The present disclosure relates generally to systems, devices, controllers, and methods for use in a floating production storage and offloading (FPSO) vessel, and more specifically, to turret systems and windlass assemblies for use in FPSO vessels.
In general, a vessel, such as a floating production storage and offloading (FPSO) vessel, may be used to extract valuable hydrocarbons from a natural reservoir source located at a particular area under a bottom of a body of water (such as an ocean, sea, etc.). The extraction process may take several years for large reservoirs, and typically less time may be required for smaller (marginal) reservoirs.
In order to perform the extracting of such hydrocarbons, the FPSO vessel is required to be securably positioned relative to a location on the bottom of the body of water. Due to the large size of FPSO vessels, this is generally achieved by using a plurality of mooring lines having anchors at its distal end. In preparation for doing so, a tremendous amount of planning, including, but not limited to, measuring the depth range of each location to be anchored, calculating tension requirements of each of the mooring lines, calculating length requirements of each of the mooring lines, calculating number of mooring lines required, etc. Once preparations are complete, a distal end of each mooring line is pulled from the FPSO vessel using small vessels and dropped to anchor to a location on the bottom of the body of water. Each mooring line is then tensioned based on the pre-calculations, and fixedly secured to a turret system of the FPSO vessel.
It is recognized in the present disclosure that conventional approaches to securing an FPSO vessel relative to a location of a bottom of a body of water is difficult, time-consuming, and requires a tremendous amount of preparation and planning. Furthermore, such planning and pre-calculations may not reflect the current or future conditions for the FPSO vessel, such as depth, tension requirements, length requirements of each mooring line, etc.
Present example embodiments relate generally to systems, devices, controllers, and methods for use in a vessel, such as a floating production storage and offloading (FPSO) vessel.
In an exemplary embodiment, a turret system is described. The turret system may be for use in a floating production storage and offloading (FPSO) vessel. The FPSO vessel may include a hull and a moon pool opening in a bow section of the hull. The turret system may comprise a turret body and a transportable windlass subsystem. The turret body may be fixedly positionable in the moon pool opening and rotatable about a center axis defined by the moon pool opening. The turret body may include a top surface, a bottom surface opposite to the top surface, a first mooring line storage section, and a first mooring line channel section. The first mooring line storage section may include a first opening in the turret body top surface and a first cavity formed between the turret body top surface and turret body bottom surface. The first opening may operable to receive a first mooring line. The first cavity may be operable to house at least a majority length of the first mooring line. The first mooring line channel section may be formed through the turret body between the turret body top surface and turret body bottom surface. The first mooring line channel section may be an elongated passageway for the first mooring line to pass between an exterior of the FPSO vessel and the first mooring line storage section. The turret body may also include a second mooring line storage section and a second mooring line channel section. The second mooring line storage section may include a second opening in the turret body top surface and a second cavity formed between the turret body top surface and turret body bottom surface. The second opening may be operable to receive a second mooring line. The second cavity may be operable to house at least a majority length of the second mooring line. The second mooring line channel section may be formed through the turret body between the turret body top surface and turret body bottom surface. The second mooring line channel section may be an elongated passageway for the second mooring line to pass between an exterior of the FPSO vessel and the second mooring line storage section. The transportable windlass subsystem may include a rotatable member configurable to rotate in a first direction and a second direction opposite to the first direction. The transportable windlass system may be configured to be securable to and transportable between a plurality of locations on the turret body top surface, including a first location and a second location. The first location may be a location on the turret body top surface between the first mooring line channel section and the first opening of the first mooring line storage section. The second location may be a location on the turret body top surface between the second mooring line channel section and the second opening of the second mooring line storage section. The transportable windlass assembly may be configurable to receive and control a movement of a portion of the first mooring line between the first opening of the first mooring line storage section and the first mooring line channel section when the transportable windlass assembly is configured to be secured to the turret body top surface at the first location.
