The subject matter described herein relates generally to systems, devices, and methods for management of analyte levels of a user, including communication between an analyte sensor and external devices.
The management of analyte levels, such as glucose, ketones, lactate, oxygen, hemoglobin AIC, or the like, can improve the health of people with diabetes. Patients with diabetes mellitus can experience complications including loss of consciousness, cardiovascular disease, retinopathy, neuropathy, and nephropathy. Diabetics are generally required to monitor their glucose levels to ensure that they are being maintained within a clinically safe range, and may also use this information to determine if and/or when insulin is needed to reduce glucose levels in their bodies, or when additional glucose is needed to raise the level of glucose in their bodies.
Clinical data demonstrates a strong correlation between the frequency of glucose monitoring and glycemic control. Despite such correlation, however, many individuals diagnosed with a diabetic condition do not monitor their glucose levels as frequently as they should due to a combination of factors including convenience, testing discretion, pain associated with glucose testing, and cost.
To increase patient adherence to a plan of frequent glucose monitoring, in vivo analyte monitoring systems can be utilized, in which a sensor control device may be worn on the body of an individual who requires analyte monitoring. To increase comfort and convenience for the individual, the sensor control device may have a small form-factor, and can be assembled and applied by the individual with a sensor applicator. The application process includes inserting a sensor that senses a user's analyte level in a bodily fluid located in or under the dermal layer of the human body, using an applicator or insertion mechanism, such that the sensor comes into contact with a bodily fluid. The sensor control device may also be configured to transmit analyte data to another device, from which the individual or her health care provider (“HCP”) can review the data and make therapy decisions. During the life cycle of a sensor, context information can be generated that help improve performance.
To better regulate and control the intake of insulin, external infusion pump therapy can also be beneficial for diabetic patients. Such therapy can involve a cannula inserted into the patient and connected to an infusion tubing attached to an external pump. Insulin can be administered to the patient, for example according to a patient's insulin profile.
When an in vivo analyte monitoring system is used in conjunction with an infusion device, it can be beneficial to communicate information between these devices, for example to allow the infusion device to make insulin determinations using analyte data measured from the in vivo analyte monitoring system. However, an infusion device can have a shorter use period than a sensor of a glucose monitoring system. Thus, it can be beneficial to facilitate transfer of sensor context information when replacing an expired infusion device with a replacement infusion device, for example to allow continuity of communication between the infusion devices and the sensor and with little or no effort by or effect on the user of these devices.
The purpose and advantages of the disclosed subject matter will be set forth in and apparent from the description that follows, as well as will be learned by practice of the disclosed subject matter. Additional advantages of the disclosed subject matter will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the disclosed subject matter, as embodied and broadly described, the disclosed subject matter is directed a system for managing a patient's glucose level. The system includes a glucose sensor to generate raw data signals for measurements of the patient's glucose level. The system further includes sensor electronics operatively coupled to the glucose sensor. The sensor electronics have a memory storing one or more predetermined characteristics associated with the sensor electronics. The sensor electronics are in electronic communication with the glucose sensor. The system further includes a receiving device and external devices, wherein the external devices include a first disposable device and a second disposable device. Each external device is configured for wireless communication with both the receiving device and the sensor electronics. The system enables the transfer of sensor context information from the first disposable device to the second disposable device.
In accordance with the disclosed subject matter, the first disposable device can be configured to package the sensor context information into a form that can be uploaded by the second disposable device. The first disposable device can be configured to transfer the sensor context information to the receiving device, and the receiving device can be configured to package the sensor context information into a form that can be uploaded by the second disposable device. The sensor context information can include encryption information for authentication between the first disposable device and the sensor electronics. The sensor context information can include communication information for establishing a direct wireless connection between the sensor electronics and each external device. The sensor context information can include configuration parameters for converting the raw data signals of the glucose sensor. The sensor context information can include calibration information for the glucose sensor. The sensor context information can include a compilation of data communicated between the glucose sensor and the first disposable device.
Furthermore, each external device can have a use period of about 3 to10 days, 5 to 10 days, 10 to 20 days or longer. The glucose sensor can have a use period of about 10-15 days, 16 to 30 days, 3 to 6 months or longer. Each external device can be an insulin pump. The insulin pump can be a tubeless wearable patch pump. The receiving device can be configured to execute a hybrid closed-loop algorithm to provide medication delivery instructions to the external device. The receiving device can be a smartphone or a smartwatch. Each external device can be configured for wireless communication with the receiving device and the sensor electronics via Bluetooth® communication.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the disclosed subject matter.
The accompanying drawings, which are incorporated in and constitute part of this specification, are included to illustrate and provide a further understanding of the methods and systems of the disclosed subject matter. Together with the description, the drawings explain the principles of the disclosed subject matter.
The details of the subject matter set forth herein, both as to its structure and operation, may be apparent by study of the accompanying figures, in which like reference numerals refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
Reference will now be made in detail to the various exemplary embodiments of the disclosed subject matter, exemplary embodiments of which are illustrated in the accompanying drawings.
Before the present subject matter is described in detail, it is to be understood that this disclosure is not limited to the particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Generally, embodiments of the present disclosure include systems, devices, and methods for the use of analyte sensor insertion applicators for use with in vivo analyte monitoring systems. An applicator can be provided to the user in a sterile package with an electronics housing of the sensor control device contained therein. According to some embodiments, a structure separate from the applicator, such as a container, can also be provided to the user as a sterile package with a sensor module and a sharp module contained therein. The user can couple the sensor module to the electronics housing, and can couple the sharp to the applicator with an assembly process that involves the insertion of the applicator into the container in a specified manner. In other embodiments, the applicator, sensor control device, sensor module, and sharp module can be provided in a single package. The applicator can be used to position the sensor control device on a human body with a sensor in contact with the wearer's bodily fluid. The embodiments provided herein are improvements to reduce the likelihood that a sensor is improperly inserted or damaged, or elicits an adverse physiological response. Other improvements and advantages are provided as well. The various configurations of these devices are described in detail by way of the embodiments which are only examples.
Furthermore, many embodiments include in vivo analyte sensors structurally configured so that at least a portion of the sensor is, or can be, positioned in the body of a user to obtain information about at least one analyte of the body. It should be noted, however, that the embodiments disclosed herein can be used with in vivo analyte monitoring systems that incorporate in vitro capability, as well as purely in vitro or ex vivo analyte monitoring systems, including systems that are entirely non-invasive.
Furthermore, for each and every embodiment of a method disclosed herein, systems and devices capable of performing each of those embodiments are covered within the scope of the present disclosure. For example, embodiments of sensor control devices are disclosed, and these devices can have one or more sensors, analyte monitoring circuits (e.g., an analog circuit), memories (e.g., for storing instructions), power sources, communication circuits, transmitters, receivers, processors and/or controllers (e.g., for executing instructions) that can perform any and all method steps or facilitate the execution of any and all method steps. These sensor control device embodiments can be used and can be capable of use to implement those steps performed by a sensor control device from any and all of the methods described herein.
Furthermore, the systems and methods presented herein can be used for operations of a sensor used in an analyte monitoring system, such as but not limited to wellness, fitness, dietary, research, information or any purposes involving analyte sensing over time. As used herein, “sensor” can refer to any device capable of receiving sensor information from a user, including for purpose of illustration but not limited to, body temperature sensors, blood pressure sensors, pulse or heart-rate sensors, glucose level sensors, analyte sensors, physical activity sensors, body movement sensors, or any other sensors for collecting physical or biological information. Analytes measured by the analyte sensors can include, by way of example and not limitation, glucose, ketones, lactate, oxygen, hemoglobin A1C, albumin, alcohol, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, hematocrit, lactate, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, etc.
Before describing these aspects of the embodiments in detail, however, it is first desirable to describe examples of devices that can be present within, for example, an in vivo analyte monitoring system, as well as examples of their operation, all of which can be used with the embodiments described herein.
There are various types of in vivo analyte monitoring systems. “Continuous Analyte Monitoring” systems (or “Continuous Glucose Monitoring” systems), for example, can transmit data from a sensor control device to a reader device continuously without prompting, e.g., automatically according to a schedule. “Flash Analyte Monitoring” systems (or “Flash Glucose Monitoring” systems or simply “Flash” systems), as another example, can transfer data from a sensor control device in response to a scan or request for data by a reader device, such as with a Near Field Communication (NFC) or Radio Frequency Identification (RFID) protocol. In vivo analyte monitoring systems can also operate without the need for finger stick calibration.
In vivo analyte monitoring systems can be differentiated from “in vitro” systems that contact a biological sample outside of the body (or “ex vivo”) and that typically include a meter device that has a port for receiving an analyte test strip carrying bodily fluid of the user, which can be analyzed to determine the user's blood sugar level.
In vivo monitoring systems can include a sensor that, while positioned in vivo, makes contact with the bodily fluid of the user and senses the analyte levels contained therein. The sensor can be part of the sensor control device that resides on the body of the user and contains the electronics and power supply that enable and control the analyte sensing. The sensor control device, and variations thereof, can also be referred to as a “sensor control unit,” an “on-body electronics” device or unit, an “on-body” device or unit, or a “sensor data communication” device or unit, to name a few.
In vivo monitoring systems can also include a device that receives sensed analyte data from the sensor control device and processes and/or displays that sensed analyte data, in any number of forms, to the user. This device, and variations thereof, can be referred to as a “handheld reader device,” “reader device” (or simply a “reader”), “handheld electronics” (or simply a “handheld”), a “portable data processing” device or unit, a “data receiver,” a “receiver” device or unit (or simply a “receiver”), or a “remote” device or unit, to name a few. Other devices such as personal computers have also been utilized with or incorporated into in vivo and in vitro monitoring systems.
The system can include an external device for use with the analyte sensor. For example and without limitation, external devices can include delivery devices that use information from the analyte sensor to determine or deliver amounts of a medication or other beneficial agents to a user. Additionally or alternatively, external devices can include other sensors, such as other analyte sensors, accelerometers, pressures sensors, or can include external computing devices, such as a medical server or a smartphone application configured to use analyte sensor information to provide additional insights to a user, including but not limited to insights related to medical conditions, well-being, fitness, appetite, or other medical or non-medical insights or analysis.
For purpose of illustration only, and not limitation, as embodied herein, the external device can be a pump configured to deliver medication to a user on a continuous basis (e.g., basal dosages), or in set dosage amounts delivered at a single time (e.g., bolus dosages). The external device can include a pump that is electronically controlled either from the external device, or through a wired or wireless connection from another device. The external device can include a reservoir for storing medication that is located in the same assembly as a delivery site (a tubeless external device). Alternatively, the reservoir can be connected by a tube to the delivery site. The external device can be entirely disposable, or the external device can be non-disposable and include a refillable or replaceable reservoir. The external device, and variations thereof, can also be referred to as a “infusion device,” a “medication delivery device,” a “medication pump,” a “insulin pump,” or a “disposable device,” to name a few.
Generally, and as set forth in greater detail below, the disclosed subject matter provided herein includes a system for managing a patient's glucose level, the system includes a glucose sensor to generate raw data signals for measurements of the patient's glucose level. The system further includes sensor electronics operatively coupled to the glucose sensor. The sensor electronics have a memory storing one or more predetermined characteristics associated with the sensor electronics. The sensor electronics are in electronic communication with the glucose sensor. The system further includes a receiving device and external devices, wherein the external devices include a first disposable device and a second disposable device. Each external device is configured for wireless communication with both the receiving device and the sensor electronics. The system enables the transfer of sensor context information from the first disposable device to the second disposable device.
