Systems, devices, and methods for securing tissue using snare assemblies and soft anchors

Information

  • Patent Grant
  • 11272915
  • Patent Number
    11,272,915
  • Date Filed
    Monday, April 1, 2019
    5 years ago
  • Date Issued
    Tuesday, March 15, 2022
    2 years ago
Abstract
Systems, devices, and methods are provided for securing soft tissue to bone. One exemplary embodiment of a surgical soft tissue repair device includes a snare assembly coupled to a soft anchor in which the soft anchor has a first, unstressed configuration that can be used to insert the anchor into bone and a second, anchoring configuration that can be used to fixate the anchor in the bone. The snare assembly can be configured to actuate the anchor from the first configuration to the second configuration, and it can also be used to engage and approximate tissue by drawing the tissue closer to the anchor fixated in the bone. The snare assembly can be used in conjunction with a number of different anchor configurations, and other exemplary systems, devices, and methods for use with soft tissue repair are also provided.
Description
FIELD

The present disclosure relates to systems, devices, and methods for securing soft tissue to bone, and more particularly relates to securing soft tissue while minimizing or eliminating the tying of knots to tension and secure the tissue.


BACKGROUND

A common injury, especially among athletes and people of advancing age, is the complete or partial detachment of tendons, ligaments, or other soft tissues from bone. Tissue detachment may occur during a fall, by overexertion, or for a variety of other reasons. Surgical intervention is often needed, particularly when tissue is completely detached from its associated bone. Currently available devices for tissue attachment include screws, staples, suture anchors, and tacks. Currently available devices for patients of advancing age can be particularly insufficient due to soft and weak bones leading to inadequate suture-to-anchor fixation.


Arthroscopic knot tying is commonly practiced in shoulder rotator cuff and instability procedures. Typically, an anchor loaded with suture is first attached to bone. The suture is normally slidably attached to the anchor through an eyelet or around a post, such that a single length of suture has two free limbs. One limb of the suture is passed through soft tissue to be repaired such as a tendon or labrum. The two ends of the suture are then tied to each other, thereby capturing the soft tissue in a loop with the anchor. Upon tightening the loop, the soft tissue is approximated to the bone via the anchor.


Surgeons typically tie the suture ends using a surgical sliding knot such as the Tennessee Slider or Duncan Loop. After advancing the knot distally to tighten the loop, a number of additional half hitches or other knots are tied in an effort to secure the new location of the sliding knot. The additional knots are needed because a conventional sliding knot used in current repair constructs does not provide the necessary protection against loosening or slippage, especially when tension is placed primarily on the limbs of the loop. The generally accepted practice is to follow the sliding knot with at least three reversed half hitches on alternating posts of the suture.


Before one or more half hitches or other knots can be added to the sliding knot, however, there exists a potential for the sliding knot to slip, that is, for the loop to enlarge as the tissue places tension on the loop. This has been referred to as “loop security” and can reportedly occur even in the hands of very experienced surgeons. Sometimes, even fully-tied knots may slip. In addition to this “loop security” problem, conventional knots typically have an overall size that can be obstructive or intrusive, especially in tight joints, which may damage cartilage or other tissue by abrasion with the knot.


Suture anchor systems with sliding and locking knots for repairing torn or damaged tissue include U.S. Pat. No. 6,767,037 by Wenstrom, Jr. Other suture anchor systems suited especially for meniscal repair are disclosed in U.S. Pat. No. 7,390,332 by Selvitelli et al. and are utilized in the OmniSpan™ meniscal repair system commercially available from DePuy Mitek Inc., 325 Paramount Drive, Raynham, Mass. 02767. Screw-type anchors normally require anchor attachment before operating sutures, which can lead to challenges related to the connection between the suture and the tissue.


There are a number of suture implant systems which proclaim to be “knotless,” that is, to not require a surgeon to tie a knot during surgery. Many such systems control tension on tissue by the depth to which an anchor is driven into bone. U.S. Pat. Nos. 5,782,864 and 7,381,213 by Lizardi disclose certain types of suture anchors that capture a fixed-length loop of suture. Adjustable loop knotless anchor assemblies utilizing an anchor element inserted into a sleeve are described by Thal in U.S. Pat. Nos. 5,569,306 and 6,045,574 and in U.S. Patent Application Publication No. 2009/0138042. Other systems having clamps or other locking mechanisms include U.S. Pat. No. 5,702,397 by Goble et al. and U.S. Patent Application Publication No. 2008/0091237 by Schwartz et al. Present, so-called “knotless” designs, however, generally suffer from inadequate suture-to-anchor fixation and/or inadequate anchor-to-bone fixation, among other deficiencies.


It is therefore desirable to provide systems, devices, and methods for use in soft tissue repair that are robust and strong, yet minimize or eliminate the number and size of knots to be tied by a surgeon, particularly during arthroscopic repair procedures. It is also desirable to provide systems, devices, and methods that minimize the number of components a system needed to secure an anchor in bone and approximate tissue to that bone. There is also a need for suture anchors and methods of deploying such anchors that minimizes the surgical trauma associated with the implantation of an anchor of a given size.


SUMMARY

Systems, devices, and methods are generally provided for securing soft tissue to bone. In one exemplary embodiment a surgical soft tissue repair device includes a snare assembly coupled to a soft anchor. The soft anchor can be formed of a flexible construct with a plurality of openings formed therein. The anchor can be configured to have a first, unstressed configuration, for example to insert the anchor into a bone, and a second, anchoring configuration to fix the anchor to the bone. The anchor can have a first length and a first diameter in the first configuration and a second length that is less than the first length and a second diameter that is greater than the first diameter. The snare assembly can have a collapsible snare at one end and at least one elongate filament extending therefrom. The filament includes a terminal end that is opposite the collapsible snare and the filament can pass through openings in the soft anchor to couple the snare assembly to the soft anchor such that the soft anchor is at an intermediate location on the elongate filament between the snare and the terminal end. The soft anchor and snare can be configured such that the soft anchor is reconfigurable from its first, unstressed configuration to its second, anchoring configuration by the application of tension to the filament.


In some embodiments the soft anchor can be a cannulated suture with a central lumen. Further, the plurality of openings can include a first opening on a distal portion of the soft anchor and a second opening on a proximal portion of the soft anchor, with each of the two openings being in communication with the central lumen. In one, non-limiting configuration, the filament can pass into the second opening, through the lumen, and out of the first opening. In some embodiments the first and second openings can be on the same side of the soft anchor.


In some other embodiments the soft anchor can include a plurality of transverse bores extending therethrough along the length of the soft anchor. In such an embodiment, the anchor can be cannulated or non-cannulated. The plurality of openings can include opposed paired openings, and each opposed paired opening can communicate with one of the transverse bores. In one, non-limiting configuration, the anchor can include at least four transverse bores and the filament can pass into and out of each transverse bore through the opposed paired openings.


In yet some other embodiments the soft anchor can be a crocheted suture anchor, and the filament can extend through openings defined between filament limbs of the crocheted suture anchor along the length thereof.


In its anchoring configuration, the soft anchor can have a diameter that is at least about 20% greater than its diameter in the unstressed configuration. The snare assembly can be formed of a double filament loop such that the filament has first and second filament limbs. A removable, flexible sleeve can be included as part of the device to removably encapsulate at least a portion of the filament.


In another exemplary embodiment a surgical soft tissue repair device includes an anchor, a snare assembly, and a connecting filament coupled to the snare assembly and effective to connect the snare assembly to the anchor. The anchor can be configured to be fixated in bone, and it can have at least one bore extending therethrough. The snare assembly can have a collapsible snare at one end and at least one elongate filament extending therefrom, with the filament having a terminal end that is opposite the collapsible snare. The connecting filament can be disposed in the bore or on a side of the bore distal to the snare assembly, and can be configured to be secured to the anchor such that the anchor is positioned at an intermediate location on the elongate filament between the collapsible snare and the terminal end.


One exemplary embodiment of a surgical repair method includes inserting a flexible anchor into a hole in a bone at a location proximate to detached soft tissue. The anchor can have first and second configurations, with the first configuration having a first length and a first diameter and the second configuration having a second length that is less than the first length and a second diameter that is greater than the first diameter. The anchor can be coupled to a snare assembly that passes through at least a portion of the anchor, with the snare assembly having a collapsible snare at one end thereof and at least one elongate filament extending therefrom. The elongate filament can have a terminal end that is opposite the collapsible snare. The method can also include tensioning the filament to move the anchor from the first configuration to the second configuration to fix the anchor relative to bone, passing at least one of the snare and the terminal end of the elongate filament through at least a portion of the detached tissue, inserting the terminal end of the filament through the snare, collapsing the snare around the filament, and sliding the collapsed snare toward the soft tissue to apply tension to filament between the anchor and the tissue to bring the tissue into proximity with the bone.


The first and second configurations can be defined by the second length being at least about 50% less than the first length. The first and second configurations can also be defined such that the second diameter is at least about 20% greater than the first diameter. In some embodiments the flexible anchor can be a cannulated anchor with a lumen extending therethrough. Such an anchor can include a first opening at its proximal end and a second opening at its distal end, with each of the first and second openings being in communication with the lumen. In some embodiments the flexible anchor can have one or more plurality of bores extending transversely therethrough along the length of the flexible anchor.





BRIEF DESCRIPTION OF DRAWINGS

This invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic view of one exemplary embodiment of a snare assembly for use as part of a surgical soft tissue repair device;



FIG. 2A is a schematic view of a snare assembly having a noose formed therein with first and second filament limbs extending to a second end;



FIGS. 2B and 2C are sequential views of the snare assembly of FIG. 2A with the first and second filament limbs passed through the noose to form a snare or cinch noose;



FIGS. 3A-3D are sequential views of another exemplary embodiment for forming a snare assembly having a snare at a first end and first and second filament limbs extending to a second end;



FIG. 4 is a schematic view of one exemplary embodiment of a surgical soft tissue repair device that includes the snare assembly of FIG. 1 and one embodiment of an anchor;



FIGS. 5A-5H are sequential views of one exemplary embodiment for using the surgical soft tissue repair device of FIG. 4 to secure tissue to bone;



FIG. 6 is a schematic view of another exemplary embodiment of a surgical soft tissue repair device that includes the snare assembly of FIG. 1 and another embodiment of an anchor;



FIGS. 7A-7H are sequential views of one exemplary embodiment for using the surgical soft tissue repair device of FIG. 6 to secure tissue to bone;



FIG. 8 is a schematic view of still another exemplary embodiment of a surgical soft tissue repair device that includes the snare assembly of FIG. 1 and still another embodiment of an anchor;



FIGS. 9A-9H are sequential views of one exemplary embodiment for using the surgical soft tissue repair device of FIG. 8 to secure tissue to bone;



FIG. 10 is a schematic view of yet another exemplary embodiment of a surgical soft tissue repair device that includes the snare assembly of FIG. 1 and yet another embodiment of an anchor; and



FIGS. 11A-11J are sequential views of one exemplary embodiment for using the surgical soft tissue repair device of FIG. 10 to secure tissue to bone.





