Systems for correcting distortions in a medical image and methods of use thereof

Information

  • Patent Grant
  • 9286673
  • Patent Number
    9,286,673
  • Date Filed
    Thursday, October 3, 2013
    10 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
The invention relates generally systems for correcting distortion in a medical image and methods of use thereof. Methods and systems for displaying a medical image of a lumen of a biological structure, generally comprise obtaining image data of a lumen of a biological structure from an imaging device, correcting the image data for translational distortions, in which correcting is accomplished without reference to another data set, and displaying a corrected image.
Description
FIELD OF THE INVENTION

The invention generally relates to systems for correcting distortion in a medical image and methods of use thereof.


BACKGROUND

Medical imaging is commonly used to evaluate various biological structures of a patient. A common type of imaging system is a rotational medical imaging system (e.g., optical coherence tomography (OCT) or intravascular ultrasound (IVUS)). Those types of systems generally acquire images of an inside of an anatomical structure having a lumen, for example a blood vessel or other similar vasculature.


Typically, such rotational systems include an imaging body that rotates in a complete circle while being pulled back (or pushed forward) along a pre-defined longitudinal length. The motion of the device as it acquires image data results in a series of two dimensional image frames, each frame providing a 360° internal view of the vessel at a different location as the device moves through the vessel. A series of those frames can be combined to construct a three-dimensional image of an inside of the vessel. Three dimensional images allow for easier and more fluid viewing of vasculature anatomy and afford a clinician an ability to rapidly identify changes in a lumen border of the vasculature that are attributable to a disease state (e.g., an embolism or extent of arteriosclerosis).


Although rotational imaging systems have the potential for providing detailed images of the inside of vessels, the displayed image often includes various distortions arising during movement of the device through the lumen. For example, distortions can include images in a series appearing to be misaligned, improper display of vessel features due to the imaging device not precisely following the contours of the vessel, or distortion arising from the helical motion of the device as it is moved through the vessel. These distortions result in considerable intra- and inter-observer variability that may lead to conflicting or incorrect patient diagnosis.


SUMMARY

The invention provides methods and systems for correcting translational distortion in a medical image of a lumen of a biological structure. Various image distortions can occur during image acquisition, and generally result from the device not being centered in the lumen, the device not precisely following the contours of the lumen, and/or the helical motion of the device as it translates through the vessel. Systems and methods of the invention are able to correct those and other distortions. Accordingly, systems and methods of the invention improve frame to frame image consistency, image accuracy and multi-dimensional image construction. Improvements in the constructed image allow for more efficient clinical diagnoses and decreased user-specific variability in image construction and incorrect diagnosis.


The invention is applicable to data from any image gathering devices that acquire and process one, two, or three dimensional data sets from which three dimensional image compositions are derived. Exemplary devices include tomographic devices such as optical coherence tomography (OCT) devices, photo acoustic imaging devices and ultrasound devices, including, but not limited to, intravascular ultrasound spectroscopy (IVUS), and other catheter-based tomographic imaging technologies.


Through the use of the image processing techniques described herein, the vascular structure border for all imaging frames, or any subsets thereof, in a recorded data set are corrected for image distortions and provided to the user. Corrected lumen border images are provided to the user in one, two and three dimensional image displays by the methods and systems provided. The resulting corrected lumen border may be displayed as the final tomographic image, the image longitudinal display (ILD), splayed image and three dimensional image. User interface graphics provide input for other indicators on a monitor interface, such as a color bar indicating the size of the lumen.


In certain aspects, the invention provides a method for displaying a medical image of a lumen of a biological structure, for example a vessel lumen. In particular, a lumen is displayed having had distortions due to translational motion of the imaging device removed from the image. Removing distortions may be accomplished by correcting for translational distortions in the image data, and providing a one, two or three dimensional construction of the corrected image. Corrections may be accomplished without reference to any other data set.


In other aspects, the invention embodies a system for displaying a medical image of a vessel. The system may use a monitor to display an image of the lumen of the biological structure, a central processing unit (CPU), and storage coupled to the CPU for storing instructions. The system may be configured so that the CPU obtains image data of a lumen of a biological structure from an imaging device and corrects the image data for translational distortions and displays a corrected image.


The image data to be corrected may include any one of or combinations of splayed image data, image longitudinal display (ILD) data, three dimensional image data and tomographic image data. For example, tomographic image data that is acquired by an optical coherence tomography (OCT) catheter and corresponding OCT image data is particularly suited for the methods and systems described. Exemplary translational distortions to be corrected include frame alignment distortion, device angular distortion, and helical offset distortion.


In one example, compensating for frame alignment distortion includes identifying a reference position in each image frame and aligning each frame using the reference position. Another example of compensating for frame alignment includes aligning the reference position in all frames and calculating a new reference position from the aligned frames. A specific reference position can be the center of the lumen, but any reference position in the image frame can be used. Steps for aligning to the center of a lumen may include fitting a geometric shape to a lumen border, calculating a reference position within the area circumscribed by the geometric shape and aligning the image center to the reference position. The geometric shape to be fit to the lumen border includes, but is not limited to, a centroid, a circle or an ellipse. For greater consistency among frames for alignment purposes, the reference position can be smoothed across all image frames.


