The present disclosure relates to displays including but not limited to near eye displays. More specifically, the disclosure relates to substrate guided optics.
Substrate guided displays have been proposed which use waveguide technology with diffraction gratings to preserve eye box size while reducing lens size. U.S. Pat. No. 4,309,070 issued to St. Leger Searle and U.S. Pat. No. 4,711,512 issued to Upatnieks disclose substrate waveguide head up displays where the pupil of a collimating optical system is effectively expanded by the waveguide structure. U.S. patent application Ser. No. 13/869,866 discloses holographic wide angle displays and U.S. patent application Ser. No. 13/844,456 discloses waveguide displays having an upper and lower field of view.
One exemplary embodiment of the disclosure relates to a near eye optical display. The near eye optical display includes a waveguide comprising a first surface and a second surface, an input coupler, a fold grating, and an output grating. The input coupler is configured to receive collimated light from a display source and to cause the light to travel within the waveguide via total internal reflection between the first surface and the second surface to the fold grating. The fold grating is configured to provide pupil expansion in a first direction and to direct the light to the output grating via total internal reflection between the first surface and the second surface. The output grating is configured to provide pupil expansion in a second direction different than the first direction and to cause the light to exit the waveguide from the first surface or the second surface.
Another exemplary embodiment of the disclosure relates to a method of displaying information. The method includes receiving collimated light in a waveguide having a first surface and a second surface; providing the collimated light to a fold grating via total internal reflection between the first surface and the second surface; providing pupil expansion in a first direction using the fold grating and directing the light to an output grating via total internal reflection between the first surface and the second surface; and providing pupil expansion in a second direction different than the first direction and causing the light to exit the waveguide from the first surface or the second surface.
Another exemplary embodiment of the disclosure relates to an apparatus for providing an optical display. The apparatus for providing an optical display includes a first image source for a first image for a first field of view, and a second image source for a second image for a second field of view, and a waveguide. The waveguide includes a first surface, a second surface, a first input coupler, a second input coupler, a first fold grating, a second fold grating, a first output grating, and a second output grating. The first input coupler is configured to receive the first image and to cause the first image to travel within the waveguide by total internal reflection between the first surface and the second surface to the first fold grating. The first fold grating is configured to provide pupil expansion in a first direction and to direct the first image to the first output grating via total internal reflection between the first surface and the second surface. The first output grating is configured to provide pupil expansion in a second direction different than the first direction and to cause the first image to exit the waveguide from the first surface or the second surface. The second input coupler is configured to receive the second image and to cause the second image to travel within the waveguide by total internal reflection between the first surface and the second surface to the second fold grating. The second fold grating is configured to provide pupil expansion in the first direction and to direct the second image to the second output grating via total internal reflection between the first surface and the second surface. The second output grating is configured to provide pupil expansion in the second direction different than the first direction and to cause the second image to exit the waveguide from the first surface or the second surface.
The invention will become more fully understood from the following detailed description, taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like elements, in which:
Following below are more detailed descriptions of various concepts related to, and embodiments of, an inventive optical display and methods for displaying information. It should be implemented in any of numerous ways, as the disclosed concepts are not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
The invention will now be further described by way of example with reference to the accompanying drawings. It will be apparent to those skilled in the art that the present invention may be practiced with some or all of the present invention as disclosed in the following description. For the purposes of explaining the invention, well-known features of optical technology known to those skilled in the art of optical design and visual displays have been omitted or simplified in order not to obscure the basic principles of the invention. Unless otherwise stated, the term “on-axis” in relation to a ray or a beam direction refers to propagation parallel to an axis normal to the surfaces of the optical components described in relation to the invention. In the following description, the terms light, ray, beam and direction may be used interchangeably and in association with each other to indicate the direction of propagation of light energy along rectilinear trajectories. Parts of the following description will be presented using terminology commonly employed by those skilled in the art of optical design. It should also be noted that in the following description of the invention, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment.
Referring generally to the Figures, systems and methods relating to near-eye display or head up display systems are shown according to various embodiments. Holographic waveguide technology can be advantageously utilized in waveguides for helmet mounted displays or head mounted displays (HMDs) and head up displays (HUDs) for many applications, including military applications and consumer applications (e.g., augmented reality glasses, etc.). Switchable Bragg gratings (SBGs), which are holograms recorded in holographic polymer dispersed liquid crystal, may be used in waveguides to create a larger field of view with increased resolution in current display systems, including HMDs, HUDs, and other near eye displays. SBGs may also be used to increase the field of view by tiling images presented sequentially on a micro display. A larger exit pupil may be created by using fold gratings in conjunction with conventional or other gratings to provide pupil expansion on a single waveguide in both the horizontal and vertical directions, thereby enabling the use of a very small lens system. Using the systems and methods disclosed herein, a single optical waveguide substrate may generate a wider field of view than found in current waveguide systems. Diffraction gratings may be used to split and diffract light rays into several beams that travel in different directions, thereby dispersing the light rays.
Referring to
Substrate waveguide 101 includes a first surface 102, a second surface 104, an input coupler 110, a fold grating 120, and an output grating 130. The first and second surfaces 102 and 104 define the boundaries of the waveguide substrate 101 containing the fold grating 120 and the output grating 130 and are flat, planar surfaces in some embodiments. In some embodiments, waveguide substrate 101 can be a transmissive material, such as glass or plastic suitable for optical designs. The waveguide substrate 101 can be comprised of one or more layers and coatings.
Input coupler 110 can be a prism, mirror, reflective surface or grating for injecting light from the light source 111 into the waveguide substrate 101. In some embodiments, the input coupler 110 can be a holographic grating, such as a switchable or non-switchable SBG grating. Similarly, and in some embodiments, the fold grating 120 and the output grating 130 can be holographic gratings, such as switchable or non-switchable SBGs. As used herein, the term grating may encompass a grating comprised of a set of gratings in some embodiments.
The waveguide substrate 101 may include a number of layers. For example, in some embodiments, a first layer includes the fold grating 120 while a second layer includes the output grating 130. In some embodiments, a third layer can include input coupler 110. The number of layers may then be laminated together into a single waveguide substrate 101.
In some embodiments, the waveguide substrate 101 is comprised of a number of pieces including the input coupler 110, the fold grating 120 and the output grating 130 (or portions thereof) that are laminated together to form a single substrate waveguide. The pieces may be separated by optical glue or other transparent material of refractive index matching that of the pieces.
