The embodiments described herein relate to methods and devices for generating and using machine learning models including, for example, event-based knowledge reasoning systems that use active and passive sensors for patient monitoring and feedback. Such event-based knowledge reasoning systems can be generated and trained using patient data and then used in the treatment of disorders (e.g., mood disorders, substance use disorders, or post-traumatic stress disorder (PTSD)). More particularly, the embodiments described herein relate to methods and devices for generating and implementing logic processing that obtains specific biological domain data associated with digital therapies for treating disorders and applies a reasoning technique for patient monitoring and feedback associated with such therapies and/or treatment.
Drug therapies have been used to treat many different types of medical conditions and disorders. Drug therapies can be administered to a patient to target a specific condition or disorder. Examples of suitable drug therapies can include pharmaceutical medications, biological products, etc. Treatments for certain types of mood and/or substantive use disorders can also involve counseling sessions, psychotherapy, or other types of structured interactions.
Drug therapies can oftentimes take weeks or months to achieve their full effects, and in some instances may require continued use or lead to drug dependencies or other complications. Psychotherapy and other types of human interactions can be useful for treating disorders without the complications of drug therapies, but may be limited by the availability of trained professionals and vary in effectiveness depending on skills, time availability of the trained professional and patient, and/or specific techniques used by trained professionals. There are also benefits associated with medically assisted therapy (MAT), i.e., use of medications alongside behavioral therapy or counseling, but such treatment is also limited by availability and other factors. Additionally, therapeutic professionals can be expensive, difficult to coordinate meetings with, and/or require large blocks of time to interact with (e.g., typically over 30 minutes per session).
Accordingly, a need exists for improved methods and devices for treating disorders.
The embodiments described herein relate to methods and devices for generating and using machine learning models including, for example, event-based knowledge reasoning systems that use active and passive sensors for patient monitoring and feedback. In some embodiments, systems, devices, and methods described herein can be for inferring adverse events based on rule-based reasoning. For example, a method can include constructing, using supervised learning, unsupervised learning, or reinforcement learning, an event-based model for generating inferring a predictive score for a subject using a training dataset; receiving a set of data streams associated with the subject; inferring, using the model and based on the data streams, a predictive score for the subject; and determining a likelihood of an adverse event based on the predictive score.
In some embodiments, systems, devices, and methods are described herein for treating disorders. In some embodiments, the systems, devices, and methods described herein relate to monitoring a subject undergoing treatment for a mood disorder or substance abuse disorder and/or providing digital therapy as part of a treatment regimen for such disorders.
The server 110 may include component(s) that are remotely situated from other compute devices and/or located on premises near the compute devices. The server 110 can be a compute device (or multiple compute devices) having a processor 112 and a memory 114 operatively coupled to the processor 112. In some instances, the server 110 can be any combination of hardware-based modules (e.g., a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP)) and/or software-based modules (computer code stored in memory 114 and/or executed at the processor 112) capable of performing one or more specific functions associated with that module. In some instances, the server 110 can be a server such as, for example, a web server, an application server, a proxy server, a telnet server, a file transfer protocol (FTP) server, a mail server, a list server, a collaboration server and/or the like. In some instances, the server 110 can include or be communicatively coupled to a personal computing device such as a desktop computer, a laptop computer, a personal digital assistant (PDA), a standard mobile telephone, a tablet personal computer (PC), and/or so forth.
The memory 114 can be, for example, a random-access memory (RAM) (e.g., a dynamic RAM, a static RAM), a flash memory, a removable memory, a hard drive, a database and/or so forth. In some implementations, the memory 114 can include (or store), for example, a database, process, application, virtual machine, and/or other software code and/or modules (stored and/or executing in hardware) and/or hardware devices and/or modules configured to execute one or more processes, as described with reference to
The processor 112 can be configured to, for example, write data into and/or read data from the memory 114, and execute the instructions stored within the memory 114. The processor 112 can also be configured to execute and/or control, for example, the operations of other components of the server 110 (such as a network interface card, other peripheral processing components (not shown)). In some implementations, based on the instructions stored within the memory 114, the processor 112 can be configured to execute one or more steps of the processes depicted in
In some embodiments, the server 110 can be communicatively coupled to one or more database(s) 140. The database(s) 140 can include one or more repositories, storage devices and/or memory for storing information from patients, physicians and therapists, caretakers, and/or other individual involved in assisting and/or administering therapy and/or care to a patient. In some embodiments, the server 100 can be coupled to a first database for storing patient information and/or assignments (e.g., content, coursework, etc.) and a second database for storing chat and/or voice data received from the patient (e.g., responses to assignments, vocal-acoustic data, etc.). Further details of example database(s) are described with reference to
The user device 120 can be a compute device associated with a user, such as a patient or a supporter (e.g., caretaker or other individual providing support or caring for a patient). The user device can have a processor 122 and a memory 124 operatively coupled to the processor 122. In some instances, the user device 120 can be a cellular telephone (e.g., smartphone), tablet computer, laptop computer, desktop computer, portable media player, wearable digital device (e.g., digital glasses, wristband, wristwatch, brooch, armbands, virtual reality/augmented reality headset), and the like. The user device 120 can be any combination of hardware-based device and/or module (e.g., a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP)) and/or software-based code and/or module (computer code stored in memory 122 and/or executed at the processor 121) capable of performing one or more specific functions associated with that module.
The memory 124 can be, for example, a random-access memory (RAM) (e.g., a dynamic RAM, a static RAM), a flash memory, a removable memory, a hard drive, a database and/or so forth. In some implementations, the memory 124 can include (or store), for example, a database, process, application, virtual machine, and/or other software code or modules (stored and/or executing in hardware) and/or hardware devices and/or modules configured to execute one or more processes as described with regards to
The processor 122 can be configured to, for example, write data into and/or read data from the memory 124, and execute the instructions stored within the memory 124. The processor 122 can also be configured to execute and/or control, for example, the operations of other components of the user device 120 (such as a network interface card, other peripheral processing components (not shown)). In some implementations, based on the instructions stored within the memory 124, the processor 122 can be configured to execute one or more steps of the processes described with respect to
The user device 120 can include an input/output (I/O) device 126 (e.g., a display, a speaker, a tactile output device, a keyboard, a mouse, a microphone, a touchscreen, etc.), which can include a user interface, e.g., a graphical user interface, that presents information (e.g., content) to a user and receives inputs from the user. In some embodiments, the user device 120 can implement a mobile application that presents the user interface to a user. In some embodiments, the user interface can present content, including, for example, text, audio, video, and interactive activities, to a user, e.g., for educating a user regarding a disorder, therapy program, and/or treatment, or for obtaining information about the user in relation to a treatment or therapy program. In some embodiments, the content can be provided during a digital therapy session, e.g., for treating a medical condition of a patient and/or preparing a patient for treatment or therapy. In some embodiments, the content can be provided as part of a periodic (e.g., a daily, weekly, or monthly) check-in, whereby a patient is asked to provide information regarding a mental and/or physical state of the patient.