DETAILED DESCRIPTION

Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention. Further, in the present disclosure, like-numbered components of the embodiments generally have similar features. Additionally, to the extent that linear or circular dimensions are used in the description of the disclosed systems, devices, and methods, such dimensions are not intended to limit the types of shapes that can be used in conjunction with such systems, devices, and methods. A person skilled in the art will recognize that an equivalent to such linear and circular dimensions can easily be determined for any geometric shape. Sizes and shapes of the systems and devices, and the components thereof, can depend at least on the anatomy of the subject in which the systems and devices will be used, the size and shape of components with which the systems and devices will be used, and the methods and procedures in which the systems and devices will be used.


The figures provided herein are not necessarily to scale. Still further, to the extent arrows are used to describe a direction of movement, these arrows are illustrative and in no way limit the direction the respective component can or should be moved. A person skilled in the art will recognize other ways and directions for creating the desired result. Additionally, a number of terms may be used throughout the disclosure interchangeably but will be understood by a person skilled in the art. By way of non-limiting example, the terms suture and filament may be used interchangeably.


Systems, devices, and methods for soft tissue repair are generally provided and they generally involve the use of surgical filaments that are configured in a variety of manners to minimize and/or eliminate the tying of knots during a surgical procedure. The systems and devices described herein provide superior strength for use in a number of different surgical procedures, such as rotator cuff and instability repair procedures and other types of tendon and tissue repair procedures. The systems, devices, and methods described herein also allow for constructs used to repair tissue to be made completely of flexible members, thereby minimizing or eliminating trauma that can result from using harder materials for tissue repair. The systems and devices provided herein further allow for both improved and new procedures for soft tissue repair. For example, the systems and devices provided herein can be used to both secure an anchor in bone and draw tissue toward the bone for attachment thereto.



FIG. 1 illustrates one exemplary embodiment of a snare assembly 20 for use in conjunction with a number of different configurations of soft anchors, some non-limiting examples of which are provided and discussed below with respect to FIGS. 4-11J. As shown in FIG. 1, the snare assembly 20 can be generally flexible, can include a snare 30 formed on a first end 22, and can have a terminal end 24 opposite the first end 22, with an intermediate portion extending therebetween. The terminal end 24 can be configured to pass through an opening 32 in the snare to create a tensionable construct so the snare assembly can draw two or more objects, such as tissue and bone, closer together, as described in greater detail below. Further, in embodiments in which the snare assembly 20 is coupled to an anchor having both an unstressed configuration for insertion and an anchoring configuration for placement of the anchor in bone, the snare assembly 20 can be used to actuate the transition of the anchor from its unstressed configuration to its anchoring configuration, as also described in greater detail below.


Optionally, a flexible sleeve 50 can be provided for encapsulating at least a portion of the assembly 20. As shown in FIG. 1, the sleeve encapsulates a portion of the assembly 20 starting at the terminal end 24 and extending toward the first end 22. In other embodiments the sleeve can extend more proximal than the terminal end 24. A configuration of this nature can aid a surgeon in pulling the snare assembly 20 through a portion of the body by providing extra length onto which he or she can grasp. Preferably, once the assembly 20 is implanted, the sleeve 50 can extend outside of a body as well as outside of a cannula placed in the body so the sleeve 50 can be easily removed. The sleeve 50 can have a generally cylindrical configuration and can be flexible to allow it to bend as shown in various embodiments provided herein. The sleeve 50 can be useful when passing the assembly 20 through obstructions such as an anchor and/or tissue for a number of reasons. The sleeve 50 can be configured to have a smoother surface that is better configured to pass through a soft anchor and tissue, thus reducing the possibility of fraying the soft anchor or causing trauma to the tissue. Still further, because the sleeve 50 can encapsulate a plurality of filament limbs, the sleeve 50 can ease filament management by maintaining the filaments within the enclosed sleeve 50. The sleeve 50 can be removable, and thus it can be removed at any time during the procedure, or at the conclusion of the procedure.



FIGS. 2A-2C illustrate one exemplary method of forming a snare assembly. As shown in FIG. 2A, the snare assembly 120 can be a filament having a noose 160 and noose limbs 164, 166. The noose 160 defines a central opening 162 and secondary openings 161 and 163 formed from a half hitch plus one additional throw of limb 166 through central opening 162. A flexible sleeve 150 is shown in phantom as it optionally encapsulates a portion of limbs 164 and 166 in certain constructions, as described in more detail below.



FIGS. 2B and 2C more particularly illustrate the formation of a cinch noose or snare 130 in an improved cinch noose construct or snare assembly 120, having an opening 132. The ends of free filament limbs 134 and 136 of the filament are passed through central opening 162, as represented by arrows 137 and 139 in FIG. 2B, which draws noose limbs 134 and 136 therethrough. Noose 160 is then tightened, as shown in FIG. 2C, to form a slidable knot for the snare 130. Alternatively, if a sleeve 150, as shown in FIG. 2A, or a sleeve 150′, as shown in FIG. 2C, is not utilized, or if such sleeve is removed after being passed through tissue to be tensioned, then one or both of free limbs 134, 136 can be passed through one or both of the openings 161, 163.


Joining together at least the free filament limbs improves suture management and reduces the possibility of suture entanglement or damage by instruments, especially when passed through a cannula. For example, a surgeon or other user need only grasp and pass one sleeve 150 through the noose 160 to thereby manipulate the free filament limbs 134, 136 as a single unit.



FIGS. 3A-3D illustrate another exemplary method of forming a snare assembly 220 having a snare 230 and a coaxial sliding neck 235 for use in a surgical repair construct. In this exemplary embodiment, the snare 230 is formed from a bifurcated suture filament having a tubular portion 237 with a core removed therefrom to form a cannulated portion 239 and first and second terminal limbs 234, 236. As shown in FIG. 3B, the terminal limbs 234, 236 can be curled back toward the tubular portion 237 to form a loop having an opening 232 that defines the snare 230. As shown in FIG. 3C, a bore 260 can be formed on a side of the tubular portion 237 and the terminal limbs 234, 236 can be placed into the cannulated tubular portion 239 through the bore 260. Ends of the terminal limbs 234, 236 can be fed through the cannulated portion 239, and as shown in FIG. 3D, the terminal limbs 234, 236 can be pulled distally (direction A in FIG. 3D) through the tubular portion 237 such that the tubular portion 237 is fed through itself. Accordingly, the snare 230 can be collapsed by tensioning the limbs 234, 236 and/or coaxial sliding neck 235 in approximately a first direction A, and the snare 230 can be expanded by applying a force to the snare 230 in approximately a second, opposite direction B, which pulls the limbs 234, 236 towards the snare 230. Passing the filament through itself to form a coaxial sliding neck allows the filament to have a low profile that minimizes the amount of space the construct consumes in the body and that minimizes and/or eliminates trauma associated with passing the filament through tissue.


A person having skill in the art will recognize a number of other ways that a snare for use in snare assemblies can be created and used in conjunction with the teachings herein. For example, a number of different sliding knots can be used to form snares, including but not limited to a Buntline Hitch, a Tennessee Slider, a Duncan Loop, a Hangman's Noose, and a coaxial sliding neck. To the extent the sliding knot used to form a snare affects the operation of the snare, for instance whether a limb is pulled through a knot to change the position of the knot or a knot is slid along a limb to change the position of the knot, a person skilled in the art would be able to adapt these types of knots for use with the teachings of the present invention without departing from the spirit of the present disclosure. As described herein, unless otherwise designated, a knot used to form a snare is movable away from the terminal end of the snare assembly to collapse the snare and towards the terminal end to increase a size of the snare.


The snare assemblies 20, 120, 220 can be made of any suitable flexible material, for instance a filament, including a cannulated filament, a braided filament, and a mono filament. The type, size, and strength of the flexible material can depend, at least in part, on the type of anchor with which it is used, any obstructions through which the snare assembly may pass, and the type of procedure in which it is used. In one exemplary embodiment the flexible material is a #2 filament (about 23 gauge to about 24 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, Inc or Ethibond™ filament available from Ethicon, Inc. Generally the filament is relatively thin to minimize any trauma to tissue through which it passes. In some embodiments the filament can have a size between about a #5 filament (about 20 gauge to about 21 gauge) and about a #5-0 filament (about 35 gauge to about 38 gauge). The Orthocord™ #2 filament can be useful because it has a braided configuration, which allows other components, including the filament itself, to pass through subcomponents of the braid without causing damage to the filament. Filaments configured to allow for a cannulated configuration, such as by removing a core therefrom or having a pre-formed cannulated configuration, can also be used. Orthocord™ suture is approximately fifty-five to sixty-five percent PDS™ polydioxanone, which is bioabsorbable, and the remaining thirty-five to forty-five percent ultra high molecular weight polyethylene, while Ethibond™ suture is primarily high strength polyester. The amount and type of bioabsorbable material, if any, utilized in the filaments of the present disclosure is primarily a matter of surgeon preference for the particular surgical procedure to be performed. Further, a length of filaments used to form the snare assemblies 20, 120, 220 can be in the range of about 15 centimeters to about 125 centimeters, and in one embodiment it can be about 60 centimeters.


In embodiments that include a flexible sleeve, such as the embodiments shown in FIGS. 1, 2A and 2C, the sleeve 50, 150, 150′ can be made from a wide variety of biocompatible flexible materials, including a flexible polymer or a filament. In one embodiment, the sleeve is made of a polymeric material. In another embodiment, the sleeve is a flexible filament, such as a braided suture, for example Ethibond™ #0 filament or Orthocord™ #2 filament, which is typically braided at sixty picks per 2.54 centimeters. For use as a sleeve, a more relaxed braid of approximately thirty to forty picks per 2.54 centimeters is preferred, more preferably about 36 picks per 2.54 centimeters. If the sleeve material is formed about a core, preferably that core is removed to facilitate insertion of the filament limbs, which may themselves be formed of typical suture such as Orthocord™ #0 suture or #2 suture braided at sixty picks per 2.54 centimeters. Additional convenience can be provided by perceptible indicators on the sleeve such as different markings, colors, diameters, braid or design patterns, or other tactile or visual indicia, especially if multiple tissue attachments or anchors are utilized.