In another embodiment, the input coupler 110, the fold grating 120 and the output grating 130 can each be recorded into the same substrate to form the waveguide substrate 101. In another embodiment, the waveguide substrate 101 may be formed via a cell making process by creating cells of the desired grating thickness and vacuum filling each cell with SBG material for each of the input coupler 110, the fold grating 120 and the output grating 130. In one embodiment, the cell is formed by positioning multiple plates of glass with gaps between the plates of glass that define the desired grating thickness for the input coupler 110, the fold grating 120 and the output grating 130. In one embodiment, one cell may be made with multiple apertures such that the separate apertures are filled with different pockets of SBG material. Any intervening spaces may then be separated by a separating material (e.g., glue, oil, etc.) to define separate areas within a single substrate waveguide 101. In one embodiment, the SBG material may be spin-coated onto a substrate and then covered by a second substrate after curing of the material.
By using the fold grating 120, the waveguide display system 100 advantageously requires fewer layers than previous systems and methods of displaying information according to some embodiments. In addition, by using fold grating 120, light can travel by total internal refection within the substrate waveguide 101 in a single rectangular prism defined by surfaces 102 and 104 while achieving dual pupil expansion.
In another embodiment, the input coupler 110, the fold grating 120 and the output grating 130 can be created by interfering two waves of light at an angle within the substrate to create a holographic wave front, thereby creating light and dark fringes that are set in the waveguide substrate 101 at a desired angle. In one embodiment, the input coupler 110, the fold grating 120, and the output grating 130 embodied as holograms can be Bragg gratings recorded in a holographic polymer dispersed liquid crystal (HPDLC) (e.g., a matrix of liquid crystal droplets), although Bragg gratings may also be recorded in other materials. Bragg gratings recorded in HPDLC are known as SBGs. In one embodiment, SBGs are recorded in a special HPDLC material, such as POLICRYPS, resulting in a matrix of pure liquid crystal Bragg planes separated by solid polymer. SBGs may also be recorded in other materials, including POLIPHEM. Similar to POLICRYPS, POLIPHEM also provides a matrix of pure liquid crystal Bragg planes separated by solid polymer, however both substances are fabricated by different processes. The SBGs can be switching or non-switching in nature. In its non-switching form, an SBG has the advantage over conventional holographic photopolymer materials of being capable of providing high refractive index modulation due to its liquid crystal component.
The light source 111 can include a number of input objective lenses 112, 113, 114 and an image source 115 and can provide collimated light to the input coupler 110. The image source 115 can be a micro-display or laser based display. In one or more embodiments, the image source is a liquid crystal display (LCD) micro display or liquid crystal on silicon (LCOS) micro display.
In some embodiments, the input objective lenses 112, 113, 114 may be many different types of lenses, including, for example, projection lenses. In some embodiments, however, the light source 111 includes a single input objective lens (e.g., input objective lens 112). The input coupler 110 is configured to receive collimated light from a display source and to cause the light to travel within the substrate waveguide 101 via total internal reflection between the first surface 102 and the second surface 104 to the fold grating 120. The input objective lenses 112, 113, 114 collimate the display image on the image source 115 and each pixel on the image source 115 is converted into a unique angular direction within the substrate waveguide 101 according to some embodiments. The input coupler 110 may be orientated directly towards or at an angle relative to the fold grating 120. For example, in one embodiment, the input coupler 110 may be set at a slight incline in relation to the fold grating 120. One advantage of tilting the input coupler 110 is that the waveguide substrate 101 may also be tilted with respect to the viewer. For example, such tilting may allow the visor of
In some embodiments, the fold grating 120 may be oriented in a diagonal direction. The fold grating 120 is configured to provide pupil expansion in a first direction and to direct the light to the output grating 130 via total internal reflection between the first surface 102 and the second surface 104 of the substrate waveguide 101 in some embodiments. In one embodiment, a longitudinal edge of each fold grating 120 is oblique to the axis of alignment of the input coupler 110 such that each fold grating 120 is set on a diagonal with respect to the direction of propagation of the display light. The fold grating 120 is angled such that light from the input coupler 110 is redirected to the output grating 130. In one example, the fold grating 120 is set at a forty-five degree angle (e.g., 40-50 degrees) relative to the direction that the display image is released from the input coupler 110. This feature causes the display image propagating down the fold grating 120 to be turned into the output grating 130. For example, in one embodiment, the fold grating 120 causes the image to be turned 90 degrees into the output grating 130. In this manner, a single waveguide provides dual axis pupil expansion in both the horizontal and vertical directions. In one embodiment, each of the fold grating 120 may have a partially diffractive structure. In some embodiments, each of the fold grating 120 may have a fully diffractive structure. In some embodiments, different grating configurations and technologies may be incorporated in a single substrate waveguide 101.
The output grating 130 is configured to provide pupil expansion in a second direction different than the first direction and to cause the light to exit the waveguide 100 from the first surface or the second surface. The output grating 130 receives the display image from the fold grating 120 via total internal reflection and provides pupil expansion in a second direction. In some embodiments, the output grating 130 may consist of multiple layers of substrate, thereby comprising multiple layers of output gratings. Accordingly, there is no requirement for gratings to be in one plane within the substrate waveguide 101, and gratings may be stacked on top of each other (e.g., cells of gratings stacked on top of each other). The output grating 130 can be disposed approximately perpendicular to the gratings of the input couple 110 in some embodiments. In some embodiments, the output grating is disposed approximately 5-10 degrees (e.g., approximately 7.5 degrees) from the vertical axis.
In some embodiments, a quarter wave plate 142 on the substrate waveguide 101 rotates polarization of a light ray to maintain efficient coupling with the SBGs. The quarter wave plate 142 may be coupled to or adhered to the surface 102 of substrate waveguide 101. For example, in one embodiment, the quarter wave plate 142 is a coating that is applied to substrate waveguide 101. The quarter wave plate 142 provides light wave polarization management. Such polarization management may help light rays retain alignment with the intended viewing axis by compensating for skew waves in the substrate waveguide 101. In one embodiment, the output grating 130 may be contained by glass. The quarter wave plate 142 is optional and can increase the efficiency of the optical design in some embodiments. In some embodiments, the substrate waveguide 101 does not include the quarter wave plate 142. The quarter wave plate may be provided as a multi-layer coating.
Referring to
The light sources 210 and 211 may each include a number of input objective lenses 212 and image sources 215 that can provide collimated light. The image sources 215 can be micro displays or laser based displays, among other display types. In one or more embodiments, the image sources 215 are liquid crystal display (LCD) micro displays or liquid crystal on silicon (LCOS) micro displays. In one alternative embodiment, light sources 210 and 211 can be a single light source having two images for substrate waveguide 200.