In some embodiments, the user device 120 may include or be coupled to one or more sensors (not shown in
In some embodiments, the user device 120 may be configured to track one or more of a patient's responses to interactive questionnaires and surveys, diary entries and/or other logging, vocal-acoustic data, digital biomarker data, and the like. For example, the user device 120 may present one or more questionnaires or exercises for the patient to complete. In some implementations, the user device 120 can collect data during the completion of the questionnaire or exercise. Results may be made available to a therapist and/or physician. In some embodiments, when a user provides input into the user device 120, the device can generate and use haptic feedback (e.g., vibration) to interact with the patient. The vibration can be in different patterns in different situations, as described with reference to
In some embodiments, the user device 120 and/or the server 110 (or other compute device) coupled to the user device 120 can be configured to process and/or analyze the data from the patient and evaluate information regarding the patient, e.g., whether the patient has a particular disorder, whether the patient has increased brain plasticity and/or motivation for change, etc. Based on the analysis, certain information can be provided to a therapist and/or physician, e.g., via the therapy provider device 130.
The therapy provider device 130 may refer to any device configured to be operated by one or more providers, healthcare professionals, therapists, caretakers, etc. Similar to the user device 120, the therapy provider device 130 can include a processor 132, a memory 134, and an I/O device 136. The therapy provider device 130 can be configured to receive information from other compute devices connected to the network 102, including, for example, information regarding patients, alerts, etc. In some embodiments, therapy provider device 130 can receive information from a provider, e.g., via I/O device 136, and provide that information to one or more other compute devices. For example, a therapist during a therapy session can input information regarding a patient into the therapy provider device 130 via I/O device 136, and such information can be consolidated with other information regarding the patient at one or more other compute devices, e.g., server 110, user device 120, etc. In some embodiments, the therapy provider device 130 can be configured to control content that is delivered to a patient (e.g., via user device 120), information that is collected from a patient (e.g., via user device 120), and/or monitoring and/or therapy being used with a patient. For example, the therapy provider device 130 may configure the server 110, user device 120, and/or other compute devices (e.g., a caretaker device, supporter device, other provider device, etc.) to monitor certain information about a patient and/or provide certain content to a patient.
In some embodiments, information about a patient, e.g., collected by user device 120, therapy provider device 130, etc. can be provided to one or more other compute devices, e.g., server 110, compute device(s) 150, etc., which can be configured to process and/or analyze the information. For example, a data processing and/or machine learning device can be configured to receive raw information collected from or about a patient and process and/or analyze that information to derive other information about a patient (e.g., vocabulary, vocal-acoustic data, digital biomarker data, etc.). Further details of such data processing and/or analysis are described with reference to
Compute device(s) 150 can include one or more additional compute devices, each including one or more processors and/or memories as described herein, that can be configured to perform certain functions. For example, compute device(s) 150 can include a data processing device, a machine learning device, a content creation or management device, etc. Further details of such devices are described with reference to
The compute devices described herein can communicate with one another via the network 102. The network 102 may be any type of network (e.g., a local area network (LAN), a wide area network (WAN), a virtual network, a telecommunications network) implemented as a wired network and/or wireless network and used to operatively couple the devices. As described in further detail herein, in some embodiments, for example, the system includes computers connected to each other via an Internet Service Provider (ISP) and the Internet. In some embodiments, a connection may be defined via the network between any two devices. As shown in
In some embodiments, the compute devices may communicate with each other (e.g., send data to and/or receive data from) and with the network 102 via intermediate networks and/or alternate networks (not shown in
The system 200 can include a connected infrastructure (e.g., server or sever-less cloud processing) of various compute devices. The compute devices can include, for example, a server 210, a mobile device 220, a content repository 242, a database 244, a raw data repository 246, a content creation tool 252, a machine learning system 254, and a data processing pipeline 256. In some embodiments, the system 200 can include a separate administration device (not depicted), e.g., implementing an administration tool (e.g., a website or desktop based program).
In some embodiments, the system 200 can be managed via one or more of the server 210, mobile device 220, content creation tool 252, etc.
The server 210 can be structurally and/or functionally similar to server 110, described with reference to
The mobile device 220 can be structurally and/or functionally similar to the user device 120, described with reference to
In some embodiments, the mobile device 220 (e.g., via the mobile application) can track completion of activities including, for example, recording metrics of response time, activity choice, and responses provided by a user. In some embodiments, the mobile device 220 can record passive data including, for example, hand tremors, facial expressions, eye movement and pupillometry, and keyboard typing speed. In some embodiments, the mobile device 220 can be configured to send reward messages to users for completing an assignment or task associated with the content.
In some embodiments, content can involve interactions in group activities. For example, the mobile device 220 can present a virtual chat to a small group of patients that perform content and activities together. In some embodiments, the group activities can allow the group to participate and communicate in real-time or substantially real-time with each other and/or a therapist provider. In some embodiments, the group activities can allow the group to leave messages or complete activities for each other to be received or read by other group members at a later time period. In some embodiments, the mobile device 220 (e.g., via the mobile application) can be configured to receive and/or present push notifications, e.g., to remind users of upcoming assignments, appointments, group activities, therapy sessions, treatment sessions, etc. In some embodiments, the mobile device 220 (e.g., via the mobile application) can be configured to log a history of content, e.g., such that a user can review past content that they have consumed. In some embodiments, the mobile device 220 (e.g., via the mobile application) can provide an avatar creation function that allows users to choose and/or alter a virtual avatar. The virtual avatar can be used in group activities, guided journaling, dialogs, or other interactions in the mobile application.
In some embodiments, the system 200 can include external sensor(s) attached to a patient, e.g., biometric data from a wristband, ring, or other attached device. In some embodiments, the external sensors can be operatively coupled to a user device, such as, for example, the mobile device 220.
The content repository 242 can be configured to store content, e.g., for providing to a patient via mobile device 220 or another user device. Content can include passive information or interactive activities. Examples of content include: videos, articles including text and/or media, audio recordings, surveys or questionnaires including open-ended or close-ended questions, guided journaling activities or open-ended questions, meditation exercises, etc. In some embodiments, content can include dialog activities that allow a user to interact in a conversation or dialog with one or more virtual participants, where responses are pre-written options that lead users through different nodes in a dialog tree. A user can begin at one node in the dialog tree and move through that node depending on selections made by the user in response to the presented dialog. In some embodiments, content can include a series of open-ended questions that encourage or guide a user to a greater degree of understanding of a subject. In some embodiments, content can include meditation exercises with a voice and connected imagery to guide a user through breathing and/or thought exercises. In some embodiments, content can include one or more questions (e.g., survey questions) that provoke one or more responses from a user, which can lead to haptic feedback. For example, as described in more detail with reference to
While two sections are shown in the GUI 800, it can be appreciated that one or more additional sections can be provided in a GUI without departing from the scope of the present disclosure. For example, the GUI 800 can include additional sections providing media, questions, etc. In some embodiments, the GUI 800 can present pop-ups or sections that overlay other sections, e.g., to direct the user to specific content before viewing other content.