A length and diameter of the sleeve 50, 150, 150′ can depend, at least in part, on the size and configuration of the components of the device with which it is used, the obstructions through which the sleeve may pass, and the surgical procedure in which it is used. In any event, the sleeve is typically of a size such that it can pass atraumatically through tissue. In embodiments in which the sleeve is a filament, a size of the sleeve can be in the range of about a #5 filament (about 20 gauge to about 21 gauge) to about a #2-0 filament (about 28 gauge), and in one embodiment the size can be about a #0 filament (about 26 gauge to about 27 gauge). A person having skill in the art will recognize comparable diameter sizes that can be used in instance in which the sleeve is made of a polymeric or other non-filament material. The sleeve can have a length in the range of about 10 centimeters to about 60 centimeters, and in one embodiment it has a length of about 40 centimeters.


A person having skill in the art will recognize that the configurations of FIGS. 1-3D are just some options for forming snare assemblies. In the illustrated embodiment the snare assembly is made of a single filament. In other embodiments, however, multiple filaments can be used, for example by using one filament to create a component that includes a snare, such as a snare linkage, and another filament to form a collapsible loop in place of a terminal end (e.g., terminal end 24 shown in FIG. 1), as described in more detail in U.S. patent application Ser. No. 13/465,288 filed concurrently herewith, and entitled “Systems, Devices, and Methods for Securing Tissue”, the content of which is incorporated by reference herein in its entirety. Other exemplary embodiments of snare assemblies that can be used in conjunction with the teachings herein are described at least in U.S. patent application Ser. No. 13/218,810 filed Aug. 26, 2011, and entitled “SURGICAL FILAMENT SNARE ASSEMBLIES,” the content of which is also incorporated by reference herein in its entirety.


Embodiments of surgical soft tissue repair devices described herein generally couple a snare assembly to a soft anchor. Soft anchors are generally flexible in nature and can be formed from a flexible filament or from a polymeric material in the form of, for example, a sleeve. Such soft anchors, which typically are non-metallic, can include one or more openings to allow at least a portion of the snare assembly to pass into and/or through the anchor. Soft anchors can have an unsettled or unstressed configuration that can be used for deployment to the surgical site, and an, anchoring configuration that can be used for fixating the anchor following deployment at the surgical site. Manipulation of the soft anchors can be effective to transition the anchors from the first, unstressed configuration to the second, anchoring configuration. The transition of a soft anchor from one configuration to the other typically alters the dimensions (e.g., the length and/or diameter) of the anchor. By way of a non-limiting example, in some repair device embodiments a diameter of a soft anchor in its anchoring configuration (i.e., its second diameter) can be in the range of about 10% greater to about 80% greater than the diameter in the unstressed configuration (i.e., its first diameter). In one embodiment, the second diameter can be about 20% greater than the first diameter of the soft anchor. Similarly, by way of further non-limiting example, in some repair device embodiments a length of a soft anchor in its anchoring configuration (i.e., its second length) can be in the range of about 20% less to about 80% less than a length of the soft anchor in its unstressed configuration (i.e., its first length). In one embodiment the second length can be about 50% less than the first length.



FIG. 4 illustrates one exemplary embodiment of a surgical soft tissue repair device 310 in which the snare assembly 20 from FIG. 1 is coupled to one embodiment of a soft anchor 312. As shown, the anchor 312 can be a cannulated suture 314 having a central lumen 316 disposed therethrough. The snare assembly 20 can pass through at least a portion of the central lumen 316 to couple the snare assembly 20 to the anchor 312 such that the anchor 312 is at an intermediate location on the snare assembly 20 (i.e., at a location between the first end 22 and the terminal end 24). More particularly, suture 312 can include a plurality of openings 318, 319 formed therein to accommodate coupling to the snare assembly and actuation of the anchor from the unstressed to the anchoring configuration. In the illustrated embodiment two openings are present in proximity to opposite ends of the anchor 312 for passing the snare assembly into and out of the central lumen 316. One skilled in the art will appreciate that the openings 318, 319 can be located in a number of different locations. In the illustrated embodiment the first opening 318 is formed in proximity to a proximal portion 312p of the anchor 312 and the second opening 319 is formed in proximity to a proximal portion 312d of the anchor 312. As shown, the first and second openings 318, 319 face each other, but if the cannulated suture 314 was stretched out into an approximately straight line, it could be said that the openings 318, 319 are located on the same side of the soft anchor 312.


As noted above, once deployed in bone the anchor 312 is capable of moving between a first, unstressed configuration and a second, anchoring configuration. The placement of the soft anchor 312 in bone, as will be explained below, causes the anchor to be laterally constrained within a bore that is formed in bone. When tension is applied to the snare assembly, which is coupled to the soft anchor, the soft anchor deforms. This deformation causes the dimensions of the anchor to be altered. As the diameter of the deployed anchor increases within the bore in which it is deployed, as explained above, the length decreases. The effect of the increasing diameter is to create a frictional engagement of the soft anchor within the bore and/or fixation of portions of the anchor into bone (particularly cancellous bone), thereby fixating the anchor in bone and allowing tissue attached to the snare assembly to be secured in a desired position.


The anchor 312 can be made of a variety of materials in a variety of forms. In one exemplary embodiment the anchor 312 is formed using a surgical filament, such as a cannulated filament or a braided filament. Alternatively, the anchor 312 can be made from a polymeric material in the form of a flexible sleeve. The type, size, and strength of the materials used to form the soft anchor 312 can depend, at least in part, on the other materials that form the snare assembly, the type of tissue in which it will be deployed, and the type of procedure with which it will be used. In one exemplary embodiment the anchor is formed from a #2 filament (about 23 gauge to about 24 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, Inc. or an Ethibond™ filament that is commercially available from Ethicon, Inc., Route 22 West, Somerville, N.J. 08876. The cores of these filaments can be removed to form the cannulated configuration. Orthocord™ suture is approximately fifty-five to sixty-five percent PDS™ polydioxanone, which is bioabsorbable, and the remaining thirty-five to forty-five percent ultra high molecular weight polyethylene, while Ethibond™ suture is primarily high strength polyester. The amount and type of bioabsorbable material, if any, utilized in the filaments of the present disclosure is primarily a matter of surgeon preference for the particular surgical procedure to be performed.


A length of the anchor when it is in an approximately linear, unfolded and undeployed configuration can be in the range of about 8 millimeters to about 50 millimeters, and in one embodiment it can be about 20 millimeters. Further, a length of the anchor when it is deployed and in its unstressed configuration (FIG. 5A, described below) can be in the range of about 4 millimeters to about 25 millimeters, and in one embodiment it can be about 10 millimeters and a diameter of the deployed soft anchor in such a configuration (i.e., a folded configuration) can be in the range of about 0.5 millimeters to about 5 millimeters, and in one embodiment it can be about 1 millimeter. Still further, a length of the anchor when it is deployed and in its anchoring configuration (FIG. 5B, described below) can be in the range of about 2 millimeters to about 25 millimeters, and in one embodiment it can be about 5 millimeters and a diameter in such a configuration can be in the range of about 1 millimeter to about 10 millimeters, and in one embodiment it can be about 2 millimeters.


A person having skill in the art will recognize a variety of other constructions the device 310, the snare assembly 20 (discussed above), and the anchor 312 can have without departing from the spirit of the present disclosure. By way of non-limiting examples, the snare assembly 20 can be coupled to the anchor 312 at different locations than illustrated, can pass in and out of the cannulated suture 314 any number of times, the suture 314 can have a twisted configuration, and openings 318, 319 for allowing the snare assembly to pass into the central lumen 316 can be relocated to other portions of the anchor 312. A person having skill in the art will recognize the way by which the snare assembly 20 is passed through and across the anchor 312 can affect the look and performance of the second, anchoring configuration. Other anchors with which the snare assembly 20 can be coupled to and operated similar to manners provided for herein are described at least in U.S. Pat. No. 7,658,751 to Stone et al., the content of which is incorporated by reference herein in its entirety.



FIGS. 5A-5H illustrate one exemplary method for performing a tissue repair using the repair construct illustrated in FIG. 4. A surgical opening can be formed through skin 1000 and a cannula can be passed therethrough to access a surgical repair site in a manner well known to those skilled in the art. Although cannulas are often used to define a channel through which the procedure can be performed, the cannula is not shown in FIGS. 5A-5H for ease of illustration. Accordingly, to the extent the figures show components of the systems and devices passing through skin 1000, these components would typically be extending through the cannula, which itself is passed through the skin 1000. Further, although the devices and methods described herein are particularly useful for minimally invasive surgery, such as arthroscopic surgery, they can also be used in open surgical procedures.


As shown in FIG. 5A, the snare assembly 20 can be coupled to the anchor 312 by passing the terminal end 24 through the opening 318, through the central lumen 316, and out the other opening 319 so that the anchor 312 is located at an intermediate location of the snare assembly 20 with the snare 30 extending from a first side of the anchor 312 and the terminal end 24 extending from the other. A bore 1002 can be formed in a bone 1001 and the device 310 shown in FIG. 4 can be inserted into the bore. In the deployed, unstressed configuration shown in FIG. 5A, the anchor is folded essentially in half to assume a U-like shape. Alternatively, the anchor can be delivered in an unfolded, e.g., approximately straight, configuration.


One skilled in the art will appreciate that a number of different techniques can be used to place the device 310 into the bore. By way of non-limiting example, the anchor 312 can be coupled to a distal end of a stiff wire or other similar tool or device to position the anchor 312 within the bore 1002. The wire can have one or more prongs at its distal end, thereby forming a fork, and the anchor 312 can be wrapped through one or more of the one or more prongs such that the anchor 312 remains in its unstressed configuration during insertion. Alternatively, the wire can have a single prong at its distal end such the prong pierces through the anchor, similar to a skewer. In other embodiments, the wire can include one or more slanted cuts on a side of the wire near its distal end, and the anchor 312 can be hung into one or more of the one or more slanted cuts. By way of further non-limiting example, the anchor 312 can be located in a device or tool similar to the device 590 described below with respect to FIG. 9A and placed in the bore 1002 in a similar manner. By way of one final non-limiting example, the anchor 312 can include a fish tail like the fish tail 617 described below with respect to FIGS. 10 and 11A-11J and inserted into bone 1001 in a similar manner.