Another example includes compensating for angular distortion attributable to the imaging device. This example is generally accomplished as a multistep process. First, the method involves aligning a reference position of one frame with a catheter center position of a neighboring frame. Then, a longitudinal distance is determined between neighboring frames and an angle between two vectors is evaluated. The first vector is defined by a distance between a reference position in a first frame and a catheter center position in a neighboring frame, and the second vector may be defined by a distance between a reference position in a first frame and a reference position in said neighboring frame. Next, the neighboring frame is rotated about an axis through a value corresponding to the angle between the two vectors. The axis may be located in a plane defined by the neighboring frame, intersecting the catheter center position of the neighboring frame, and oriented perpendicular to a plane in which the first vector and second vector are located.


In another example of correcting for translational distortions, the correction compensates for helical distortion. Here, the image data first is evaluated for the longitudinal displacement for a 360° set of image data points. Second, the data points are interpolated to lie in a plane perpendicular to the direction of longitudinal displacement. The interpolation is applied proportionately to the angular coordinate and corresponding longitudinal coordinate position for each data point in the 360° scan such that the final correction places all data points for a 360° scan in the same plane.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates a partial cross-sectional view of an imaging catheter suitable for use with a rotational imaging system.



FIG. 2 illustrates a helical scanning pattern for a rotational imaging system.



FIG. 3 illustrates the geometry of a data stream acquired using the helical scanning pattern of FIG. 2



FIG. 4 illustrates an example of one source of distortion in OCT image data that is due to the change in position of a rotational imaging catheter relative to a vessel lumen wall as it is longitudinally displaced within the length of a vessel.



FIG. 5 shows a single frame image of a vessel lumen appearing off-center because the catheter occupies the center of the image.



FIG. 6 shows an ILD composed of a series of image frames where the catheter position varies relative to the lumen border. Each of the 200 individual lumen border images shifts out of alignment from other image frame lumen borders through the series, while the catheter remains in alignment.



FIG. 7 shows an example of a splayed image two-dimensional map of a vessel pullback.



FIG. 8 shows a three dimensional surface display of vessel lumen border centered relative to an imaging catheter. The three-dimensional display is constructed from uncorrected two-dimensional images.



FIG. 9A shows the optional procedural steps described herein for correcting geometric distortions in an image data set.



FIG. 9B shows the sub-steps in block 980 of FIG. 9A for correcting angular distortions of the imaging device.



FIG. 10 shows a corrected tomographic image of vessel having the image center shifted from the catheter center to a vessel lumen centroid.



FIG. 11 shows a corrected Image Longitudinal Display in which the image display is corrected by transforming the image slices from catheter-centered to being aligned at a vessel lumen center.



FIG. 12 shows a corrected splayed image map having the image center shifted from catheter center to a calculated vessel lumen center.



FIG. 13 shows a corrected three-dimensional surface display of vessel lumen border. The final image is constructed from two-dimensional images corrected for centering and alignment to a calculated lumen center.



FIG. 14 shows a notional example of an imaging catheter which is imaging at an angle with respect to the lumen wall.



FIG. 15 shows a notional example of the same vessel depicted in FIG. 14, but with a catheter imaging device remaining uniform in placement within the vessel lumen walls.



FIGS. 16 A and B provide graphical examples of two neighboring image frames having different catheter centers “C” and lumen centers “CG” for which an angular corrective alignment will be applied.



FIG. 17 provides an example of the angular and longitudinal coordinates (Z) for each frame, and the dashed lines represent the position of the new interpolated frames.





DETAILED DESCRIPTION OF THE INVENTION

Medical imaging is a general technology class in which sectional and multidimensional anatomic images are constructed from acquired data. The data can be collected from a variety of acquisition systems including, but not limited to, magnetic resonance imaging (MRI), radiography methods including fluoroscopy, x-ray tomography, computed axial tomography and computed tomography, optical coherence tomography (OCT), nuclear medicine techniques such as scintigraphy, positron emission tomography and single photon emission computed tomography, photo acoustic imaging ultrasound devices and methods including, but not limited to, intravascular ultrasound spectroscopy (IVUS), ultrasound modulated optical tomography, ultrasound transmission tomography, other tomographic techniques such as electrical capacitance, magnetic induction, functional MRI, optical projection and thermo-acoustic imaging, combinations thereof and combinations with other medical techniques that produce two- and three-dimensional images. At least all of these techniques are contemplated for use with the systems and methods of the present invention.


Medical imaging systems well suited for the present invention include rotational medical imaging systems. Exemplary rotational systems may use optical coherence tomography (OCT), or may include other types of imaging technology including, but not limited to, intravascular ultrasound spectroscopy (IVUS), RAMAN spectroscopy, alternative interferometric techniques, therapeutic or diagnostic delivery devices, pressure wires, and the like. In the case of an optical imaging system, light sources can be laser light, tunable laser light, multiple tunable laser lights with corresponding detectors, broadband light source, super-luminescent diode, tunable source, and the like.


