This invention relates generally to the wireless communications field, and more specifically to new and useful systems for analog phase shifting.
Traditional wireless communication systems are half-duplex; that is, they are not capable of transmitting and receiving signals simultaneously on a single wireless communications channel. Recent work in the wireless communications field has led to advancements in developing full-duplex wireless communications systems; these systems, if implemented successfully, could provide enormous benefit to the wireless communications field. For example, the use of full-duplex communications by cellular networks could cut spectrum needs in half. One major roadblock to successful implementation of full-duplex communications is the problem of self-interference.
Many solutions to address self-interference rely on phase shifting circuits (e.g., as part of an analog self-interference canceller), but these solutions may suffer in performance due to constraints inherent in traditional phase shifting circuits. Thus, there is a need in the wireless communications field to create new and useful systems for analog phase shifting. This invention provides such new and useful systems.
Of course, such systems for analog phase shifting may find use in a wide variety of applications; for example, phased antenna arrays or any other beam-steering application.
The following description of the preferred embodiments of the invention is not intended to limit the invention to these preferred embodiments, but rather to enable any person skilled in the art to make and use this invention.
1. Full-Duplex Wireless Communication Systems
Wireless communications systems have revolutionized the way the world communicates, and the rapid growth of communication using such systems has provided increased economic and educational opportunity across all regions and industries. Unfortunately, the wireless spectrum required for communication is a finite resource, and the rapid growth in wireless communications has also made the availability of this resource ever scarcer. As a result, spectral efficiency has become increasingly important to wireless communications systems.
One promising solution for increasing spectral efficiency is found in full-duplex wireless communications systems; that is, wireless communications systems that are able to transmit and receive wireless signals at the same time on the same wireless channel. This technology allows for a doubling of spectral efficiency compared to standard half-duplex wireless communications systems.
While full-duplex wireless communications systems have substantial value to the wireless communications field, such systems have been known to face challenges due to self-interference; because reception and transmission occur at the same time on the same channel, the received signal at a full-duplex transceiver may include undesired signal components from the signal being transmitted from that transceiver. As a result, full-duplex wireless communications systems often include analog and/or digital self-interference cancellation circuits to reduce self-interference.
Full-duplex transceivers preferably sample transmission output as baseband digital signals, intermediate frequency (IF) analog signals, or as radio-frequency (RF) analog signals, but full-duplex transceivers may additionally or alternatively sample transmission output in any suitable manner (e.g., as IF digital signals). This sampled transmission output may be used by full-duplex transceivers to remove interference from received wireless communications data (e.g., as RF/IF analog signals or baseband digital signals). In many full-duplex transceivers, an analog self-interference cancellation system is paired with a digital self-interference cancellation system. The analog self-interference cancellation system removes a first portion of self-interference by summing delayed, phase shifted and scaled versions of the RF transmit signal to create an RF self-interference cancellation signal, which is then subtracted from the RF receive signal. Alternatively, the analog cancellation system may perform similar tasks at an intermediate frequency. After the RF (or IF) receive signal has the RF/IF self-interference cancellation signal subtracted, it passes through an analog-to-digital converter of the receiver (and becomes a digital receive signal). After this stage, a digital self-interference cancellation signal (created by transforming a digital transmit signal) is then subtracted from the digital receive signal.
The systems described herein may increase performance of full-duplex transceivers as shown in
2. System for Analog Phase Shifting
As shown in
The distinction between the primary phase shifting stage 110 and the secondary phase shifting stage 120 is that the resolution of phase shifting performed by the secondary phase shifting stage 120 is higher than the resolution of the phase shifting stage 110. Resultantly, a phase shifting stage may be a primary phase shifting stage in one architecture, but a secondary phase shifting stage in another. The use of the terms primary and secondary are intended to clarify differing functions of phase shifting stages in a given architecture including multiple phase shifting stages with differing phase shift resolutions, though a person of ordinary skill in the art will recognize that such an architecture is only one of many system 100 architectures possible.
The system 100 functions to increase the performance of full-duplex transceivers (or other applicable systems; e.g., phased antenna arrays) by enabling high accuracy phase shifting without prohibitive increases in circuit complexity and/or cost.