In some embodiments, the input objective lenses 212 may be many different types of lenses, including, for example, projection lenses. In some embodiments, however, the light sources 210 and 211 include a single input objective lens. Pairs of input couplers on substrate waveguide 200, similar to input coupler 110, are each configured to receive collimated light from respective display sources 210 and 211 and to cause the light to travel within the substrate waveguide 200 via total internal reflection to respective fold gratings 254, 256, 258, and 260 similar to fold grating 120. The pairs of input couplers include a first pair of input couplers 214 and 216 associated with light source 210 (
As shown in
Referring to
Referring to
Referring to
As shown in
The light sources 310 and 311 may each include a number of input objective lenses 312 and image sources 315 that can provide collimated light. The image sources 315 can be micro displays or laser based displays, among other display types. In one or more embodiments, the image sources 315 are liquid crystal display (LCD) micro displays or liquid crystal on silicon (LCOS) micro displays. In one alternative embodiment, light sources 310 and 311 can be a single light source having two images for substrate waveguide 300.
In some embodiments, the input objective lenses 312 may be many different types of lenses, including, for example, projection lenses. In some embodiments, however, the light sources 310 and 311 include a single input objective lens. A pair of input couplers on substrate waveguide 300, similar to input coupler 110, are each configured to receive collimated light from respective display sources 310 and 311 and to cause the light to travel within the substrate waveguide 300 via total internal reflection to a respective fold grating similar to fold grating 120. The light from each respective fold grating travels within the substrate waveguide 300 via total internal reflection to output grid 321.
In some embodiments, output grid 321 includes four or more output gratings 324, 326, 328, and 330, each similar to output grating 130. In some embodiments, the output gratings 324, 326, 328, and 330 are switchable and can be turned on and off to effect multiplexing operations. The output gratings 324, 326, 328, and 330 eject the light from the substrate waveguide 300 to the user. In some embodiments, the output gratings 324 and 326 receive light from the first fold grating in substrate waveguide 300 and light source 310, and the output gratings 328 and 330 receive light from the second fold grating in substrate waveguide 300 and light source 311.
By including the light source 310 and the light source 311, the substrate waveguide 300 may create a full field of view or larger field of view. In some embodiments, the substrate waveguide 300 creates a full field of view or larger field of view using multiplexing techniques. For example,
In some embodiments, this configuration is utilized in a head mounted display goggle as shown in
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure.
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure.
The present application is related to and claims the benefit of U.S. patent application Ser. No. 17/027,562 filed on Sep. 21, 2020 by Stanley, et al. and entitled “SYSTEMS FOR AND METHODS OF USING FOLD GRATINGS FOR DUAL AXIS EXPANSION,” which claims the benefit of U.S. patent application Ser. No. 14/497,280 filed on Sep. 25, 2014; U.S. patent application Ser. No. 14/497,280 is related to U.S. patent application Ser. No. 14/465,763 (09KE459CC (047141-1029)) filed on Aug. 21, 2014, by Robbins et al., entitled “OPTICAL DISPLAYS,” which claims the benefit of and priority to and is a Continuation of U.S. patent application Ser. No. 13/355,360, filed on Jan. 20, 2012 (now U.S. Pat. No. 8,817,350, issued on Aug. 26, 2014) (09KE459C (047141-0834)), which claims the benefit of and priority to and is a Continuation of U.S. patent application Ser. No. 12/571,262 filed on Sep. 30, 2009 (now U.S. Pat. No. 8,233,204, issued on Jul. 31, 2012) (09KE459 (047141-0689)); U.S. patent application Ser. No. 13/869,866 (13FD325 (047141-0920)) filed on Apr. 24, 2013, by Popovich et al., entitled “HOLOGRAPHIC WIDE ANGLE DISPLAY,” which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/687,436 filed on Apr. 25, 2012, and U.S. Provisional Patent Application No. 61/689,907 filed on Jun. 15, 2012; and U.S. patent application Ser. No. 13/844,456 (13FD235 (047141-0903)) filed on Mar. 15, 2013, by Brown et al., entitled “TRANSPARENT WAVEGUIDE DISPLAY PROVIDING UPPER AND LOWER FIELDS OF VIEW,” which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/796,632 filed on Nov. 16, 2012, and U.S. Provisional Patent Application No. 61/849,853 filed on Feb. 4, 2013, all of which are assigned to the assignee of the present application and incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2141884 | August | Dec 1938 | A |
3620601 | Waghorn et al. | Nov 1971 | A |
3851303 | Muller | Nov 1974 | A |