Rotational system images (e.g. OCT and IVUS images) are acquired in the polar domain with coordinates of radius and angle (r, theta) but need to be converted to Cartesian coordinates (x, y) for display or rendering on a computer monitor. Typically, rotational systems consist of an imaging core which rotates and pulls back (or pushes forward) while recording an image video loop. This motion results in a three dimensional dataset of two dimensional image frames, where each frame provides a 360° slice of the vessel at different longitudinal locations. Although the exemplifications described herein are drawn to the invention as applied to OCT, the systems and methods are applicable to any imaging system, including at least those mentioned herein.


A particular medical imaging technique contemplated herein is optical coherence tomography (OCT). OCT systems and methods are generally described in Milner et al., U.S. Patent Application Publication No. 2011/0152771, Condit et al., U.S. Patent Application Publication No. 2010/0220334, Castella et al., U.S. Patent Application Publication No. 2009/0043191, Milner et al., U.S. Patent Application Publication No. 2008/0291463, and Kemp, N., U.S. Patent Application Publication No. 2008/0180683, the content of each of which is incorporated by reference in its entirety. OCT is a medical imaging methodology using a specially designed catheter with a miniaturized near infrared light-emitting probe attached to the distal end of the catheter. As an optical signal acquisition and processing method, it captures micrometer-resolution, three-dimensional images from within optical scattering media (e.g., biological tissue). OCT allows the application of interferometric technology to see from inside, for example, blood vessels, visualizing the endothelium (inner wall) of blood vessels in living individuals. OCT systems may be a spectrometer based OCT system or a Fourier Domain OCT, as disclosed in U.S. Patent Application No. 2009/0046295, herein incorporated by reference.


Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in ophthalmology where it can be used to obtain detailed images from within the retina. Recently it has also begun to be used in interventional cardiology to help diagnose coronary artery disease.


Various lumen of biological structures may be imaged with aforementioned imaging technologies in addition to blood vessels, including, but not limited, to vasculature of the lymphatic and nervous systems, various structures of the gastrointestinal tract including lumen of the small intestine, large intestine, stomach, esophagus, colon, pancreatic duct, bile duct, hepatic duct, lumen of the reproductive tract including the vas deferens, vagina, uterus and fallopian tubes, structures of the urinary tract including urinary collecting ducts, renal tubules, ureter, and bladder, and structures of the head and neck and pulmonary system including sinuses, parotid, trachea, bronchi, and lungs.


The arteries of the heart are particularly useful to examine with imaging devices such as OCT. OCT imaging of the coronary arteries can determine the amount of plaque built up at any particular point in the coronary artery. The accumulation of plaque within the artery wall over decades is the setup for vulnerable plaque which, in turn, leads to heart attack and stenosis (narrowing) of the artery. OCT is useful in determining both plaque volume within the wall of the artery and/or the degree of stenosis of the artery lumen. It can be especially useful in situations in which angiographic imaging is considered unreliable, such as for the lumen of ostial lesions or where angiographic images do not visualize lumen segments adequately. Example regions include those with multiple overlapping arterial segments. It is also used to assess the effects of treatments of stenosis such as with hydraulic angioplasty expansion of the artery, with or without stents, and the results of medical therapy over time.



FIG. 1 illustrates an exemplary catheter 100 for rotational imaging inside a lumen of any anatomical or mechanical conduit, vessel, or tube. The exemplary catheter 100 is suitable for in vivo imaging, particularly for imaging of an anatomical lumen or passageway, such as a cardiovascular, neurovascular, gastrointestinal, genitor-urinary tract, or other anatomical luminal structure. For example, FIG. 1 illustrates a vascular lumen 102 within a vessel 104 including a plaque buildup 106. The exemplary catheter 100 may include a rapid access lumen 108 suitable for guiding the catheter 100 over a guide-wire 110.


The exemplary catheter 100 is disposed over an exemplary rotational imaging modality 112 that rotates about a longitudinal axis 114 thereof as indicated by arrow 116. The exemplary rotational imaging modality 112 may comprise, in one embodiment, an OCT system. OCT is an optical interferometric technique for imaging subsurface tissue structure with micrometer-scale resolution. In another embodiment, the exemplary rotational imaging modality 112 may comprise an ultrasound imaging modality, such as an IVUS system, either alone or in combination with an OCT imaging system. An exemplary OCT system may include a tunable laser or broadband light source or multiple tunable laser sources with corresponding detectors, and may be a spectrometer based OCT system or a Fourier Domain OCT system, as disclosed in U.S. Patent Application Publication No. 2009/0046295, herein incorporated by reference. The exemplary catheter 100 may be integrated with IVUS by an OCT-IVUS system for concurrent imaging, as described in, for example, Castella et al. U.S. Patent Application Publication No. 2009/0043191 and Dick et al. U.S. Patent Application Publication No. 2009/0018393, both incorporated by reference in their entirety herein.