As shown in FIG. 5B, after the anchor is deployed, tension can be applied to the snare assembly 20 approximately in a direction C, which in turn can actuate the anchor 312 to move from its unstressed configuration to its anchoring configuration. This tension causes deformation of the anchor 312 and it substantially bunches and has a greater diameter in the anchoring configuration. In the illustrated embodiment the bunched, anchoring configuration is substantially W-shaped for illustrative purposes, but a person skilled in the art will recognize a number of different configurations that the anchor 312 can have in the anchoring configuration. In this configuration the anchor 312 engages and impinges the walls of the bore 1002, penetrating cancellous bone in some embodiments so that the anchor 312 can be substantially fixed with respect to the bore 1002. While the overall shape of the anchor in the anchoring configuration will depend, at least in part, on the way the snare assembly 20 is coupled to the anchor 312, as shown the diameter of the anchor in the second, anchoring configuration increases in comparison to the diameter in the unstressed configuration, while the length of the anchor in the anchoring configuration decreases in comparison to the length of the unstressed configuration.


As described herein, the impingement of the anchor, such as the anchor 312 and the anchors 412, 512, 612 described below, into the walls of the bore 1002 may be initiated solely by friction between the anchor and the walls and further helped by varying bone density, which in general increases in a direction from the distal end of the bore 1002 to the proximal end. The shape transformation process may also be initiated by introducing a retaining device against the anchor and applying tension on the snare against the retaining device.


As shown in FIG. 5C, the terminal end 24 of the snare assembly 20 can be passed into and through at least a portion of the tendon 1003 detached from the bone 1001. Optionally, a needle or similar tool or device can be coupled to the terminal end 24 to assist with threading the snare assembly 20 through the tendon 1003. Likewise, other shuttling techniques known to a person skilled in the art can also be used to pass the snare assembly through the tendon.


As shown in FIGS. 5D and 5E, a portion of the terminal end 24 can be passed through the opening 32 of the snare 30 and the snare 30 can be collapsed or dressed in a manner consistent with its snare type. Thus, in the illustrated embodiment the snare 30 can be collapsed by moving the knot that forms the snare 30 away from the terminal end 24.


As shown in FIG. 5F, tension can be applied to the terminal end 24 by pulling approximately in a direction D, thereby causing the collapsed snare 30 to slide distally toward the tendon 1003 in a zip line-like manner until the snare 30 is adjacent to the tendon 1003. This, in turn, can cause the tendon 1003 to move toward and into contact with the bone 1001. Alternatively, tension can be applied to the terminal end 24 before the snare 30 is dressed and after the snare 30 is adjacent to the tendon 1003, or some combination of the two actions can be used, such as partially dressing the snare 30 before zip-lining it toward the tendon 1003. As shown in FIG. 5F, in embodiments that include the sleeve 50, as the snare is slid distally toward the tendon, the sleeve 50 can move proximally, out of the body. The sleeve 50, if included, can be removed at any time, as shown in FIG. 5G for example. Final tensioning can be carried out by applying tension to the terminal end 24, or the sleeve 50 if it remains associated with the snare assembly.


As shown in FIG. 5H, one or more half-hitches can be formed proximate to the collapsed snare to allow for incremental or ratchet-like tensioning and/or to maintain a location of the collapsed snare. After a first half-hitch is formed, the snare assembly 20 can be further tensioned in an incremental or ratchet-like manner by applying tension to the snare assembly 20. The addition of a second or more half-hitches can lock the location of the collapsed snare. Excess filament can then be trimmed and removed to complete the procedure. Other techniques known to those skilled in the art can be used to maintain the location of the collapsed snare, and thus the approximated tissue.



FIG. 6 illustrates another exemplary embodiment of a surgical soft tissue repair device 410 in which the snare assembly 20 from FIG. 1 is coupled to a soft anchor 412. As shown, the anchor 412 can be in the form of suture 414, or another flexible element such as a polymeric sleeve, having plurality of openings 416 formed therein with a plurality of bores 418 extending through the anchor 412 along a length thereof. The soft anchor 412 may be cannulated or non-cannulated. As illustrated, the snare assembly 20 can enter and exit the anchor 412 through the openings 416 and pass across the anchor 412 through the bores 418 to couple the snare assembly 20 to the anchor 412 such that the anchor 412 is at an intermediate location on the snare assembly 20. The openings 416 and bores 418 can be in a number of different configurations. In the illustrated embodiment, there are twelve openings 416 and six bores 418, with at least some of the bores 418 extending transversely between two openings 416. As shown, each opening 416 has a complimentary opening through the other side of the anchor 412, and a bore 418 extends between the opposed paired openings 416. Furthermore, as shown, the snare assembly 20 can be passed across the anchor 412 symmetrically, and thus the opposed paired openings 416 having a bore 418 extending therebetween can have a mirror-image counterpart opposed paired openings 416 and bore 418 extending therebetween. Once deployed, the anchor 412 is capable of moving between an unstressed configuration and an anchoring configuration.


The anchor 412 can be made of a variety of materials, but in one exemplary embodiment the anchor 412 is formed using a surgical filament, such as a cannulated filament, a braided filament, or a mono filament. Alternatively, the anchor 412 can be made from a polymeric material in the form of a flexible sleeve. The type, size, and strength of the filament can depend, at least in part, on the other materials that form the snare assembly, the type of tissue in which it will be deployed, and the type of procedure with which it will be used. In one exemplary embodiment the anchor is formed from a #2 filament (about 23 gauge to about 24 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, Inc. or an Ethibond™ filament that is commercially available from Ethicon, Inc.


A length of the anchor when it is in an approximately linear, unfolded and undeployed configuration can be in the range of about 8 millimeters to about 50 millimeters, and in one embodiment it can be about 20 millimeters. Further, a length of the anchor when it is deployed and in its unstressed configuration (FIG. 7A, described below) can be in the range of about 4 millimeters to about 25 millimeters, and in one embodiment it can be about 10 millimeters and a diameter of the deployed soft anchor in such a configuration (i.e., a folded configuration) can be in the range of about 0.5 millimeters to about 5 millimeters, and in one embodiment it can be about 1 millimeter. Still further, a length of the anchor when it is deployed and in its anchoring configuration (FIG. 7B, described below) can be in the range of about 2 millimeters to about 10 millimeters, and in one embodiment it can be about 5 millimeters and a diameter in such a configuration can be in the range of about 1 millimeter to about 10 millimeters, and in one embodiment it can be about 2 millimeters.


A person having skill in the art will recognize a variety of other constructions the device 410, the snare assembly 20 (discussed above), and the anchor 412 can have without departing from the spirit of the present disclosure. By way of non-limiting example, any number of openings and bores, and configurations thereof, can be used, although in some embodiments the number of bores can be in the range of about 2 bores to about 10 bores, and in one embodiment there can be 4 bores while in another embodiment there can be 6 bores. Further, the anchor 412 can be configured to allow the snare assembly 20 to pass through any portion thereof, including in an asymmetric and non-transverse manner, depending, at least in part, on other components of the device 410 and the desired second, anchoring configuration, among other factors. A person having skill in the art will recognize that the way in which the snare assembly 20 is passed through and across the anchor 412 can affect the look and performance of the anchoring configuration. Other anchors with which the snare assembly 20 can be coupled to and operated similar to manners provided for herein are described at least in literature related to the Y-KNOT® suture anchor systems that are commercially available from CONMED, 525 French Road, Utica, N.Y. 13502, the content of which is incorporated by reference herein in its entirety.



FIGS. 7A-7H illustrate one exemplary method for performing a tissue repair using the repair construct illustrated in FIG. 6. A surgical opening can be formed through skin 1000 and a cannula can be passed therethrough to access a surgical repair site according to well known techniques. Similar to FIGS. 5A-5H, although cannulas are often used to define a channel through which the procedure can be preformed, the cannula is not shown in FIGS. 7A-7H for ease of illustration. Accordingly, to the extent the figures show components of the systems and devices passing through skin 1000, these components would typically be extending through the cannula, which itself is passed through the skin 1000.


As shown in FIG. 7A, the snare assembly 20 can be coupled to the anchor 412 by passing the terminal end 24 through and across the openings 416 and the bores 418 formed therein so that the anchor 412 is located at an intermediate location of the snare assembly 20 with the snare 30 extending from a first side of the anchor 412 and the terminal end 24 extending from the other. A bore 1002 can be formed in a bone 1001 and the device 410 shown in FIG. 6 can be inserted into the bore, for instance in a folded configuration as shown or in an unfolded, e.g., approximately straight, configuration. A number of different techniques can be used to place the device 410 into the bore, including techniques known to those skilled in the art, those described above with respect to the anchor 312, and those described below with respect to FIGS. 9A, 10, and 11A-11J. By way of non-limiting example, a device having a plurality of prongs can be used to insert the anchor 412 such that the prongs maintain the anchor 412 in its first, unstressed configuration during insertion.


As shown in FIG. 7B, after the anchor is deployed in bone, tension can be applied to the snare assembly 20 approximately in a direction E, which in turn can actuate the anchor 412 to move from its unstressed configuration to its anchoring configuration. This tension causes deformation of the anchor 412 and it substantially bunches and has a greater diameter in the anchoring configuration. In the illustrated embodiment the bunched, anchoring configuration is substantially fist-like or spherical for illustrative purposes, but a person skilled in the art will recognize a number of different configurations that the anchor 412 can have in the anchoring configuration. In this configuration the anchor 412 engages and impinges the walls of the bore 1002 in its anchoring configuration, penetrating cancellous bone in some embodiments so that the anchor 412 can be substantially fixed with respect to the bore 1002. While the overall shape of the anchor in the anchoring configuration will depend, at least in part, on the way the snare assembly 20 is coupled to the anchor 412, as shown the diameter of the anchor in the second, anchoring configuration increases in comparison to the diameter in the unstressed configuration, while the length of the anchor in the anchoring configuration decreases in comparison to the length of the unstressed configuration.


The device 410 can then be operated in a manner similar to as described with respect to FIGS. 5C-5H. Thus, at least a portion of the terminal end 24 can be passed through at least a portion of the tendon 1003 and through the opening 32 in the snare 30 and the snare 30 can be collapsed or dressed, for instance by moving the knot that forms the snare 30 away from the terminal end 24. The snare 30 can be slid distally toward the tendon 1003 by applying tension approximately in a direction F, which can result in the snare 30 being adjacent to the tendon 1003 and the tendon 1003 moving towards the bone 1001. Final tensioning and removal of the sleeve 50, if used, can occur, and one or more half-hitches can be formed proximate to the collapsed snare 30 to allow for incremental or ratchet-like tensioning and/or to maintain a location thereof. Excess filament can then be trimmed and removed to complete the procedure.