In some embodiments, content can be recursive, e.g., content can contain other content inline, and in some cases, certain content can block completion of its parent content until the content itself is completed. For example, a video can pause and a survey can be presented on a screen, where the survey must be completed before the video continues playing. In
Content can be analyzed and interpreted into metrics that are usable by other rules or triggers. For example, content can be analyzed and used to generate a metric indicative of a physiological state (e.g., depression), concrete versus abstract thinking, understanding of previously presented content, etc.
The content repository 242 can be operatively coupled to (e.g., via a network such as network 102) a content creation tool or application 252. The content creation tool 252 can be an application that is deployed on a compute device, such as, for example, a desktop or mobile application or a web-based application (e.g., executed on a server and accessed by a compute device). The content creation tool 252 can be used to create and/or edit content, organize content into courses and/or packages of information, schedule content for particular patients and/or groups of patients, set pre-requisite and/or predecessor content relationships, and/or the like.
In some embodiments, the system 200 can deliver content that can be used alongside (e.g., before, during or after) a therapeutic drug, device, or other treatment protocol (e.g., talk therapy). For example, the system 200 can be used with drug therapies including, for example, salvinorin A (sal A), ketamine or arketamine, 3,4-Methylenedioxymethamphetamine (MDMA), N-dimethyltryptamine (DMT), or ibogaine or noribogaine.
For example, during a pre-treatment phase, the system 200 can be configured to provide (e.g., via server 210 and/or user device 220, with information from content repository 242 and/or other components of the system 200) content to a user that prepares the user for a treatment and/or collect baseline patient data. In some embodiments, the system 200 can provide educational content (e.g., videos, articles, activities) for generic mindset and specific education of how a particular drug treatment can feel and/or affect a patient. In some embodiments, the system 200 can provide an introduction into behavioral activation content. In some embodiments, the system 200 can provide motivational interviewing and/or stories. In some embodiments, the system 200 can be configured to provide content that encourages and/or motivates a user to change.
In a post-treatment phase, the system 200 can be configured to provide content that assists a patient with processing and/or integrating his experience during the treatment. In some embodiments, the system 200 can provide psychoeducation skills content through articles, videos, interstitial questions, dialog trees, guided journaling, audio meditations, podcasts, etc. In some embodiments, the system 200 can provide motivational reminders and/or feedback from motivational interviewing. In some embodiments, the system 200 can provide group therapy activities. In some embodiments, the system 200 can provide surveys or questionnaires.
In some embodiments, the system 200 can be configured to assist a patient in long term management of a treatment outcome. For example, the system 200 can be configured to provide long-term monitoring via surveys, dialogs, digital biomarkers, etc. The system 200 can be configured to provide content for training a user on additional skills. The system 200 can be configured to provide group therapy activities with more advanced skills and/or subjects. The system 200 can be configured to provide digital pro re nata, e.g., by basing dosing and/or next treatment suggestions on content delivered to the user (e.g., coursework, assignments, referral to additional services, re-dosing with the original combination drug, etc.).
The raw data repository 246 can be configured to store information about a patient, e.g., collected via mobile device 220, sensor(s), and/or devices operated by other individuals that interact with the patient. Data collected by such devices can include, for example, timing data (e.g., time from a push notification to open, time to choose from available activities, hesitation time on surveys, reading speed, scroll distance, time from button down to button up), choice data (e.g., activities that are preferred or favorited, interpretation of survey and interstitial question responses such as fantasy thinking, optimism/pessimism, and the like), phone movement data (e.g., number of steps during walking meditations, phone shake), and the like. Data collected by such devices can also include patient responses to interactive questionnaires and surveys, patient use and/or interpretation of text, vocal-acoustic data (e.g., voice tone, tonal range, vocal fry, inter-word pauses, diction and pronunciation), digital biomarker data (e.g., pupillometry, facial expressions, heart rate, etc.). Data collected by such devices can also include data collected from a patient during different activities, e.g., sleep, walking, during content delivery, etc.
The database 244 can be configured to store information for supporting the operation of the server 210, mobile device 220, and/or other components of system 200. In some embodiments, the database 244 can be configured to store processed patient data and/or analysis thereof, treatment and/or therapy protocols associated with patients and/or groups of patients, rules and/or metrics for evaluating patient data, historical data (e.g., patient data, therapy data, etc.), information regarding assignment of content to patients, machine learning models and/or algorithms, etc. In some embodiments, the database 244 can be coupled to a machine learning system 254, which can be configured to process and/or analyze raw patient data from raw data repository 246 and to provide such processed and/or analyzed data to the database 244 for storage.
The machine learning system 254 can be configured to apply one or more machine learning models and/or algorithms (e.g., a rule-based model) to evaluate patient data. The machine learning system 254 can be operatively coupled to the raw data repository 246 and the database 244, and can extract relevant data from those to analyze. The machine learning system 254 can be implemented on one or more compute devices, and can include a memory and processor, such as those described with reference to the compute devices depicted in
The data processing pipeline 256 can be configured to process data received from the server 210, mobile device 220, or other components of the system 200. The data processing pipeline 256 can be implemented on one or more compute devices, and can include a memory and processor, such as those described with reference to the compute devices depicted in
As described above, digital therapeutics can be used to assess and monitor patients' physical and mental health. For example, when a patient undergoes a drug treatment, the patient can use an electronic device such as a mobile device to provide health information for the medical health providers to assess and monitor the patient's health pre-treatment, during the treatment, and/or post-treatment, so that optimized/adjusted treatments can be given to the patient.
Digital surveys are known to be presented in a simple digital representation of paper surveys. Some known digital surveys add buttons or check boxes. These digital surveys, however, are one-way data transmission from the user of the mobile device to the device.
In some embodiments, embodiments described herein can combine haptic feedback into digital surveys to achieve two-way interactions and data transmission between the patient and the mobile device (and other compute devices in communication with the mobile device). In some embodiments, a set of survey questions can be given to a patient (or a user of a mobile device). When the patient provides input to the device to answer the survey questions, the device (or a mobile application on the device) can use haptic feedback (e.g., vibration) to interact with the patient. The vibration can be in different patterns in different situations.
In some implementations, for example during a psychoeducational session or delivery of digital content, a question or survey and a virtual interface element is presented to a user. The virtual interface element includes a plurality of selectable responses to the question. Each question is associated with a different measure of a parameter. The user selects a response from the plurality of selectable responses as a first input via the virtual interface element. A first haptic feedback is generated based on the first selectable response or the first input. When a user selects a second response from the plurality of selectable responses as a second input via the virtual interface element, where the second input represents a greater measure of the parameter than the first selectable response, a second haptic feedback is generated based on the second selectable response. The second haptic feedback has an intensity or frequency that is greater than the first haptic feedback. The first and second haptic feedback are different in waveform, intensity, or frequency.
For example, the mobile device (or the mobile application) can use the haptic feedback to alert the patients that their answer is straying from their last response (e.g., “how different do you feel today”). For another example, the device (or the mobile application) can use the haptic feedback to alert the patients that they are reaching an extreme (e.g., “this is the worst I've ever felt”). For another example, the device (or the mobile application) can use the haptic feedback to alert the patients on how their answer differs from the average or others in their group. In some embodiments, the haptic feedback for survey questions can be used with slider scales, increasing or decreasing haptic feedback as the patients move their finger.