In another exemplary embodiment, a windlass assembly is disclosed. The windlass assembly may be for use in a turret system of a floating production storage and offloading (FPSO) vessel. The FPSO vessel may comprise a hull and a moon pool opening in a bow section of the hull. The turret system may comprise a turret body positioned in the moon pool opening and rotatable about a center axis defined by the moon pool opening. The turret body may comprise a top surface, a bottom surface opposite to the top surface, a mooring line storage section, and a mooring line channel section. The mooring line storage section may comprise a first opening in the turret body top surface and a first cavity formed between the turret body top surface and turret body bottom surface. The first opening may be operable to receive a mooring line. The mooring line channel section may be formed through the turret body between the turret body top surface and turret body bottom surface. The mooring line channel section may be an elongated passageway for the mooring line to pass between an exterior of the FPSO vessel and the mooring line storage section. The windlass assembly may comprise a transportable windlass subsystem. The transportable windlass subsystem may comprise a rotatable member configurable to rotate in a first direction and second direction opposite to the first direction. The transportable windlass subsystem may be configured to be securable to and transportable between a plurality of locations on the turret body top surface. When the transportable windlass assembly is configured to be secured to the turret body top surface at a first location between the first opening and the mooring line channel section, the transportable windlass assembly may be configurable to receive and control a movement of a portion of the mooring line between the first opening of the mooring line storage section and the mooring line channel section.
For a more complete understanding of the present disclosure, example embodiments, and their advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and:
Although similar reference numbers may be used to refer to similar elements in the figures for convenience, it can be appreciated that each of the various example embodiments may be considered to be distinct variations.
Example embodiments will now be described with reference to the accompanying drawings, which form a part of the present disclosure and which illustrate example embodiments which may be practiced. As used in the present disclosure and the appended claims, the terms “example embodiment”, “exemplary embodiment”, and “present embodiment” do not necessarily refer to a single embodiment, although they may, and various example embodiments may be readily combined and/or interchanged without departing from the scope or spirit of example embodiments. Furthermore, the terminology as used in the present disclosure and the appended claims is for the purpose of describing example embodiments only and is not intended to be limitations. In this respect, as used in the present disclosure and the appended claims, the term “in” may include “in” and “on”, and the terms “a”, “an”, and “the” may include singular and plural references. Furthermore, as used in the present disclosure and the appended claims, the term “by” may also mean “from”, depending on the context. Furthermore, as used in the present disclosure and the appended claims, the term “if” may also mean “when” or “upon”, depending on the context. Furthermore, as used in the present disclosure and the appended claims, the words “and/or” may refer to and encompass any and all possible combinations of one or more of the associated listed items.
It is recognized in the present disclosure that conventional approaches, systems, devices, and methods for use in securing an FPSO vessel relative to a location of a bottom of a body of water are difficult and time-consuming to perform, and also requires a tremendous amount of preparation, planning, measurements, and calculations. Furthermore, such planning and pre-calculations may not reflect the current and/or future conditions and/or requirements for the FPSO vessel, including requirements pertaining to depth, tension, and length of each of the plurality of mooring line, etc.
Present example embodiments relate generally to systems, subsystems, devices, controllers, and methods for use in, among other things, controlling and/or securing a position of a vessel relative to a bottom of a body of water.
Example embodiments relate to and/or comprise a turret system, or the like. The turret system may include a turret body and a windlass subsystem. The turret body may include one or more mooring line storage sections and one or more mooring line channel sections for use in receiving, housing, guiding, allowing passage, and/or storing one or more mooring lines. In example embodiments, each mooring line channel section may have a correspondence with a mooring line storage section, and such correspondence may include the handling of a common or the same mooring line. In respect to the windlass subsystem, the windlass subsystem may comprise a transportable and/or portable windlass subsystem (hereinafter “transportable windlass subsystem”) having a rotary member, or the like. The transportable windlass subsystem may also comprise a plurality of transport mechanisms, such as wheels or the like, for use in transporting (or moving) the transportable windlass subsystem between a plurality of locations. The transportable windlass subsystem may further comprise a break mechanism, or the like, for securing a position of the transportable windlass subsystem relative to a location on the turret body. The windlass subsystem may also comprise a windlass rail assembly for use in enabling the transportable windlass subsystem to be positioned and/or secured at a location, and/or transported between a plurality of locations.
The turret system may also include a plurality of fairlead assemblies. Each fairlead assembly may be for use in guiding a mooring chain between a mooring line channel section and a mooring line storage section. Each of the plurality of fairlead assemblies may also be operable to guide a mooring chain between a mooring line channel section and a transportable windlass subsystem when the transportable windlass subsystem is positioned at a position between the mooring line channel section and its corresponding mooring line storage section.
The turret system may further include a plurality of mooring line stopper assemblies for use in restricting a movement of a mooring line and/or allowing a movement of a mooring line.