As embodied herein, the analyte monitoring system 100 can include a software or firmware library or application provided, for example via a remote application server 155 or application storefront server 160, to a third-party and incorporated into a multi-purpose hardware device 130 such as a mobile phone, tablet, personal computing device, or other similar computing device capable of communicating with the sensor control device 102 over a communication link. Multi-purpose hardware can further include embedded devices, including, but not limited to insulin pumps or insulin pens, having an embedded library configured to communicate with the sensor control device 102. Although the illustrated embodiments of the analyte monitoring system 100 include only one of each of the illustrated devices, this disclosure contemplates the analyte monitoring system 100 incorporate multiples of each component interacting throughout the system. For example and without limitation, as embodied herein, data receiving device 120 and/or multi-purpose data receiving device 130 can include multiples of each. As embodied herein, multiple data receiving devices 130 can communicate directly with sensor control device 102 as described herein. Additionally or alternatively, a data receiving device 130 can communicate with secondary data receiving devices 130 to provide analyte data, or visualization or analysis of the data, for secondary display to the user or other authorized parties.
Data receiving device 120 can be a mobile communication device such as, for example, a Wi-Fi or internet enabled smartphone, tablet, or personal digital assistant (PDA). Examples of smartphones can include, but are not limited to, those phones based on a WINDOWS operating system, ANDROID operating system, IPHONE operating system, PALM, WEBOS, BLACKBERRY operating system, or SYMBIAN operating system, with data network connectivity functionality for data communication over an internet connection and/or a local area network (LAN).
Data receiving device 120 can also be configured as a mobile smart wearable electronics assembly, such as an optical assembly that is worn over or adjacent to the user's eye (e.g., a smart glass or smart glasses, such as GOOGLE GLASSES). This optical assembly can have a transparent display that displays information about the user's analyte level (as described herein) to the user while at the same time allowing the user to see through the display such that the user's overall vision is minimally obstructed. The optical assembly can be capable of wireless communications similar to a smartphone. Other examples of wearable electronics include devices that are worn around or in the proximity of the user's wrist (e.g., a smart watch, etc.), neck (e.g., a necklace, etc.), head (e.g., a headband, hat, etc.), chest, or the like.
For purpose of illustration and not limitation, reference is made to another exemplary embodiment of a data receiving device 120 for use with the disclosed subject matter as shown in
As illustrated in
The communication module 4040 can include a BLE module 4041 and an NFC module 4042. The data receiving device 120 can be configured to wirelessly couple with the sensor control device 102 and transmit commands to and receive data from the sensor control device 102. As embodied herein, the data receiving device 120 can be configured to operate, with respect to the sensor control device 102 as described herein, as an NFC scanner and a BLE end point via specific modules (e.g., BLE module 4042 or NFC module 4043) of the communication module 4040. For example, the data receiving device 120 can issue commands (e.g., activation commands for a data broadcast mode of the sensor; pairing commands to identify the data receiving device 120; OTA programming commands) to the sensor control device 102 using a first module of the communication module 4040 and receive data from and transmit data to the sensor control device 102 using a second module of the communication module 4040. The data receiving device 120 can be configured for communication with a user device 145 via a Universal Serial Bus (USB) module 4045 of the communication module 4040.
As another example, the communication module 4040 can include, for example, a cellular radio module 4044. The cellular radio module 4044 can include one or more radio transceivers for communicating using broadband cellular networks, including, but not limited to third generation (3G), fourth generation (4G), and fifth generation (5G) networks. Additionally, the communication module 4040 of the data receiving device 120 can include a Wi-Fi radio module 4043 for communication using a wireless local area network according to one or more of the IEEE 802.11 standards (e.g., 802.11a, 802.11b, 802.11g, 802.11n (aka Wi-Fi 4), 802.11ac (aka Wi-Fi 5), 802.11ax (aka Wi-Fi 6)). Using the cellular radio module 4044 or Wi-Fi radio module 4043, the data receiving device 120 can communicate with the remote application server 155 to receive analyte data or provide updates or input received from a user (e.g., through one or more user interfaces). Although not illustrated, the communication module 5040 of the analyte sensor 120 can similarly include a cellular radio module or Wi-Fi radio module.
As embodied herein, the data receiving device 120 can be configured for communication via a Universal Serial Bus (USB) module 345 of the communication module 340. The data receiving device 120 can communicate with a user device 140 for example over the USB module 345. The data receiving device 120 can, for example, receive software or firmware updates via USB, receive bulk data via USB, or upload data to the remote server 150 via the user device 140. USB connections can be authenticated on each plug event. Authentication can use, for example, a two-, three-, four, or five-pass design with different keys. The USB system can support a variety of different sets of keys for encryption and authentication. Keys can be aligned with differential roles (clinical, manufacturer, user, etc.). Sensitive commands that can leak security information can trigger authenticated encryption using an authenticated additional keyset.
As embodied herein, the on-board storage 4030 of the data receiving device 120 can store analyte data received from the sensor control device 102. Further, the data receiving device 120, multi-purpose data receiving device 130, or a user device 145 can be configured to communicate with a remote application server 155 via a wide area network. As embodied herein, the sensor control device 102 can provide data to the data receiving device 120 or multi-purpose data receiving device 130. The data receiving device 120 can transmit the data to the user computing device 145. The user computing device 145 (or the multi-purpose data receiving device 130) can in turn transmit that data to a remote application server 155 for processing and analysis.
As embodied herein, the data receiving device 120 can further include sensing hardware 4060 similar to, or expanded from, the sensing hardware 5060 of the sensor control device 102. In particular embodiments, the data receiving device 120 can be configured to operate in coordination with the sensor control device 102 and based on analyte data received from the sensor control device 102. As an example, where the sensor control device 102 glucose sensor, the data receiving device 120 can be or include an insulin pump or insulin injection pen. In coordination, the compatible device 130 can adjust an insulin dosage for a user based on glucose values received from the analyte sensor.
A memory 163 is also included within ASIC 161 and can be shared by the various functional units present within ASIC 161, or can be distributed amongst two or more of them. Memory 163 can also be a separate chip. Memory 163 can be volatile and/or non-volatile memory. In this embodiment, ASIC 161 is coupled with power source 172, which can be a coin cell battery, or the like. AFE 162 interfaces with in vivo analyte sensor 104 and receives measurement data therefrom and outputs the data to processor 166 in digital form, which in turn processes the data to arrive at the end-result glucose discrete and trend values, etc. This data can then be provided to communication circuitry 168 for sending, by way of antenna 171, to data receiving device 120 (not shown), for example, where minimal further processing is needed by the resident software application to display the data.
For purpose of illustration and not limitation,
As embodied herein, the sensor control device 102 can include an Application-Specific Integrated Circuit (“ASIC”) 5000 communicatively coupled with a communication module 5040. The ASIC 5000 can include a microcontroller core 5010, on-board memory 5020, and storage memory 5030. The storage memory 5030 can store data used in an authentication and encryption security architecture. The storage memory 5030 can store programming instructions for sensor control device 102. As embodied herein, certain communication chipsets can be embedded in the ASIC 5000 (e.g., an NFC transceiver 5025). The ASIC 5000 can receive power from a power module 5050, such as an on-board battery or from an NFC pulse. The storage memory 5030 of the ASIC 5000 can be programmed to include information such as an identifier for sensor control device 102 for identification and tracking purposes. The storage memory 5030 can also be programmed with configuration or calibration parameters for use by sensor control device 102 and its various components. The storage memory 5030 can include rewritable or one-time programming (OTP) memory. The storage memory 5030 can be updated using techniques described herein to extend the usefulness of sensor control device 102.
In particular embodiments, and as described herein, one or more of the memory 5020 of the ASIC 500 and the memory 5043 of the communication module 5040 can each be a so-called “one-time programmable” (OTP) memory, which can include supporting architectures or otherwise be configured to define the number times to which a particular address or region of the memory can be written, which can be one time or more than one time up to the defined number of times after which the memory can be marked as unusable or otherwise made unavailable for programming. Subject matter disclosed herein relate to systems and method for updating said OTP memories with new information. In particular, subject matter disclosed herein relate to systems and method for updating said OTP memories with information using OTA programming.
As embodied herein, the communication module 5040 of sensor control device 102 can be or include one or more modules to support communications with other devices of an analyte monitoring system 100. As an example only, and not by way of limitation, example communication modules 5040 can include a Bluetooth Low-Energy (“BLE”) module 5041 As used throughout this disclosure, BLE refers to a short-range communication protocol optimized to make pairing of Bluetooth devices simple for end users. The communication module 5040 can transmit and receive data and commands via interaction with similarly-capable communication modules of a data receiving device 120 or user device 145. The communication module 5040 can include additional or alternative chipsets for use with similar short-range communication schemes, such as a personal area network according to IEEE 802.15 protocols, IEEE 802.11 protocols, infrared communications according to the Infrared Data Association standards (IrDA), etc.
To perform its functionalities, the sensor control device 102 can further include suitable sensing hardware 5060 appropriate to its function. As embodied herein, the sensing hardware 5060 can include an analyte sensor transcutaneously or subcutaneously positioned in contact with a bodily fluid of a subject. The analyte sensor can generate sensor data containing values corresponding to levels of one or more analytes within the bodily fluid.
The components of sensor control device 102 can be acquired by a user in multiple packages requiring final assembly by the user before delivery to an appropriate user location.
Sheath 704 can maintain position within platform 808 with respect to housing 702 while housing 702 is distally advanced, coupling with platform 808 to distally advance platform 808 with respect to tray 810. This step unlocks and collapses platform 808 within tray 810. Sheath 704 can contact and disengage locking features (not shown) within tray 810 that unlock sheath 704 with respect to housing 702 and prevent sheath 704 from moving (relatively) while housing 702 continues to distally advance platform 808. At the end of advancement of housing 702 and platform 808, sheath 704 is permanently unlocked relative to housing 702. A sharp and sensor (not shown) within tray 810 can be coupled with an electronics housing (not shown) within housing 702 at the end of the distal advancement of housing 702. Operation and interaction of the applicator device 150 and tray 810 are further described below.
System 100, described with respect to
Referring to
Referring briefly again to
Besides the electronic modules 3806, the PCBA 3802 can also include a data processing unit 3808 mounted to the PCB 3804. The data processing unit 3808 can comprise, for example, an application specific integrated circuit (ASIC) configured to implement one or more functions or routines associated with operation of the sensor control device 3702. More specifically, the data processing unit 3808 can be configured to perform data processing functions, where such functions can include but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user. The data processing unit 3808 can also include or otherwise communicate with an antenna for communicating with the reader device 106.