The system 100 is preferably implemented using analog circuitry, but additionally or alternatively may be implemented by digital circuitry or any combination of analog and digital circuitry. Analog circuitry is preferably implemented using analog integrated circuits (ICs) but may additionally or alternatively be implemented using discrete components (e.g., capacitors, inductors, resistors, transistors), wires, transmission lines, transformers, couplers, hybrids, waveguides, digital components, mixed-signal components, or any other suitable components. Digital circuitry is preferably implemented using a general-purpose processor, a digital signal processor, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) and/or any suitable processor(s) or circuit(s). The system 100 preferably includes memory to store configuration data, but may additionally or alternatively be configured using externally stored configuration data or in any suitable manner.
The primary phase shifting stage 110 functions to enable phase shifting by the system 100. If the system 100 includes multiple phase shifting stages, the primary phase shifting stage 110 provides the lowest level of phase shift resolution (i.e., the coarsest adjustment of phase) in the system 100.
The primary phase shifting stage 110 is preferably optimized to reduce the number of components required in phase shifter construction (and therefore also circuit complexity/cost) as well as to provide low insertion loss.
In the case of system 100 implementation in a self-interference cancellation system, the primary phase shifting stage 110 may be used to shift the phase of one or more signal paths in an analog self-interference cancellation circuit, in turn allowing the self-interference cancellation signal generated by the self-interference cancellation circuit to reflect the contributions of multiple signal components with offset phases.
In one implementation, the primary phase shifting stage 110 includes multiple switched sub-circuits 111 and a set of switches 112, as shown in
Each sub-circuit 111 functions to contribute to a set of overall desired phase shifting architectures. The sub-circuits 111 may comprise any analog or digital circuit components in any configuration. In one example of this implementation, one sub-circuit 111 may comprise an LC low-pass filter (e.g., the sub-circuit 111 coupled to S1 as shown in
The set of switches 112 may comprise any number of switches, and switches of the set of switches 112 may be any suitable components capable of selectively coupling the sub-circuits 111 to circuit common rails, grounds, and/or circuit inputs/outputs. For example, switches may include mechanical switches, mechanical relays, solid-state relays, transistors, silicon controlled rectifiers, triacs, and/or digital switches Switches of the set of switches 112 are preferably set electronically by the tuning circuit 130, but may additionally or alternatively be set in any manner. For example, the set of switches 112 may include switches manually set by a circuit user.
Some additional examples of primary phase shifting stage 110 architecture are as shown in
As shown in
Another example phase shifting stage 110 is as shown in
The primary phase shifting stage 110 may include an impedance matching network (alternatively referred to as an impedance transformer) at its input and output that compensates for variations in the primary phase shifting stage 110 input and output impedance (and/or phase shift amount) due to changes in signal component frequency. The primary phase shifting stage 110 may additionally include such an impedance matching network in order to transform the impedance of the stage to and from a suitable impedance level for the core of the phase shifter (e.g., 50 ohms). Alternatively, the primary phase shifting stage 110 may not include impedance matching networks. The impedance matching networks are preferably tunable (e.g., continuously or discretely variable) but may additionally or alternatively be static (i.e., the impedance transformation achieved by using the network is not variable).
As previously discussed, the secondary phase shifting stage 120 is preferably substantially similar to the primary phase shifting stage 110, except in that the secondary phase shifting stage 120 has higher phase shifting resolution than the primary phase shifting stage 110.
The system 100 preferably includes multiple phase shifting stages 110 and 120; these phase shifting stages preferably may be switched ‘on’ (e.g., in signal path) or ‘off’ (e.g., bypassed, out of signal path), depending on control signals. The resulting phase shift is determined by which stages are on and which stages are off; for example, a system 100 with a 90 degree primary phase shifting stage 110 and a 10 degree secondary phase shifting stage ‘on’ might cause a shift of 100 degrees in signal phase.