The turret system may further comprise a hoisting assembly for use in controlling a position of a mooring chain. The hoisting assembly may be for use in lifting a mooring chain and/or lowering a mooring chain. The hoisting assembly may also be for use in placing or configuring a mooring chain onto a transportable windlass subsystem and removing or unconfiguring a mooring chain from a transportable windlass subsystem. In other words, the hoisting assembly may be operable to set up a transportable windlass subsystem to enable the transportable windlass subsystem to control a movement of a mooring line. Also, the hoisting assembly may be operable to remove a mooring line from the transportable windlass subsystem when the transportable windlass subsystem is no longer needed to control a movement of a mooring line. The hoisting assembly may also comprise a plurality of transport mechanisms, such as wheels or the like, for use in transporting (or moving) the hoisting assembly between a plurality of locations. The hoisting assembly may further comprise a break mechanism, or the like, for securing a position of the hoisting assembly relative to a location on the turret body.
The turret system may further comprise a hoisting rail assembly for use in enabling the hoisting assembly to be positioned and/or secured at a location, and/or transported between a plurality of locations.
The turret system may also have a controller, or the like, for use in controlling one or more elements of the turret system. Such control may include controlling movement, position, and actuating, gathering information, performing measurements, and the like.
These and other example embodiments will now be described with reference to the accompanying drawings.
The Vessel (e.g., Vessel 100)
The Turret System (e.g., Turret System 200)
The vessel 100 may comprise a turret system, or the like. The turret system may be for use in an FPSO vessel 100. As illustrated in at least
(1) The Turret Body (e.g., Turret Body 210)
An example embodiment of the turret body (e.g., turret body 210) may be fixedly positionable in the moon pool opening 102 of the vessel 100 and rotatable about a center axis 206 defined by the moon pool opening 102. The bearing assembly (not shown) of the turret system 200 may be operable to enable such rotation of the turret body 210 relative to the vessel 100, and enable a transfer of dynamic load from the structure of the turret body 210, as well as the risers and mooring lines (and systems and subsystems thereof), to the vessel 100. The turret body 210 may comprise, among other things, a top surface 212 (or “main deck 212”), a bottom surface 214 opposite to the top surface 212, a mooring line storage section (e.g., mooring line storage section 220), and a mooring line channel section (e.g., mooring line channel section 230) in example embodiments. The turret body top surface 212 may be for use in, among other things, allowing a workable surface for operators of the turret system 200. The turret body top surface 212 may also be for use in, among other things, securing a position and/or allowing transport of one or more windlass subsystems (e.g., transportable windlass subsystem 240). The turret body top surface 212 may also be for use to secure one or more windlass rail assemblies (e.g., windlass rail assembly 250 as illustrated in at least
The turret body 210 may be formed in one or more of a plurality of shapes and sizes. For example, the shape and size of the turret body 210 may correspond with the shape and size of the moon pool opening 102 of the vessel 100. In this regard, the turret body 210 may include a substantially circular cross-section and an overall substantially cylindrical shape.
(2) Mooring Line Storage Section (e.g., Mooring Line Storage Section 220)
As illustrated in at least
The turret body 210 may also include a second mooring line storage section 220 (e.g., the mooring line storage section 220 illustrated on the right hand side of
The turret body 210 may include any number of mooring line storage sections 220. In an example embodiment, as illustrated in
In example embodiments, the turret body 210 may comprise one or more common mooring line storage sections 220 separated by areas, partitions, walls, or the like, instead of a plurality of separate mooring line storage sections 220.
It is to be understood in the present disclosure that the cavity 224 of the mooring line storage section 220 may comprise a termination point (not shown), or the like, secured to a wall of the cavity 224, which may be for use in securing a proximate end of a mooring line 202 to the vessel 100 (i.e., the distal end of the mooring line 202 is secured to an anchor 204).
The mooring line storage section 220, including the opening 222 and the cavity 224, may be formed in one or more of a plurality of shapes and sizes. In an example embodiment, the shape and size of the mooring line storage section 220 may be determined based on expected maximum shapes and sizes of the mooring lines 202 to be used for the vessel 100. In addition to or in replacement, the shape and size of the mooring line storage section 220 may be determined based on, among other things, the number of mooring lines 202 to be used, the number of mooring line storage sections 220, the number of mooring line channel sections 230, the maximum depth of the body of water, etc.