Referring to FIGS. 1 and 2, the rotational imaging modality 112 may be longitudinally translated during rotation, as indicated by line 118 in FIG. 1. Thus, the rotational imaging modality 112 acquires data along a path 120 that includes a combination of rotation and/or longitudinal translation of the rotational imaging modality 112. FIG. 2 illustrates an exemplary path 120, which is a helical scanning pattern 120, resulting from such a combination. Because FIG. 2 is a cross-sectional view, the helical scanning pattern 120 is illustrated as would be traced on a rear half of a luminal surface 122 of the scanned vessel 104. The helical scanning pattern 120 facilitates scanning a three-dimensional space within and beneath the luminal surface 122 longitudinally as desired, but also introduces a data artifact commonly known as a seam line artifact during reconstruction of the data into a display frame, as will be further discussed herein below.


Referring to FIGS. 1 and 2, the longitudinal axis 114 is illustrated as linear for simplicity and clarity. However, the longitudinal axis 114 is not necessarily linear as illustrated. The longitudinal axis 114 may be curvilinear having a curvature following a tortuosity of the vessel 104. It will be understood that vessel 104 need not be linear, but may in fact have a curvilinear longitudinal axis 104 following the vessel 104 along a tortuous geometry, and that the present invention equally applicable to an imaging modality 112 longitudinally translated along the vessel 104 having a longitudinally linear and/or tortuous geometry.


Referring to FIG. 3, a portion of the three dimensional space within and beneath the luminal surface 122 scanned within a single rotational period is projected into a planar (two-dimensional) format. In this format, line 126 represents a circumferential axis plotted horizontally. The geometry of a data stream acquired utilizing the above-described helical scan pattern 120 relative to the geometry of the luminal surface 122 may be represented by the parallelogram 124 disposed over the horizontal line 126 in FIG. 3. Starting at a fixed data acquisition angle 200 (hereinafter a “FDAA 200”) conveniently denoted as zero degrees (0°) in FIG. 3, the rotational imaging modality 112 acquires data following a rotational path indicated by line 128 (parallel to the line 126) in FIG. 3. However, because the rotational imaging modality 112 may also be translated longitudinally, as indicated by line 130 in FIG. 3, the two-dimensional representation of the scanned three-dimensional space within and beneath the luminal surface 122 comprises the shape of the parallelogram 124. This means that at the end of one full rotation of the rotational imaging modality 112 as denoted in FIG. 3 by the FDAA 200 having a value of 360°, the rotational imaging modality 112 has translated longitudinally by a distance Z.


To perform the analysis of a clinical condition, images acquired with the rotational imaging devices are reconstructed in various display formats. However, the displayed images often have artifacts generated during the acquisition or processing of the acquired data. Artifacts arise from, for example, shadows in the lumen border from stents and guide wires used in the catheter portion of the imaging device. Other artifacts arise from any of a variety of dynamic motional effects including, for example, cardiac motion of the patient or external movement of the catheter. Because all scans are relative to the catheter imaging core, the catheter always appears at the center of a tomographic image. Thus, still other artifacts include lumen image distortions and frame to frame offset or misalignment of the lumen due to the catheter not being centrally located during translational motion, and is typically ascribed to the inherent tortuosity of the biological structure being imaged. Still other distortions arise from a discontinuity of the imaging data for a two-dimensional image slice as a result of the helical offset of the scan imaged. Such an offset arises from the combined rotational and translational motions of the imaging device, in which during a full 360° rotational scan the imaging core has translated longitudinally be a distance Z.


Distortions also arise because the imaging device position relative to the vessel wall varies due to, for example, the size and ductility of the catheter. Since all images are relative to the catheter imaging core, the catheter always appears in the center of the image. This results in successive images appearing as though the vessel is shifting position around the catheter imaging core. Such artifacts may be minor and tolerated as a nuisance depending on the vessel architecture. In other circumstances, however, the artifacts are so significant such that additional time consuming analysis or independent analytical techniques are needed to corroborate and conclude a clinical diagnosis. The inclusion of image artifacts and distortions in the image data can result in intra- and inter-observer variability and may lead to incorrect diagnosis.


Several image distortions commonly obtained from rotational imaging devices are described in FIGS. 4-8. Catheters generally have low ductility relative to a lumen and cannot conform exactly to the tortuous shape of, for example, a blood vessel in which it is imaging. FIG. 4 illustrates an example of one source of distortion in OCT image data that is due to the change in position of a rotational imaging catheter relative to a vessel lumen wall as it is longitudinally displaced within the length of a vessel. Because all images are relative to the catheter imaging core, the catheter always appears in the center of the image and successive images appear as though the vessel is shifting position around the catheter imaging core. This effect will cause the vessel at times to appear off-centered in the tomographic, splayed, two and three-dimensional images and Image Longitudinal Displays (ILD). FIG. 5 shows a single frame image of a vessel lumen appearing off-center because the catheter occupies the center of the image. FIG. 6 shows an ILD composed of a series of image frames where the catheter position varies relative to the lumen border. Each of the 200 individual lumen border images shifts out of alignment from other image frame lumen borders through the series, while the catheter remains in alignment. Thus, in either the tomographic or ILD image frames obtained during catheter pullback, the vessel may appear to move around the catheter.