A battery aperture 3810 can be defined in the PCB 3804 and sized to receive and seat a battery 3812 configured to power the sensor control device 3702. An axial battery contact 3814a and a radial battery contact 3814b can be coupled to the PCB 3804 and extend into the battery aperture 3810 to facilitate transmission of electrical power from the battery 3812 to the PCB 3804. As their names suggest, the axial battery contact 3814a can be configured to provide an axial contact for the battery 3812, while the radial battery contact 3814b can provide a radial contact for the battery 3812. Locating the battery 3812 within the battery aperture 3810 with the battery contacts 3814a,b helps reduce the height H of the sensor control device 3702, which allows the PCB 3804 to be located centrally and its components to be dispersed on both sides (i.e., top and bottom surfaces). This also helps facilitate the chamfer 3718 provided on the electronics housing 3704.
The sensor 3716 can be centrally located relative to the PCB 3804 and include a tail 3816, a flag 3818, and a neck 3820 that interconnects the tail 3816 and the flag 3818. The tail 3816 can be configured to extend through the central aperture 3720 of the mount 3708 to be transcutaneously received beneath a user's skin. Moreover, the tail 3816 can have an enzyme or other chemistry included thereon to help facilitate analyte monitoring.
The flag 3818 can include a generally planar surface having one or more sensor contacts 3822 (three shown in
The sensor control device 3702 can further include a compliant member 3826, which can be arranged to interpose the flag 3818 and the inner surface of the shell 3706. More specifically, when the shell 3706 and the mount 3708 are assembled to one another, the compliant member 3826 can be configured to provide a passive biasing load against the flag 3818 that forces the sensor contact(s) 3822 into continuous engagement with the corresponding circuitry contact(s) 3824. In the illustrated embodiment, the compliant member 3826 is an elastomeric 0-ring, but could alternatively comprise any other type of biasing device or mechanism, such as a compression spring or the like, without departing from the scope of the disclosure.
The sensor control device 3702 can further include one or more electromagnetic shields, shown as a first shield 3828a and a second shield The shell 3706 can provide or otherwise define a first clocking receptacle 3830a (
Referring specifically to
Moreover, a plurality of module pockets 3838 can be defined in the inner surface of the mount 3708 to accommodate the various electronic modules 3806 arranged on the bottom of the PCB 3804. Furthermore, a shield locator 3840 can be defined in the inner surface of the mount 3708 to accommodate at least a portion of the second shield 3828b when the sensor control device 3702 is assembled. The battery locator 3834, the contact pocket 3836, the module pockets 3838, and the shield locator 3840 all extend a short distance into the inner surface of the mount 3708 and, as a result, the overall height H of the sensor control device 3702 can be reduced as compared to prior sensor control devices. The module pockets 3838 can also help minimize the diameter of the PCB 3804 by allowing PCB components to be arranged on both sides (i.e., top and bottom surfaces).
Still referring to
Referring to
Still referring to
A sharp and sensor locator 3852 can also be provided by or otherwise defined on the inner surface of the shell 3706. The sharp and sensor locator 3852 can be configured to receive both the sharp (not shown) and a portion of the sensor 3716. Moreover, the sharp and sensor locator 3852 can be configured to align and/or mate with a corresponding sharp and sensor locator 2054 (
According to embodiments of the present disclosure, an alternative sensor assembly/electronics assembly connection approach is illustrated in
Additional information regarding sensor assemblies is provided in U.S. Publication No. 2013/0150691 and U.S. Publication No. 2021/0204841, each of which is incorporated by reference herein in its entirety.
According to embodiments of the present disclosure, the sensor control device 102 can be modified to provide a one-piece architecture that can be subjected to sterilization techniques specifically designed for a one-piece architecture sensor control device. A one-piece architecture allows the sensor applicator 150 and the sensor control device 102 to be shipped to the user in a single, sealed package that does not require any final user assembly steps. Rather, the user need only open one package and subsequently deliver the sensor control device 102 to the target monitoring location. The one-piece system architecture described herein can prove advantageous in eliminating component parts, various fabrication process steps, and user assembly steps. As a result, packaging and waste are reduced, and the potential for user error or contamination to the system is mitigated.
The fully assembled sensor control device 4402 can be loaded into the sensor applicator 150, and the applicator cap 708 can subsequently be coupled to the sensor applicator 150. In some embodiments, the applicator cap 708 can be threaded to the housing 702 and include a tamper ring 4702. Upon rotating (e.g., unscrewing) the applicator cap 708 relative to the housing 702, the tamper ring 4702 can shear and thereby free the applicator cap 708 from the sensor applicator 150.
According to the present disclosure, while loaded in the sensor applicator 150, the sensor control device 4402 can be subjected to gaseous chemical sterilization 4704 configured to sterilize the electronics housing 4404 and any other exposed portions of the sensor control device 4402. To accomplish this, a chemical can be injected into a sterilization chamber 4706 cooperatively defined by the sensor applicator 150 and the interconnected cap 210. In some applications, the chemical can be injected into the sterilization chamber 4706 via one or more vents 4708 defined in the applicator cap 708 at its proximal end 610. Example chemicals that can be used for the gaseous chemical sterilization 4704 include, but are not limited to, ethylene oxide, vaporized hydrogen peroxide, nitrogen oxide (e.g., nitrous oxide, nitrogen dioxide, etc.), and steam.
Since the distal portions of the sensor 4410 and the sharp 4412 are sealed within the sensor cap 4416, the chemicals used during the gaseous chemical sterilization process do not interact with the enzymes, chemistry, and biologics provided on the tail 4524 and other sensor components, such as membrane coatings that regulate analyte influx.
Once a desired sterility assurance level has been achieved within the sterilization chamber 4706, the gaseous solution can be removed and the sterilization chamber 4706 can be aerated. Aeration can be achieved by a series of vacuums and subsequently circulating a gas (e.g., nitrogen) or filtered air through the sterilization chamber 4706. Once the sterilization chamber 4706 is properly aerated, the vents 4708 can be occluded with a seal 4712 (shown in dashed lines).
In some embodiments, the seal 4712 can comprise two or more layers of different materials. The first layer can be made of a synthetic material (e.g., a flash-spun high-density polyethylene fiber), such as Tyvek® available from DuPont®. Tyvek® is highly durable and puncture resistant and allows the permeation of vapors. The Tyvek® layer can be applied before the gaseous chemical sterilization process, and following the gaseous chemical sterilization process, a foil or other vapor and moisture resistant material layer can be sealed (e.g., heat sealed) over the Tyvek® layer to prevent the ingress of contaminants and moisture into the sterilization chamber 4706. In other embodiments, the seal 4712 can comprise only a single protective layer applied to the applicator cap 708. In such embodiments, the single layer can be gas permeable for the sterilization process, but can also be capable of protection against moisture and other harmful elements once the sterilization process is complete.
With the seal 4712 in place, the applicator cap 708 provides a barrier against outside contamination, and thereby maintains a sterile environment for the assembled sensor control device 4402 until the user removes (unthreads) the applicator cap 708. The applicator cap 708 can also create a dust-free environment during shipping and storage that prevents the adhesive patch 4714 from becoming dirty.
Unlike the sensor control device 102 of
As illustrated, the sensor control device 5002 includes an electronics housing 5004 that is generally disc-shaped and can have a circular cross-section. In other embodiments, however, the electronics housing 5004 can exhibit other cross-sectional shapes, such as ovoid or polygonal, without departing from the scope of the disclosure. The electronics housing 5004 can be configured to house or otherwise contain various electrical components used to operate the sensor control device 5002. In at least one embodiment, an adhesive patch (not shown) can be arranged at the bottom of the electronics housing 5004. The adhesive patch can be similar to the adhesive patch 105 of
As illustrated, the sensor control device 5002 includes an electronics housing 5004 that includes a shell 5006 and a mount 5008 that is mateable with the shell 5006. The shell 5006 can be secured to the mount 5008 via a variety of ways, such as a snap fit engagement, an interference fit, sonic welding, one or more mechanical fasteners (e.g., screws), a gasket, an adhesive, or any combination thereof In some cases, the shell 5006 can be secured to the mount 5008 such that a sealed interface is generated therebetween.
The sensor control device 5002 can further include a sensor 5010 (partially visible) and a sharp 5012 (partially visible), used to help deliver the sensor 5010 transcutaneously under a user's skin during application of the sensor control device 5002. As illustrated, corresponding portions of the sensor 5010 and the sharp 5012 extend distally from the bottom of the electronics housing 5004 (e.g., the mount 5008). The sharp 5012 can include a sharp hub 5014 configured to secure and carry the sharp 5012. As best seen in
The sensor control device 5002 can further include a sensor cap 5018, shown exploded or detached from the electronics housing 5004 in
The sensor cap 5018 can be removably coupled to the electronics housing 5004 at or near the bottom of the mount 5008. More specifically, the sensor cap 5018 can be removably coupled to the mating member 5016, which extends distally from the bottom of the mount 5008. In at least one embodiment, for example, the mating member 5016 can define a set of external threads 5026a (
In some embodiments, the sensor cap 5018 can comprise a monolithic (singular) structure extending between the first and second ends 5020a, b. In other embodiments, however, the sensor cap 5018 can comprise two or more component parts. In the illustrated embodiment, for example, the sensor cap 5018 can include a seal ring 5028 positioned at the first end 5020a and a desiccant cap 5030 arranged at the second end 5020b. The seal ring 5028 can be configured to help seal the inner chamber 5022, as described in more detail below. In at least one embodiment, the seal ring 5028 can comprise an elastomeric 0-ring. The desiccant cap 5030 can house or comprise a desiccant to help maintain preferred humidity levels within the inner chamber 5022. The desiccant cap 5030 can also define or otherwise provide the engagement feature 5024 of the sensor cap 5018.
In
As illustrated, the sheath 704 is also positioned within the sensor applicator 150, and the sensor applicator 150 can include a sheath locking mechanism 5310 configured to ensure that the sheath 704 does not prematurely collapse during a shock event. In the illustrated embodiment, the sheath locking mechanism 5310 can comprise a threaded engagement between the applicator cap 708 and the sheath 704. More specifically, one or more internal threads 5312a can be defined or otherwise provided on the inner surface of the applicator cap 708, and one or more external threads 5312b can be defined or otherwise provided on the sheath 704. The internal and external threads 5312a,b can be configured to threadably mate as the applicator cap 708 is threaded to the sensor applicator 150 at the threads 5308. The internal and external threads 5312a,b can have the same thread pitch as the threads 5308 that enable the applicator cap 708 to be screwed onto the housing 702.
In
With the sensor control device 5002 loaded within the sensor applicator 150 and the applicator cap 708 properly secured, the sensor control device 5002 can then be subjected to a gaseous chemical sterilization configured to sterilize the electronics housing 5004 and any other exposed portions of the sensor control device 5002. Since the distal portions of the sensor 5010 and the sharp 5012 are sealed within the sensor cap 5018, the chemicals used during the gaseous chemical sterilization process are unable to interact with the enzymes, chemistry, and biologies provided on the tail 5104, and other sensor components, such as membrane coatings that regulate analyte influx.
In the illustrated embodiment, the sheath arms 5604 of the sheath 704 can be configured to interact with a first detent 5702a and a second detent 5702b defined within the interior of the housing 702. The first detent 5702a can alternately be referred to a “locking” detent, and the second detent 5702b can alternately be referred to as a “firing” detent. When the sensor control device 5002 is initially installed in the sensor applicator 150, the sheath arms 5604 can be received within the first detent 5702a. As discussed below, the sheath 704 can be actuated to move the sheath arms 5604 to the second detent 5702b, which places the sensor applicator 150 in firing position.