(3) Mooring Line Channel Section (e.g., Mooring Line Channel Section 230)
As illustrated in at least
The turret body 210 may also include a second mooring line channel section 230 (e.g., the mooring line channel section 230 illustrated on the right hand side of
The turret body 210 may include any number of mooring line channel sections 230. In an example embodiment, as illustrated in
In an example embodiment, the turret body 210 may comprise one or more common mooring line channel sections 230 separated by areas, partitions, walls, or the like, instead of a plurality of separate mooring channel storage sections 230.
The mooring line channel section 230 may be formed in one or more of a plurality of shapes and sizes. In an example embodiment, the shape and size of the mooring line channel section 230 may be determined based on expected maximum shapes and sizes of the mooring lines 202 to be used for the vessel 100. In addition to or in replacement, the shape and size of the mooring line channel section 230 may be determined based on, among other things, the number of mooring lines 202 to be used, the number of mooring line storage sections 220, the number of mooring line channel sections 230, the maximum depth of the body of water, etc.
(4) Windlass Subsystem (e.g., Windlass Subsystem 240)
The turret system 200 may also comprise a windlass subsystem (e.g., transportable windlass subsystem 240), as illustrated in at least
As illustrated in at least
As illustrated in at least
Similarly, as illustrated in at least
The transportable windlass assembly 240 may be configurable to receive and control a movement of a portion of a first mooring line 202 (e.g., the mooring line 202 illustrated on the left hand side of
Similarly, when the transportable windlass assembly 240 is transported to and configured to be positioned and/or secured to the turret body top surface 212 at the second location L2 (or any other location, such as L3-L8), the transportable windlass assembly 240 may be configurable to receive and control a movement of a portion of a second mooring line 202 (e.g., the mooring line 202 illustrated on the right hand side of
In an example embodiment, the rotary member 244a may be configurable in such a way that, when the transportable windlass subsystem 240 is secured to the turret body top surface at the first location L1 and when the rotary member 244a of the transportable windlass assembly receives the first mooring line 202, the rotary member 244a may be operable to direct at least a portion of the first mooring line 202 into the first mooring line storage section 220 (and/or direct at least a portion of the first mooring line 202 out of the first mooring line channel section 230) by rotating in the first direction RE Similarly, the rotary member 244a may be configurable in such a way that, when the transportable windlass subsystem 240 is secured to the turret body top surface at the first location L1 and when the rotary member 244a of the transportable windlass assembly receives the first mooring line 202, the rotary member 244a may be operable to direct at least a portion of the first mooring line 202 out of the first mooring line storage section 220 (and/or direct at least a portion of the first mooring line 202 into the first mooring line channel section 230) by rotating in the first direction R2.
The rotary member 244a of the transportable windlass assembly 240 may be configurable to control movement of one or more mooring lines 202 via a rotary member motor 244b, or the like, as illustrated in
In an example embodiment, the transportable windlass assembly 240 may further comprise one or more transport mechanisms 246a, such as one or more wheels 246a, or the like, for use in transporting (or moving) the transportable windlass assembly 240 between a plurality of locations, including first location L1 and second location L2. Furthermore, the transportable windlass assembly 240 may comprise a break mechanism (not shown), or the like, for use in securing a position of the transportable windlass subsystem 240 relative to a location on the turret body 210. The one or more transport mechanisms 246a and/or break mechanisms of the transportable windlass assembly 240 may be configurable to transport (or move) and/or secure a position of the transportable windlass assembly 240 via a transport motor 246b, or the like, as illustrated in
In example embodiments, the turret system 200 may comprise more than one transportable windlass assembly 240. For example, when the turret system 200 comprises eight locations L1-L8, as illustrated in
(5) Windlass Rail Assembly (e.g., Windlass Rail Assembly 250)
In an example embodiment, the turret system 200 may further comprise a windlass rail assembly (e.g., windlass rail assembly 250), or the like, as illustrated in at least
As illustrated in
The windlass rail assembly 250 may be configurable to receive one or more transportable windlass assemblies 240 in example embodiments. This is illustrated in at least
Example embodiments of the windlass rail assembly 250 may include a pair of substantially parallel rails (as illustrated in at least
(6) Fairlead Assembly (e.g., Fairlead Assembly 260)
As illustrated in at least
One or more other fairlead assemblies 260 may also be provided and secured to the turret body top surface 212 at a location nearby a mooring line storage section 220 (e.g., the mooring line storage section 220 illustrated on the right hand side of
