The subject matter disclosed herein relates generally to tunable micro-electro-mechanical systems (MEMS) components. More particularly, the subject matter disclosed herein relates to isolation of electrostatic actuators in MEMS devices to reduce or minimize dielectric charging.
In the construction of micro-electro-mechanical systems (MEMS) devices in which electrostatic actuator plates are movable with respect to one another between open and closed states, the actuator plates would become shorted if the MEMS device closed and the actuators came into contact. To prevent actuator contact and shorting, one or both of the actuator electrodes can be covered by a dielectric that has the appropriate thickness to prevent dielectric breakdown. The continuous dielectric provides the appropriate isolation so that shorting and breakdown can be prevented, but significant contact area may be created within high field regions that can charge and thus lead to reduced lifetimes caused by dielectric charging. The contact area can be minimized by breaking the continuous dielectric pattern into discontinuous or isolated dielectric features, isolation features, or isolation bumps, but even these solutions do not fully address the charging issues.
In accordance with this disclosure, devices, systems, and methods for isolation of electrostatic actuators in MEMS devices are provided to reduce or minimize dielectric charging. In one aspect, a tunable component is provided. The tunable component can include a fixed actuator electrode positioned on a substrate, a movable actuator electrode carried on a movable component that is suspended over the substrate, one or more isolation bumps positioned between the fixed actuator electrode and the movable actuator electrode, and a fixed isolation landing that is isolated within a portion of the fixed actuator electrode that is at, near, and/or substantially aligned with each of the one or more isolation bumps. In this arrangement, the movable actuator electrode can be selectively movable toward the fixed actuator electrode, but the one or more isolation bumps can prevent contact between the fixed actuator electrode and the movable actuator electrode, and the fixed isolation landing can inhibit the development of an electric field in the isolation bump.
In another aspect, a method for manufacturing a tunable component can include depositing a fixed actuator electrode on a substrate, defining one or more fixed isolation landing that is isolated within a portion of the fixed actuator electrode, depositing a sacrificial layer over the fixed actuator electrode, forming a recess into the sacrificial layer that is at, near, and/or substantially aligned with the one or more fixed isolation landing, depositing an isolation bump in each of the one or more recess, depositing a movable actuator electrode over the sacrificial layer, and removing the sacrificial layer to release the movable actuator electrode, wherein the movable actuator electrode is selectively movable toward the fixed actuator electrode.
Although some of the aspects of the subject matter disclosed herein have been stated hereinabove, and which are achieved in whole or in part by the presently disclosed subject matter, other aspects will become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
The features and advantages of the present subject matter will be more readily understood from the following detailed description which should be read in conjunction with the accompanying drawings that are given merely by way of explanatory and non-limiting example, and in which:
The present subject matter provides improved isolation of electrostatic actuators in MEMS devices to reduce or minimize dielectric charging. In one aspect, the present subject matter provides configurations for actuator electrodes that provide isolation of electric fields in a region at, near, and/or substantially aligned with an isolation bump that maintains a desired minimum spacing between two actuator electrodes.
In particular, for example, in some configurations for a MEMS tunable device, an array of individual tunable components is provided. As shown in
In some embodiments, such a structure can be formed by a layer-by-layer deposition process in which fixed actuator electrode 110 is deposited on substrate S, a sacrificial layer is deposited over fixed actuator electrode 110, movable actuator electrode 130 and the other elements of movable component MC are deposited over the sacrificial layer, and the sacrificial layer is removed (e.g., by etching) to release movable component MC. In this arrangement, movable component MC can be moved with respect to the fixed elements and substrate S by controlling the potentials applied to fixed actuator electrode 110 and to movable actuator electrode 130. In some embodiments, for example, movable actuator electrode 130 can be connected to a ground potential and fixed actuator electrode 110 can be connected to a high voltage to cause an electrostatic attraction between the actuator electrodes to cause movable component MC to deflect towards substrate S.
In some embodiments, the fixed and moving electrodes (i.e., one or more of fixed actuator electrode 110, fixed capacitor electrode 120, movable actuator electrode 130, and/or movable capacitor electrode 140) are encapsulated by one or more dielectric material layers to remove or at least reduce the possibility of direct electrical shorting between electrodes during operation (e.g., when movable component MC is deflected to a “closed” position in which the gap between the electrodes is minimized). Even in such arrangements, however, the large area of contact between the actuator elements can lead to excessive dielectric charging and result in large forces, which can affect operation and reliability.
