, Diabetolgia, vol. 36, 1993, pp. 658-663.
Poitout, V., et al., “Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 587-592.
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300.
Quinn, C. P., et al., “Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors”, The American Physiological Society, 1995, pp. E155-E161.
Ratner, B. D., “Reducing capsular thickness and enhancing angiogenesis around implant drug release systems”, Journal of Controlled Release, vol. 78, 2002, pp. 211-218.
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386.
Rebrin, K., et al., “Automated feedback control of subcutaneous glucose concentration in diabetic dogs”, Diabetologia, vol. 32, 1989, pp. 573-576.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, No. 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of ferrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations,” Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Scheller, F., et al., “Enzyme electrodes and their application”, Philosophical Transactions of The Royal Society of London B, vol. 316, 1987, pp. 85-94.
Schmidt, F. J., et al., “Calibration of a wearable glucose sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A.P.F., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Updike, S. J., et al., “A Subcutaneous Glucose Sensor With Improved Longevity, Dynamic Range, and Stability of Calibration”, Diabetes Care, 2000, vol. 23, pp. 208-214.
Velho, G., et al., “Strategies for calibrating a subcutaneous glucose sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Velho, G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors”, Diabetes, vol. 38, No. 2, 1989, pp. 164-171.
Von Woedtke, T., et al., “In situ calibration of implanted electrochemical glucose sensors”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 943-952.
Wilson, G. S., et al., “Progress toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241.
PCT/US2012/068839 ISR and Written Opinion dated Feb. 22, 2013.
NL 2009963 Search Report and Written Opinion dated Aug. 12, 2013.
AU 2011269796 Examination Report dated Apr. 3, 2014.
EP 11760268.0 Extended Search Report dated Apr. 14, 2014.
EP 10739015.5 Extended Search Report dated May 10, 2013.
Related Publications (1)
Number Date Country
20160331283 A1 Nov 2016 US
Provisional Applications (3)
Number Date Country
62203565 Aug 2015 US
62199912 Jul 2015 US
62161778 May 2015 US