3885095 | Wolfson et al. | May 1975 | A |
3940204 | Withrington | Feb 1976 | A |
4082432 | Kirschner | Apr 1978 | A |
4099841 | Ellis | Jul 1978 | A |
4178074 | Heller | Dec 1979 | A |
4218111 | Withrington et al. | Aug 1980 | A |
4232943 | Rogers | Nov 1980 | A |
4309070 | Searle | Jan 1982 | A |
4647967 | Kirschner et al. | Mar 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4714320 | Banbury | Dec 1987 | A |
4743083 | Schimpe | May 1988 | A |
4749256 | Bell et al. | Jun 1988 | A |
4775218 | Wood et al. | Oct 1988 | A |
4799765 | Ferrer | Jan 1989 | A |
4854688 | Hayford et al. | Aug 1989 | A |
4860294 | Winzer et al. | Aug 1989 | A |
4928301 | Smoot | May 1990 | A |
4946245 | Chamberlin et al. | Aug 1990 | A |
5007711 | Wood et al. | Apr 1991 | A |
5035734 | Honkanen et al. | Jul 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5079416 | Filipovich | Jan 1992 | A |
5117285 | Nelson et al. | May 1992 | A |
5124821 | Antier et al. | Jun 1992 | A |
5148302 | Nagano et al. | Sep 1992 | A |
5151958 | Honkanen | Sep 1992 | A |
5153751 | Ishikawa et al. | Oct 1992 | A |
5159445 | Gitlin et al. | Oct 1992 | A |
5160523 | Honkanen et al. | Nov 1992 | A |
5183545 | Branca et al. | Feb 1993 | A |
5187597 | Kato et al. | Feb 1993 | A |
5210624 | Matsumoto et al. | May 1993 | A |
5218360 | Goetz et al. | Jun 1993 | A |
5243413 | Gitlin et al. | Sep 1993 | A |
5289315 | Makita et al. | Feb 1994 | A |
5295208 | Caulfield et al. | Mar 1994 | A |
5303085 | Rallison | Apr 1994 | A |
5306923 | Kazmierski et al. | Apr 1994 | A |
5317405 | Kuriki et al. | May 1994 | A |
5341230 | Smith | Aug 1994 | A |
5351151 | Levy | Sep 1994 | A |
5359362 | Lewis et al. | Oct 1994 | A |
5363220 | Kuwayama et al. | Nov 1994 | A |
5369511 | Amos | Nov 1994 | A |
5400069 | Braun et al. | Mar 1995 | A |
5408346 | Trissel et al. | Apr 1995 | A |
5418584 | Larson | May 1995 | A |
5438357 | McNelley | Aug 1995 | A |
5455693 | Wreede et al. | Oct 1995 | A |
5471326 | Hall et al. | Nov 1995 | A |
5473222 | Thoeny et al. | Dec 1995 | A |
5496621 | Makita et al. | Mar 1996 | A |
5500671 | Andersson et al. | Mar 1996 | A |
5510913 | Hashimoto et al. | Apr 1996 | A |
5515184 | Caulfield et al. | May 1996 | A |
5524272 | Podowski et al. | Jun 1996 | A |
5532736 | Kuriki et al. | Jul 1996 | A |
5537232 | Biles | Jul 1996 | A |
5572248 | Allen et al. | Nov 1996 | A |
5579026 | Tabata | Nov 1996 | A |
5583795 | Smyth | Dec 1996 | A |
5604611 | Saburi et al. | Feb 1997 | A |
5606433 | Yin et al. | Feb 1997 | A |
5612733 | Flohr | Mar 1997 | A |
5612734 | Nelson et al. | Mar 1997 | A |
5619254 | McNelley | Apr 1997 | A |
5629259 | Akada et al. | May 1997 | A |
5631107 | Tarumi et al. | May 1997 | A |
5633100 | Mickish et al. | May 1997 | A |
5646785 | Gilboa et al. | Jul 1997 | A |
5648857 | Ando et al. | Jul 1997 | A |
5661577 | Jenkins et al. | Aug 1997 | A |
5661603 | Hanano et al. | Aug 1997 | A |
5665494 | Kawabata et al. | Sep 1997 | A |
5668907 | Veligdan | Sep 1997 | A |
5680411 | Ramdane et al. | Oct 1997 | A |
5682255 | Friesem et al. | Oct 1997 | A |
5694230 | Welch | Dec 1997 | A |
5701132 | Kollin et al. | Dec 1997 | A |
5706108 | Ando et al. | Jan 1998 | A |
5707925 | Akada et al. | Jan 1998 | A |
5724189 | Ferrante | Mar 1998 | A |
5726782 | Kato et al. | Mar 1998 | A |
5727098 | Jacobson | Mar 1998 | A |
5729242 | Margerum et al. | Mar 1998 | A |
5731060 | Hirukawa et al. | Mar 1998 | A |
5731853 | Taketomi et al. | Mar 1998 | A |
5742262 | Tabata et al. | Apr 1998 | A |
5751452 | Tanaka et al. | May 1998 | A |
5760931 | Saburi et al. | Jun 1998 | A |
5764414 | King et al. | Jun 1998 | A |
5790288 | Jager et al. | Aug 1998 | A |
5812608 | Valimaki et al. | Sep 1998 | A |
5822127 | Chen et al. | Oct 1998 | A |
5841507 | Barnes | Nov 1998 | A |
5856842 | Tedesco | Jan 1999 | A |
5867618 | Ito et al. | Feb 1999 | A |
5868951 | Schuck, III et al. | Feb 1999 | A |
5886822 | Spitzer | Mar 1999 | A |
5892598 | Asakawa et al. | Apr 1999 | A |
5898511 | Mizutani et al. | Apr 1999 | A |
5903395 | Rallison et al. | May 1999 | A |
5907416 | Hegg et al. | May 1999 | A |
5907436 | Perry et al. | May 1999 | A |
5917459 | Son et al. | Jun 1999 | A |
5926147 | Sehm et al. | Jul 1999 | A |
5929946 | Sharp et al. | Jul 1999 | A |
5937115 | Domash | Aug 1999 | A |
5942157 | Sutherland et al. | Aug 1999 | A |
5945893 | Plessky et al. | Aug 1999 | A |
5949302 | Sarkka | Sep 1999 | A |
5966223 | Friesem et al. | Oct 1999 | A |
5985422 | Krauter | Nov 1999 | A |
5991087 | Rallison | Nov 1999 | A |
5999314 | Asakura et al. | Dec 1999 | A |
6042947 | Asakura et al. | Mar 2000 | A |
6043585 | Plessky et al. | Mar 2000 | A |
6075626 | Mizutani et al. | Jun 2000 | A |
6078427 | Fontaine et al. | Jun 2000 | A |
6115152 | Popovich et al. | Sep 2000 | A |
6127066 | Ueda et al. | Oct 2000 | A |
6137630 | Tsou et al. | Oct 2000 | A |
6156243 | Kosuga et al. | Dec 2000 | A |
6169613 | Amitai et al. | Jan 2001 | B1 |
6176837 | Foxlin | Jan 2001 | B1 |
6195206 | Yona et al. | Feb 2001 | B1 |