Each phase shifting stage 110 and 120 preferably causes a set amount (i.e., non-variable amount) of phase shift. Alternatively, phase shifting stages may include tunable phase-shift elements. For example, a phase shifting stage may include a varactor; by changing a control voltage of the varactor, the varactor's capacitance (and thus the amount of phase shift experienced by a signal passing through the stage) may be varied. Alternatively, a similar effect may be accomplished through use of digitally tunable capacitors (DTCs).
An example of a system 100 incorporating multiple phase shifting stages 110 and 120 is as shown in
In this example, the system 100 also includes a secondary phase shifting stage 120. The secondary phase shifting stage 120 preferably includes a hybrid coupler; the input of the phase shifting stage 120 is coupled to the input port (e.g., P1 as shown in
In this example, each sub-circuit 121 preferably includes a primary impedance transformer (coupled to the hybrid coupler), a first phase shifting element (PSE1 coupled to the primary impedance transform), and a second phase shifting element (PSE2 coupled to the primary impedance transform). Additionally or alternatively, each sub-circuit 121 may include any number of phase shifting elements. Each phase shifting element preferably includes an impedance transformer coupled to ground via a variable capacitor (e.g., a DTC); additionally, phase shifting elements may include additional circuit elements. For example, one PSE may include a capacitor coupling the PSE Z transform to the primary Z transform; this capacitor may serve to modify the phase shifting resolution of the phase shifting element (e.g., the capacitance may be selected such that PSE1 results in finer shifts to phase than PSE2 for the same DTC control values).
In one implementation, the impedance transformers are LC circuits as shown in
The two sub-circuits 121 are preferably impedance matched in order to maximize the power reflected to the isolated output of the hybrid coupler; additionally or alternatively, the two sub-circuits 121 may be any suitable sub-circuits with any impedance values.
The tuning circuit 130 functions to control configuration parameters of the primary and secondary phase shifting stages 110 and 120 in response to a desired phase shift. Configuration parameters preferably include DTC values and switch settings, but may additionally or alternatively include any other suitable configuration parameters (e.g., variable impedance matching network tunings, attenuation settings, etc.).
The tuning circuit 130 preferably sets the configuration states of phase shifting stages 110/120 in response to a desired phase shift value at an output of the system 100, but may additionally or alternatively set configuration states based on any suitable information (e.g., input signal characteristics or environmental data). In general, the tuning circuit 130 (in concert with attenuators/amplifiers) may enable the adaptation of any complex weight to a signal.
The tuning circuit 130 preferably adapts system 100 parameters according to a combination of expected outcomes and actual outcomes (e.g., a lookup table containing initial values for circuit elements may serve as an initial configuration setting for a particular phase shift output, after which point circuit elements may be iteratively tuned in order to more accurately reach a particular phase shift output). Additionally or alternatively, the tuning circuit 130 may adapt system 100 parameters in any manner.
The tuning circuit 130 may adapt configuration states and/or configuration state generating/choosing algorithms using analytical methods, online gradient-descent methods (e.g., LMS, RLMS), and/or any other suitable methods.
The tuning circuit 130 is preferably implemented as a programmable digital circuit, but may additionally or alternatively be implemented in any suitable digital or analog circuit, including implementation as software in a general purpose computing device.
In addition to controlling phase shift parameters of individual stages, the tuning circuit 130 may also control how phase shift stages 110/120 are coupled into a signal path. Phase shifting stages 110 and 120 are preferably configured to be used with a hybrid thermometer encoding scheme. The hybrid thermometer encoding scheme is preferably a hybrid of binary and thermometer encoding schemes; in one implementation of a preferred embodiment, binary encoding is used for large phase shift values, while thermometer encoding is used for smaller values.