In some embodiments, using the haptic feedback to interact with users of the mobile device or other electronic devices while they are answering survey questions can remind users of past responses or average responses to ground their current answer. In some examples, this can provide medical care providers, care takers, or other individuals more accurate responses.
The server 901 can be a compute device (or multiple compute devices) having a processor 911 and a memory 912 operatively coupled to the processor 911. In some instances, the server 901 can be any combination of hardware-based module (e.g., a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP)) and/or software-based module (computer code stored in memory 912 and/or executed at the processor 911) capable of performing one or more specific functions associated with that module. In some instances, the server 901 can be a server such as, for example, a web server, an application server, a proxy server, a telnet server, a file transfer protocol (FTP) server, a mail server, a list server, a collaboration server and/or the like. In some instances, the server 901 can be a personal computing device such as a desktop computer, a laptop computer, a personal digital assistant (PDA), a standard mobile telephone, a tablet personal computer (PC), and/or so forth. In some embodiments, the capabilities provided by the server 901, as described herein, may be a deployment of a function on a serverless computing platform (or a web computing platform, or a cloud computing platform) such as, for example, AWS Lambda.
The memory 912 can be, for example, a random-access memory (RAM) (e.g., a dynamic RAM, a static RAM, etc.), a flash memory, a removable memory, a hard drive, a database and/or so forth. In some implementations, the memory 912 can include (or store), for example, a database, process, application, virtual machine, and/or other software modules (stored and/or executing in hardware) and/or hardware modules configured to execute a haptic survey process as described with regards to
The processor 911 can be configured to, for example, write data into and read data from the memory 912, and execute the instructions stored within the memory 912. The processor 911 can also be configured to execute and/or control, for example, the operations of other components of the server 901 (such as a network interface card, other peripheral processing components (not shown)). In some implementations, based on the instructions stored within the memory 912, the processor 911 can be configured to execute one or more steps of the haptic survey process described with respect to
The user device 902 can be a compute device having a processor 921 and a memory 922 operatively coupled to the processor 921. In some instances, the user device 902 can be a mobile device (e.g., a smartphone), a tablet personal computer, a personal computing device, a desktop computer a laptop computer, and/or the like. The user device 902 can include any combination of hardware-based module (e.g., a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a digital signal processor (DSP)) and/or software-based module (computer code stored in memory 922 and/or executed at the processor 921) capable of performing one or more specific functions associated with that module.
The memory 922 can be, for example, a random-access memory (RAM) (e.g., a dynamic RAM, a static RAM, etc.), a flash memory, a removable memory, a hard drive, a database and/or so forth. In some implementations, the memory 922 can include (or store), for example, a database, process, application, virtual machine, and/or other software modules (stored and/or executing in hardware) and/or hardware modules configured to execute a haptic survey process as described with regards to
The processor 921 can be configured to, for example, write data into and read data from the memory 922, and execute the instructions stored within the memory 922. The processor 921 can also be configured to execute and/or control, for example, the operations of other components of the user device 902 (such as a network interface card, other peripheral processing components (not shown), etc.). In some implementations, based on the instructions stored within the memory 922, the processor 921 can be configured to execute one or more steps of the haptic survey process described herein (e.g., with respect to
In some embodiments, the user device 902 can be an electronic device that is associated with a patient. In some embodiments, the user device 902 can be a mobile device (e.g., a smartphone, tablet, etc.), as further described with reference to
In some embodiments, the user device 902 can be configured with a user interface, e.g., a graphical user interface, that presents one or more questions to a user. In some embodiments, the user device 902 can implement a mobile application that presents the user interface to a user. In some embodiments, the one or more questions can form a part of an electronic survey, e.g., for obtaining information about the user in relation to a drug treatment or therapy program. In some embodiments, the one or more questions can be provided during a digital therapy session, e.g., for treating a medical condition of a patient and/or preparing a patient for a drug treatment or therapy. In some embodiments, the one or more questions can be provided as part of a periodic questionnaire (e.g., a daily, weekly, or monthly check-in), whereby a patient is asked to provide information regarding a mental and/or physical state of the patient.
In some embodiments, the user device 902 can present one or more questions to a patient and transmit one or more responses from the patient to the server 901. The one or more questions and the one or more responses can have translations specific to the user's language layered with the questions and/or responses. For example, the user device 902 can present a question (e.g., “How are you feeling today?”) on a display or other user interface, and can receive an input (e.g., a touch input, microphone input, or keyboard entry) and transmit that input to the server 901 via network 903. In some embodiments, the inputs into the user device 902 can be transmitted in real time or substantially in real time (e.g., within about 1 to about 5 seconds) to the server 901. The server 901 can analyze the inputs from the user device 902 and determine whether to instruct the user device 902 to generate or produce some haptic effect (e.g., a vibration effect or pattern) based on the inputs. For example, the server 901 can have haptic survey instructions stored that instruct the server 901 on how to analyze inputs and/or generate instructions to the user device 902 on what haptic effect to produce. In response to determining that a haptic effect should be provided at the user device 902, the server 901 can send one or more instructions back to the user device 902, e.g., instructing the user device to generate or produce a determined haptic effect (e.g., a vibration effect or pattern).
Alternatively or additionally, the user device 902 can present one or more questions to a patient and process or analyze one or more responses from the patient. For example, the user device 902 can present a question (e.g., “How are you feeling today?”) on a display or other user interface, and can receive an input (e.g., a touch input, microphone input, keyboard entry, etc.) after presenting the question. The user device 902 can have stored in memory (e.g., memory 922) one or more instructions (e.g., haptic survey instructions) that instruct the user device 902 on how to process and/or analyze the input. For example, the user device 902 via processor 921 can be configured to process an input to provide a transformed or cleaned input. The user device 902 can pass the transformed or cleaned input to the server 901, and then wait to receive additional instructions from the server 901, e.g., for generating a haptic effect as described above. As another example, the user device 902 via processor 921 can be configured to analyze the input, for example, by comparing the input to a previous input provided by the user. The user device 902 can then determine whether to generate a haptic effect based on the comparison, as further described with respect to
In some implementations, the system 900 for implementing haptic feedback for surveys or the haptic survey system 900 can include a single device, such as the user device 902, having a processor 921, a memory 922, an input/output (I/O) subsystem 923 (including, for example, a display and/or one or more input devices), and a haptic feedback subsystem 924 (e.g., a motor or other peripheral device) capable of providing haptic feedback. For example, the system 900 can be implemented as a mobile device (having a mobile application executed by the processor of the mobile device). In some implementations, the system 900 can include multiple devices, e.g., one or more user device(s) 902. A first device can include, for example, a processor 921, a memory 922, and a display (e.g., a liquid-crystal display (LCD), a Cathode Ray Tube (CRT) display, a touchscreen display, etc.) and an input device (e.g., a keyboard) that form part of an I/O subsystem 923, and a second device can include a haptic feedback subsystem 924 that is in communication with the first device (e.g., a speaker embedded in a seat or other environment around a user). For example, the user can provide answers to the survey questions via the first device and receive haptic feedback via the second device. In some implementations, the first device can be configured to be in communication with the server 901 and the second device can be configured to be in communication with the first device. In some implementations, the first device and the second device can be configured to be in communication with the server 901. In some implementations, a database coupled to the server 901, the user device, 902, or the haptic feedback subsystem (not shown in
Examples of haptic effects include a vibration having different characteristics on a user device 902. The intensity, duration, pattern, and/or other characteristics of each haptic effect can vary. For example, a haptic effect can be associated with n number of characteristics that can each be varied.