6222675 | Mall et al. | Apr 2001 | B1 |
6222971 | Veligdan et al. | Apr 2001 | B1 |
6249386 | Yona et al. | Jun 2001 | B1 |
6259423 | Tokito et al. | Jul 2001 | B1 |
6259559 | Kobayashi et al. | Jul 2001 | B1 |
6285813 | Schultz et al. | Sep 2001 | B1 |
6317083 | Johnson et al. | Nov 2001 | B1 |
6317227 | Mizutani et al. | Nov 2001 | B1 |
6317528 | Gadkaree et al. | Nov 2001 | B1 |
6321069 | Piirainen | Nov 2001 | B1 |
6327089 | Hosaki et al. | Dec 2001 | B1 |
6333819 | Svedenkrans | Dec 2001 | B1 |
6340540 | Ueda et al. | Jan 2002 | B1 |
6351333 | Araki et al. | Feb 2002 | B2 |
6356172 | Koivisto et al. | Mar 2002 | B1 |
6359730 | Tervonen | Mar 2002 | B2 |
6359737 | Stringfellow | Mar 2002 | B1 |
6366378 | Tervonen et al. | Apr 2002 | B1 |
6392812 | Howard | May 2002 | B1 |
6409687 | Foxlin | Jun 2002 | B1 |
6470132 | Nousiainen et al. | Oct 2002 | B1 |
6486997 | Bruzzone et al. | Nov 2002 | B1 |
6504518 | Kuwayama et al. | Jan 2003 | B1 |
6522795 | Jordan et al. | Feb 2003 | B1 |
6524771 | Maeda et al. | Feb 2003 | B2 |
6545778 | Ono et al. | Apr 2003 | B2 |
6550949 | Bauer et al. | Apr 2003 | B1 |
6557413 | Nieminen et al. | May 2003 | B2 |
6560019 | Nakai | May 2003 | B2 |
6563648 | Gleckman et al. | May 2003 | B2 |
6580529 | Amitai et al. | Jun 2003 | B1 |
6583873 | Goncharov et al. | Jun 2003 | B1 |
6587619 | Kinoshita | Jul 2003 | B1 |
6598987 | Parikka | Jul 2003 | B1 |
6611253 | Cohen | Aug 2003 | B1 |
6624943 | Nakai et al. | Sep 2003 | B2 |
6646810 | Harter, Jr. et al. | Nov 2003 | B2 |
6661578 | Hedrick | Dec 2003 | B2 |
6674578 | Sugiyama et al. | Jan 2004 | B2 |
6680720 | Lee et al. | Jan 2004 | B1 |
6686815 | Mirshekarl-Syahkal et al. | Feb 2004 | B1 |
6690516 | Aritake et al. | Feb 2004 | B2 |
6721096 | Bruzzone et al. | Apr 2004 | B2 |
6741189 | Gibbons et al. | May 2004 | B1 |
6744478 | Asakura et al. | Jun 2004 | B1 |
6748342 | Dickhaus | Jun 2004 | B1 |
6750941 | Satoh et al. | Jun 2004 | B2 |
6750995 | Dickson | Jun 2004 | B2 |
6757105 | Niv et al. | Jun 2004 | B2 |
6771403 | Endo et al. | Aug 2004 | B1 |
6776339 | Piikivi | Aug 2004 | B2 |
6781701 | Sweetser et al. | Aug 2004 | B1 |
6805490 | Levola | Oct 2004 | B2 |
6825987 | Repetto et al. | Nov 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6833955 | Niv | Dec 2004 | B2 |
6836369 | Fujikawa et al. | Dec 2004 | B2 |
6844212 | Bond et al. | Jan 2005 | B2 |
6844980 | He et al. | Jan 2005 | B2 |
6847274 | Salmela et al. | Jan 2005 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6853491 | Ruhle et al. | Feb 2005 | B1 |
6864861 | Schehrer et al. | Mar 2005 | B2 |
6864927 | Cathey | Mar 2005 | B1 |
6885483 | Takada | Apr 2005 | B2 |
6903872 | Schrader | Jun 2005 | B2 |
6909345 | Salmela et al. | Jun 2005 | B1 |
6917375 | Akada et al. | Jul 2005 | B2 |
6922267 | Endo et al. | Jul 2005 | B2 |
6926429 | Barlow et al. | Aug 2005 | B2 |
6940361 | Jokio et al. | Sep 2005 | B1 |
6950173 | Sutherland et al. | Sep 2005 | B1 |
6950227 | Schrader | Sep 2005 | B2 |
6951393 | Koide | Oct 2005 | B2 |
6952312 | Weber et al. | Oct 2005 | B2 |
6958662 | Salmela et al. | Oct 2005 | B1 |
6987908 | Bond et al. | Jan 2006 | B2 |
7003075 | Miyake et al. | Feb 2006 | B2 |
7003187 | Frick et al. | Feb 2006 | B2 |
7018744 | Otaki et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7026892 | Kajiya | Apr 2006 | B2 |
7027671 | Huck et al. | Apr 2006 | B2 |
7034748 | Kajiya | Apr 2006 | B2 |
7053735 | Salmela et al. | May 2006 | B2 |
7058434 | Wang et al. | Jun 2006 | B2 |
7095562 | Peng et al. | Aug 2006 | B1 |
7101048 | Travis | Sep 2006 | B2 |
7110184 | Yona et al. | Sep 2006 | B1 |
7123418 | Weber et al. | Oct 2006 | B2 |
7126418 | Hunton et al. | Oct 2006 | B2 |
7126583 | Breed | Oct 2006 | B1 |
7132200 | Ueda et al. | Nov 2006 | B1 |
7149385 | Parikka et al. | Dec 2006 | B2 |
7151246 | Fein et al. | Dec 2006 | B2 |
7158095 | Jenson et al. | Jan 2007 | B2 |
7181105 | Teramura et al. | Feb 2007 | B2 |
7181108 | Levola | Feb 2007 | B2 |
7184615 | Levola | Feb 2007 | B2 |
7190849 | Katase | Mar 2007 | B2 |
7199934 | Yamasaki | Apr 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7205964 | Yokoyama et al. | Apr 2007 | B1 |
7206107 | Levola | Apr 2007 | B2 |
7230767 | Walck et al. | Jun 2007 | B2 |
7242527 | Spitzer et al. | Jul 2007 | B2 |
7248128 | Mattila et al. | Jul 2007 | B2 |
7259906 | Islam | Aug 2007 | B1 |
7268946 | Wang | Sep 2007 | B2 |
7285903 | Cull et al. | Oct 2007 | B2 |
7286272 | Mukawa | Oct 2007 | B2 |
7289069 | Ranta | Oct 2007 | B2 |
7299983 | Piikivi | Nov 2007 | B2 |
7313291 | Okhotnikov et al. | Dec 2007 | B2 |
7319573 | Nishiyama | Jan 2008 | B2 |
7320534 | Sugikawa et al. | Jan 2008 | B2 |
7323275 | Otaki et al. | Jan 2008 | B2 |
7336271 | Ozeki et al. | Feb 2008 | B2 |
7339737 | Urey et al. | Mar 2008 | B2 |
7339742 | Amitai et al. | Mar 2008 | B2 |
7375870 | Schorpp | May 2008 | B2 |
7376307 | Singh et al. | May 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7394865 | Borran et al. | Jul 2008 | B2 |
7395181 | Foxlin | Jul 2008 | B2 |