FIG. 8 illustrates yet another exemplary embodiment of a surgical soft tissue repair device 510 in which the snare assembly 20 from FIG. 1 is coupled to the anchor 512. As shown, the anchor 512 can be a crocheted suture 514 having a plurality of openings 516 defined between filament limbs along a length thereof. The snare assembly 20 can be woven back-and-forth across the suture 514 any number of times to couple the snare assembly 20 to the anchor 512 such that the anchor 512 is at an intermediate location on the snare assembly 20. In the illustrated embodiment the snare assembly is passed across the suture 514 at a proximal end 514p of the suture 514 and is passed back-and-forth across the suture 514 five more times, each time being more distal of the next, before being looped back from a distal end 514d to the proximal end 514p and being passed across the suture 514 one last time at the proximal end 514p.


The anchor 512 can be made of a variety of materials, but in one exemplary embodiment the anchor 512 is formed using a surgical filament, such as a cannulated filament, a braided filament, or a mono filament. The type, size, and strength of the filament can depend, at least in part, on the other materials that form the snare assembly, the type of tissue in which it will be deployed, and the type of procedure with which it will be used. In one exemplary embodiment the anchor is formed from a #2 filament (about 23 gauge to about 24 gauge), such as an Orthocord™ filament that is commercially available from DePuy Mitek, Inc. or an Ethibond™ filament that is commercially available from Ethicon, Inc.


The length of the anchor 512 when it is deployed in bone and in its unstressed configuration (FIG. 9A, described below) can be in the range of about 5 millimeters to about 50 millimeters, and in one embodiment it can be about 25 millimeters. The diameter of anchor 512 in such a configuration can be in the range of about 0.5 millimeters to about 5 millimeters, and in one embodiment it can be about 1 millimeter. When the anchor 512 is deployed and in its anchoring configuration (FIG. 9B, described below), its length can be in the range of about 2 millimeters to about 10 millimeters, and in one embodiment it can be about 5 millimeters. The diameter of the deployed anchor 512 in its anchoring configuration can be in the range of about 1 millimeter to about 10 millimeters, and in one embodiment it can be about 2 millimeters.


A person having skill in the art will recognize a variety of other constructions the device 510, the snare assembly 20 (discussed above), and the anchor 512 can have without departing from the spirit of the present disclosure. By way of non-limiting example, the snare assembly 20 can be passed across the anchor 514 any number of times at any number of locations, and not necessarily in a consecutive downstream or upstream order. A person having skill in the art will also recognize that the way by which the snare assembly 20 is passed through and across the anchor 512 can affect the look and performance of the second, anchoring configuration. Other anchors to which the snare assembly 20 can be coupled to and operated similar to manners provided for herein are described at least in U.S. Patent Application Publication No. 2011/0022083 filed Jul. 24, 2009, and entitled “METHODS AND DEVICES FOR REPAIRING AND ANCHORING DAMAGED TISSUE,” the content of which is incorporated by reference herein in its entirety.



FIGS. 9A-9H illustrate one exemplary method for performing a tissue repair using the repair construct illustrated in FIG. 8. A surgical opening can be formed through skin 1000 and a cannula can be passed therethrough to access a surgical repair site according to well known techniques. Similar to FIGS. 5A-5H, although cannulas are often used to define a channel through which the procedure can be preformed, the cannula is not shown in FIGS. 9A-9H for ease of illustration. Accordingly, to the extent the figures show components of the systems and devices passing through skin 1000, these components would typically be extending through the cannula, which itself is passed through the skin 1000.


As shown in FIG. 9A, the snare assembly 20 can be coupled to the anchor 512 in a manner similar to that described above with respect to FIG. 8. This construction is such that the anchor 512 is located at an intermediate location of the snare assembly 20 with the snare 30 extending from a first side of the anchor 512 and the terminal end 24 extending from the other. A bore 1002 can be formed in a bone 1001 and the device 510 shown in FIG. 8 can be inserted into the bore. A number of different techniques can be used to place the device 510 into the bore, including techniques known to those skilled in the art. By way of non-limiting example, an insertion device 590 having a body 592 defining a cavity 594 therein and a piston 596 disposed within the cavity 594 can be inserted to a distal end 1002d of the bore 1002 so that the anchor 512 is located distally within the bore 1002, as shown in FIG. 9A. The device 590 can also include one or more features to manage the snare assembly 30, including, by way of non-limiting example, a central lumen 598 in the piston 596 for receiving the snare assembly 20. The body 592 can be removed while the piston 596 is left stationary to hold the anchor 512 in place, and then after the body 592 is removed, the piston 596 can be removed, thereby leaving the anchor 512 disposed in the bore 1002. Such a configuration allows unintended movement of the anchor 512 to be minimized or eliminated, thereby reducing the possibility of a premature deployment to the second, anchoring configuration. In an alternative embodiment, the device 590 can be located adjacent to a proximal end 1002p of the bore 1002 and the piston 596 can be actuated to move the anchor 512 from the device 590 and into the bore 1002. Still further, delivery options discussed above with respect to the anchors 312, 412 can also be used with the anchor 512, as well as other techniques known to those skilled in the art.


With reference to FIG. 9B, once the anchor 512 is disposed in bore 1002 tension can be applied to the snare assembly 20 approximately in a direction G. With the anchor constrained within bore 1002, this force actuates the anchor 512 so that it transitions from its unstressed configuration to its anchoring configuration. This tension causes deformation of the anchor 512 and it substantially bunches and has a greater diameter in the anchoring configuration. In the illustrated embodiment the bunched, anchoring configuration substantially fist-like or spherical for illustrative purposes, but a person skilled in the art will recognize a number of different configurations that the anchor 512 can have in the anchoring configuration. In this configuration the anchor 512 engages and impinges the walls of the bore 1002, penetrating cancellous bone in some embodiments so that the anchor 512 can be substantially fixed with respect to the bore 1002. While the overall shape of the anchor in the anchoring configuration will depend, at least in part, on the way the snare assembly 20 is coupled to the anchor 512, as shown the diameter of the deployed anchor in 512 the anchoring configuration increases in comparison to the anchor diameter of the unstressed configuration, while the length of the deployed anchor in the anchoring configuration decreases in comparison to the diameter of the anchor in the unstressed configuration.


As described above, the impingement of the anchor into the walls of the bore 1002 may be initiated solely by friction between the anchor and the walls and further helped by varying bone density, and further, the shape transformation process may also be initiated by introducing a retaining device against the anchor and applying tension on the snare against the retaining device. In some embodiments, the piston 596 can serve as the retaining device. For example, after the body 592 is retracted, the piston 596 can be kept in place and the snare assembly 20 can be tensioned against the piston 596, thus causing the anchor 512 to move to the anchoring configuration. The piston 596 can then be removed from the surgical site. In such embodiments the lumen 598 of the piston 596 can be small enough so as not to accommodate the snare assembly 20 and the anchor 512 together.


Following deployment of the anchor 512 from its first, unstressed configuration to its second, anchoring configuration, the device 510 can be operated in a manner similar to that described with respect to FIGS. 5C-5H. Thus, at least a portion of the terminal end 24 can be passed through at least a portion of the tendon 1003 and through the opening 32 in the snare 30 and the snare 30 can be collapsed or dressed, for instance by moving the knot that forms the snare 30 away from the terminal end 24. The snare 30 can be slid distally toward the tendon 1003 by applying tension approximately in a direction H, which can result in the snare 30 being adjacent to the tendon 1003 and the tendon 1003 moving toward the bone 1001. Final tensioning and removal of the sleeve 50, if used, can occur, and one or more half-hitches can be formed proximate to the collapsed snare 30 to allow for incremental or ratchet-like tensioning and/or to maintain a location thereof. Excess filament can then be trimmed and removed to complete the procedure.



FIG. 10 illustrates still another exemplary embodiment of a surgical soft tissue repair device 610 in which the snare assembly 20 of FIG. 1 is coupled to soft anchor 612. As shown, the anchor 612 is of a similar nature as the anchor 512, and thus it can include the same features discussed above with respect to the anchor 512. Accordingly, it can be a crocheted suture 614 having a plurality of openings 616 defined between filament limbs along a length thereof, with the snare assembly being woven back-and-forth across the suture 614 in a manner similar as described above such that the anchor 612 is at an intermediate location on the snare assembly 20. The anchor 612 includes a fish tail 617 at a distal end 614d of the suture 614. The fish tail 617 can be used to assist with inserting the anchor 612 to a surgical site, as discussed in greater detail below. In particular, fish tail 617 can assist in navigating the device through and around obstructions and various non-linear paths in the body. As shown, a needle 619 or other similar tool or device can optionally be coupled to the suture 612 to assist with threading the fish tail 617 through obstructions, such as skin and tissue.


The materials and dimensions of the device 610 can likewise be similar to those discussed above with respect to the device 510, with the fish tail 617 being part of the suture 614. The length of the fish tail 617 can depend, at least in part, on the dimensions of the rest of the suture 614, other components with which it is being used, and the type of procedures with which it is being used. The fish tail 617 can have a length in the range of about 5 centimeters to about 100 centimeters, and in one embodiment a length of the fish tail is about 40 centimeters. A person having skill in the art will recognize a variety of other constructions the device 610, the snare assembly 20 (discussed above), and the anchor 612 can have without departing from the spirit of the present disclosure. Further, a person having skill in the art will recognize that a fish tail similar to the fish tail 617 can be incorporated in various other anchor embodiments, including but not limited to the anchors 312, 412, and 512 provided herein. The use of the fish tail to position such anchors would occur in a manner similar to the manner described below with respect to FIGS. 11A-11J.



FIGS. 11A-11J illustrate one exemplary method for performing a tissue repair using the repair construct illustrated in FIG. 10. A surgical opening can be formed through skin 1000 and a cannula can be passed therethrough to access a surgical repair site according to well known techniques. Similar to FIGS. 5A-5H, although cannulas are often used to define a channel through which the procedure can be preformed, the cannula is not shown in FIGS. 11A-11J for ease of illustration. Accordingly, to the extent the figures show components of the systems and devices passing through skin 1000, these components would typically be extending through the cannula, which itself is passed through the skin 1000.