In some embodiments, the haptic effect can be associated with a particular type of pattern.
Returning to
In some embodiments, examples of haptic effects can include with sound (e.g., tone, volume or specific audio files), visual (e.g., pop-up windows on the user interface, floating windows), a text message, and/or the like. In some embodiments, the user device can generate combinations of different types of haptic effects (e.g., vibration and sound).
The haptic subsystem can be utilized to facilitate haptic feedback, such as vibration, force, and/or motions. The haptic subsystem can include, for example, a spinning motor (e.g., an eccentric rotating mass or ERM), a servo motor, a piezoelectric motor, a speaker, a magnetic actuator (thumper), a taptic engine (a linear resonant actuator; or Apple's taptic engine), a Piezoelectric actuator, and/or the like.
The memory of the mobile device 1000 can be, for example, a random-access memory (RAM) (e.g., a dynamic RAM, a static RAM), a flash memory, a removable memory, a hard drive, a database and/or so forth. In some implementations, the memory can include (or store), for example, a database, process, application, virtual machine, and/or other software modules (stored and/or executing in hardware) and/or hardware modules configured to execute a haptic survey process as described with regards to
The memory can include haptic survey instructions or function definitions. Haptic instructions can be configured to cause the mobile device 1000 to perform haptic-based operations, for example providing haptic feedback to a user of the mobile device 1000 as described in reference to
The processor of the mobile device 1000 can be configured to, for example, write data into and read data from the memory, and execute the instructions stored within the memory. The processor can also be configured to execute and/or control, for example, the operations of other components of the mobile device. In some implementations, based on the instructions stored within the memory, the processor can be configured to execute the haptic survey process described with respect to
At step 1102, the haptic survey process includes presenting a set of survey questions, e.g., on a user interface of a user device (e.g., user device 902 or mobile device 1000).
For another example, a survey question 1305 can be “how often do you do physical exercises?” The processor can present multiple choices (or discrete inputs) 1306 for the user to choose the closet answer. The haptic survey process can provide different types of answer choices, including, but are not limited to, a Visual Acuity Scale (e.g., a slide bar 1302), discrete inputs (or multiple choices 1306), a grid input (having two dimensions: a horizontal dimension and a vertical dimension with each dimension being used as an input to be provided to the haptic function) and/or the like. In some embodiments, the haptic survey process can provide an answer format in multiple axes (or dimensions) displayed, for example, as a geometric shape in which the user can move their finger (or tap on the screen of the user device) to indicate the interplay between multiple choices.
At step 1104, the haptic survey process includes receiving a user input in response to a survey question from the set of survey questions.
At step 1106, the haptic survey process includes analyzing the user input. For example, the processor can analyze the user input in comparison to a previous user input or a baseline in response to the survey question, e.g., by measuring or assessing a difference between the user input and the previous user input or baseline (e.g., determining whether the user input differs from the previous user input or baseline by a predetermined amount or percentage). The processor can then generate a comparison result based on the analysis.
At step 1108, the haptic survey process includes determining whether to provide a haptic effect (e.g., a vibration effect or pattern). For example, the processor can determine to provide a haptic effect when a comparison result between a user input and a previous user input or baseline meets certain criteria (e.g., when the comparison result reaches a certain threshold value, etc.). As another example, the processor can be configured to provide a haptic effect that increases in intensity or frequency as a user's response to a question increases relative to a baseline or predetermined measure (e.g., as a user moves a slider scale).
At step 1110, the haptic survey process includes sending a signal to a haptic subsystem at the mobile device to actuate the haptic effect. In some embodiments, the processor can be the processor of a server (e.g., processor 911 of the server 901), and can be configured to analyze the user input and send an instruction to a user device (e.g., user device 902, mobile device 1000) to cause the user device to send the signal to the haptic subsystem for actuating the haptic effect. In some embodiments, an onboard processor of a patient device (e.g., processor of the mobile device 1000) can be configured to analyze the user input and send the signal to the haptic subsystem for actuating the haptic effect.
While examples and methods described herein relate one or more haptic effects to surveys and/or questions contained in surveys, it can be appreciated that any one of the haptic feedback systems and/or components described herein can be used in other settings, e.g., to provide feedback while a user is adjusting settings (e.g., on a mobile device or tablet, such as in a vehicle), to provide feedback in response to questions that are not included in a survey, to provide feedback while a user is engaging in certain activity (e.g., workouts, exercises, etc.), etc. Haptic effects as described herein can be varied accordingly to provide feedback in such settings.
Additionally or alternatively, the server 310 can also receive other information associated with the completion of the assignment and evaluate that information (e.g., by calculating assignment interpretations), and send such information and/or its evaluation of the information onto the data processing pipeline 356. Additionally or alternatively, the mobile device 320 can send timing metrics (e.g., timing associated with completion of assignment and/or answering specific questions) to the data processing pipeline 356. The data processing pipeline 356, after processing the data received, can send that information to a raw data repository 346 or some other database for storage.
In some embodiments, systems and devices described herein can be configured to generate a unique registration code at 406 that indicates the particular course and/or assignment(s) that should be delivered to a patient, e.g., based on patient data entered at 402. For example, depending on the particular treatment and/or therapy desired and/or suitable for the patient, systems and devices described herein can be configured to generate a registration code that, upon being entered by the patient into the user device, can cause the user device to present particular assignments to the patient. The assignments can be selected to provide specific educational content and/or psychological activities to the patient based on the patient data.
Traditional talk therapy can be scheduled between a patient and a practitioner, during a mutually available time. Due to the overhead of travel, office scheduling and staff, and other reasons, these meetings can be usually scheduled in larger blocks of time, such as an hour or more. Patients in many mental health indications may not have the attention span for these long meetings, and many not have the ability to schedule meetings during typical working hours.
Assigning therapeutic content via a patient device (e.g., a mobile device) allows patients to receive smaller and manageable sessions of information, on a more frequent basis, and/or at a time that is more workable for their schedule. Information can be delivered according to a spaced periodic schedule, which can increase retention of the information.
In some embodiments, information can be provided in a collection of assignments that are assigned based on a manifest or schedule. The manifest or schedule can be set by a therapy provider and/or set according to certain predefined algorithms based on patient data. The content that is assigned may be a combination of content types as described above.
At 502, an assignment including certain content (e.g., text, audio, video, or interactive activities) can be delivered to a patient. The assignment can be delivered, for example, via a mobile application implemented on a user device (e.g., user device 120, mobile device 220, mobile device 320). The assignment can include educational content relating to an indication of the patient, a drug that the patient may receive or have received, and/or any co-occurring disorders that may present themselves to a therapist, doctor, or the system. In some embodiments, the assignments can be delivered as push notifications on a mobile application running on the user device. The assignments can be delivered on a periodic basis, e.g., at multiple times during a day, week, month, etc.