7397606 | Peng et al. | Jul 2008 | B1 |
7401920 | Kranz et al. | Jul 2008 | B1 |
7404644 | Evans et al. | Jul 2008 | B2 |
7410286 | Travis | Aug 2008 | B2 |
7411637 | Weiss | Aug 2008 | B2 |
7415173 | Kassamakov et al. | Aug 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7433116 | Islam | Oct 2008 | B1 |
7436568 | Kuykendall, Jr. | Oct 2008 | B1 |
7454103 | Parriaux | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7466994 | Pihlaja et al. | Dec 2008 | B2 |
7479354 | Ueda et al. | Jan 2009 | B2 |
7480215 | Mäkelä et al. | Jan 2009 | B2 |
7482996 | Larson et al. | Jan 2009 | B2 |
7483604 | Levola | Jan 2009 | B2 |
7492512 | Niv et al. | Feb 2009 | B2 |
7496293 | Shamir et al. | Feb 2009 | B2 |
7500104 | Goland | Mar 2009 | B2 |
7528385 | Volodin et al. | May 2009 | B2 |
7545429 | Travis | Jun 2009 | B2 |
7550234 | Otaki et al. | Jun 2009 | B2 |
7567372 | Schorpp | Jul 2009 | B2 |
7570429 | Maliah et al. | Aug 2009 | B2 |
7572555 | Takizawa et al. | Aug 2009 | B2 |
7573640 | Nivon et al. | Aug 2009 | B2 |
7576916 | Amitai | Aug 2009 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7579119 | Ueda et al. | Aug 2009 | B2 |
7587110 | Singh et al. | Sep 2009 | B2 |
7588863 | Takizawa et al. | Sep 2009 | B2 |
7589900 | Powell | Sep 2009 | B1 |
7589901 | DeJong et al. | Sep 2009 | B2 |
7592988 | Katase | Sep 2009 | B2 |
7593575 | Houle et al. | Sep 2009 | B2 |
7597447 | Larson et al. | Oct 2009 | B2 |
7599012 | Nakamura et al. | Oct 2009 | B2 |
7600893 | Laino et al. | Oct 2009 | B2 |
7602552 | Blumenfeld | Oct 2009 | B1 |
7616270 | Hirabayashi et al. | Nov 2009 | B2 |
7618750 | Ueda et al. | Nov 2009 | B2 |
7629086 | Otaki et al. | Dec 2009 | B2 |
7639911 | Lee et al. | Dec 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7656585 | Powell et al. | Feb 2010 | B1 |
7660047 | Travis et al. | Feb 2010 | B1 |
7672055 | Amitai | Mar 2010 | B2 |
7710654 | Ashkenazi et al. | May 2010 | B2 |
7724441 | Amitai | May 2010 | B2 |
7724442 | Amitai | May 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7733572 | Brown et al. | Jun 2010 | B1 |
7747113 | Mukawa et al. | Jun 2010 | B2 |
7751122 | Amitai | Jul 2010 | B2 |
7764413 | Levola | Jul 2010 | B2 |
7777819 | Simmonds | Aug 2010 | B2 |
7778305 | Parriaux et al. | Aug 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7847235 | Krupkin et al. | Dec 2010 | B2 |
7864427 | Korenaga et al. | Jan 2011 | B2 |
7865080 | Hecker et al. | Jan 2011 | B2 |
7872804 | Moon et al. | Jan 2011 | B2 |
7884985 | Amitai et al. | Feb 2011 | B2 |
7887186 | Watanabe | Feb 2011 | B2 |
7903921 | Östergard | Mar 2011 | B2 |
7907342 | Simmonds et al. | Mar 2011 | B2 |
7920787 | Gentner et al. | Apr 2011 | B2 |
7944428 | Travis | May 2011 | B2 |
7969644 | Tilleman et al. | Jun 2011 | B2 |
7970246 | Travis et al. | Jun 2011 | B2 |
7976208 | Travis | Jul 2011 | B2 |
7999982 | Endo et al. | Aug 2011 | B2 |
8000491 | Brodkin et al. | Aug 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8016475 | Travis | Sep 2011 | B2 |
8022942 | Bathiche et al. | Sep 2011 | B2 |
RE42992 | David | Dec 2011 | E |
8079713 | Ashkenazi | Dec 2011 | B2 |
8082222 | Rangarajan et al. | Dec 2011 | B2 |
8086030 | Gordon et al. | Dec 2011 | B2 |
8089568 | Brown et al. | Jan 2012 | B1 |
8107023 | Simmonds et al. | Jan 2012 | B2 |
8107780 | Simmonds | Jan 2012 | B2 |
8132948 | Owen et al. | Mar 2012 | B2 |
8132976 | Odell et al. | Mar 2012 | B2 |
8136690 | Fang et al. | Mar 2012 | B2 |
8137981 | Andrew et al. | Mar 2012 | B2 |
8149086 | Klein et al. | Apr 2012 | B2 |
8152315 | Travis et al. | Apr 2012 | B2 |
8155489 | Saarikko et al. | Apr 2012 | B2 |
8159752 | Wertheim et al. | Apr 2012 | B2 |
8160409 | Large | Apr 2012 | B2 |
8160411 | Levola et al. | Apr 2012 | B2 |
8186874 | Sinbar et al. | May 2012 | B2 |
8188925 | DeJean | May 2012 | B2 |
8189263 | Wang et al. | May 2012 | B1 |
8189973 | Travis et al. | May 2012 | B2 |
8199803 | Hauske et al. | Jun 2012 | B2 |
8213065 | Mukawa | Jul 2012 | B2 |
8233204 | Robbins et al. | Jul 2012 | B1 |
8253914 | Kajiya et al. | Aug 2012 | B2 |
8254031 | Levola | Aug 2012 | B2 |
8295710 | Marcus | Oct 2012 | B2 |
8301031 | Gentner et al. | Oct 2012 | B2 |
8305577 | Kivioja et al. | Nov 2012 | B2 |
8306423 | Gottwald et al. | Nov 2012 | B2 |
8314819 | Kimmel et al. | Nov 2012 | B2 |
8321810 | Heintze | Nov 2012 | B2 |
8335040 | Mukawa et al. | Dec 2012 | B2 |
8351744 | Travis et al. | Jan 2013 | B2 |
8354806 | Travis et al. | Jan 2013 | B2 |
8355610 | Simmonds | Jan 2013 | B2 |
8369019 | Baker et al. | Feb 2013 | B2 |
8384694 | Powell et al. | Feb 2013 | B2 |
8398242 | Yamamoto et al. | Mar 2013 | B2 |
8403490 | Sugiyama et al. | Mar 2013 | B2 |
8422840 | Large | Apr 2013 | B2 |
8427439 | Larsen et al. | Apr 2013 | B2 |
8432363 | Saarikko et al. | Apr 2013 | B2 |
8432372 | Butler et al. | Apr 2013 | B2 |
8447365 | Imanuel | May 2013 | B1 |
8472119 | Kelly | Jun 2013 | B1 |
8472120 | Border et al. | Jun 2013 | B2 |
8477261 | Travis et al. | Jul 2013 | B2 |
8491121 | Tilleman et al. | Jul 2013 | B2 |