In
Similar to the embodiment of
In
As the applicator cap 708 is unscrewed from the housing 702, the ribs 5704 defined on the sheath 704 can slidingly engage the tops of the ribs 5706 defined on the applicator cap 708. The tops of the ribs 5706 can provide corresponding ramped surfaces that result in an upward displacement of the sheath 704 as the applicator cap 708 is rotated, and moving the sheath 704 upward causes the sheath arms 5604 to flex out of engagement with the first detent 5702a to be received within the second detent 5702b. As the sheath 704 moves to the second detent 5702b, the radial shoulder 5614 moves out of radial engagement with the carrier arm(s) 5608, which allows the passive spring force of the spring 5612 to push upward on the sharp carrier 5306 and force the carrier arm(s) 5608 out of engagement with the groove(s) 5610. As the sharp carrier 5306 moves upward within the housing 702, the mating member 5016 can correspondingly retract until it becomes flush, substantially flush, or sub-flush with the bottom of the sensor control device 5002. At this point, the sensor applicator 150 in firing position. Accordingly, in this embodiment, removing the applicator cap 708 correspondingly causes the mating member 5016 to retract.
Turning now to
In
In
With the sharp 1030 fully retracted as shown in
Operation of the applicator 150 when applying the sensor control device 102 is designed to provide the user with a sensation that both the insertion and retraction of the sharp 1030 is performed automatically by the internal mechanisms of the applicator 150. In other words, the present invention avoids the user experiencing the sensation that he is manually driving the sharp 1030 into his skin. Thus, once the user applies sufficient force to overcome the resistance from the detent features of the applicator 150, the resulting actions of the applicator 150 are perceived to be an automated response to the applicator being “triggered.” The user does not perceive that he is supplying additional force to drive the sharp 1030 to pierce his skin despite that all the driving force is provided by the user and no additional biasing/driving means are used to insert the sharp 1030. As detailed above in
With respect to any of the applicator embodiments described herein, as well as any of the components thereof, including but not limited to the sharp, sharp module and sensor module embodiments, those of skill in the art will understand that said embodiments can be dimensioned and configured for use with sensors configured to sense an analyte level in a bodily fluid in the epidermis, dermis, or subcutaneous tissue of a subject. In some embodiments, for example, sharps and distal portions of analyte sensors disclosed herein can both be dimensioned and configured to be positioned at a particular end-depth (i.e., the furthest point of penetration in a tissue or layer of the subject's body, e.g., in the epidermis, dermis, or subcutaneous tissue). With respect to some applicator embodiments, those of skill in the art will appreciate that certain embodiments of sharps can be dimensioned and configured to be positioned at a different end-depth in the subject's body relative to the final end-depth of the analyte sensor. In some embodiments, for example, a sharp can be positioned at a first end-depth in the subject's epidermis prior to retraction, while a distal portion of an analyte sensor can be positioned at a second end-depth in the subject's dermis. In other embodiments, a sharp can be positioned at a first end-depth in the subject's dermis prior to retraction, while a distal portion of an analyte sensor can be positioned at a second end-depth in the subject's subcutaneous tissue. In still other embodiments, a sharp can be positioned at a first end-depth prior to retraction and the analyte sensor can be positioned at a second end-depth, wherein the first end-depth and second end-depths are both in the same layer or tissue of the subject's body.
Additionally, with respect to any of the applicator embodiments described herein, those of skill in the art will understand that an analyte sensor, as well as one or more structural components coupled thereto, including but not limited to one or more spring-mechanisms, can be disposed within the applicator in an off-center position relative to one or more axes of the applicator. In some applicator embodiments, for example, an analyte sensor and a spring mechanism can be disposed in a first off-center position relative to an axis of the applicator on a first side of the applicator, and the sensor electronics can be disposed in a second off-center position relative to the axis of the applicator on a second side of the applicator. In other applicator embodiments, the analyte sensor, spring mechanism, and sensor electronics can be disposed in an off-center position relative to an axis of the applicator on the same side. Those of skill in the art will appreciate that other permutations and configurations in which any or all of the analyte sensor, spring mechanism, sensor electronics, and other components of the applicator are disposed in a centered or off-centered position relative to one or more axes of the applicator are possible and fully within the scope of the present disclosure.
Additional details of suitable devices, systems, methods, components and the operation thereof along with related features are set forth in International Publication No. WO2018/136898 to Rao et. al., International Publication No. WO2019/236850 to Thomas et. al., International Publication No. WO2019/236859 to Thomas et. al., International Publication No. WO2019/236876 to Thomas et. al., and U.S. Patent Publication No. 2020/0196919, filed Jun. 6, 2019, each of which is incorporated by reference in its entirety herein. Further details regarding embodiments of applicators, their components, and variants thereof, are described in U.S. Patent Publication Nos. 2013/0150691, 2016/0331283, and 2018/0235520, all of which are incorporated by reference herein in their entireties and for all purposes. Further details regarding embodiments of sharp modules, sharps, their components, and variants thereof, are described in U.S. Patent Publication No. 2014/0171771, which is incorporated by reference herein in its entirety and for all purposes.
Biochemical sensors can be described by one or more sensing characteristics. A common sensing characteristic is referred to as the biochemical sensor's sensitivity, which is a measure of the sensor's responsiveness to the concentration of the chemical or composition it is designed to detect. For electrochemical sensors, this response can be in the form of an electrical current (amperometric) or electrical charge (coulometric). For other types of sensors, the response can be in a different form, such as a photonic intensity (e.g., optical light). The sensitivity of a biochemical analyte sensor can vary depending on a number of factors, including whether the sensor is in an in vitro state or an in vivo state.
Calibration is a technique for improving or maintaining accuracy by adjusting a sensor's measured output to reduce the differences with the sensor's expected output. One or more parameters that describe the sensor's sensing characteristics, like its sensitivity, are established for use in the calibration adjustment.
Certain in vivo analyte monitoring systems require calibration to occur after implantation of the sensor into the user or patient, either by user interaction or by the system itself in an automated fashion. For example, when user interaction is required, the user performs an in vitro measurement (e.g., a blood glucose (BG) measurement using a finger stick and an in vitro test strip) and enters this into the system, while the analyte sensor is implanted. The system then compares the in vitro measurement with the in vivo signal and, using the differential, determines an estimate of the sensor's in vivo sensitivity. The in vivo sensitivity can then be used in an algorithmic process to transform the data collected with the sensor to a value that indicates the user's analyte level. This and other processes that require user action to perform calibration are referred to as “user calibration.” Systems can require user calibration due to instability of the sensor's sensitivity, such that the sensitivity drifts or changes over time. Thus, multiple user calibrations (e.g., according to a periodic (e.g., daily) schedule, variable schedule, or on an as-needed basis) can be required to maintain accuracy. While the embodiments described herein can incorporate a degree of user calibration for a particular implementation, generally this is not preferred as it requires the user to perform a painful or otherwise burdensome BG measurement, and can introduce user error.
Some in vivo analyte monitoring systems can regularly adjust the calibration parameters through the use of automated measurements of characteristics of the sensor made by the system itself (e.g., processing circuitry executing software). The repeated adjustment of the sensor's sensitivity based on a variable measured by the system (and not the user) is referred to generally as “system” (or automated) calibration, and can be performed with user calibration, such as an early BG measurement, or without user calibration. Like the case with repeated user calibrations, repeated system calibrations are typically necessitated by drift in the sensor's sensitivity over time. Thus, while the embodiments described herein can be used with a degree of automated system calibration, preferably the sensor's sensitivity is relatively stable over time such that post-implantation calibration is not required.
Some in vivo analyte monitoring systems operate with a sensor that is factory calibrated. Factory calibration refers to the determination or estimation of the one or more calibration parameters prior to distribution to the user or healthcare professional (HCP). The calibration parameter can be determined by the sensor manufacturer (or the manufacturer of the other components of the sensor control device if the two entities are different). Many in vivo sensor manufacturing processes fabricate the sensors in groups or batches referred to as production lots, manufacturing stage lots, or simply lots. A single lot can include thousands of sensors.
Sensors can include a calibration code or parameter which can be derived or determined during one or more sensor manufacturing processes and coded or programmed, as part of the manufacturing process, in the data processing device of the analyte monitoring system or provided on the sensor itself, for example, as a bar code, a laser tag, an RFID tag, or other machine-readable information provided on the sensor. User calibration during in vivo use of the sensor can be obviated, or the frequency of in vivo calibrations during sensor wear can be reduced if the code is provided to a receiver (or other data processing device). In embodiments where the calibration code or parameter is provided on the sensor itself, prior to or at the start of the sensor use, the calibration code or parameter can be automatically transmitted or provided to the data processing device in the analyte monitoring system.
Some in vivo analyte monitoring system operate with a sensor that can be one or more of factory calibrated, system calibrated, and/or user calibrated. For example, the sensor can be provided with a calibration code or parameter which can allow for factory calibration. If the information is provided to a receiver (for example, entered by a user), the sensor can operate as a factory calibrated sensor. If the information is not provided to a receiver, the sensor can operate as a user calibrated sensor and/or a system calibrated sensor.
In a further aspect, programming or executable instructions can be provided or stored in the data processing device of the analyte monitoring system, and/or the receiver/controller unit, to provide a time varying adjustment algorithm to the in vivo sensor during use. For example, based on a retrospective statistical analysis of analyte sensors used in vivo and the corresponding glucose level feedback, a predetermined or analytical curve or a database can be generated which is time based, and configured to provide additional adjustment to the one or more in vivo sensor parameters to compensate for potential sensor drift in stability profile, or other factors.
In accordance with the disclosed subject matter, the analyte monitoring system can be configured to compensate or adjust for the sensor sensitivity based on a sensor drift profile. A time varying parameter β(t) can be defined or determined based on analysis of sensor behavior during in vivo use, and a time varying drift profile can be determined. In certain aspects, the compensation or adjustment to the sensor sensitivity can be programmed in the receiver unit, the controller or data processor of the analyte monitoring system such that the compensation or the adjustment or both can be performed automatically and/or iteratively when sensor data is received from the analyte sensor. In accordance with the disclosed subject matter, the adjustment or compensation algorithm can be initiated or executed by the user (rather than self-initiating or executing) such that the adjustment or the compensation to the analyte sensor sensitivity profile is performed or executed upon user initiation or activation of the corresponding function or routine, or upon the user entering the sensor calibration code.
In accordance with the disclosed subject matter, each sensor in the sensor lot (in some instances not including sample sensors used for in vitro testing) can be examined non-destructively to determine or measure its characteristics such as membrane thickness at one or more points of the sensor, and other characteristics including physical characteristics such as the surface area/volume of the active area can be measured or determined. Such measurement or determination can be performed in an automated manner using, for example, optical scanners or other suitable measurement devices or systems, and the determined sensor characteristics for each sensor in the sensor lot is compared to the corresponding mean values based on the sample sensors for possible correction of the calibration parameter or code assigned to each sensor. For example, for a calibration parameter defined as the sensor sensitivity, the sensitivity is approximately inversely proportional to the membrane thickness, such that, for example, a sensor having a measured membrane thickness of approximately 4% greater than the mean membrane thickness for the sampled sensors from the same sensor lot as the sensor, the sensitivity assigned to that sensor in one embodiment is the mean sensitivity determined from the sampled sensors divided by 1.04. Likewise, since the sensitivity is approximately proportional to active area of the sensor, a sensor having measured active area of approximately 3% lower than the mean active area for the sampled sensors from the same sensor lot, the sensitivity assigned to that sensor is the mean sensitivity multiplied by 0.97. The assigned sensitivity can be determined from the mean sensitivity from the sampled sensors, by multiple successive adjustments for each examination or measurement of the sensor. In certain embodiments, examination or measurement of each sensor can additionally include measurement of membrane consistency or texture in addition to the membrane thickness and/or surface are or volume of the active sensing area.