In some embodiments, the delivery of an assignment can be timed such that it does not overwhelm a user by giving them too many assignments within a predefined interval. At 504, a period of time for the patient to complete the assignment can be predicted. The period of time for completing the assignment can be predicted, for example, by a server (e.g., server 110, 210, 310) or the user device, e.g., based on historical data associated with the patient. In some embodiments, an algorithm can be used to predict the period of time for the patient to complete the assignment, where the algorithm receives as inputs attributes of the assigned content (e.g., length, number of interstitial interactive questions, complexity of vocabulary, complexity of activities and/or tasks, etc.) and the patient's historical completion rates and metrics (e.g., number of assignments completed per day or other time period, calculated reading speed, calculated attention span).
At 506, the mobile device, server, or other component of systems described herein can determine whether the patient has completed the assignment and, optionally, can log the time for completion for further analysis or evaluation of the patient. In some embodiments, in response to determining that the patient has completed the assignment, the mobile device, server, or other component of systems described herein can select an additional assignment for the patient. Since assignments from different courses of treatment can be duplicative, or different assignments can provide substantially identical information to a therapist or other healthcare professional, systems and devices described herein can be configured to select assignments that are not duplicative (e.g., remove or skip assignments). The method 500 can then return to 502, where the subsequent assignment is delivered to the patient. In some embodiments, the mobile device server, or other component of systems described herein can collect data from the patient, at 510. Such components can collect the patient data during or after completion of the assignment. The collected data can be provided to other components of systems described herein, such as the server, data processing pipeline, machine learning system, etc. for further processing and/or analysis.
As depicted in
In some embodiments, systems and devices can be configured to detect or predict co-occurring disorders, e.g., to depression, PTSD, substance use disorder, etc. based on the analysis of the patient data, at 610. In some embodiments, co-occurring disorders can be detected via explicit questions in surveys (e.g., “How much did you sleep last night?”), passive monitoring (e.g., how much did a wearable device or other sensor detect that a user has slept last night), or indirect questioning in content, dialogs, and/or group activities (e.g., a user mentioning tiredness on several occasions). In response to detecting a co-occurring disorder, systems and devices can be configured to generate and send an alert to a physician and/or therapist, at 614, and/or recommend content or treatment based on such detection, at 616. For example, systems and devices can be configured to recommend a change in content (e.g., a different series of assignments or a different type of content) to present to the patient, or recommend certain treatment or therapy for the patient (e.g., dosing strategy, timing for dosing and/or other therapeutic activities such as talk therapy, medication, check-ups, etc.), based on the analysis of the patient data. If no co-occurring disorder is detected, systems and devices can continue to provide additional assignments to the patient and/or terminate the digital therapy.
In some embodiments, systems and devices can be configured to detect that a patient is in a suitable mindset for receiving a drug, therapy, etc. In some embodiments, systems and devices can detect an increased brain plasticity and/or motivation for change using explicit questioning, passive monitoring, and/or indirect questioning. For example, systems and devices can detect an increased brain plasticity and/or motivation for change based on the analysis of the patient data, at 612. In some implementations, systems and methods described herein can use software model(s) to generate a predictive score indictive of a state of the subject. The software model(s) can be, for example, an artificial intelligence (AI) model(s), a machine learning (ML) model(s), an analytical model(s), a rule based model(s), or a mathematical model(s). For example, systems and methods described herein can use a machine learning model or algorithm trained to generate a score indictive of a state of the subject. In some implementations, machine learning model(s) can include: a general linear model, a neural network, a support vector machine (SVM), clustering, or combinations thereof. The machine learning model(s) can be constructed and trained using a training dataset, e.g., using supervised learning, unsupervised learning, or reinforcement learning. The training data set can include a historical dataset from the subject. The historical dataset can include: historical biological data of the subject, historical digital biomarker data of the subject, and historical responses to questions associated with digital content by the subject. The historical biological data of the subject include at least one of: historical heart beat data, historical heart rate data, historical blood pressure data, historical body temperature, historical vocal-acoustic data, or historical electrocardiogram data. The historical digital biomarker data of the subject includes at least one of: historical activity data, historical psychomotor data, historical response time data of responses to questions associated with the digital content, historical facial expression data, historical pupillometry, or historical hand gesture data. The historical responses to the questions associated with the digital content by the subject include at least one of: historical self-reported activity data, historical self-reported condition data, or historical patient responses to questionnaires and surveys.
After the machine learning model(s) is trained using the training data, the systems and methods described in
In some embodiments, systems and devices described herein can be configured to analyze patient data using a model or algorithm that can predict a current state of the patient's brain plasticity and/or motivation for change. The model or algorithm can produce a measure (e.g., an output) that represents current levels of the patient's brain plasticity and/or motivation for change. The measure can be compared to a measure of the patient's brain plasticity and/or motivation for change at an earlier time (e.g., a baseline) to determine whether the patient exhibits increased brain plasticity and/or motivation for change. In response to detecting a predetermined degree of increased brain plasticity and/or motivation (e.g., a predetermined percentage change or a measure above a predetermined threshold), systems and devices can generate and send an alert to a physician and/or therapist, at 618, and/or recommend timing for treatment, at 620. For example, after detecting that a patient has reached a predefined level of motivation, systems and devices can be configured to recommend to the physician and/or therapist to proceed with a drug treatment for the patient. Such can involve a method of treatment using a drug, therapy, etc., as further described below. If no increased brain plasticity and/or motivation is detected, systems and devices can return to providing additional assignments to the patient and/or terminate the digital therapy.
In some embodiments, systems and devices can be configured to predict potential adverse events for a patient, at 622. Examples of adverse events can include suicidal ideation, large mood swings, manic episodes, etc. In some embodiments, systems and devices described herein can predict adverse events by determining a significant change in a measure of a patient's mood. In some embodiments, the adverse event is a change in a measure of a patient's sleep patterns (such as a change in average sleep duration, number of times awakened per night). In some embodiments, the adverse event is a change in a measure of a patient's mood as determined by a clinical rating scale (such as the Short Opiate Withdrawal Scale of Gossop (SOWS-Gossop Hamilton Depression Rating Scale, the Clinical Global Impression (CGI) Scale, the Montgomery-Asberg Depression Rating Scale (MADRS), the Beck Depression Inventory (BDI), the Zung Self-Rating Depression Scale, the Raskin Depression Rating Scale, the Inventory of Depressive Symptomatology (IDS), the Quick Inventory of Depressive Symptomatology (QIDS), the Columbia-Suicide Severity Rating Scale, or the Suicidal Ideation Attributes Scale).
The HAM-D scale is a 17-item scale that measures depression severity before, during, or after treatment. The scoring is based on 17 items and generally takes 15-20 minutes to complete the interview and score the results. Eight items are scored on a 5-point scale, ranging from 0=not present to 4=severe. Nine items are scored on a 3-point scale, ranging from 0=not present to 2=severe. A score of 10-13 indicates mild depression, a score of 14-17 indicates mild to moderate depression, and a score over 17 indicates moderate to severe depression. In some embodiments, the adverse event is a change of a patient's mood as determined by an increases in the subject's HAM-D score by between about 5% and about 100%, for example, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.