The encoding scheme specifies how phase shifting stages 110/120 are to be switched on and off to achieve particular phase shift values. For example, a four-stage binary encoded phase shifting system 100 might be configured to have 16 phase shift values: 0000 (0 degree shift), 0001 (2 degree shift), 0010 (4 degree shift) . . . 1111 (32 degree shift). In contrast, a four-stage thermometer encoded phase shifting system 100 might be configured to have five phase shift values: 0000 (0 degree shift), 0001 (2 degree shift), 0011 (4 degree shift), 0111 (6 degree shift), 1111 (8 degree shift). A hybrid thermometer encoded scheme combines attributes of the binary scheme and the thermometer scheme; for example, a hybrid thermometer scheme might include several stages with large phase change effects that are switched according to a binary scheme, while stages with smaller phase change effects may be switched according to a thermometer scheme. This prevents stages from being cycled (i.e., switched on and off) unnecessarily for small changes in phase shift and preserves monotonicity during phase shifter operation (an important aspect of the thermometer encoding that is not present in the binary encoding). In this way, a phase shifting system 100 utilizing hybrid thermometer encoding can preserve desirable aspects of thermometer coding (e.g., monotonicity, which results in a smaller lookup table and fewer iterations for the algorithm) while reducing the overall number of stages needed to perform phase shifting.
As discussed previously, the system 100 may find use within systems for self-interference cancellation. In one implementation, the system 100 may serve as the phase shifters described in U.S. Provisional Application No. 62/240,835, the entirety of which is incorporated by this reference. As described in the reference, phase shifters are used by the analog self-interference canceller to transform input signal components (in combination with attenuation/gain by scalers); the phase-shifted and scaled components may then be combined to form a self-interference cancellation signal.
The system 100 may also be used in another manner as part of systems for self-interference cancellation. In many cases, self-interference cancellation systems include intermediate frequency (IF) and/or analog-sourced digital self-interference cancellers (as shown in
In both cases, frequency conversion is preferably performed using heterodyning methods utilizing a mixer and a local oscillator (LO); the local oscillator functions to provide a frequency shift signal to the mixer; the mixer combines the frequency shift signal and an input signal to create frequency shifted signals.
For IF/analog-sourced digital self-interference cancellation signals to be effective, the signals need to be phase-matched (e.g., at 0 or 180 degrees relative to) to the signal in which interference cancellation is desired (e.g., the incoming receive signal of a transceiver). In general, this is accomplished by phase shifters implemented in the signal path (e.g., as discussed in the analog self-interference canceller, although such phase shifters may be external to the actual cancellation circuitry.
In one embodiment, the system 100 is coupled to one or more local oscillators of a self-interference cancellation system, such that the system 100 provides phase shifting for the local oscillator signal (which in turn provides phase shifting to signals being frequency converted based on that LO signal) as shown in