One or more of the fairlead assemblies 260 may be provided for securing to the turret body top surface 212 in one or more of a plurality of shapes, sizes, and/or configurations. For example, one or more of the fairlead assemblies 260 (e.g., the fairlead assembly 260 illustrated on the left hand side or right hand side of
(7) Mooring Line Stopper Assembly (e.g., Mooring Line Stopper 270)
As illustrated in at least
One or more mooring line stopper assemblies 270 may also be provided and secured to the turret body top surface 212 at a location proximate to (or nearby) a mooring line storage section 220 (e.g., the mooring line storage section 220 illustrated on the right hand side of
In an example embodiment, one or more of the mooring line stopper assemblies 270 may be configurable to receive a mooring line 202 (e.g., the mooring line illustrated in at least
As illustrated by the mooring line stopper assembly 270 on the left hand side of at least
As illustrated by the mooring line stopper assembly 270 on the right hand side of
It is to be understood in the present disclosure that the one or more mooring line stopper assemblies 270 may be provided in one or more of a plurality of shapes, sizes, quantities, and/or configurations. For example, the one or more mooring line stopper assemblies 270 may be in the form of a U-shaped protrusion, or the like, for use in contacting with and/or holding an exterior portion of one or more links of a mooring chain 202. As another example, the one or more mooring line stopper assemblies 270 may be in the form of an elongated protrusion, or the like, for use in inserting into an interior portion of one or more links of a mooring chain 202. It is to be understood in the present disclosure that other shapes, sizes, quantities, and/or configurations of the mooring line stopper assemblies 270 are contemplated without departing from the teachings of the present disclosure.
(8) Hoisting Assembly (e.g., Hoisting Assembly 280)
In an example embodiment, as illustrated in at least
The hoisting assembly 280 may comprise one or more chains 282, sling wire, and/or the like, extendable from and retractable to the main body 284 of the hoisting assembly 280. The hoisting assembly 280 may be operable to perform such extending and/o retracting of the one or more chains 282 by receiving manual manipulation from an operator and/or via a motor, controller, and/or the like. Operations of the hoisting assembly 280 may be controllable manually by an operator or automatically/remotely via a controller (not shown). The hoisting assembly 280 may comprise a hook, protrusion, magnet, or the like, (hereinafter “hoisting attachment member”) 286 attached to the one or more chains 282 for use in receiving, securing, and/or attaching to a portion of a mooring line 202. In an example embodiment, the hoisting assembly 280 may further comprise a hoisting attachment portion 288 having a plurality of hoisting attachment members, or the like, in addition to (i.e., connected to) or in replacement of the hoisting attachment member 286 referred to above.
When not in use, the hoisting assembly 280 may be configured in a retracted position, such as the example embodiment illustrated in
In operation, the hoisting assembly 280 may be configurable to extend (or un-retract) the one or more chains 282 of the hoisting assembly 280 so as to enable the hoisting attachment member 286 and/or hoisting attachment portion 288 to be lowered (or moved) towards a transportable windlass assembly 240, as illustrated in
The hoisting attachment portion 288 may then be configured to receive (or hook to, attach to, or secure to; hereinafter “receive”) the mooring line 202. Once received, the hoisting attachment portion 288 may be configured to retract the one or more chains 282 so as to control a position of the mooring line 202. For example, as illustrated in
Thereafter, the hoisting assembly 280 may be configurable to extend (or release) the one or more chains 282 so as to release the control of the position of the mooring line 202. For example, as illustrated in
The hoisting assembly 280 may then be configured to retract the one or more chains 282, as illustrated in
(9) Hoisting Rail Assembly (e.g., Hoisting Rail Assembly 290)
In an example embodiment, the turret system 200 may further comprise a hoisting rail assembly (e.g., hoisting rail assembly 290), or the like, as illustrated in at least
Referring to the configuration of elements of the turret system 200 in
The hoisting rail assembly 290 may be configurable to receive one or more hoisting assemblies 280 in example embodiments. This is illustrated in at least
Example embodiments of the hoisting rail assembly 290 may include a single rail (as illustrated in at least
While various embodiments in accordance with the disclosed principles have been described above, it should be understood that they have been presented by way of example only, and are not limiting. Thus, the breadth and scope of the example embodiments described in the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
For example, as referred to herein, a controller may be any computing device or communication device, and may include a virtual machine, computer, node, instance, host, or machine in a networked computing environment. Also as referred to herein, a network or cloud may be a collection of machines connected by communication channels that facilitate communications between machines and allow for machines to share resources. Network may also refer to a communication medium between processes on the same machine. Also as referred to herein, a network element, node, or server may be a machine deployed to execute a program operating as a socket listener and may include software instances.