Accordingly, in some embodiments, one or more isolation bump 150 can be provided between respective fixed and movable electrodes (e.g., between fixed actuator electrode 110 and movable actuator electrode 130) to help minimize the contact area and reduce the electric field over much of the actuator area. Referring again to the exemplary layer-by-layer deposition process discussed above, one or more isolation bump 150 can be formed by forming a recess into the sacrificial layer deposited over substrate S and depositing an isolation bump in each of the one or more recess. Such isolation bumps can be implemented in any of a variety of particular shapes (e.g., rectangular prism, octagonal prism) or configurations to optimize mechanical operation and reliability of the device.
In some embodiments, for example, tall isolation bumps (e.g., having a height of about 0.5 μm) located further from a center of the capacitor elements can provide comparatively greater isolation over the entire length of the actuator area, provide mechanical stability, and limit actuator excursion and thus induced material stress. Alternatively or in addition, short isolation bumps (e.g., having a height of about 0.2 μm) can be provided elsewhere in the actuator area to prevent local actuator contact or collapse, particularly near the capacitor region. In some particular configurations, shorter isolation bumps can be distributed either uniformly across the actuator area or in optimal, discrete locations. The optimal number and placement of these isolation bumps for a MEMS capacitor can be determined from the minimum required to achieve stable capacitance; to achieve a flat CV response above pull-in, including minimizing the likelihood of primary/secondary actuator collapse between the actuator and the capacitor or primary actuator collapse between the major isolation bumps and the beam tip; and/or to minimize the increase in the pull-in voltage. Increasing the height of the isolation bumps also works to minimize any field generated charge, but the bump height is limited by the need to maintain sufficient forces in the down state to provide stable capacitance. These and other exemplary configurations for such isolation bumps are discussed in more detail in U.S. Pat. No. 6,876,482 and co-pending U.S. patent application Ser. No. 14/033,434, the disclosures of which are incorporated herein in their entireties.
Regardless of the particular arrangement, one or more isolation bump 150 can be designed to occupy a minimal area with respect to the nearby electrodes, to be minimal in number, and/or to have such a height to minimize electric fields with in the context of other functional requirements. To further improve the effects of the electric fields in the region around isolation bump 150, portions of the field-inducing electrodes can be removed from the region around isolation bump 150. In one particular configuration illustrated in
In the portion of movable actuator electrode 130 at or around the point at which isolation bump 150 is attached (e.g., above isolation bump 150 in the orientation shown in
In a particular exemplary configuration, for instance, isolation bump 150 can have an effective diameter of approximately 0.4 μm and a height of approximately 250 nm, and fixed isolation landing 112 can have substantially rectangular dimensions within fixed actuator electrode 110 with dimensions of about 2.1 μm×1.5 μm. In some embodiments, the spacing between fixed actuator electrode 110 and fixed isolation landing 112 is approximately 1 μm. Isolation bump 150 can be substantially centered within fixed isolation landing 112, or it can be offset with respect to a center of fixed isolation landing 112.
In another particular exemplary configuration, a larger embodiment of isolation bump 150 can have an effective diameter of approximately 0.6 μm and a height of approximately 550 nm compared to fixed isolation landing 112 having dimensions of about 7.7 μm×7 μm.
In an alternative configuration shown in
In yet further exemplary configurations illustrated in
Still further exemplary configurations are shown in
In yet a further alternative configuration,
In another alternative configuration,
In any of these arrangements, those having skill in the art will appreciate that the configuration of the electrode portions that are at, near, or substantially in alignment with isolation bump 150 can affect the ability for a charge to develop through isolation bump 150 between the electrodes. In particular, for example, fixed isolation landing 112 can be electrically isolated (“floating”), connected to a ground potential, or connected to a selected electrical potential that is the same as or different than the potential connected to first and second fixed electrode portions 110a and 110b. As shown in
Similarly, the electric field that is developed at the center of isolation bump 150 can vary depending on the configuration of movable actuator electrode 130 (e.g., having a hole at or near isolation bump 150, as a conformal layer, or having a movable isolation fill 132) and the configuration of fixed actuator electrode 110 (e.g., having fixed isolation landing 112 defined therein). In the particular configurations shown, for example, the electric fields developed with a grounded fixed isolation landing 112 (See, e.g.,
The present subject matter can be embodied in other forms without departure from the spirit and essential characteristics thereof. The embodiments described therefore are to be considered in all respects as illustrative and not restrictive. Although the present subject matter has been described in terms of certain preferred embodiments, other embodiments that are apparent to those of ordinary skill in the art are also within the scope of the present subject matter.
The present application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/059,822, filed Oct. 3, 2014, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62059822 | Oct 2014 | US |