As shown in FIG. 11A, the snare assembly 20 can be coupled to the anchor 612 in the same manner as described above with respect to FIG. 9A. Insertion of the device 610, however, can be different because of the fish tail 617. In one exemplary embodiment for insertion of the device 610 to a surgical site, a bore 1002 is formed fully through the bone 1001 and the fish tail 617 is used as a shuttle to bring the anchor 612 to the desired location. In the illustrated embodiment the fish tail 617 passes through a top layer of skin 1000, through the bore 1002, and out of a bottom layer of skin 1000. As shown in FIG. 11B, tension can be applied to the fish tail 617 in approximately a direction J to pull the anchor 612 through the bore 1002 and to the desired location. The snare assembly 20 can be used to counteract the force applied by the fish tail 617 by delivering a force in a direction approximately opposite to the direction J to assist in placement of the device 610. Although in the illustrated embodiment the fish tail 617 extends through the bottom layer of skin 1000, in other embodiments it can remain in the body but be just distal of the bore 1002, which still allows tension to be applied thereto to help shuttle the anchor 612 to the desired location.


The device 610 can then be utilized in a manner similar to that described with respect to FIGS. 9B-9H. Thus, tension can be applied to the snare assembly 20 approximately in a direction K to move the anchor from its unstressed configuration to its anchoring configuration. This tension causes deformation of the anchor 612 and it substantially bunches and has a greater diameter in the anchoring configuration. Again, in the illustrated embodiment the bunched, anchoring configuration is substantially fist-like or spherical for illustrative purposes, but a person skilled in the art will recognize a number of different configurations that the anchor 612 can have in the anchoring configuration. When the anchor 612 is deployed and in its anchoring configuration, it typically resides just distal to bore 1002, on the side of the bore adjacent to the bottom layer of tissue. At least a portion of the terminal end 24 can be passed through at least a portion of the tendon 1003 and through the opening 32 in the snare 30 and the snare 30 can be collapsed or dressed, for instance by moving the knot that forms the snare 30 away from the terminal end 24. The snare 30 can be slid distally toward the tendon 1003 by applying tension approximately in a direction L, which can result in the snare 30 being adjacent to the tendon 1003 and the tendon 1003 moving toward the bone 1001. Final tensioning and removal of the sleeve 50, if used, can occur, and one or more half-hitches can be formed proximate to the collapsed snare 30 to allow for incremental or ratchet-like tensioning and/or to maintain a location thereof. Excess filament can then be trimmed and removed to complete the procedure. The fish tail 617 can also be trimmed and removed. Although removal of the fish tail 617 is illustrated in FIG. 11D, such removal can occur at any time after the anchor 612 is shuttled to its desired location.


A person skilled in the art will recognize a number of different modifications that can be made to the soft anchor procedures discussed herein without departing from the spirit of the invention. By way of one non-limiting example, although the embodiments herein illustrate the snare assembly 20 passing through tissue at one location, in other embodiments, it can pass through two or more locations and/or two or more tissues. By way of further non-limiting example, the snare assembly 20 can be coupled to tissue using a variety of techniques, for instance wrapping a portion of the snare assembly 20 around the tissue. By way of still a further non-limiting example, a snare 30 can be passed through tissue instead of or in addition to passing the terminal end 24 through tissue. A pin or other fixation element can be placed across any coaxial sliding neck of the snare to prevent unintentional collapse in such an embodiment, or could be included in any snare assembly embodiment for extra precaution. Still further, a person having skill in the art will recognize that the order of at least some of the method steps provided herein can be altered without departing from the spirit of the present disclosure.


Additionally, the procedures discussed with respect to FIGS. 4-11G are just some forms of procedures that can be performed in conjunction with systems, devices, and methods disclosed herein. A person skilled in the art will recognize a number of other ways that the disclosed systems, devices, and methods can be used in various other configurations and types of surgical procedures. For instance, the systems, devices, and methods disclosed herein can easily be adapted to be used in conjunction with three or more components, such as multiple tissues and a bone or three or more soft tissues. Some non-limiting examples of other systems, devices, assemblies, constructs, and surgical procedures with which the present systems, devices, and methods can be used are described in U.S. patent application Ser. No. 13/218,810 filed Aug. 26, 2011, and entitled “SURGICAL FILAMENT SNARE ASSEMBLIES,” and in U.S. patent application Ser. No. 13/465,288 filed concurrently herewith, and entitled “Systems, Devices, and Methods for Securing Tissue” the content of which was previously incorporated by reference herein in their entireties.


One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. Further, although the systems, devices, and methods provided for herein are generally directed to surgical techniques, at least some of the systems, devices, and methods can be used in applications outside of the surgical field. All publications and references cited herein are expressly incorporated herein by reference in their entirety.

Claims
  • 1. A surgical device, comprising: a soft anchor configured to be fixated in bone and formed of a flexible construct having a central lumen disposed therethrough, the soft anchor having a plurality of openings formed in an outer surface thereof, the plurality of openings being in communication with the central lumen;a suture construct defined between opposed first and second terminal ends, the suture construct being configured to pass through the plurality of openings in the soft anchor into the central lumen, the suture construct being slidably disposed relative to the soft anchor so as to move through the soft anchor when tension is applied to one of the first and second terminal ends of the suture construct,a snare assembly having a collapsible snare at one of the first and second terminal ends of the suture construct, the collapsible snare being formed without the soft anchor being disposed on the portion of the suture construct that forms the collapsible snare and the collapsible snare being configured to receive an opposite terminal end of the first and second terminal ends therethrough to collapse the collapsible snare by moving a knot that forms the collapsible snare away from the opposite terminal end of the first and second terminal ends to dispose the collapsible snare adjacent to bone,wherein the soft anchor and the suture construct are configured to transition from an unstressed configuration with a first length and a first diameter to an anchoring configuration with a second length and a second diameter following application of tension, the second length being smaller than the first length, and the second diameter being larger than the first diameter to fixate the soft anchor in bone, andwherein a distance between adjacent openings of the plurality of openings is reduced in the anchoring configuration relative to the unstressed configuration.
  • 2. The device of claim 1, wherein the soft anchor is a cannulated suture.
  • 3. The device of claim 1, wherein the plurality of openings are formed in an intermediate portion of the soft anchor.
  • 4. The device of claim 1, wherein a first location on the outer surface of the soft anchor contacts a second location on the outer surface of the soft anchor in the anchoring configuration.
  • 5. The device of claim 1, wherein the suture construct forms a loop within the central lumen.
  • 6. The device of claim 1, wherein the first and second openings are formed on a first side of the soft anchor.
  • 7. The device of claim 6, wherein a second, opposite side of the soft anchor is devoid of openings.
  • 8. The device of claim 1, wherein the suture construct passes into and out of the central lumen from a same side of the soft anchor.
  • 9. The device of claim 1, wherein the plurality of holes form opposed pair openings on opposite sides of the outer surface of the anchor to form a plurality of transverse bores that extend through the soft anchor that are substantially perpendicular to the central lumen.
  • 10. The device of claim 9, wherein the suture construct extends through the opposed pair openings.
  • 11. The device of claim 10, wherein the soft anchor includes at least four transverse bores and the suture construct passes into and out of each transverse bore through the opposed paired openings.
  • 12. The device of claim 1, wherein the soft anchor forms two or more curved portions in the anchoring configuration.
  • 13. The device of claim 1, wherein the plurality of openings comprise at least ten openings.
  • 14. The device of claim 1, wherein any soft anchor coupled to the suture construct being disposed separate from the collapsible snare.
  • 15. The device of claim 1, further comprising a flexible sleeve removably encapsulating at least a portion of the suture construct.
  • 16. The device of claim 1, wherein each of a first and second terminal end of the soft anchor is configured to remain substantially devoid of the suture construct passing therethrough.
  • 17. A surgical repair method, comprising: inserting a soft anchor into a hole in a bone at a location proximate to detached soft tissue, the anchor having a first configuration with a first length and a first diameter and a second configuration with a second length that is less than the first length and a second diameter that is greater than the first diameter, the anchor being coupled to a suture construct that is defined between opposed first and second terminal ends that pass through at least a portion of the anchor, the suture construct passing through the anchor such that the suture construct is slidably disposed relative to the soft anchor so as to move through the soft anchor when tension is applied to one of the first and second terminal ends of the suture construct;tensioning at least one of the first and second terminal ends of the suture construct to move the anchor from the first configuration to the second configuration to fix the anchor relative to the bone; andpassing the first terminal end through a snare assembly located on the second terminal end, the snare assembly being formed by an elongate filament having a collapsible snare, actuating the snare to collapse the snare around a portion of the suture construct proximate to the first terminal end to secure the position of the suture construct relative to the soft anchor, wherein the portion of the elongate filament that forms the collapsible snare comprises first and second filament limbs that each extend in a first direction from a slidable knot that defines the collapsible snare.
  • 18. The method of claim 17, wherein the suture construct is coupled to the anchor prior to inserting the anchor into the hole.
  • 19. The method of claim 17, wherein the suture construct does not pass through the terminal ends of the soft anchor.
  • 20. The method of claim 17, wherein the suture construct is passed through the anchor a plurality of times to couple the suture construct to the anchor.
  • 21. The method of claim 17, further comprising positioning the soft anchor at an intermediate location along the suture construct such that the first terminal end of the suture construct extends from a first side of the soft anchor and the second terminal end of the suture construct extends from a second, opposite side of the anchor.
  • 22. The method of claim 17, wherein the soft anchor is a cannulated anchor with a lumen extending therethrough, the flexible anchor having a first opening at a proximal end and a second opening at a distal end, each of the first and second openings communicating with the lumen.
  • 23. The method of claim 17, further comprising removing a sleeve that encapsulates at least a portion of the suture construct.
CROSS REFERENCE TO RELATED APPLICATION

The present application is a continuation of and claims priority to U.S. patent application Ser. No. 15/143,496, filed Apr. 29, 2016, and entitled “SYSTEMS, DEVICES, AND METHODS FOR SECURING TISSUE USING SNARE ASSEMBLIES AND SOFT ANCHORS,” which is a divisional of and claims priority to U.S. application Ser. No. 13/465,376, filed May 7, 2012, and entitled “SYSTEMS, DEVICES, AND METHODS FOR SECURING TISSUE USING SNARE ASSEMBLIES AND SOFT ANCHORS,” and which issued as U.S. Pat. No. 9,345,567 on May 24, 2016, the contents of each which is hereby incorporated by reference in their entireties.