Additional information regarding sensor calibration is provided in U.S. Publication No. 2010/0230285 and U.S. Publication No. 2019/0274598, each of which is incorporated by reference herein in its entirety.
The storage memory 5030 of the sensor control device 102 can include the software blocks related to communication protocols of the communication module. For example, the storage memory 5030 can include a BLE services software block with functions to provide interfaces to make the BLE module 5041 available to the computing hardware of the sensor control device 102. These software functions can include a BLE logical interface and interface parser. BLE services offered by the communication module 5040 can include the generic access profile service, the generic attribute service, generic access service, device information service, data transmission services, and security services. The data transmission service can be a primary service used for transmitting data such as sensor control data, sensor status data, analyte measurement data (historical and current), and event log data. The sensor status data can include error data, current time active, and software state. The analyte measurement data can include information such as current and historical raw measurement values, current and historical values after processing using an appropriate algorithm or model, projections and trends of measurement levels, comparisons of other values to patient-specific averages, calls to action as determined by the algorithms or models and other similar types of data.
According to aspects of the disclosed subject matter, and as embodied herein, a sensor control device 102 can be configured to communicate with multiple devices concurrently by adapting the features of a communication protocol or medium supported by the hardware and radios of the sensor control device 102. As an example, the BLE module 5041 of the communication module 5040 can be provided with software or firmware to enable multiple concurrent connections between the sensor control device 102 as a central device and the other devices as peripheral devices, or as a peripheral device where another device is a central device.
Connections, and ensuing communication sessions, between two devices using a communication protocol such as BLE can be characterized by a similar physical channel operated between the two devices (e.g., a sensor control device 102 and data receiving device 120). The physical channel can include a single channel or a series of channels, including for example and without limitation using an agreed upon series of channels determined by a common clock and channel- or frequency-hopping sequence. Communication sessions can use a similar amount of the available communication spectrum, and multiple such communication sessions can exist in proximity. In certain embodiment, each collection of devices in a communication session uses a different physical channel or series of channels, to manage interference of devices in the same proximity.
For purpose of illustration and not limitation, reference is made to an exemplary embodiment of a procedure for a sensor-receiver connection for use with the disclosed subject matter. First, the sensor control device 102 repeatedly advertises its connection information to its environment in a search for a data receiving device 120. The sensor control device 102 can repeat advertising on a regular basis until a connection established. The data receiving device 120 detects the advertising packet and scans and filters for the sensor control device 102 to connect to through the data provided in the advertising packet. Next, data receiving device 120 sends a scan request command and the sensor control device 102 responds with a scan response packet providing additional details. Then, the data receiving device 120 sends a connection request using the Bluetooth device address associated with the data receiving device 120. The data receiving device 120 can also continuously request to establish a connection to a sensor control device 102 with a specific Bluetooth device address. Then, the devices establish an initial connection allowing them to begin to exchange data. The devices begin a process to initialize data exchange services and perform a mutual authentication procedure.
During a first connection between the sensor control device 102 and data receiving device 120, the data receiving device 120 can initialize a service, characteristic, and attribute discovery procedure. The data receiving device 120 can evaluate these features of the sensor control device 102 and store them for use during subsequent connections. Next, the devices enable a notification for a customized security service used for mutual authentication of the sensor control device 102 and data receiving device 120. The mutual authentication procedure can be automated and require no user interaction. Following the successful completion of the mutual authentication procedure, the sensor control device 102 sends a connection parameter update to request the data receiving device 120 to use connection parameter settings preferred by the sensor control device 102 and configured to maximum longevity.
The data receiving device 120 then performs sensor control procedures to backfill historical data, current data, event log, and factory data. As an example, for each type of data, the data receiving device 120 sends a request to initiate a backfill process. The request can specify a range of records defined based on, for example, the measurement value, timestamp, or similar, as appropriate. The sensor control device 102 responds with requested data until all previously unsent data in the memory of the sensor control device 102 is delivered to the data receiving device 120. The sensor control device 102 can respond to a backfill request from the data receiving device 120 that all data has already been sent. Once backfill is completed, the data receiving device 120 can notify sensor control device 102 that it is ready to receive regular measurement readings. The sensor control device 102 can send readings across multiple notifications result on a repeating basis. As embodied herein, the multiple notifications can be redundant notifications to ensure that data is transmitted correctly. Alternatively, multiple notifications can make up a single payload.
For purpose of illustration and not limitation, reference is made to an exemplary embodiment of a procedure to send a shutdown command to the sensor control device 102. The shutdown operation is executed if the sensor control device 102 is in, for example, an error state, insertion failed state, or sensor expired state. If the sensor control device 102 is not in those states, the sensor control device 102 can log the command and execute the shutdown when sensor control device 102 transitions into the error state or sensor expired state. The data receiving device 120 sends a properly formatted shutdown command to the sensor control device 102. If the sensor control device 102 is actively processing another command, the sensor control device 102 will respond with a standard error response indicating that the sensor control device 102 is busy. Otherwise, the sensor control device 102 sends a response as the command is received. Additionally, the sensor control device 102 sends a success notification through the sensor control characteristic to acknowledge the sensor control device 102 has received the command. The sensor control device 102 registers the shutdown command. At the next appropriate opportunity (e.g., depending on the current sensor state, as described herein), the sensor control device 102 will shut down.
For purpose of illustration and not limitation, reference is made to the exemplary embodiment of a high-level depiction of a state machine representation 6000 of the actions that can be taken by the sensor control device 102 as shown in
Upon entry to state 6025, the sensor control device 102 can store information relating to devices authenticated to communicate with the sensor as set during activation or initialize algorithms related to conducting and interpreting measurements from the sensing hardware 5060. The sensor control device 102 can also initialize a lifecycle timer, responsible for maintaining an active count of the time of operation of the sensor control device 102 and begin communication with authenticated devices to transmit recorded data. While in the insertion detection state 6025, the sensor can enter state 6030, where the sensor control device 102 checks whether the time of operation is equal to a predetermined threshold. This time of operation threshold can correspond to a timeout function for determining whether an insertion has been successful. If the time of operation has reached the threshold, the sensor control device 102 advances to state 6035, in which the sensor control device 102 checks whether the average data reading is greater than a threshold amount corresponding to an expected data reading volume for triggering detection of a successful insertion. If the data reading volume is lower than the threshold while in state 6035, the sensor advances to state 6040, corresponding to a failed insertion. If the data reading volume satisfies the threshold, the sensor advances to the active paired state 6055.
The active paired state 6055 of the sensor control device 102 reflects the state while the sensor control device 102 is operating as normal by recording measurements, processing the measurements, and reporting them as appropriate. While in the active paired state 6055, the sensor control device 102 sends measurement results or attempts to establish a connection with a receiving device 120. The sensor control device 102 also increments the time of operation. Once the sensor control device 102 reaches a predetermined threshold time of operation (e.g., once the time of operation reaches a predetermined threshold), the sensor control device 102 transitions to the active expired state 6065. The active expired state 6065 of the sensor control device 102 reflects the state while the sensor control device 102 has operated for its maximum predetermined amount of time.
While in the active expired state 6065, the sensor control device 102 can generally perform operations relating to winding down operation and ensuring that the collected measurements have been securely transmitted to receiving devices as needed. For example, while in the active expired state 6065, the sensor control device 102 can transmit collected data and, if no connection is available, can increase efforts to discover authenticated devices nearby and establish and connection therewith. While in the active expired state 6065, the sensor control device 102 can receive a shutdown command at state 6070. If no shutdown command is received, the sensor control device 102 can also, at state 6075, check if the time of operation has exceeded a final operation threshold. The final operation threshold can be based on the battery life of the sensor control device 102. The normal termination state 6080 corresponds to the final operations of the sensor control device 102 and ultimately shutting down the sensor control device 102.
Before a sensor is activated, the ASIC 5000 resides in a low power storage mode state. The activation process can begin, for example, when an incoming RF field (e.g., NFC field) drives the voltage of the power supply to the ASIC 5000 above a reset threshold, which causes the sensor control device 102 to enter a wake-up state. While in the wake-up state, the ASIC 5000 enters an activation sequence state. The ASIC 5000 then wakes the communication module 5040. The communication module 5040 is initialized, triggering a power on self-test. The power on self-test can include the ASIC 5000 communicating with the communication module 5040 using a prescribed sequence of reading and writing data to verify the memory and one-time programmable memory are not corrupted.
When the ASIC 5000 enters the measurement mode for the first time, an insertion detection sequence is performed to verify that the sensor control device 102 has been properly installed onto the patient's body before a proper measurement can take place. First, the sensor control device 102 interprets a command to activate the measurement configuration process, causing the ASIC 5000 to enter measurement command mode. The sensor control device 102 then temporarily enters the measurement lifecycle state to run a number of consecutive measurements to test whether the insertion has been successful. The communication module 5040 or ASIC 5000 evaluates the measurement results to determine insertion success. When insertion is deemed successful, the sensor control device 102 enters a measurement state, in which the sensor control device 102 begins taking regular measurements using sensing hardware 5060. If the sensor control device 102 determines that the insertion was not successful, sensor control device 102 is triggered into an insertion failure mode, in which the ASIC 5000 is commanded back to storage mode while the communication module 5040 disables itself.
As embodied herein, a remote application server 155 operated by the manufacturer of the sensor control device 102 and/or the operator of the analyte monitoring system 100 can provide software and firmware updates to the devices of the analyte monitoring system 100. In particular embodiments, the remote application server 155 can provides the updated software and firmware to a user device 145 or directly to a multi-purpose data receiving device. As embodied herein, the remote application server 155 can also provide application software updates to an application storefront server 160 using interfaces provided by the application storefront. The multi-purpose data receiving device 130 can contact the application storefront server 160 periodically to download and install the updates.
After the multi-purpose data receiving device 130 downloads an application update including a firmware or software update for a data receiving device 120 or sensor control device 102, the data receiving device 120 or sensor control device 102 and multi-purpose data receiving device 130 establish a connection. The multi-purpose data receiving device 130 determines that a firmware or software update is available for the data receiving device 120 or sensor control device 102. The multi-purpose data receiving device 130 can prepare the software or firmware update for delivery to the data receiving device 120 or sensor control device 102. As an example, the multi-purpose data receiving device 130 can compress or segment the data associated with the software or firmware update, can encrypt or decrypt the firmware or software update, or can perform an integrity check of the firmware or software update. The multi-purpose data receiving device 130 sends the data for the firmware or software update to the data receiving device 120 or sensor control device 102. The multi-purpose data receiving device 130 can also send a command to the data receiving device 120 or sensor control device 102 to initiate the update. Additionally or alternatively, the multi-purpose data receiving device 130 can provide a notification to the user of the multi-purpose data receiving device 130 and include instructions for facilitating the update, such as instructions to keep the data receiving device 120 and the multi-purpose data receiving device 130 connected to a power source and in close proximity until the update is complete.