8491136 | Travis et al. | Jul 2013 | B2 |
8493366 | Bathiche et al. | Jul 2013 | B2 |
8493662 | Noui | Jul 2013 | B2 |
8508848 | Saarikko | Aug 2013 | B2 |
8547638 | Levola | Oct 2013 | B2 |
8578038 | Kaikuranta et al. | Nov 2013 | B2 |
8581831 | Travis | Nov 2013 | B2 |
8582206 | Travis | Nov 2013 | B2 |
8593734 | Laakkonen | Nov 2013 | B2 |
8611014 | Valera et al. | Dec 2013 | B2 |
8619062 | Powell et al. | Dec 2013 | B2 |
8633786 | Ermolov et al. | Jan 2014 | B2 |
8634139 | Brown et al. | Jan 2014 | B1 |
8639072 | Popovich et al. | Jan 2014 | B2 |
8643691 | Rosenfeld et al. | Feb 2014 | B2 |
8649099 | Schultz et al. | Feb 2014 | B2 |
8654420 | Simmonds | Feb 2014 | B2 |
8659826 | Brown et al. | Feb 2014 | B1 |
8670029 | McEldowney | Mar 2014 | B2 |
8693087 | Nowatzyk et al. | Apr 2014 | B2 |
8736802 | Kajiya et al. | May 2014 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8749886 | Gupta | Jun 2014 | B2 |
8749890 | Wood et al. | Jun 2014 | B1 |
8767294 | Chen et al. | Jul 2014 | B2 |
8810600 | Bohn et al. | Aug 2014 | B2 |
8814691 | Haddick et al. | Aug 2014 | B2 |
8830584 | Saarikko et al. | Sep 2014 | B2 |
8830588 | Brown et al. | Sep 2014 | B1 |
8903207 | Brown et al. | Dec 2014 | B1 |
8913324 | Schrader | Dec 2014 | B2 |
8937772 | Burns et al. | Jan 2015 | B1 |
8938141 | Magnusson | Jan 2015 | B2 |
8964298 | Haddick et al. | Feb 2015 | B2 |
9097890 | Miller et al. | Aug 2015 | B2 |
9244280 | Tiana et al. | Jan 2016 | B1 |
9341846 | Popovich et al. | May 2016 | B2 |
9366864 | Brown et al. | Jun 2016 | B1 |
9456744 | Popovich et al. | Oct 2016 | B2 |
9523852 | Brown et al. | Dec 2016 | B1 |
9632226 | Waldern et al. | Apr 2017 | B2 |
9933684 | Brown et al. | Apr 2018 | B2 |
20010036012 | Nakai et al. | Nov 2001 | A1 |
20020012064 | Yamaguchi | Jan 2002 | A1 |
20020021461 | Ono et al. | Feb 2002 | A1 |
20020127497 | Brown et al. | Sep 2002 | A1 |
20020131175 | Yagi et al. | Sep 2002 | A1 |
20030030912 | Gleckman et al. | Feb 2003 | A1 |
20030039422 | Nisley et al. | Feb 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030149346 | Arnone et al. | Aug 2003 | A1 |
20030228019 | Eichler et al. | Dec 2003 | A1 |
20040047938 | Kosuga et al. | Mar 2004 | A1 |
20040075830 | Miyake et al. | Apr 2004 | A1 |
20040089842 | Sutherland et al. | May 2004 | A1 |
20040130797 | Travis | Jul 2004 | A1 |
20040188617 | Devitt et al. | Sep 2004 | A1 |
20040208446 | Bond et al. | Oct 2004 | A1 |
20040208466 | Mossberg et al. | Oct 2004 | A1 |
20050135747 | Greiner et al. | Jun 2005 | A1 |
20050136260 | Garcia | Jun 2005 | A1 |
20050259302 | Metz et al. | Nov 2005 | A9 |
20050269481 | David et al. | Dec 2005 | A1 |
20060093012 | Singh et al. | May 2006 | A1 |
20060093793 | Miyakawa et al. | May 2006 | A1 |
20060114564 | Sutherland et al. | Jun 2006 | A1 |
20060119916 | Sutherland et al. | Jun 2006 | A1 |
20060132914 | Weiss et al. | Jun 2006 | A1 |
20060215244 | Yosha et al. | Sep 2006 | A1 |
20060215976 | Singh et al. | Sep 2006 | A1 |
20060221448 | Nivon et al. | Oct 2006 | A1 |
20060228073 | Mukawa et al. | Oct 2006 | A1 |
20060279662 | Kapellner et al. | Dec 2006 | A1 |
20060291021 | Mukawa | Dec 2006 | A1 |
20070019152 | Caputo et al. | Jan 2007 | A1 |
20070019297 | Stewart et al. | Jan 2007 | A1 |
20070041684 | Popovich et al. | Feb 2007 | A1 |
20070045596 | King et al. | Mar 2007 | A1 |
20070052929 | Allman et al. | Mar 2007 | A1 |
20070089625 | Grinberg et al. | Apr 2007 | A1 |
20070133920 | Lee et al. | Jun 2007 | A1 |
20070133983 | Traff | Jun 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20070211164 | Olsen et al. | Sep 2007 | A1 |
20080043334 | Itzkovitch et al. | Feb 2008 | A1 |
20080106775 | Amitai et al. | May 2008 | A1 |
20080136923 | Inbar et al. | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080193085 | Singh et al. | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20080309586 | Vitale | Dec 2008 | A1 |
20090010135 | Ushiro et al. | Jan 2009 | A1 |
20090017424 | Yoeli et al. | Jan 2009 | A1 |
20090019222 | Verma et al. | Jan 2009 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090067774 | Magnusson | Mar 2009 | A1 |
20090097122 | Niv | Apr 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090121301 | Chang | May 2009 | A1 |
20090122413 | Hoffman et al. | May 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090128902 | Niv et al. | May 2009 | A1 |
20090128911 | Itzkovitch et al. | May 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20090213208 | Glatt | Aug 2009 | A1 |
20090237804 | Amitai et al. | Sep 2009 | A1 |
20090303599 | Levola | Dec 2009 | A1 |
20090316246 | Asai et al. | Dec 2009 | A1 |
20100039796 | Mukawa | Feb 2010 | A1 |
20100060551 | Sugiyama et al. | Mar 2010 | A1 |
20100060990 | Wertheim et al. | Mar 2010 | A1 |
20100079865 | Saarikko et al. | Apr 2010 | A1 |
20100092124 | Magnusson et al. | Apr 2010 | A1 |
20100096562 | Klunder et al. | Apr 2010 | A1 |
20100103078 | Mukawa et al. | Apr 2010 | A1 |
20100136319 | Imai et al. | Jun 2010 | A1 |
20100141555 | Rorberg et al. | Jun 2010 | A1 |