Another example of an image display type that often has a distorted presentation is a “splayed image.” FIG. 7 shows an example of a splayed image two-dimensional map of a vessel pullback. The x-axis is rotational angle of the lumen border relative to the imaging device, and the y-axis is frame number. A splayed image is generated by integrating all pixel intensities beyond the vessel lumen border across all A-scans for all frames. Since a splayed image is constructed by integrating along A-scans, the coordinates of the resulting signal are presented relative to the catheter center, where the x-axis corresponds to the angle relative to the center of the image. The stent struts, due to their shadowing effect, are clearly seen in the image data. However, the angular spacing of the stent struts varies as caused by the eccentricity of the catheter during the pullback. The systems and methods described herein can be used to correct distortions and create a more accurate depiction of the stent distribution.


A three dimensional model of vessel wall is usually constructed through the acquisition of a series of two dimensional images, and therefore also may display distortions based on those present in the two-dimensional images. FIG. 8 shows a three-dimensional surface reconstruction of a vessel wall with distortional artifacts because it is constructed from uncorrected two-dimensional images. As in FIGS. 4-7, the position of the vessel wall is determined relative positioned to the catheter, and therefore the surface of the three-dimensional model is slightly distorted by the change in position of the catheter along the pullback.


The invention herein provides methods and systems for correcting medical images of biological structures with distortions and displaying a corrected image. Removal of distortions can be accomplished by correcting for angular and translational distortions and providing a one, two or three dimensional construction of the corrected image. Corrections are accomplished without reference to any other data set.


Without limiting the scope of the invention, descriptions of the embodiments use terms such as alignment, frame alignment, image alignment, referencing (with respect to frame(s) and image(s)), and image registration. These terms are used within a general framework of aligning one or more images using, as referencing points, one or more common features among the images. Common features among images may include, but are not limited to, a Cartesian coordinate, a polar coordinate, a pixel location, a data point location, or an image feature, for example a lumen border. In certain embodiments at least one anatomical feature in the image is used as a reference point. In other embodiments at least one non-anatomical feature is used as a reference point.


Since all depth scan data is acquired relative to an imaging device's imaging core, a common image feature is desirable to create a series of images that are aligned to portray a more accurate depiction of an anatomical structure. When data is acquired by the imaging core, the core always appears at the center of the image and any longitudinal change in the position of the imaging core has the result of the vessel appearing to move around the core. Therefore, various embodiments are contemplated that establish a common feature of a medical image or image data file to be used for alignment.



FIG. 9 shows the procedural steps described herein for correcting geometric distortions in an image data set. The skilled artisan will appreciate that not all steps presented in are required, and that some steps are optional depending on the presence and severity of any corrections to be made.


In FIG. 9 (a), block 900 is for an initial step of fitting a geometric structure to the vessel lumen. Block 920 is for calculating a new reference point based on the geometric structure fitted to the vessel lumen. Block 940 is for an alignment step to align all the images with a calculated or predetermined reference point. Block 960 is for the correction of angular distortions present in the data set. Block 980 is for the removal of distortions resulting from helical sampling patterns. After these steps are completed, selected features of the image data set are used for alignment and construction of a two- and/or three-dimensional image, as described herein.


In FIG. 9 (b) are the sub-steps to correcting angular distortions as presented in FIG. 9 (a), block 960. Block 961 is for the identification of a lumen border and a lumen center. Block 962 is for the identification of a reference position in a first image and a non-reference position in a second position. Block 963 is for the computation of a longitudinal translation vector between the first and second images. Block 964 is for the computation of an angle between a first vector corresponding to the reference position in the first image and the catheter position in the second image, and a second vector corresponding to the reference position in the first image and the lumen center in the second image. Block 965 if for computing a plane from the vectors in 964 and its angular relation to the image plane of the first image. Block 966 is for determining the axis of rotation for the second image. Block 967 is for rotating the second image into its corrected position.


Referring now to FIG. 9 (a) and general methods to correct for a medical image having geometric distortions, in one embodiment of the invention an anatomical structure of the image can be identified, for example a border of a vessel lumen, and at least one feature of the anatomical structure can be used to align the images.