US Referenced Citations (344)
Number Name Date Kind
2566625 Nagelmann Sep 1951 A
2600395 Domoj et al. Jun 1952 A
2697624 Thomas et al. Dec 1954 A
2758858 Smith Aug 1956 A
2992029 Russell Jul 1961 A
3106417 Clow Oct 1963 A
3131957 Musto May 1964 A
3177021 Benham Apr 1965 A
3402957 Peterson Sep 1968 A
3521918 Hammond Jul 1970 A
3565077 Glick Feb 1971 A
3580256 Wilkinson et al. May 1971 A
3712651 Shockley Jan 1973 A
3752516 Mumma Aug 1973 A
3873140 Bloch Mar 1975 A
4029346 Browning Jun 1977 A
4036101 Burnett Jul 1977 A
4038988 Perisse Aug 1977 A
4105034 Shalaby et al. Aug 1978 A
4130639 Shalaby et al. Dec 1978 A
4140678 Shalaby et al. Feb 1979 A
4141087 Shalaby et al. Feb 1979 A
4186921 Fox Feb 1980 A
4205399 Shalaby et al. Jun 1980 A
4208511 Shalaby et al. Jun 1980 A
4319428 Fox Mar 1982 A
4403797 Ragland, Jr. Sep 1983 A
4510934 Batra Apr 1985 A
4572554 Janssen et al. Feb 1986 A
4792336 Hlavacek et al. Dec 1988 A
4870957 Goble et al. Oct 1989 A
4946377 Kovach Aug 1990 A
4962929 Melton, Jr. Oct 1990 A
4987665 Dumican et al. Jan 1991 A
5062344 Gerker Nov 1991 A
5098137 Wardall Mar 1992 A
5144961 Chen et al. Sep 1992 A
5156616 Meadows et al. Oct 1992 A
5178629 Kammerer Jan 1993 A
5217495 Kaplan et al. Jun 1993 A
5250053 Snyder Oct 1993 A
5250054 Li Oct 1993 A
5259846 Granger et al. Nov 1993 A
5263984 Li et al. Nov 1993 A
5279311 Snyder Jan 1994 A
5282809 Kammerer et al. Feb 1994 A
5284485 Kammerer et al. Feb 1994 A
5312423 Rosenbluth et al. May 1994 A
5318575 Chesterfield et al. Jun 1994 A
5320629 Noda et al. Jun 1994 A
5376118 Kaplan et al. Dec 1994 A
5391176 de la Torre Feb 1995 A
5395382 DiGiovanni et al. Mar 1995 A
5405352 Weston Apr 1995 A
5450860 O'Connor Sep 1995 A
5454820 Kammerer et al. Oct 1995 A
5456722 McLeod et al. Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5464929 Bezwada et al. Nov 1995 A
5472446 de la Torre Dec 1995 A
5527323 Jervis et al. Jun 1996 A
5534011 Greene, Jr. et al. Jul 1996 A
5540703 Barker, Jr. et al. Jul 1996 A
5549618 Fleenor et al. Aug 1996 A
5562684 Kammerer Oct 1996 A
5569306 Thal Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5573286 Rogozinski Nov 1996 A
5591207 Coleman Jan 1997 A
5593189 Little Jan 1997 A
5595751 Bezwada et al. Jan 1997 A
5597579 Bezwada et al. Jan 1997 A
5607687 Bezwada et al. Mar 1997 A
5618552 Bezwada et al. Apr 1997 A
5620698 Bezwada et al. Apr 1997 A
5628756 Barker May 1997 A
5645850 Bezwada et al. Jul 1997 A
5647616 Hamilton Jul 1997 A
5647874 Hayhurst Jul 1997 A
5648088 Bezwada et al. Jul 1997 A
5667528 Colligan Sep 1997 A
5683417 Cooper Nov 1997 A
5683419 Thal Nov 1997 A
5685037 Fitzner et al. Nov 1997 A
5698213 Jamiolkowski et al. Dec 1997 A
5700583 Jamiolkowski et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5709708 Thal Jan 1998 A
5716368 de la Torre et al. Feb 1998 A
5725556 Moser et al. Mar 1998 A
5728109 Schulze et al. Mar 1998 A
5741332 Schmitt Apr 1998 A
5749898 Schulze et al. May 1998 A
5782864 Lizardi Jul 1998 A
5814069 Schulze et al. Sep 1998 A
5859150 Jamiolkowski et al. Jan 1999 A
5899920 DeSatnick et al. May 1999 A
5941900 Bonutti Aug 1999 A
5964783 Grafton et al. Oct 1999 A
5971447 Steck, III Oct 1999 A
5989252 Fumex Nov 1999 A
6024758 Thal Feb 2000 A
6045574 Thal Apr 2000 A
6143017 Thal Nov 2000 A
6221084 Fleenor Apr 2001 B1
6267766 Burkhart Jul 2001 B1
6296659 Foerster Oct 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6322112 Duncan Nov 2001 B1
6517578 Hein Feb 2003 B2
6527794 McDevitt et al. Mar 2003 B1
6527795 Lizardi Mar 2003 B1
6540750 Burkhart Apr 2003 B2
6547807 Chan et al. Apr 2003 B2
6596015 Pitt et al. Jul 2003 B1
6641596 Lizardi Nov 2003 B1
6641597 Burkhart et al. Nov 2003 B2
6652563 Dreyfuss Nov 2003 B2
6660023 McDevitt et al. Dec 2003 B2
6689154 Bartlett Feb 2004 B2
6716234 Grafton et al. Apr 2004 B2
6767037 Wenstrom, Jr. Jul 2004 B2
6818010 Eichhorn et al. Nov 2004 B2
6887259 Lizardi May 2005 B2
6923824 Morgan et al. Aug 2005 B2
6994719 Grafton Feb 2006 B2
7029490 Grafton et al. Apr 2006 B2
7048754 Martin et al. May 2006 B2
7081126 McDevitt et al. Jul 2006 B2
7217279 Reese May 2007 B2
7226469 Benavitz et al. Jun 2007 B2
7235090 Buckman et al. Jun 2007 B2
7285124 Foerster Oct 2007 B2
7309337 Colleran et al. Dec 2007 B2
7338502 Rosenblatt Mar 2008 B2
7381213 Lizardi Jun 2008 B2
7390332 Selvitelli et al. Jun 2008 B2
7455684 Gradel et al. Nov 2008 B2
7582105 Kolster Sep 2009 B2
7601165 Stone Oct 2009 B2
7651509 Bojarski et al. Jan 2010 B2
7654321 Zazovsky et al. Feb 2010 B2
7658750 Li Feb 2010 B2
7658751 Stone et al. Feb 2010 B2
7682374 Foerster et al. Mar 2010 B2
7695495 Dreyfuss Apr 2010 B2
7703372 Shakespeare Apr 2010 B1
7803173 Burkhart et al. Sep 2010 B2
7875043 Ashby et al. Jan 2011 B1
7883528 Grafton et al. Feb 2011 B2
7883529 Sinnott et al. Feb 2011 B2
7905903 Stone et al. Mar 2011 B2
7905904 Stone et al. Mar 2011 B2
7959650 Kaiser et al. Jun 2011 B2
7981140 Burkhart Jul 2011 B2
8012171 Schmieding Sep 2011 B2
8088130 Kaiser et al. Jan 2012 B2
8088146 Wert et al. Jan 2012 B2
8114128 Cauldwell et al. Feb 2012 B2
8118836 Denham et al. Feb 2012 B2
8128658 Kaiser et al. Mar 2012 B2
8137382 Denham et al. Mar 2012 B2
8231653 Dreyfuss Jul 2012 B2
8231654 Kaiser et al. Jul 2012 B2
8419769 Thal Apr 2013 B2
8545535 Hirotsuka et al. Oct 2013 B2
8608758 Singhatat et al. Dec 2013 B2
8790369 Orphanos et al. Jul 2014 B2
8790370 Spenciner et al. Jul 2014 B2
8814905 Sengun et al. Aug 2014 B2
8821543 Hernandez et al. Sep 2014 B2
8821544 Sengun et al. Sep 2014 B2
8821545 Sengun Sep 2014 B2
8894684 Sengun Nov 2014 B2
8974495 Hernandez et al. Mar 2015 B2
9017381 Kaiser et al. Apr 2015 B2
9034013 Sengun May 2015 B2
9060763 Sengun Jun 2015 B2
9060764 Sengun Jun 2015 B2
9095331 Hernandez et al. Aug 2015 B2
9179908 Sengun Nov 2015 B2
9192373 Sengun Nov 2015 B2
9198653 Sengun et al. Dec 2015 B2
9271716 Sengun Mar 2016 B2
9345468 Sengun et al. May 2016 B2
9345567 Sengun May 2016 B2
9532778 Sengun et al. Jan 2017 B2
9737293 Sengun et al. Aug 2017 B2
9757116 Sengun Sep 2017 B2
9763655 Sengun Sep 2017 B2
9795373 Sengun Oct 2017 B2
9833229 Hernandez et al. Dec 2017 B2
9872678 Spenciner et al. Jan 2018 B2
9895145 Sengun et al. Feb 2018 B2
10258321 Sengun Apr 2019 B2
10271833 Sengun Apr 2019 B2
10292695 Sengun et al. May 2019 B2
10524777 Sengun Jan 2020 B2
10631848 Sengun et al. Apr 2020 B2
10695047 Sengun Jun 2020 B2
10751041 Spenciner et al. Aug 2020 B2
20020019649 Sikora et al. Feb 2002 A1
20020029066 Foerster Mar 2002 A1
20030004545 Burkhart et al. Jan 2003 A1
20030050667 Grafton et al. Mar 2003 A1
20030120309 Colleran et al. Jun 2003 A1
20030130695 McDevitt et al. Jul 2003 A1
20030229362 Chan et al. Dec 2003 A1
20040093031 Burkhart et al. May 2004 A1
20040098050 Foerster et al. May 2004 A1
20040153074 Bojarski et al. Aug 2004 A1
20040172062 Burkhart Sep 2004 A1
20040236373 Anspach Nov 2004 A1
20050033363 Bojarski et al. Feb 2005 A1
20050119696 Walters et al. Jun 2005 A1
20050137624 Fallman Jun 2005 A1
20050187577 Selvitelli et al. Aug 2005 A1
20050251208 Elmer et al. Nov 2005 A1
20060106423 Weisel et al. May 2006 A1
20060178680 Nelson et al. Aug 2006 A1
20060178702 Pierce et al. Aug 2006 A1
20060293710 Foerster et al. Dec 2006 A1
20070027476 Harris et al. Feb 2007 A1
20070032792 Collin et al. Feb 2007 A1
20070060922 Dreyfuss Mar 2007 A1
20070083236 Sikora et al. Apr 2007 A1
20070135843 Burkhart Jun 2007 A1
20070150003 Dreyfuss et al. Jun 2007 A1
20070156148 Fanton et al. Jul 2007 A1
20070156149 Fanton et al. Jul 2007 A1
20070156150 Fanton et al. Jul 2007 A1
20070156176 Fanton et al. Jul 2007 A1
20070219557 Bourque et al. Sep 2007 A1
20070219558 Deutsch Sep 2007 A1
20070225719 Stone et al. Sep 2007 A1