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/065,583, filed on 17 Oct. 2014, which is incorporated in its entirety by this reference.
Number | Name | Date | Kind |
---|---|---|---|
4321624 | Gibson et al. | Mar 1982 | A |
4952193 | Talwar | Aug 1990 | A |
5212827 | Meszko et al. | May 1993 | A |
5691978 | Kenworthy | Nov 1997 | A |
5734967 | Kotzin et al. | Mar 1998 | A |
5790658 | Yip et al. | Aug 1998 | A |
5818385 | Bartholomew | Oct 1998 | A |
5930301 | Chester et al. | Jul 1999 | A |
6215812 | Young et al. | Apr 2001 | B1 |
6240150 | Darveau et al. | May 2001 | B1 |
6411250 | Oswald et al. | Jun 2002 | B1 |
6539204 | Marsh | Mar 2003 | B1 |
6567649 | Souissi | May 2003 | B2 |
6639551 | Li et al. | Oct 2003 | B2 |
6657950 | Jones et al. | Dec 2003 | B1 |
6725017 | Blount et al. | Apr 2004 | B2 |
6965657 | Rezvani et al. | Nov 2005 | B1 |
7336940 | Smithson | Feb 2008 | B2 |
7349505 | Blount et al. | Mar 2008 | B2 |
7362257 | Bruzzone et al. | Apr 2008 | B2 |
7426242 | Thesling | Sep 2008 | B2 |
7509100 | Toncich | Mar 2009 | B2 |
7869527 | Vetter et al. | Jan 2011 | B2 |
8027642 | Proctor, Jr. | Sep 2011 | B2 |
8055235 | Gupta et al. | Nov 2011 | B1 |
8060803 | Kim | Nov 2011 | B2 |
8086191 | Fukuda et al. | Dec 2011 | B2 |
8155595 | Sahin et al. | Apr 2012 | B2 |
8175535 | Mu | May 2012 | B2 |
8179990 | Orlik et al. | May 2012 | B2 |
8218697 | Guess et al. | Jul 2012 | B2 |
8331477 | Huang et al. | Dec 2012 | B2 |
8351533 | Shrivastava et al. | Jan 2013 | B2 |
8385871 | Wyville | Feb 2013 | B2 |
8422540 | Negus et al. | Apr 2013 | B1 |
8995410 | Balan et al. | Mar 2015 | B2 |
9019849 | Hui et al. | Apr 2015 | B2 |
9042838 | Braithwaite | May 2015 | B2 |
9054795 | Choi | Jun 2015 | B2 |
9124475 | Li et al. | Sep 2015 | B2 |
9184902 | Khojastepour et al. | Nov 2015 | B2 |
9312895 | Gupta | Apr 2016 | B1 |
20020034191 | Shattil | Mar 2002 | A1 |
20020064245 | McCorkle | May 2002 | A1 |
20020172265 | Kenney | Nov 2002 | A1 |
20030031279 | Blount et al. | Feb 2003 | A1 |
20030099287 | Arambepola | May 2003 | A1 |
20030104787 | Blount et al. | Jun 2003 | A1 |
20030148748 | Shah | Aug 2003 | A1 |
20040106381 | Tiller | Jun 2004 | A1 |
20040266378 | Fukamachi | Dec 2004 | A1 |
20050078743 | Shohara | Apr 2005 | A1 |
20050129152 | Hillstrom | Jun 2005 | A1 |
20050159128 | Collins et al. | Jul 2005 | A1 |
20050190870 | Blount et al. | Sep 2005 | A1 |
20050250466 | Varma et al. | Nov 2005 | A1 |
20050254555 | Teague | Nov 2005 | A1 |
20050282500 | Wang et al. | Dec 2005 | A1 |
20060030277 | Cyr et al. | Feb 2006 | A1 |
20060058022 | Webster et al. | Mar 2006 | A1 |
20060209754 | Ji et al. | Sep 2006 | A1 |
20060273853 | Suzuki et al. | Dec 2006 | A1 |
20070018722 | Jaenecke | Jan 2007 | A1 |
20070249314 | Sanders et al. | Oct 2007 | A1 |
20070274372 | Asai et al. | Nov 2007 | A1 |
20080037801 | Alves et al. | Feb 2008 | A1 |
20080107046 | Kangasmaa et al. | May 2008 | A1 |
20080111754 | Osterhues | May 2008 | A1 |
20080131133 | Blunt et al. | Jun 2008 | A1 |
20080192636 | Briscoe et al. | Aug 2008 | A1 |
20080219377 | Nisbet | Sep 2008 | A1 |
20090022089 | Rudrapatna | Jan 2009 | A1 |
20090034437 | Shin et al. | Feb 2009 | A1 |
20090047914 | Axness et al. | Feb 2009 | A1 |
20090180404 | Jung et al. | Jul 2009 | A1 |
20090186582 | Muhammad et al. | Jul 2009 | A1 |