Referring to FIG. 9 (a), block 900, in an exemplary embodiment a lumen border of a vessel is identified (for example either manually or automatically with the use of a computer). Generally, a vessel lumen is approximated using geometric shapes including, but not limited to, polygons, circles and ellipses. Many commercially available programs and algorithms, as well as freeware programs, can be used for a fitting and an identification of a center of a circle, ellipse or polygon that has been fitted to a vessel lumen image (see, for example, MATLAB, GNU Octave, FlexPro, Scilab, FreeMat, Rlab, Sysquake, LabVIEW, COMSOL Script, O-Matrix, jLab, and the like). These programs use mathematical principles well known to those in the art. See Johnson, Roger A., Advanced Euclidean Geometry, Dover Publishing (2007) (orig. pub. 1929) and modern variations on computational geometry in, for example, Burr et al. in Proceedings of the 17th Canadian Conference on Computational Geometry (2005) pgs 260-263. Alternatively, manual fitting of polygons, circles and/or ellipses to the image data sets can be performed with subsequent manual or automated determination of a new center.


Referring to FIG. 9 (a), block 920, a new reference point is determined using a geometric structure fitted to a vessel lumen. In certain methods for defining a center of a vessel lumen, a geometric centroid of a lumen can be calculated in each image slice by fitting a polygon of n-sides to the inside of the lumen, and using a calculated centroid as a new reference point. A centroid can be considered a geometric center, or barycenter, of a plane figure or two-dimensional shape that is the intersection of all straight lines that divide the two-dimensional shape into two parts having equal moment about the line, i.e. it can be considered the “average” (arithmetic mean) of all points of the two-dimensional shape. Therefore, a polygon fitted to a lumen border can have a calculated centroid for use in image alignment. In certain exemplifications, a polygon also can be fitted to the lumen through automated methods known to those having skill in the art, or fitted manually.


The centroid can be calculated using methods well known to those in the art, including, for example, Equation 1:









EQUATION











1











C
=



x
1

+

x
2

+

+

x
k


k





(
1
)








where the centroid is of a finite set of k points x1, x2, . . . , xk in Rn; by integration. Another formula for calculating a centroid is shown in Equation 2:









EQUATION





2











C
=





xg


(
x
)





x







g


(
x
)





x








(
2
)








where g is the characteristic function of the subset, which is 1 inside X and 0 outside it. Another formula for the centroid can be:









EQUATION





3












C
k

=






zS
k



(
z
)





z








S
k



(
z
)





z








(
3
)








where Ck is the kth coordinate of C, and Sk(z) is the measure of the intersection of X with the hyperplane defined by the equation xk=z. Again, the denominator is simply the measure of X. For a planar figure, in particular, the barycenter coordinates can be calculated using:










EQUATION





4

a

,
b












C
x

=




x







S
y



(
x
)





x



A





(

4

a

)







C
y

=




y







S
x



(
y
)





y



A





(

4

b

)








The centroid of a non-self-intersecting closed polygon defined by n vertices (x0, y0), (x1, y1), . . . , (xn-1, yn-1) is the point (Cx, Cy), can be determined using:









EQUATION





5


(

a


-


c

)













C
x

=


1

6

A







i
=
0


n
-
1









(


x
i

+

x

i
+
1



)



(



x
i







y

i
+
1



-


x

i
+
1








y
i



)








(

5

a

)







C
y

=


1

6

A







i
=
0


n
-
1









(


y
i

+

y

i
+
1



)



(



x
i



y

i
+
1



-


x

i
+
1




y
i



)








(

5

b

)








and, where A is the polygon's signed area,









A
=


1
2






i
=
0


n
-
1








(



x
i



y

i
+
1



-


x

i
+
1




y
i



)







(

5

c

)







In these formulas, the vertices are assumed to be numbered in order of their occurrence along the polygon's perimeter, and the vertex (xn, yn) is assumed to be the same as (x0, y0). Note that if the points are numbered in clockwise order, an area A, computed as above, can have a negative sign but the centroid coordinates will be correct. Exemplary discussions of methods for evaluation of a centroid can be found in, for example, Johnson, Roger A., Advanced Euclidean Geometry, Dover Publishing (2007) (orig. pub. 1929), incorporated by reference in its entirety. It is to be noted that Equations 1-6 embody non-limiting examples of evaluating a centroid fit to a vessel lumen border, but any equation appropriate to achieve the desired centroid calculation can be incorporated into the methods and systems presented herein.


In another method for defining a center of a vessel lumen, a circle or ellipse is fitted to, for example, polar coordinates, Cartesian coordinates, pixel locations or data point locations of a vessel lumen. Fitting can be accomplished manually by a clinician. Alternatively, fitting can be accomplished by using a selected set of anatomical data points present across all images. In this method, even if, for example, vessel lumen diameter increases or decreases, the anatomical landmarks can remain consistent so that any new reference centers of an ellipse or circle fitted to those landmarks also can remain anatomically correct throughout the full set of images.


In an alternative embodiment, a largest diameter circle or ellipse can be fit to a vessel lumen without having overlapped significantly with the vessel lumen border. For example, a pre-determined number and/or location of allowable overlaps or interferences between the data points corresponding to a circumference of a fitted shape (e.g., circle or ellipse) and any data points corresponding to a lumen border can be used in the positioning of the circle or ellipse. In certain embodiments there may be no allowable interferences. In other embodiments, there may be no allowable interferences between a selected set of lumen border edge points. In still other embodiments, a range of allowable overlaps can be predetermined. These methods and systems also contemplate being applied to polar coordinates or Cartesian coordinates and the like, or data point locations within the image file, for example pixel locations.