The data receiving device 120 or sensor control device 102 receives the data for the update and the command to initiate the update from the multi-purpose data receiving device 130. The data receiving device 120 can then install the firmware or software update. To install the update, the data receiving device 120 or sensor control device 102 can place or restart itself in a so-called “safe” mode with limited operational capabilities. Once the update is completed, the data receiving device 120 or sensor control device 102 re-enters or resets into a standard operational mode. The data receiving device 120 or sensor control device 102 can perform one or more self-tests to determine that the firmware or software update was installed successfully. The multi-purpose data receiving device 130 can receive the notification of the successful update. The multi-purpose data receiving device 130 can then report a confirmation of the successful update to the remote application server 155.
In particular embodiments, the storage memory 5030 of the sensor control device 102 includes one-time programmable (OTP) memory. The term OTP memory can refer to memory that includes access restrictions and security to facilitate writing to particular addresses or segments in the memory a predetermined number of times. The memory 5030 can be prearranged into multiple pre-allocated memory blocks or containers. The containers are pre-allocated into a fixed size. If storage memory 5030 is one-time programming memory, the containers can be considered to be in a non-programmable state. Additional containers which have not yet been written to can be placed into a programmable or writable state. Containerizing the storage memory 5030 in this fashion can improve the transportability of code and data to be written to the storage memory 5030. Updating the software of a device (e.g., the sensor device described herein) stored in an OTP memory can be performed by superseding only the code in a particular previously written container or containers with updated code written to a new container or containers, rather than replacing the entire code in the memory. In a second embodiment, the memory is not prearranged. Instead, the space allocated for data is dynamically allocated or determined as needed. Incremental updates can be issued, as containers of varying sizes can be defined where updates are anticipated.
At 531, after receiving the OTA programming command, the microcontroller 5010 validates the OTA programming command. The microcontroller 5010 can determine, for example, whether the OTA programming command is signed with an appropriate digital signature token. Upon determining that the OTA programming command is valid, the microcontroller 5010 can set the sensor device into an OTA programming mode. At 532, the microcontroller 5010 can validate the OTA programming data. At 533, The microcontroller 5010 can reset the sensor device 110 to re-initialize the sensor device 110 in a programming state. Once the sensor device 110 has transitioned into the OTA programming state, the microcontroller 5010 can begin to write data to the rewriteable memory 540 (e.g., memory 5020) of the sensor device at 534 and write data to the OTP memory 550 of the sensor device at 535 (e.g., storage memory 5030). The data written by the microcontroller 5010 can be based on the validated OTA programming data. The microcontroller 5010 can write data to cause one or more programming blocks or regions of the OTP memory 550 to be marked invalid or inaccessible. The data written to the free or unused portion of the OTP memory can be used to replace invalidated or inaccessible programming blocks of the OTP memory 550. After the microcontroller 5010 writes the data to the respective memories at 534 and 535, the microcontroller 5010 can perform one or more software integrity checks to ensure that errors were not introduced into the programming blocks during the writing process. Once the microcontroller 5010 is able to determine that the data has been written without errors, the microcontroller 5010 can resume standard operations of the sensor device.
In execution mode, at 536, the microcontroller 5010 can retrieve a programming manifest or profile from the rewriteable memory 540. The programming manifest or profile can include a listing of the valid software programming blocks and can include a guide to program execution for the sensor control device 102. By following the programming manifest or profile, the microcontroller 5010 can determine which memory blocks of the OTP memory 550 are appropriate to execute and avoid execution of out-of-date or invalidated programming blocks or reference to out-of-date data. At 537, the microcontroller 5010 can selectively retrieve memory blocks from the OTP memory 550. At 538, the microcontroller 5010 can use the retrieved memory blocks, by executing programming code stored or using variable stored in the memory.
As embodied herein a first layer of security for communications between the sensor control device 102 and other devices can be established based on security protocols specified by and integrated in the communication protocols used for the communication. Another layer of security can be based on communication protocols that necessitate close proximity of communicating devices. Furthermore certain packets and/or certain data included within packets can be encrypted while other packets and/or data within packets is otherwise encrypted or not encrypted. Additionally or alternatively, application layer encryption can be used with one or more block ciphers or stream ciphers to establish mutual authentication and communication encryption with other devices in the analyte monitoring system 100.
The ASIC 5000 of the sensor control device 102 can be configured to dynamically generate authentication and encryption keys using data retained within the storage memory 5030. The storage memory 5030 can also be pre-programmed with a set of valid authentication and encryption keys to use with particular classes of devices. The ASIC 5000 can be further configured to perform authentication procedures with other devices using received data and apply the generated key to sensitive data prior to transmitting the sensitive data. The generated key can be unique to the sensor control device 102, unique to a pair of devices, unique to a communication session between a sensor control device 102 and other device, unique to a message sent during a communication session, or unique to a block of data contained within a message.
As embodied herein, the sensor control device 102 can use application layer encryption using one or more block ciphers to establish mutual authentication and encryption of other devices in the analyte monitoring system 100. The use of a non-standard encryption design implemented in the application layer has several benefits. One benefit of this approach is that in certain embodiments the user can complete the pairing of a sensor control device 102 and another device with minimal interaction, e.g., using only an NFC scan and without requiring additional input, such as entering a security pin or confirming pairing
Both the sensor control device 102 and a data receiving device 120 can ensure the authorization of the other party in a communication session to, for example, issue a command or receive data. In particular embodiments, identity authentication can be performed through two features. First, the party asserting its identity provides a validated certificate signed by the manufacturer of the device or the operator of the analyte monitoring system 100. Second, authentication can be enforced through the use of public keys and private keys, and shared secrets derived therefrom, established by the devices of the analyte monitoring system 100 or established by the operator of the analyte monitoring system 100. To confirm the identity of the other party, the party can provide proof that the party has control of its private key.
The manufacturer of the sensor control device 102, data receiving device 120, or provider of the application for multi-purpose data receiving device 130 can provide information and programming necessary for the devices to securely communicate through secured programming and updates. For example, the manufacturer can provide information that can be used to generate encryption keys for each device, including secured root keys for the sensor control device 102 and optionally for the data receiving device 120 that can be used in combination with device-specific information and operational data (e.g., entropy-based random values) to generate encryption values unique to the device, session, or data transmission as need.
Analyte data associated with a user is sensitive data at least in part because this information can be used for a variety of purposes, including for health monitoring and medication dosing decisions. In addition to user data, the analyte monitoring system 100 can enforce security hardening against efforts by outside parties to reverse-engineering. Communication connections can be encrypted using a device-unique or session-unique encryption key. Encrypted communications or unencrypted communications between any two devices can be verified with transmission integrity checks built into the communications. Sensor control device 102 operations can be protected from tampering by restricting access to read and write functions to the memory 5020 via a communication interface. The sensor can be configured to grant access only to known or “trusted” devices, provided in a “whitelist” or only to devices that can provide a predetermined code associated with the manufacturer or an otherwise authenticated user. A whitelist can represent an exclusive range, meaning that no connection identifiers besides those included in the whitelist will be used, or a preferred range, in which the whitelist is searched first, but other devices can still be used. The sensor control device 102 can further deny and shut down connection requests if the requestor cannot complete a login procedure over a communication interface within a predetermined period of time (e.g., within four seconds). These characteristics safeguard against specific denial of service attacks, and in particular against denial-of-service attacks on a BLE interface.
For purpose of illustration and not limitation, reference is made to the exemplary embodiment of a message sequence diagram 600 for use with the disclosed subject matter as shown in
Following a successful mutual authentication process 620, at step 625 the sensor control device 102 can provide the data receiving device 120 with a sensor secret 625. The sensor secret can contain sensor-unique values and be derived from random values generated during manufacture. The sensor secret can be encrypted prior to or during transmission to prevent third-parties from accessing the secret. The sensor secret 625 can be encrypted via one or more of the keys generated by or in response to the mutual authentication process 620. At step 630, the data receiving device 120 can derive a sensor-unique encryption key from the sensor secret. The sensor-unique encryption key can further be session-unique. As such, the sensor-unique encryption key can be determined by each device without being transmitted between the sensor control device 102 or data receiving device 120. At step 635, the sensor control device 102 can encrypt data to be included in payload. At step 640, the sensor control device 102 can transmit the encrypted payload 640 to the data receiving device 120 using the communication link established between the appropriate communication models of the sensor control device 102 and data receiving device 120. At step 645, the data receiving device 120 can decrypt the payload using the sensor-unique encryption key derived during step 630. Following step 645, the sensor control device 102 can deliver additional (including newly collected) data and the data receiving device 120 can process the received data appropriately.
As discussed herein, the sensor control device 102 can be a device with restricted processing power, battery supply, and storage. The encryption techniques used by the sensor control device 102 (e.g., the cipher algorithm or the choice of implementation of the algorithm) can be selected based at least in part on these restrictions. The data receiving device 120 can be a more powerful device with fewer restrictions of this nature. Therefore, the data receiving device 120 can employ more sophisticated, computationally intense encryption techniques, such as cipher algorithms and implementations.
The sensor control device 102 can be configured to alter its discoverability behavior to attempt to increase the probability of the receiving device receiving an appropriate data packet and/or provide an acknowledgement signal or otherwise reduce restrictions that can be causing an inability to receive an acknowledgement signal. Altering the discoverability behavior of the sensor control device 102 can include, for example and without limitation, altering the frequency at which connection data is included in a data packet, altering how frequently data packets are transmitted generally, lengthening or shortening the broadcast window for data packets, altering the amount of time that the sensor control device 102 listens for acknowledgement or scan signals after broadcasting, including directed transmissions to one or more devices (e.g., through one or more attempted transmissions) that have previously communicated with the sensor control device 102 and/or to one or more devices on a whitelist, altering a transmission power associated with the communication module when broadcasting the data packets (e.g., to increase the range of the broadcast or decrease energy consumed and extend the life of the battery of the analyte sensor), altering the rate of preparing and broadcasting data packets, or a combination of one or more other alterations. Additionally, or alternatively, the receiving device can similarly adjust parameters relating to the listening behavior of the device to increase the likelihood of receiving a data packet including connection data.
As embodied herein, the sensor control device 102 can be configured to broadcast data packets using two types of windows. The first window refers to the rate at which the sensor control device 102 is configured to operate the communication hardware. The second window refers to the rate at which the sensor control device 102 is configured to be actively transmitting data packets (e.g., broadcasting). As an example, the first window can indicate that the sensor control device 102 operates the communication hardware to send and/or receive data packets (including connection data) during the first 2 seconds of each 60 second period. The second window can indicate that, during each 2 second window, the sensor control device 102 transmits a data packet every 60 milliseconds. The rest of the time during the 2 second window, the sensor control device 102 is scanning. The sensor control device 102 can lengthen or shorten either window to modify the discoverability behavior of the sensor control device 102.