20090303908 | Deb et al. | Dec 2009 | A1 |
20100014600 | Li et al. | Jan 2010 | A1 |
20100014614 | Leach et al. | Jan 2010 | A1 |
20100022201 | Vandenameele | Jan 2010 | A1 |
20100056166 | Tenny | Mar 2010 | A1 |
20100117693 | Lorg et al. | May 2010 | A1 |
20100136900 | Seki | Jun 2010 | A1 |
20100150033 | Zinser et al. | Jun 2010 | A1 |
20100150070 | Park | Jun 2010 | A1 |
20100159858 | Dent et al. | Jun 2010 | A1 |
20100215124 | Zeong et al. | Aug 2010 | A1 |
20100226416 | Dent et al. | Sep 2010 | A1 |
20100226448 | Dent | Sep 2010 | A1 |
20100232324 | Radunovic et al. | Sep 2010 | A1 |
20100279602 | Larsson et al. | Nov 2010 | A1 |
20100295716 | Yamaki et al. | Nov 2010 | A1 |
20110013684 | Semenov et al. | Jan 2011 | A1 |
20110081880 | Ahn | Apr 2011 | A1 |
20110149714 | Rimini et al. | Jun 2011 | A1 |
20110216813 | Baldemair et al. | Sep 2011 | A1 |
20110222631 | Jong | Sep 2011 | A1 |
20110243202 | Lakkis | Oct 2011 | A1 |
20110250858 | Jain et al. | Oct 2011 | A1 |
20110254639 | Tsutsumi | Oct 2011 | A1 |
20110256857 | Chen et al. | Oct 2011 | A1 |
20110268232 | Park et al. | Nov 2011 | A1 |
20110311067 | Harris et al. | Dec 2011 | A1 |
20110319044 | Bornazyan | Dec 2011 | A1 |
20120021153 | Bhandari et al. | Jan 2012 | A1 |
20120063369 | Lin et al. | Mar 2012 | A1 |
20120063373 | Chincholi et al. | Mar 2012 | A1 |
20120140685 | Lederer et al. | Jun 2012 | A1 |
20120147790 | Khojastepour et al. | Jun 2012 | A1 |
20120154249 | Khojastepour et al. | Jun 2012 | A1 |
20120155335 | Khojastepour et al. | Jun 2012 | A1 |
20120155336 | Khojastepour et al. | Jun 2012 | A1 |
20120201153 | Bharadia et al. | Aug 2012 | A1 |
20120201173 | Jain et al. | Aug 2012 | A1 |
20120224497 | Lindoff et al. | Sep 2012 | A1 |
20130005284 | Dalipi | Jan 2013 | A1 |
20130044791 | Rimini et al. | Feb 2013 | A1 |
20130089009 | Li et al. | Apr 2013 | A1 |
20130102254 | Cyzs | Apr 2013 | A1 |
20130155913 | Sarca | Jun 2013 | A1 |
20130166259 | Weber et al. | Jun 2013 | A1 |
20130194984 | Cheng et al. | Aug 2013 | A1 |
20130215805 | Hong et al. | Aug 2013 | A1 |
20130225101 | Basaran et al. | Aug 2013 | A1 |
20130253917 | Schildbach | Sep 2013 | A1 |
20130259343 | Liu et al. | Oct 2013 | A1 |
20130301487 | Khandani | Nov 2013 | A1 |
20130301488 | Hong et al. | Nov 2013 | A1 |
20130308717 | Maltsev | Nov 2013 | A1 |
20140011461 | Bakalski | Jan 2014 | A1 |
20140126437 | Patil et al. | May 2014 | A1 |
20140169236 | Choi et al. | Jun 2014 | A1 |
20140185533 | Haub | Jul 2014 | A1 |
20140206300 | Hahn et al. | Jul 2014 | A1 |
20140219139 | Choi et al. | Aug 2014 | A1 |
20140219449 | Shattil et al. | Aug 2014 | A1 |
20140348018 | Bharadia et al. | Nov 2014 | A1 |
20140348032 | Hua et al. | Nov 2014 | A1 |
20140376416 | Choi | Dec 2014 | A1 |
20150156003 | Khandani | Jun 2015 | A1 |
20150156004 | Khandani | Jun 2015 | A1 |
20150249444 | Shin | Sep 2015 | A1 |
20150303984 | Braithwaite | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
0755141 | Oct 2005 | EP |
1959625 | Feb 2009 | EP |
2267946 | Dec 2010 | EP |
2256985 | Jul 2005 | RU |
2013173250 | Nov 2013 | WO |
2013185106 | Dec 2013 | WO |
2014093916 | Jun 2014 | WO |
Entry |
---|
Bharadia et al., “Full Duplex Radios” SIGOMM, Aug. 12-16, 2013, Hong Kong, China, Copyright 2013 ACM 978-1-4503-2056-6/6/13/08, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20160112226 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
62065583 | Oct 2014 | US |