Fitting a circle or ellipse to data points as described herein can be through application of computational algorithms searching for a best fit to data points or edge points in the OCT image data. Difference algorithms, least squares, polynomial fitting, geometric and algebraic fitting methods and similar techniques are commonly found in commercially available computational mathematics and statistical packages, for example curve fitting and regression analysis packages, that also affords the user to automate an analysis of a set of data (see, for example, MATLab and GNU Scientific Library software packages). The same program software can identify the center of the circle or ellipse using well known mathematical principles. See Johnson, Roger A., Advanced Euclidean Geometry, Dover Publishing (2007) (orig. pub. 1929) and modern variations on computational geometry in, for example, Burr et al. in Proceedings of the 17th Canadian Conference on Computational Geometry (2005) pgs 260-263. Alternatively, manual fitting and center point calculation of circles and/or ellipses to the data sets can be applied.


Referring to FIG. 9 (a), block 940, image registration techniques are also contemplated for use with the systems and methods of the invention described herein. Image registration techniques are well known to those having skill in the art. Image registration generally can be considered as a process of overlaying or aligning two or more images by geometrically aligning a reference image to a non-reference image. In a series of image alignments, a non-reference image can become a reference image once alignment to a prior reference image is determined. Alternatively, a full set of images can be transformed into alignment, sub-sets of an image data set can be aligned, or a full set of aligned images can be further processed to refine the final image registration. Referencing image data sets can be accomplished at least by multi-view analysis, multi-temporal analysis, multimodal analysis and scene-to-model registration, as such terms and techniques are adopted and applied throughout the art. Regardless which technique is utilized, the majority of the registration techniques consist of detection of features within an image, matching those features between and among images, parameterizing mapping functions to be applied to image transformations, and image resampling and transformation. Exemplary discussions of image registration techniques and their application can be found in, for example, B. Zitova and J. Flusser, Image and Vision Computing (2003) pgs 977-1000, M. Petrou (2004), J. B. Antoine Maintz and M. A. Viergever Technical Report UU-CS-1998-22, University Utrecht (1998), M. V. Wyawahare et al. Int. Journal of Signal Processing, Image Processing and Pattern Recognition (2009) 2(3):11-28, C. B. Fookes and M. Bennamoun, Technical Report ISBN: 1 86435 569 7, RCCVA, QUT, Brisbane, Australia, (May 2002) and A. Goshtasby (2005) 2-D and 3-D Image Registration for Medical, Remote Sensing and Industrial Applications (Wiley, Hoboken, N.J.; 2005), each incorporated by reference in their entirety herein.


In particular examples, image registration techniques known to those in the art are used to align at least one parameter among all image frames. Therefore, it is contemplated that anatomical features such as a newly defined center based on a lumen border of an image and any corresponding data points, and/or non-anatomical features of an image such as, for example, a center of an image frame can be used for image registration or alignment. In certain examples, image registration utilizing cross correlation techniques and its variants such as phase correlation are implemented. Many techniques are known to those in the art, as described by B. Zitova and J. Flusser Image and Vision Computing (2003) pgs 977-1000, J. B. A. Maintz and M. A. Viergever, Technical Report UU-CS-1998-22, University Utrecht (1998), and L. G. Brown, ACM Computing Surveys (1992) Vol. 24; pgs 325-376, A. Goshtasby (2005) 2-D and 3-D Image Registration for Medical, Remote Sensing and Industrial Applications (Wiley, Hoboken, N. J.; 2005), and others, each incorporated by reference in its entirety herein. Therefore, selected features of the images can be aligned, shifting the image of the OTC imaging device away from the center of the image.


Interpolative mathematical techniques may be applied to image data sets that need to be transformed, as such transformations may result in, for example, non-integral numerical data sets. Certain interpolation schemes are desirable for a particular class of interpolants, and thus may be chosen accordingly. Interpolative schemes can be confined to regression analysis or simple curve fitting. In other examples, interpolation of trigonometric functions may include, when better suited to the data, using trigonometric polynomials. Other interpolation schemes contemplated herein include, but are not limited to, linear interpolation, polynomial interpolation and spline interpolation. Still other interpolative forms can use rational functions or wavelets. Multivariate interpolation is the interpolation of functions of more than one variable, and in other examples multivariate interpolation is completed with include bi-linear interpolation and bi-cubic interpolation in two dimensions, and tri-linear interpolation in three dimensions. These interpolation techniques and others known to those in the art, and as such are contemplated for use in the methods and systems described herein.