20070239209 Fallman Oct 2007 A1
20080009901 Redmond et al. Jan 2008 A1
20080009904 Bourque et al. Jan 2008 A1
20080027446 Stone et al. Jan 2008 A1
20080065114 Stone et al. Mar 2008 A1
20080077182 Geissler et al. Mar 2008 A1
20080091237 Schwartz et al. Apr 2008 A1
20080103528 Zirps et al. May 2008 A1
20080140092 Stone et al. Jun 2008 A1
20080147063 Cauldwell et al. Jun 2008 A1
20080188893 Selvitelli et al. Aug 2008 A1
20080195205 Schwartz Aug 2008 A1
20080208265 Frazier et al. Aug 2008 A1
20080228265 Spence et al. Sep 2008 A1
20080255613 Kaiser et al. Oct 2008 A1
20080275469 Fanton et al. Nov 2008 A1
20080312689 Denham et al. Dec 2008 A1
20090023984 Stokes et al. Jan 2009 A1
20090036905 Schmieding Feb 2009 A1
20090043317 Cavanaugh et al. Feb 2009 A1
20090054928 Denham et al. Feb 2009 A1
20090062850 Ken Mar 2009 A1
20090062854 Kaiser et al. Mar 2009 A1
20090082790 Shad et al. Mar 2009 A1
20090082805 Kaiser et al. Mar 2009 A1
20090082807 Miller et al. Mar 2009 A1
20090088798 Snyder et al. Apr 2009 A1
20090099598 McDevitt et al. Apr 2009 A1
20090138042 Thal May 2009 A1
20090234387 Miller et al. Sep 2009 A1
20090281568 Cendan et al. Nov 2009 A1
20090281581 Berg Nov 2009 A1
20090287246 Cauldwell et al. Nov 2009 A1
20090306711 Stone et al. Dec 2009 A1
20090312776 Kaiser et al. Dec 2009 A1
20090312794 Nason et al. Dec 2009 A1
20090318958 Ochiai Dec 2009 A1
20100004683 Hoof et al. Jan 2010 A1
20100016892 Kaiser et al. Jan 2010 A1
20100094425 Bentley et al. Apr 2010 A1
20100162882 Shakespeare Jul 2010 A1
20100204730 Maiorino et al. Aug 2010 A1
20100249809 Singhatat et al. Sep 2010 A1
20100249834 Dreyfuss Sep 2010 A1
20100256677 Albertorio et al. Oct 2010 A1
20100292732 Hirotsuka et al. Nov 2010 A1
20100292792 Stone et al. Nov 2010 A1
20110022083 DiMatteo et al. Jan 2011 A1
20110022084 Sengun et al. Jan 2011 A1
20110077667 Singhatat et al. Mar 2011 A1
20110098727 Kaiser et al. Apr 2011 A1
20110152928 Colleran et al. Jun 2011 A1
20110190815 Saliman Aug 2011 A1
20110208239 Stone et al. Aug 2011 A1
20110208240 Stone Aug 2011 A1
20110213416 Kaiser Sep 2011 A1
20110238111 Frank Sep 2011 A1
20110264140 Lizardi et al. Oct 2011 A1
20110264141 Denham et al. Oct 2011 A1
20110270278 Overes et al. Nov 2011 A1
20120046693 Denham et al. Feb 2012 A1
20120053630 Denham Mar 2012 A1
20120059417 Norton Mar 2012 A1
20120101523 Wert et al. Apr 2012 A1
20120101524 Bennett Apr 2012 A1
20120130423 Sengun et al. May 2012 A1
20120130424 Sengun et al. May 2012 A1
20120150223 Manos et al. Jun 2012 A1
20120165864 Hernandez et al. Jun 2012 A1
20120179199 Hernandez et al. Jul 2012 A1
20120253389 Sengun et al. Oct 2012 A1
20120253390 Sengun Oct 2012 A1
20120296375 Thal Nov 2012 A1
20130110165 Burkhart et al. May 2013 A1
20130158598 Lizardi Jun 2013 A1
20130253581 Robison Sep 2013 A1
20130261664 Spenciner et al. Oct 2013 A1
20130296895 Sengun Nov 2013 A1
20130296896 Sengun Nov 2013 A1
20130296931 Sengun Nov 2013 A1
20130296934 Sengun Nov 2013 A1
20140081324 Sengun Mar 2014 A1
20140107701 Lizardi et al. Apr 2014 A1
20140188163 Sengun Jul 2014 A1
20140188164 Sengun Jul 2014 A1
20140277132 Sengun et al. Sep 2014 A1
20140330312 Spenciner et al. Nov 2014 A1
20140343606 Hernandez et al. Nov 2014 A1
20140343607 Sengun et al. Nov 2014 A1
20150012038 Sengun et al. Jan 2015 A1
20150025572 Sengun Jan 2015 A1
20150045832 Sengun Feb 2015 A1
20150238183 Sengun Aug 2015 A1
20150245832 Sengun Sep 2015 A1
20150297214 Hernandez et al. Oct 2015 A1
20150313587 Lizardi et al. Nov 2015 A1
20160128687 Sengun May 2016 A1
20160278761 Sengun et al. Sep 2016 A1
20160296222 Sengun Oct 2016 A1
20170000479 Sengun et al. Jan 2017 A1
20170303913 Sengun et al. Oct 2017 A1
20170360428 Sengun Dec 2017 A1
20170367690 Sengun Dec 2017 A1
20180042600 Hernandez et al. Feb 2018 A1
20180098763 Spenciner et al. Apr 2018 A1
20180140292 Sengun et al. May 2018 A1
20190216457 Sengun Jul 2019 A1
20190223860 Sengun et al. Jul 2019 A1
20200178952 Sengun Jun 2020 A1
Foreign Referenced Citations (26)
Number Date Country
724861 Oct 2000 AU
2008229746 Oct 2008 AU
2772500 Sep 2013 CA
2719234 Aug 2005 CN
101252887 Aug 2008 CN
101442944 May 2009 CN
101961256 Feb 2011 CN
102113901 Jul 2011 CN
0 870 471 Oct 1998 EP
1 199 035 Apr 2002 EP
1 707 127 Oct 2006 EP
2 277 457 Jan 2011 EP
2 455 003 May 2012 EP
2 572 650 Mar 2013 EP
2000-512193 Sep 2000 JP
2008-543509 Dec 2008 JP
95019139 Jul 1995 WO
97017901 May 1997 WO
98011825 Mar 1998 WO
98042261 Oct 1998 WO
0106933 Feb 2001 WO
03022161 Mar 2003 WO
2007002561 Jan 2007 WO
2007005394 Jan 2007 WO
2007078281 Jul 2007 WO
2007109769 Sep 2007 WO
Non-Patent Literature Citations (30)
Entry
[No Author Listed] Arthroscopic Knot Tying Manual 2005. DePuy Mitek. 27 pages.
[No. Author Listed] Gryphon Brochure. DePuy Mitek. 2 pages (undated).
[No. Author Listed] Versalok Anchor. Brochure. DePuy Mitek, a Johnson & Johnson company, 92 pages, 2007.
Allcock, The Encyclopedia of Polymer Science, vol. 13, pp. 31-41, Wiley Intersciences, John Wiley & Sons, 1988.
Chinese Office Action for Application No. 201310163420.7, dated May 5, 2016 (21 pages).
Chinese Office Action for Application No. 201310163700.8 dated Jun. 3, 2016 (14 pages).
Chinese Office Action for Application No. 201310429109.2 dated Oct. 24, 2016 (13 pages).
Chinese Office Action for Application No. 201310741440.8, dated Jan. 26, 2017 (12 pages).
Cohn et al., Biodegradable PEO/PLA block copolymers. J Biomed Mater Res. Nov. 1988;22(11):993-1009.
Cohn et al., Polym Preprint. 1989;30(1):498.
Dahl et al., Biomechanical characteristics of 9 arthroscopic knots. Arthroscopy. Jun. 2010;26(6):813-8.
EP Search Report for Application No. 11190157.5 dated Feb. 27, 2012. (8 pages).
Extended European Search Report for Application No. 11190157.5 dated Jul. 6, 2012. (10 pages).
EP Search Report for Application No. 11190159.1 dated Feb. 21, 2012. (8 pages).
Extended European Search Report for Application No. 11190159.1 dated Jul. 6, 2012. (11 pages).
Extended European Search Report for Application No. 11195100.0 dated Oct. 17, 2012. (7 pages).
Extended European Search Report for Application No. 13166905.3 dated Aug. 13, 2013 (9 Pages).
Extended European Search Report for Application No. 13166907.9, dated Aug. 1, 2013 (6 pages).
Extended European Search Report for Application No. 13166908.7, dated Aug. 23, 2013 (8 pages).
Extended European Search Report for Application No. 13185425.9 dated Dec. 16, 2013 (9 Pages).
Extended European Search Report for Application No. 13199724.9 dated April 4, 2 014 (6 Pages).
Extended European Search Report for Application No. 16205548.7, dated Dec. 22, 2017 (11 pages).
Heller, Handbook of Biodegradable Polymers, edited by Domb, et al., Hardwood Academic Press, pp. 99-118 (1997).
Indian First Examination Report for Application No. 3243/DEL/2011, dated Dec. 30, 2019 (6 pages).
International Search Report for Application No. PCT/US2011/067119, dated Jun. 4, 2012. (6 pages).
Japanese Office Action for Application No. 2011-281088, dated Nov. 10, 2015 (4 pages).
Japanese Office Action for Application No. 2013-097645, dated May 9, 2017 (6 pages).
Japanese Office Action for Application No. 2013-268840, dated Sep. 26, 2017 (5 pages).
Kemnitzer et al., Handbook of biodegradable Polymers. Eds. Domb et al. Hardwood Acad. Press. 1997;251-72.
Vandorpe et al., Handbook of Biodegradable Polymers, edited by Domb, et al., Hardwood Acad. Press, pp. 161-182 (1997).
Related Publications (1)
Number Date Country
20190223857 A1 Jul 2019 US
Divisions (1)
Number Date Country
Parent 13465376 May 2012 US
Child 15143496 US
Continuations (1)
Number Date Country
Parent 15143496 Apr 2016 US
Child 16371543 US