In particular embodiments, the discoverability behavior of the analyte sensor can be stored in a discoverability profile, and alterations can be made based on one or more factors, such as the status of the sensor control device 102 and/or by applying rules based on the status of the sensor control device 102. For example, when the battery level of the sensor control device 102 is below a certain amount, the rules can cause the sensor control device 102 to decrease the power consumed by the broadcast process. As another example, configuration settings associated with broadcasting or otherwise transmitting packets can be adjusted based on the ambient temperature, the temperature of the sensor control device 102, or the temperature of certain components of communication hardware of the sensor control device 102. In addition to modifying the transmission power, other parameters associated with the transmission capabilities or processes of the communication hardware of the sensor control device 102 can be modified, including, but not limited to, transmission rate, frequency, and timing. As another example, when the analyte data indicates that the subject is, or is about to be, experiencing a negative health event, the rules can cause the sensor control device 102 to increase its discoverability to alert the receiving device of the negative health event.
In some examples, the external device 2100 can be a pump configured to deliver medication to a user on a continuous basis (e.g., basal dosages), or in set dosage amounts delivered at a single time (e.g., bolus dosages). The external device 2100 can include a pump that is electronically controlled either from the external device 2100, or through a wired or wireless connection from another device (e.g., sensor assembly 2000 or receiving device 1900). The external device 2100 can include a reservoir for storing medication that is located in the same assembly as a delivery site (a tubeless external device). Alternatively, the reservoir can be connected by a tube to the delivery site. The external device 2100 can be entirely disposable, or the external device 2100 can be non-disposable and include a refillable or replaceable reservoir. The external device 2100, and variations thereof, can also be referred to as a “infusion device,” a “medication delivery device,” a “medication pump,” a “insulin pump,” or a “disposable device,” to name a few.
External device 2100 can send and receive communication with both the sensor assembly 2000 via communication link 1802 and the receiving device 1900 via communication link 1804. As embodied herein, the receiving device 1900 can also send and receive communications with the sensor assembly 2000 via communication link 1806.
Communication links 1802, 1804, 1806 can be a wireless protocol including Bluetooth®, Bluetooth® Low Energy (BLE, BTLE, Bluetooth® SMART, etc.), Near-Field Communication (NFC) and others. The communication links 1802, 1804, 1806 can each use the same or different wireless protocols. The system 1800 may be configured to communicate over other wireless data communication links such as, but not limited to, RF communication link, infrared communication link, or any other type of suitable wireless communication connection between two or more electronic devices, which may further be uni-directional or bi-directional communication. Alternatively, the data communication link may include wired cable connection such as, for example, but not limited to, RS232 connection, USB connection, or serial cable connection.
For example, and as embodied herein, communication links 1802, 1804 can be configured to use a Bluetooth protocol, such as BLE, and communication link 1806 can be configured to use an NFC protocol. Additionally or alternatively, communication link 1806 can be configured to use BLE or both NFC and BLE. The communication links can be configured to perform different operations. For example, communication link 1806 can be configured to perform only activation of the sensor assembly 2000. Furthermore, communication links can have different configurations depending on the overall system architecture or the components that are activated or being used in the system at a given time. For example, and as embodied herein, communication link 1806 can have a first communication configuration when the external device 2100 is active in the system 1800 and a second communication configuration when the external device 2100 is not active or included in the system 1800.
In the first communication configuration, the communication link 1806 can be configured only to perform activation of the sensor assembly 2000 using an NFC wireless protocol. In some examples, the external device 2100 is not configured for NFC capability to perform the activation. In such a configuration, BLE capability (if provided) can remain inactive between the sensor assembly 2000 and the external device 2100. The external device 2100 can be an intermediary device between the sensor assembly 2000 and the receiving device 1900. In some examples, the receiving device 1900 can activate the sensor assembly 2000 using NFC wireless protocols and obtain sensor context information. In some examples, the external device 2100 can activate the sensor assembly 2000 using NFC wireless protocols and obtain the sensor context information from the sensor assembly 2000.
Sensor context information can include authentication information for authenticating a communication session with the sensor assembly 2000, encryption information to enable encrypted data communication over the communication links, and a BLE communication address to initiate a BLE connection with the sensor assembly 2000. The external device 2100 can obtain the sensor context information from the receiving device 1900 to allow the external device 2100 to communicate with the sensor assembly 2000 over BLE. In some examples, the receiving device 1900 obtains the sensor context information from the external device 2100. During operation, the external device 2100 can add sensor context information while communicating with the sensor assembly 2000. The additional sensor context information can include, for example, latest glucose readings. As will be described in detail below, the sensor context information, as updated by the external device 2100, can be transmitted back to the receiving device 1900 upon external device 2100 expiration so full sensor context information can be restored to a replacement external device 2100. In the second communication configuration, communication link 1806 can have BLE capabilities activated such that information generated at the sensor assembly 2000 (e.g., analyte data) can be communicated directly to the receiving device 1900.
The system 1800 may be configured to operate with one or more components (sensor assembly 2000, receiving device 1900, and external device 2100) as an open loop system, a closed-loop system, and a hybrid closed-loop system. An open loop system uses manual user input to control the external device 2100. A closed-loop system uses data from the sensor assembly 2000 and algorithms to control the external device 2100 without user input. In a hybrid system, input from a user may be used to control the external device 2100 (e.g., for a manual mealtime bolus) in conjunction with the algorithm that also controls the external device 2100 (e.g., to automatically control a basal rate). A hybrid closed-loop system can be used in conjunction with, or in place of, a closed-loop system.
The receiving device 1900 can export system data to a reporting system, which can be located on the receiving device 200, another device (e.g., a multi-purpose data receiving device 130) or in a remote server 1950, which can be embodied in a remote application server 155 in direct or indirect communication with the receiving device 1900. The reporting system can generate a report containing information and visualization of glucose, insulin, and metrics related to a closed loop system or a hybrid closed loop system. The report can include insights about how to improve performance of a hybrid closed loop algorithm based on modifiable hybrid closed loop system factors such as basal rate, carbohydrate ratio, correction factor, and insulin on board.
The receiving device 1900 can have the majority of the processing capability of the system 1800 for rendering end-result data suitable for display to a user. The receiving device 1900 can be a smartphone or a smartwatch. The receiving device 1900 can be configured to execute a hybrid closed-loop algorithm to provide medication delivery instructions to the external device 2100.
The receiving device 1900 can receive glucose data and calculate low glucose and high glucose levels and generate corresponding alarms. The receiving device 1900 can also mirror an alert generated by another device, such as the external device 2100 or the sensor assembly 2000. The receiving device 1900 can process glucose data with the processor 1906 and display on the display 1902 glucose-related information as value, trend, and graph.
The glucose sensor 2002 generates raw data signals for measurements of the user's glucose level. Sensor electronics 2004 are operatively coupled to the glucose sensor 2002, the sensor electronics 2004 comprising a memory 2016 storing one or more predetermined characteristics 2022 associated with the sensor electronics 2004. The memory 2016 can be a so-called “one-time programmable” (OTP) memory, which can include supporting architectures or otherwise be configured to define the number times to which a particular address or region of the memory can be written, which can be one time or more than one time up to the defined number of times after which the memory can be marked as unusable or otherwise made unavailable for programming. Subject matter disclosed herein relate to systems and method for updating said OTP memories with new information.
The sensor electronics 2004 can include a single semiconductor chip, as depicted, that can be a custom application specific integrated circuit (ASIC 2006). Shown within ASIC 2006 are certain high-level functional units, including an analog front end (AFE 2008), power management (or control) circuitry 2010, processor 2012, and communication circuitry 2014 (which can be implemented as a transmitter, receiver, transceiver, passive circuit, or otherwise according to the communication protocol). As an example only and not by way of limitation, example communication circuitry 2014 can include a Bluetooth Low-Energy (“BLE”) chipset, Near-Field Communication (“NFC”) chipset, or other chipsets for use with similar short-range communication schemes, such as a personal area network according to IEEE 802.15 protocols, IEEE 802.11 protocols, infrared communications according to the Infrared Data Association standards (IrDA), etc. The communication circuitry 2014 can transmit and receive data and commands via interaction with similarly-capable communication modules. Certain communication chipsets can be embedded in ASIC 2006 (e.g., an NFC antenna).
The sensor assembly 2000 can use application layer encryption using one or more block ciphers to establish mutual authentication and encryption of other devices in the system 1800. As described herein, the use of a non-standard encryption design implemented in the application layer has several benefits. One benefit of this approach is that in certain embodiments the user can complete the pairing of the sensor assembly 2000 and another device with minimal interaction, e.g., using only an NFC scan and without requiring additional input, such as entering a security pin or confirming pairing. Sensor assembly 2000 can be configured to dynamically generate authentication and encryption keys. Sensor assembly 2000 can also be pre-programmed with a set of valid authentication and encryption keys to use with particular classes of devices. The ASIC 2006 can be further configured to perform authentication procedures with other devices (e.g., handshake, mutual authentication, etc.) using received data and apply the generated key to sensitive data prior to transmitting the sensitive data.
In this embodiment, both AFE 2008 and processor 2012 are used as analyte monitoring circuitry, but in other embodiments either circuit can perform analyte monitoring functions. Processor 2012 can include one or more processors, microprocessors, controllers, and/or microcontrollers, each of which can be a discrete chip or distributed amongst (and a portion of) a number of different chips.
Memory 2016 included within ASIC 2006 can be shared by the various functional units present within ASIC 2006, or can be distributed amongst two or more of them. Memory 2016 can also be a separate chip. Memory 2016 can be volatile and/or non-volatile memory. In this embodiment, ASIC 2006 is coupled with a power source 2018, which can be a coin cell battery, or the like. AFE 2008 interfaces with glucose sensor 2002 and receives measurement data therefrom and outputs the data to processor 2012 in digital form. In some examples, this data in digital form can then be provided to communication circuitry 2014 for sending, by way of antenna 2020, to external device 2100 or receiving device 1900. In some examples, the data in digital form can first by processed by the ASIC 2006 to convert the measurement data into converted and/or calibrated data representative as discussed herein. The ASIC 2006 can further generate additional data from the processed or unprocessed data to derive, for example, trend data, alert data, etc.
The glucose sensor 2002 can alternatively monitor other analytes, including, by way of example and not limitation ketones (ketone bodies), lactate, oxygen, hemoglobin A1C, albumin, alcohol, alkaline phosphatase, alanine transaminase, aspartate aminotransferase, bilirubin, blood urea nitrogen, calcium, carbon dioxide, chloride, creatinine, hematocrit, magnesium, oxygen, pH, phosphorus, potassium, sodium, total protein, uric acid, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glutamine, growth hormones, hormones, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin.
The external device 2100 can be medication delivery device, such as an insulin pump. The external device 2100 can include medication delivery components including a reservoir 2116, a medication pump controller 2118, and an injection cannula 2120. The reservoir 2116 can be configured to store medication, such as insulin, to supply basal and bolus insulin doses. The medication pump controller 2118 can be an electronically controlled pump configured to deliver medication as a basal or bolus. Insulin can be administered to the patient, for example according to a patient's insulin profile, which can be determined based on a number of factors, including the patient's glucose levels while or after insulin is administered to the patient. The injection cannula 2120 can be a needle configured to remain inserted in a patient's skin during the entire use of the external device 2100.