The MADRS scale is a 10-item scale that measures the core symptoms of depression. Nine of the items are based upon patient report, and 1 item is on the rater's observation during the rating interview. A score of 7 to 19 indicates mild depression, 20 to 34 indicates moderate depression, and over 34 indicates severe depression. MADRS items are rated on a 0-6 continuum with 0=no abnormality and 6=severe abnormality. In some embodiments, the adverse event is a change of a patient's mood as determined by an increases in the subject's MADRS score by between about 5% and about 100%, for example, about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, or about 100%.
In some embodiments, the adverse event is increase in one or more patient symptoms that indicate the patient is in acute withdrawal from drug dependence (such as sweating, racing heart, palpitations, muscle tension, tightness in the chest, difficulty breathing, tremor, nausea, vomiting, diarrhea, grand mal seizures, heart attacks, strokes, hallucinations and delirium tremens (DTs)).
In some embodiments, adverse events can be or be associated with one or more mental health or substance abuse disorders, including, for example, drug abuse or addition, a depressive disorder, or a posttraumatic stress disorder. For example, an adverse event can be an episode, an event, an incident, a measure, a symptom, etc. associated with a mental health or substance abuse disorder. In some embodiments, a mental health disorder or illness can be, for example, an anxiety disorder, a panic disorder, a phobia, an obsessive-compulsive disorder (OCD), a posttraumatic stress disorder, an attention deficient disorder (ADD, an attention deficit hyperactivity disorder (ADHD), a depressive disorder (e.g., major depression, persistent depressive disorder, bipolar disorder, peripartum or postpartum depression, or situation depression), or cognitive impairments (e.g., relating to age or disability).
In some implementations, systems and methods described herein can use software model(s) to generate a score or other measure of a patient's mood to generate periodic scores of a patient over time. The software model(s) can be, for example, an artificial intelligence (AI) model(s), a machine learning (ML) model(s), an analytical model(s), a rule based model(s), or a mathematical model(s). For example, systems and methods described herein can use a machine learning model or algorithm trained to generate a score or other measure of a patient's mood to generate periodic scores of a patient over time. In some implementations, machine learning model(s) can include: a general linear model, a neural network, a support vector machine (SVM), clustering, or combinations thereof. The machine learning model(s) can be constructed and trained using a training dataset. The training data set can include a historical dataset from a plurality of historical subjects. The historical dataset can include: biological data of the plurality of historical subjects, digital biomarker data of the plurality of historical subjects, and responses to questions associated with digital content by the plurality of historical subjects. The biological data of the plurality of historical subjects include at least one of: heart beat data, heart rate data, blood pressure data, body temperature, vocal-acoustic data, or electrocardiogram data. The digital biomarker data of the plurality of historical subjects includes at least one of: activity data, psychomotor data, response time data of responses to questions associated with the digital content, facial expression data, pupillometry, or hand gesture data. The responses to the questions associated with the digital content by the plurality of historical subjects include at least one of: self-reported activity data, self-reported condition data, or patient responses to questionnaires and surveys.
After the machine learning model(s) is trained using the training data, the systems and methods described in
Alternatively or additionally, systems and methods described herein can monitor for adverse events using a ruled based model(s), for example, using explicit questioning (e.g., “Do you have thoughts of injuring yourself?”) in a survey or dialog. In response to predicting that an adverse event is likely to occur, systems and devices can generate and send an alert to a physician and/or therapist, at 624, and/or recommend content or treatment based on such detection, at 626. For example, systems and devices can be configured to recommend a change in content (e.g., a different series of assignments or a different type of content) to present to the patient, or recommend certain treatment or therapy for the patient (e.g., dosing strategy, timing for dosing and/or other therapeutic activities such as talk therapy, medication, check-ups, etc.), based on the analysis of the patient data. In some implementations, a drug therapy can be determined based on the likelihood of the adverse event. For example, in response to the likelihood of the adverse event being greater than a predefined threshold, a treatment routine for administrating a drug can be determined, based on historical data associated with the subject, and information indicative of a current state of the subject extracted from the set of data streams of the subject. The drug can include: ibogaine, noribogaine, psilocybin, psilocin, 3,4-Methylenedioxymethamphetamine (MDMA), N, N-dimethyltryptamine (DMT), or salvinorin A. If no adverse event is predicted, systems and devices can continue to provide additional assignments to the patient and/or terminate the digital therapy.
In an embodiment, the processor can be configured to construct a model for generating a predictive score for a subject using a training dataset, at 702. The processor can receive patient data associated with a patient, e.g., collected during a period of time before, during, or after administration of a treatment of therapy to the patient, at 704. The processor can extract information corresponding to various parameters of interest from the patient data, at 706. The processor can generate, using the model, a predictive score for the subject based on the information extracted from the patient data, at 708. Such method 700 can be applied to analyze one or more different types of patient data, as described with reference to
Content as described herein can be encoded into a normalized content format in a content creation application (e.g., content creation tool 252). The application can allow a content creator (e.g., a user) to create any of the content types described herein, including, for example, media-rich articles, videos, audio, surveys and questionnaires, and the like. Additionally, the application can allow the content creator to specify where in a content recursive content can appear and if certain content is to be blocked pending completion of other content. In some embodiments, the content creator can define how patient responses or interactions to content is interpreted by systems and devices described herein.
In some implementations, the application can cause digital content, for example, for a set of psychoeducational sessions to be stored and updated. The digital content file can include a set of digital features. The set of digital features can include at least one of: an interactive survey or set of questions, a dialog activity, or embedded audio or visual content. When the creator creates a version of the digital content, metadata associated with the creation of the version of the digital content file is generated. The metadata can include: an identifier of the creator of the version of the digital content file, a time period or date associated with the creation, and a reason for the creation. Additionally, the version of the digital content file and the metadata associated with the version of the digital content file is hashed using a hash function to generate a pointer to the version of the digital content file. The version of the digital content that includes the pointer and the metadata associated with the version of the digital content file is saved in a content repository (e.g., content repository 242). When a user request to retrieve the version of the digital content file, the pointer is provided to the user. The version of the digital content file that includes the pointer, and the metadata associated with the version of the digital content file can be retrieved with the pointer. In some embodiments, such methods can be implemented using Git hash and associated functions.
In an embodiment, a content management system can include a system configured to encode content into a clear text format. The system can be implemented via a server (e.g., server 110, 210, 310), content repository (e.g., content repository 242), and/or content creation tool (e.g., content creation tool 252). The system can be configured to store the content in a version control system, e.g., on content repository. The system can be configured to track changes to the content and map changes to an author and/or reason for the change. The system can be configured to update, roll back or revert, and/or lock servers to a known state of the content. The system can be configured to encode rules for interpreting responses to content (e.g., responses to surveys and standardized instruments) into editable content, and to associate these rules with the applicable content or version of a digital content file including the applicable content.