20100165465 | Levola | Jul 2010 | A1 |
20100171680 | Lapidot et al. | Jul 2010 | A1 |
20100177388 | Cohen et al. | Jul 2010 | A1 |
20100214659 | Levola | Aug 2010 | A1 |
20100231693 | Levola | Sep 2010 | A1 |
20100231705 | Yahav et al. | Sep 2010 | A1 |
20100232003 | Baldy et al. | Sep 2010 | A1 |
20100246003 | Simmonds et al. | Sep 2010 | A1 |
20100246004 | Simmonds | Sep 2010 | A1 |
20100246993 | Rieger et al. | Sep 2010 | A1 |
20100265117 | Weiss | Oct 2010 | A1 |
20100277803 | Pockett et al. | Nov 2010 | A1 |
20100284085 | Laakkonen | Nov 2010 | A1 |
20100284180 | Popovich et al. | Nov 2010 | A1 |
20100296163 | Saarikko | Nov 2010 | A1 |
20100315719 | Saarikko et al. | Dec 2010 | A1 |
20100321781 | Levola et al. | Dec 2010 | A1 |
20110002143 | Saarikko et al. | Jan 2011 | A1 |
20110013423 | Selbrede et al. | Jan 2011 | A1 |
20110019250 | Aiki et al. | Jan 2011 | A1 |
20110019874 | Järvenpää et al. | Jan 2011 | A1 |
20110026128 | Baker et al. | Feb 2011 | A1 |
20110026774 | Flohr et al. | Feb 2011 | A1 |
20110038024 | Wang et al. | Feb 2011 | A1 |
20110050548 | Blumenfeld et al. | Mar 2011 | A1 |
20110096401 | Levola | Apr 2011 | A1 |
20110157707 | Tilleman et al. | Jun 2011 | A1 |
20110164221 | Tilleman et al. | Jul 2011 | A1 |
20110232211 | Farahi | Sep 2011 | A1 |
20110235179 | Simmonds | Sep 2011 | A1 |
20110235365 | McCollum et al. | Sep 2011 | A1 |
20110238399 | Ophir et al. | Sep 2011 | A1 |
20110242349 | Izuha et al. | Oct 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20110242670 | Simmonds | Oct 2011 | A1 |
20110299075 | Meade et al. | Dec 2011 | A1 |
20110310356 | Vallius | Dec 2011 | A1 |
20120007979 | Schneider et al. | Jan 2012 | A1 |
20120033306 | Valera et al. | Feb 2012 | A1 |
20120044572 | Simmonds et al. | Feb 2012 | A1 |
20120044573 | Simmonds et al. | Feb 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120099203 | Boubis et al. | Apr 2012 | A1 |
20120105634 | Meidan et al. | May 2012 | A1 |
20120120493 | Simmonds et al. | May 2012 | A1 |
20120127577 | Desserouer | May 2012 | A1 |
20120224062 | Lacoste et al. | Sep 2012 | A1 |
20120235884 | Miller et al. | Sep 2012 | A1 |
20120235900 | Border et al. | Sep 2012 | A1 |
20120242661 | Takagi et al. | Sep 2012 | A1 |
20120280956 | Yamamoto et al. | Nov 2012 | A1 |
20120294037 | Holman et al. | Nov 2012 | A1 |
20120300311 | Simmonds et al. | Nov 2012 | A1 |
20120320460 | Levola | Dec 2012 | A1 |
20130069850 | Mukawa et al. | Mar 2013 | A1 |
20130093893 | Schofield et al. | Apr 2013 | A1 |
20130101253 | Popovich et al. | Apr 2013 | A1 |
20130138275 | Nauman et al. | May 2013 | A1 |
20130141934 | Hartung | Jun 2013 | A1 |
20130141937 | Katsuta et al. | Jun 2013 | A1 |
20130170031 | Bohn et al. | Jul 2013 | A1 |
20130184904 | Gadzinski | Jul 2013 | A1 |
20130200710 | Robbins | Aug 2013 | A1 |
20130249895 | Westerinen et al. | Sep 2013 | A1 |
20130250207 | Bohn | Sep 2013 | A1 |
20130257848 | Westerinen et al. | Oct 2013 | A1 |
20130258701 | Westerinen et al. | Oct 2013 | A1 |
20130314793 | Robbins et al. | Nov 2013 | A1 |
20130322810 | Robbins | Dec 2013 | A1 |
20130328948 | Kunkel et al. | Dec 2013 | A1 |
20140043689 | Mason | Feb 2014 | A1 |
20140104665 | Popovich et al. | Apr 2014 | A1 |
20140104685 | Bohn et al. | Apr 2014 | A1 |
20140140653 | Brown et al. | May 2014 | A1 |
20140140654 | Brown et al. | May 2014 | A1 |
20140146394 | Tout et al. | May 2014 | A1 |
20140152778 | Ihlenburg et al. | Jun 2014 | A1 |
20140168055 | Smith | Jun 2014 | A1 |
20140168260 | O'Brien et al. | Jun 2014 | A1 |
20140168735 | Yuan et al. | Jun 2014 | A1 |
20140172296 | Shtukater | Jun 2014 | A1 |
20140176528 | Robbins | Jun 2014 | A1 |
20140204455 | Popovich et al. | Jul 2014 | A1 |
20140211322 | Bohn et al. | Jul 2014 | A1 |
20140218801 | Simmonds et al. | Aug 2014 | A1 |
20140300966 | Travers et al. | Oct 2014 | A1 |
20150010265 | Popovich et al. | Jan 2015 | A1 |
20150167868 | Boncha | Jun 2015 | A1 |
20150177688 | Popovich et al. | Jun 2015 | A1 |
20150277375 | Large et al. | Oct 2015 | A1 |
20150289762 | Popovich et al. | Oct 2015 | A1 |
20150316768 | Simmonds | Nov 2015 | A1 |
20160178901 | Ishikawa | Jun 2016 | A1 |
20160209657 | Popovich et al. | Jul 2016 | A1 |
20160238772 | Waldern et al. | Aug 2016 | A1 |
20160274356 | Mason | Sep 2016 | A1 |
20160291328 | Popovich et al. | Oct 2016 | A1 |
20170031160 | Popovich et al. | Feb 2017 | A1 |
20180052277 | Schowengerdt et al. | Feb 2018 | A1 |
20180284440 | Popovich et al. | Oct 2018 | A1 |
20180373115 | Brown et al. | Dec 2018 | A1 |
20190121027 | Popovich et al. | Apr 2019 | A1 |
20190212699 | Waldern et al. | Jul 2019 | A1 |
20190319426 | Lu et al. | Oct 2019 | A1 |
20200026074 | Waldern et al. | Jan 2020 | A1 |
20200241304 | Popovich et al. | Jul 2020 | A1 |
20220308352 | Stanley | Sep 2022 | A1 |
Number | Date | Country | |
---|---|---|---|
20220308352 A1 | Sep 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17027562 | Sep 2020 | US |
Child | 17718147 | US | |
Parent | 14497280 | Sep 2014 | US |
Child | 17027562 | US |