With continued reference to
A memory 2111 is also included within ASIC 2102 and can be shared by the various functional units present within ASIC 2102, or can be distributed amongst two or more of them. Memory 2111 can also be a separate chip. Memory 2111 can be volatile and/or non-volatile memory. In this embodiment, ASIC 2102 is coupled with a power source 2112, which can be a coin cell battery, or the like. AFE 2104 interfaces with the sensor electronics 2004 and receives measurement data therefrom and outputs the data to processor 2108 in digital form. This data can then be provided to communication circuitry 2110 for sending, by way of antenna 2114, to receiving device 1900.
The memory can store a sensor assembly embedded library 2122 configured for providing sensor assembly data to the external device 2100 based on information received from the sensor assembly 2000. Sensor assembly data can include glucose readings, data types, range, real time and historical glucose and trends, sensor operating information, and sensor system information. The processor 2108 can call the embedded library about every fifth minute to request glucose readings. In some examples, the processor 2108 can call the embedded library at different fixed rates (e.g., every minute, every fifth minute, every 10th minute, etc.). In some examples, the processor 2018 can vary the rate at which it calls the embedded library. The sensor assembly embedded library 2122 can then generate a request to the sensor assembly 2000 for glucose readings. If a glucose reading is missed, the processor 2108 can wait another full cycle of about 5 minutes before requesting glucose readings. The processor 2108 can determine urgent low glucose and generate an urgent low glucose alarm.
At 2306, the first disposable device is replaced with the second disposable device. For example, disposable device (external device 2100) can have a use period of about 3-4 days and may require multiple replacements during the use period of a sensor assembly 2000. The receiving device 1900 transmits the packaged sensor context information 1852 to the second disposable device at 2308. The second disposable device is then ready for use in the system 1800. In some examples, the sensor context information 1852 can be retrieved from the remote server 1950 before it is provided to the second disposable device. As an example, the sensor context information 1852 can be retrieved by a second receiving device 1900, such as when the original receiving device is lost, replaced, or supplemented with another receiving device 1900. Consistent format in terms of memory structure and library files can be used by both the sensor assembly embedded library 2122 (located in the external device 2100) and the sensor assembly software package 1918 (located in the receiving device 1900). For example, embedded library 2122 and software package 1918 can each include a library having the same logic for determining an output of the analyte value from received sensor data and can include the same or similar memory structure for storing the received sensor data and/or the determined output. For security, the sensor context information 1852 can be encrypted. The system and method can be configured to recover and maintain the sensor context information 1852 after a failure or reset on the external device 2100 or the receiving device 1900.
As used herein, the sensor context information 1852 can include encryption information for authentication between the first disposable device and the sensor electronics 2004. The sensor context information 1852 can include communication information for establishing a direct wireless connection between the sensor electronics and each external device 2100. For example, the communication information can be used to securely establish a Bluetooth connection between the sensor assembly 2000 and external device 2100. The communication information can include encryption information, device addresses, and/or sensor assembly 2000 identification information. The sensor context information 1852 can include configuration parameters for converting raw data signals of the glucose sensor 2002. The sensor context information 1852 can include calibration information for the glucose sensor 2002. The sensor context information 1852 can include a compilation of data communicated between the glucose sensor 2002 and the first disposable device.
At 2406, the first disposable device is replaced with the second disposable device. For example, disposable device (external device 2100) can have a fixed use period and may require multiple replacements during the use period of a glucose assembly 2000. In some examples, the sensor context information 1852 can be retrieved from the remote server 1950 before it is provided to the second disposable device. As an example, the sensor context information 1852 can be retrieved by a second receiving device 1900, such as when the original receiving device is lost, replaced, or supplemented with another receiving device 1900. The receiving device 1900 transmits the packaged sensor context information 1852 to the second disposable device (2408). The second disposable device is then ready for use in the system 1800. Consistent format in terms of memory structure and library files can be used by both the sensor assembly embedded library 2122 (located in the external device 2100) and the sensor assembly software package 1918 (located in the receiving device 1900). For example, embedded library 2122 and software package 1918 can each include a library having the same logic for determining an output of the analyte value from received sensor data, and can include the same or similar memory structure for storing the received sensor data and/or the determined output. For security, the sensor context information 1852 can be encrypted. The system and method can be configured to recover and maintain the sensor context information 1852 after a failure or reset on the external device 2100 or the receiving device 1900.
The system 1800 can include various restriction features. A first system 1800 restriction is a localization restriction that can account for potential country and prescription restrictions. An exemplary localization restriction is described herein, wherein a user is required to create an account on a website associated with the supplier of the external device 2100, and additionally or alternatively, the user is required to download and create an account on the external device application 1916. The external device website or application can require product data management information that includes certain user and device information, including a user's prescription location information. The external device supplier can configure their software with localization information based the country the system 1800 is being used in. For determining the country, personal information, such as a home address of the user if available or a location obtained from prescription information, can be used from the product data management software. Localization can be an example of a parameter that allows the receiving device 1900 to communicate with the sensor assembly 2000. If localization information on the receiving device 1900 and the sensor assembly 2000 do not match, then the sensor assembly 2000 will not activate. When the sensor assembly 2000 is successfully activated, the receiving device 1900 can provide the localization information to the external device 2100 via the sensor context information 1852.
A second system 1800 restriction can require an external device 2100 in the system 1800 for use of the external device application 1916. For example, this system restriction can apply in circumstances wherein an external device supplier also provides an external device application 1916 and the external device application 1916 is technologically capable of use with a sensor assembly 2000 without an external device 2100. A system restriction can be configured restrict a user from use of the external device application 1916 without an external device 2100. The system restriction can be configured to allow for use without an external device before providing a reminder to a user that an external device 2100 must be connected. If an external device 2100 is not connected, the system restriction can be configured to shut down the external device application.
Additional details of suitable devices, systems, methods, components and the operation thereof along with related features are set forth in U.S. Pat. No. 10,149,330 to Sloan, U.S. Pat. No. 8,029,460 to Rush et al., and U.S. Pat. Pub. No. 2016/0106919 to Hayter et al., each of which is incorporated by reference in its entirety herein.
It should be noted that all features, elements, components, functions, and steps described with respect to any embodiment provided herein are intended to be freely combinable and substitutable with those from any other embodiment. If a certain feature, element, component, function, or step is described with respect to only one embodiment, then it should be understood that that feature, element, component, function, or step can be used with every other embodiment described herein unless explicitly stated otherwise. This paragraph therefore serves as antecedent basis and written support for the introduction of claims, at any time, that combine features, elements, components, functions, and steps from different embodiments, or that substitute features, elements, components, functions, and steps from one embodiment with those of another, even if the following description does not explicitly state, in a particular instance, that such combinations or substitutions are possible. Thus, the foregoing description of specific embodiments of the disclosed subject matter has been presented for purposes of illustration and description. It is explicitly acknowledged that express recitation of every possible combination and substitution is overly burdensome, especially given that the permissibility of each and every such combination and substitution will be readily recognized by those of ordinary skill in the art.
Also disclosed are the following clauses:
1. A system for managing a glucose level of a user, the system comprising:
a glucose sensor comprising a proximal portion and a distal portion, wherein the distal portion comprises a plurality of electrodes, a glucose-responsive enzyme, and a glucose flux regulating membrane, wherein the glucose sensor is configured to be inserted in contact with a bodily fluid under a skin layer of the user, wherein the glucose sensor is configured to generate raw data signals corresponding to measurements of the glucose level in the bodily fluid;
sensor electronics operatively coupled to the glucose sensor, the sensor electronics comprising a memory storing one or more predetermined characteristics associated with the sensor electronics, wherein the sensor electronics are in electronic communication with the glucose sensor;
a receiving device; and
a plurality of external devices including at least a first disposable device and a second disposable device,
wherein each external device is configured for wireless communication with the receiving device and the sensor electronics, and
wherein the system enables the transfer of sensor context information from the first disposable device to the second disposable device.
2. The system of clause 1, wherein the first disposable device is configured to package the sensor context information into a format configured to be uploaded by the second disposable device to the receiving device.
3. The system of any of clauses 1-2, wherein the first disposable device is configured to transfer the sensor context information to the receiving device, and the receiving device is configured to package the sensor context information into a format configured to be uploaded by the second disposable device.
4. The system of any of clauses clause 1-3, wherein the sensor context information includes encryption information for authentication between the first disposable device and the sensor electronics.
5. The system of any of clauses 1-4, wherein the sensor context information includes communication information for establishing a direct wireless connection between the sensor electronics and each external device.
6. The system of any of clauses 1-5, wherein the sensor context information includes configuration parameters for converting the raw data signals of the glucose sensor.
7. The system of any of clauses 1-6, wherein the sensor context information includes calibration information for generating calibrated glucose levels based on the raw data signals of the glucose sensor.
8. The system of any of clauses 1-7, wherein the sensor context information includes a compilation of data communicated between the glucose sensor and the first disposable device.
9. The system of any of clauses 1-8, wherein each external device has a use period of about 3-4 days.
10. The system of any of clauses 1-9, wherein the glucose sensor has a use period of about 13-15 days.
11. The system of any of clauses 1-10, wherein each external device is an insulin pump.
12. The system of clause 11, wherein the insulin pump is a tubeless wearable patch pump.
13. The system of clause 11, wherein the receiving device is configured to execute a hybrid closed-loop algorithm to provide medication delivery instructions to the external device.
14. The system of any of clauses 1-13, wherein the receiving device is a smartphone or a smartwatch.
15. The system of any of clauses 1-15, wherein each external device is configured for wireless communication with the receiving device and the sensor electronics via Bluetooth® communication protocol.
16. A method for managing a glucose level of a user, the method comprising:
establishing wireless communication between a first disposable device and sensor electronics operatively coupled to a glucose sensor, wherein the glucose sensor is configured to generate raw data signals corresponding to measurements of the glucose level of the user, wherein the sensor electronics comprise a memory storing one or more predetermined characteristics associated with the sensor electronics;
generating, by the first disposable device, sensor context information; and
transferring the sensor context information from the first disposable device to a second disposable device, wherein the first disposable device and the second disposable device comprise a plurality of external devices configured to wirelessly communicate with the sensor electronics.
17. The method of clause 16, wherein the first disposable device and the second disposable device are insulin pumps.
18. The method of any of clauses 16-17, wherein the sensor context information includes encryption information for authentication between the sensor electronics and at least the first disposable device.
19. The method of any of clauses 16-18, wherein the sensor context information includes communication information for establishing a direct wireless connection between the sensor electronics and at least the first disposable device.
20. The method of any of clauses 16-19, further comprising packaging, by the first disposable device, the sensor context information into a format configured to be uploaded by the second disposable device.
While the embodiments are susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. It will be apparent to those skilled in the art that various modifications and variations can be made in the method and system of the disclosed subject matter without departing from the spirit or scope of the disclosed subject matter. Thus, it is intended that the disclosed subject matter include modifications and variations that are within the scope of the appended claims and their equivalents. Furthermore, any features, functions, steps, or elements of the embodiments may be recited in or added to the claims, as well as negative limitations that define the inventive scope of the claims by features, functions, steps, or elements that are not within that scope.
This application claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Patent Application No. 63/254,501, filed Oct. 11, 2021, which is incorporated herein by reference in its entirety and for all purposes.
Number | Date | Country | |
---|---|---|---|
63254501 | Oct 2021 | US |