For example, “assembly”, “apparatus”, “portion”, “segment”, “member”, “body”, “section”, “subsystem”, “system”, or other similar terms should generally be construed broadly to include one part or more than one part attached or connected together.
Memory (or storage or database) may comprise any collection and arrangement of volatile and/or non-volatile components suitable for storing data. For example, memory may comprise random access memory (RAM) devices, read-only memory (ROM) devices, magnetic storage devices, optical storage devices, and/or any other suitable data storage devices. In particular embodiments, memory may represent, in part, computer-readable storage media on which computer instructions and/or logic are encoded. Memory may represent any number of memory components within, local to, and/or accessible by a processor.
Various terms used herein have special meanings within the present technical field. Whether a particular term should be construed as such a “term of art” depends on the context in which that term is used. For example, “connect”, “connected”, “connecting”, “connectable”, “attach”, “attached”, “attaching”, “attachable”, “secure”, “secured”, “securing”, “securable”, “lock”, “locked”, “locking”, “lockable”, “anchor”, “anchored”, “anchoring”, “anchorable”, “install”, “installed”, “installing”, “installable”, “couple”, “coupled”, “coupling”, “in communication with”, “communicating with”, “associated with”, “associating with”, or other similar terms should generally be construed broadly to include situations where attachments, connections, installations, and anchoring are direct between referenced elements or through one or more intermediaries between the referenced elements. As another example, “un-connect,” “un-connected”, “un-connecting”, “un-connectable”, “un-attach”, “un-attached”, “un-attaching”, “un-attachable”, “un-secure”, “un-secured”, “un-securing”, “un-securable”, “unlock”, “unlocked”, “unlocking”, “unlockable”, “un-anchor”, “un-anchored”, “un-anchoring”, “un-anchorable”, “uninstall”, “uninstalled”, “uninstalling”, “uninstallable”, “uncouple”, “uncoupled”, “uncoupling”, or other similar terms should generally be construed broadly to include situations where separation, removal, and detaching are direct between referenced elements or from one or more intermediaries between the referenced elements. These and other terms are to be construed in light of the context in which they are used in the present disclosure and as one of ordinary skill in the art would understand those terms in the disclosed context. The above definitions are not exclusive of other meanings that might be imparted to those terms based on the disclosed context.
Words of comparison, measurement, and timing such as “at the time”, “equivalent”, “during”, “complete”, and the like should be understood to mean “substantially at the time”, “substantially equivalent”, “substantially during”, “substantially complete”, etc., where “substantially” means that such comparisons, measurements, and timings are practicable to accomplish the implicitly or expressly stated desired result.
Additionally, the section headings and topic headings herein are provided for consistency with the suggestions under various patent regulations and practice, or otherwise to provide organizational cues. These headings shall not limit or characterize the embodiments set out in any claims that may issue from this disclosure. Specifically, a description of a technology in the “Background” is not to be construed as an admission that technology is prior art to any embodiments in this disclosure. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TH2015/000084 | 11/27/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/091160 | 6/1/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3774562 | Dean, III | Nov 1973 | A |
4566398 | Sasaki et al. | Jan 1986 | A |
5860840 | Boatman et al. | Jan 1999 | A |
6302048 | Smedal | Oct 2001 | B1 |
6314901 | Smedal | Nov 2001 | B1 |
6494271 | Wilson | Dec 2002 | B2 |
7458425 | Millheim | Dec 2008 | B2 |
7775175 | Askestad | Aug 2010 | B2 |
Number | Date | Country |
---|---|---|
1226863 | Aug 1999 | CN |
1275109 | Nov 2000 | CN |
1585856 | Mar 1981 | GB |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority of international application No. PCT/TH2015/000084, dated Jul. 25, 2016. |
Number | Date | Country | |
---|---|---|---|
20170267317 A1 | Sep 2017 | US |