In some embodiments, different versions of digital content can be created by one or more content creators. For example, a first content creator can create a first version of a digital content file, and a second content creator can modify that version of the digital content file to create a second version of a digital content file. A compute device implementing the content creation application can be configured to generate or create metadata associated with each of the first and second versions of the digital content file, and to store this metadata with the respective first and second versions of the digital content file. The compute device implementing the content creation application can also be configured to implement the hash function, e.g., to generate a pointer or hash to each version of the digital content file, as described above. In some embodiments, the compute device can be configured to send various versions of the digital content file to user devices (e.g., mobile devices of users such as a patient or a supporter) that can then be configured to present the digital features contained in the versions of the digital content file to the users. In some embodiments, the compute device can be configured to revert to older or earlier versions of a digital content file by reverting to sending the earlier versions of the digital content file to a user device such that the user device reverts back to presenting the earlier version of the digital content file to a user. In some embodiments, content creation can be managed by one creator or a plurality of creators, including a first, second, third, fourth, fifth, etc. creator.
In some embodiments, systems and devices described herein can be configured to implement a method of treating a condition (e.g., mood disorder, substance use disorder, anxiety, depression, bipolar disorder, opioid use disorder) in a patient in need thereof. The method can include processing patient data (e.g., collected by a user device such as, for example, user device 120 or mobile device 220, 320) to determine a state of the patient, determining that the patient has a predefined mindset (e.g., brain plasticity or motivation for change) suitable for receiving a drug therapy based on the state of the patient or determining a likelihood of an adverse event, and in response to determining that the patient has the predefined mindset or there is a high likelihood of an adverse event, administering an effective amount of the drug therapy (e.g., ibogaine, noribogaine, psilocybin, psilocin, 3,4-Methylenedioxymethamphetamine (MDMA), N, N-dimethyltryptamine (DMT), or salvinorin A) to the subject to treat the condition.
In some embodiments, based on the mindset of a patient or the likelihood of an adverse event, the drug treatment or therapy can be varied or modified. For example, the dose of a drug (e.g., between about 1,000 μg to about 5,000 μg per day of salvinorin A or a derivative thereof, between about 0.01 to about 500 mg per day of ketamine, between about 20 mg to about 1000 mg per day or between about 1 mg to about 4 mg per kg body weight per day of ibogaine) can be varied depending the mindset of a patient or the likelihood of an adverse event. In some embodiments, a maintenance dose or additional dose may be administered to a patient, e.g., based on a patient's mindset before, during, or after the administration of the initial dose. In some embodiments, the dosing of a drug can be increased over time or decreased (e.g., tapered) over time, e.g., based on a patient's mindset before, during, or after the administration of the initial dose. In some embodiments, the administration of a drug treatment can be on a periodic basis, e.g., once daily, twice daily, three times daily, once every second day, once every third day, three times a week, twice a week, once a week, once a month, etc. In some embodiments, a patient can undergo long-term (e.g., one year or longer) treatment with maintenance doses of a drug. In some embodiments, dosing and/or timing of administration of a drug can be based on patient data, including, for example, biological data of the patient, digital biomarker data of the patient, or responses to questions associated with the digital content by the patient.
In some embodiments, systems and devices described herein can be configured to implement a method of treating a condition (e.g., mood disorder, substance use disorder, anxiety, depression, bipolar disorder, opioid use disorder) in a patient in need thereof. The method can include providing a set of psychoeducational sessions to a patient during a predetermined period of time preceding administration of a drug therapy to the subject, collecting patient data before, during, or after the predetermined period of time, processing the patient data to determine a state of the patient, identifying and providing an additional set of psychoeducational sessions to the subject based on the determined state, and administrating an effective amount of the drug, therapy, etc. to the subject to treat the condition.
In some embodiments, systems and devices described herein can be configured to process, after administering a drug, therapy, etc., additional patient data to detect one or more changes in the state of the subject indicative of a personality change or other change of the subject, a relapse of the condition, etc.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods and/or schematics described above indicate certain events and/or flow patterns occurring in certain order, the ordering of certain events and/or flow patterns may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made.
Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above.
Some embodiments described herein relate to a computer storage product with a non-transitory computer-readable medium (also can be referred to as a non-transitory processor-readable medium) having instructions or computer code thereon for performing various computer-implemented operations. The computer-readable medium (or processor-readable medium) is non-transitory in the sense that it does not include transitory propagating signals per se (e.g., a propagating electromagnetic wave carrying information on a transmission medium such as space or a cable). The media and computer code (also can be referred to as code) may be those designed and constructed for the specific purpose or purposes. Examples of non-transitory computer-readable media include, but are not limited to, magnetic storage media such as hard disks, floppy disks, and magnetic tape; optical storage media such as Compact Disc/Digital Video Discs (CD/DVDs), Compact Disc-Read Only Memories (CD-ROMs), and holographic devices; magneto-optical storage media such as optical disks; carrier wave signal processing modules; and hardware devices that are specially configured to store and execute program code, such as Application-Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), Read-Only Memory (ROM) and Random-Access Memory (RAM) devices. Other embodiments described herein relate to a computer program product, which can include, for example, the instructions and/or computer code discussed herein.
Some embodiments and/or methods described herein can be performed by software (executed on hardware), hardware, or a combination thereof. Hardware modules may include, for example, a general-purpose processor, a field programmable gate array (FPGA), and/or an application specific integrated circuit (ASIC). Software modules (executed on hardware) can be expressed in a variety of software languages (e.g., computer code), including C, C++, Java™, Ruby, Visual Basic™, and/or other object-oriented, procedural, or other programming language and development tools. Examples of computer code include, but are not limited to, micro-code or micro-instructions, machine instructions, such as produced by a compiler, code used to produce a web service, and files containing higher-level instructions that are executed by a computer using an interpreter. For example, embodiments may be implemented using imperative programming languages (e.g., C, Fortran, etc.), functional programming languages (Haskell, Erlang, etc.), logical programming languages (e.g., Prolog), object-oriented programming languages (e.g., Java, C++, etc.), interpreted languages (JavaScript, typescript, Perl) or other suitable programming languages and/or development tools. Additional examples of computer code include, but are not limited to, control signals, encrypted code, and compressed code.
This application is a continuation of PCT/US2022/028322, entitled “SYSTEMS, DEVICES, AND METHODS FOR EVENT-BASED KNOWLEDGE REASONING SYSTEMS USING ACTIVE AND PASSIVE SENSORS FOR PATIENT MONITORING AND FEEDBACK,” filed May 9, 2022, which claims priority to U.S. Provisional Application No. 63/185,604, entitled “SYSTEMS, DEVICES, AND METHODS FOR TREATMENT OF DISORDERS USING DIGITAL THERAPIES AND PATIENT MONITORING AND FEEDBACK,” filed May 7, 2021, and U.S. Provisional Application No. 63/214,553, entitled “METHODS, SYSTEMS AND APPARATUS FOR PROVIDING HAPTIC FEEDBACK ON A USER INTERFACE,” filed Jun. 24, 2021, the disclosure of each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63214553 | Jun 2021 | US | |
63185604 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/028322 | May 2022 | US |
Child | 18504056 | US |