Referring to FIG. 9 (a), block 940, it is further contemplated that the center of the imaging device catheter can be transformed to a vessel lumen center, thereby achieving frame to frame alignment of the vessel lumen. Transformation of the imaging device catheter to a center coordinate can be achieved, for example, through computational modeling by attaching a spring constant of appropriate tension from a calculated lumen center to a catheter center. The spring stiffness may be a predetermined or nominal parameter attributable to the catheter based on design and materials of manufacture.


After a new image reference point is defined, the various one-, two- and three-dimensional sets of images may be transformed with respect to the new reference point to account for translational shift of the image structures, for example a vessel lumen, of each frame, i.e., the new reference point become the center of alignment across all image frames. FIG. 10 shows a tomographic image display as provided in FIG. 5, but re-centered with respect to the calculated centroid of the lumen border. As shown in FIG. 10 the catheter is shifted off center as it is no longer the center of the image display. As a clinician scrolls through a series of images, the vessel lumen will appear to be in the same relative position, but the imaging device will appear to move.



FIG. 11 shows an image longitudinal display (ILD) of FIG. 6, but re-centered with respect to the calculated centroid of the lumen border. For each of the 200 A-scans in the ILD, the A-scan was transformed to a new reference point that has been calculated in each scan allowing for alignment of the image scans to a center of a vessel lumen border. Alternatively, each A-scan can be interpolated to calculate a new, common reference center followed by alignment of A-scans to an interpolated reference point.



FIG. 12 shows a splayed image as provided in FIG. 7, but with individual A-scans re-centered based on a calculated lumen centroid. For each A-scan, a new angle theta was recalculated relative to the newly defined reference point. To align the frames, the data corresponding to the splayed image can be sampled or interpolated to a regularly spaced angle. From the image shown in FIG. 7 compared to FIG. 12, the stent struts have been repositioned and appear more regularly spaced.



FIG. 13 shows a three dimensional representation of a vessel lumen outer edge as provided in FIG. 8, with the image frames repositioned by interpolation of transformation according to a new reference point corresponding to a calculated vessel lumen center. The distortions appearing in the image shown in FIG. 8 that are due to a changing positioning eccentricity of the imaging device are minimized with the transformation.


In approaches where a new reference point is determined as described herein, a reference point may have significant translational displacement among the proximal (e.g., neighboring) and distal image frames. Such translational displacement can be the result of, but not limited to, the tortuous path of a vessel lumen being imaged, presence of vessel side branches, severe stenosis or other dynamic motions including the cardiac motion of the patient or movement of the catheter. Therefore, in a certain embodiment of the present invention, a new calculated reference point in each image of a set of image frames as determined from the methods described herein can be additionally mathematically refined using data point smoothing with respect to the aligned reference points. This processing step can increase the overall consistency of image alignment. Smoothing algorithms can incorporate the methods as described herein, and additionally may include linear regression, polynomial fitting and the like, with variations on the fitting an alignment of images to utilize various filters including, but not limited to, median filters, Gaussian filters, Gaussian low-pass filters and the like. In certain embodiments, the width of the filter may be changed to accommodate a preferred weight for the data to adjust for, for example, different imaging systems and/or configurations, or the particular characteristic of the data points being aligned. Thus, it is contemplated that the size and shape of a filter used in conjunction with the alignment algorithm may vary and is not limited to the examples provided in the present invention.


Referring to FIG. 9 (a), block 960, the methods and systems described herein contemplate corrections to image distortions arising from catheters and/or imaging devices oriented at angles relative to a vessel lumen border. Ideally, a catheter will remain centered within a vessel, approximately equi-distant from the vessel lumen walls and following any tortuous paths assumed by the vessel. In such a case, the angle of incidence of an OCT radiofrequency beam will be consistent and uniform from image frame to image frame. However, observation of imaging catheters shows that they are flexible, bending considerably within the vessel lumen. FIG. 14 shows a notional example of an imaging catheter which is imaging at an angle with respect to the lumen wall. In an uncorrected reconstructed image, vessel wall features appear at different longitudinal distances than the true anatomical distribution, and size and location of anatomic features can be significantly distorted. FIG. 15 shows a notional example of the same vessel depicted in FIG. 14, but with a catheter imaging device remaining uniform in placement within the vessel lumen walls. In the latter case, the images acquired from the imaging device will match the anatomical features in location and size.


The technique for correcting catheter angle distortion presented herein can recover some or all of a gross anatomical geometry of a vessel in addition to the localized geometry of a vessel relative to an imaging catheter. A full and true gross anatomical image with respect to, for example, a patient's heart, body or other frame of reference can be enhanced by inclusion of geometric data from co-registered angiographic, extracorporeal ultrasound, or other sensing means that records the position of an imaging catheter and/or vessel with respect to a frame of reference. An additional embodiment uses the distortion correction procedure described herein as a co-registration technique with an independent metric for refining the position and angular placement of the imaging device. Co-registration techniques are exemplified in, for example, Huennekens et al. US Patent Application Publication No. 2006/0241465, Huennekens et al US Patent Application Publication No. 2007/0038061, each of which is incorporated herein in their entirety.


To correct for an angular distortion of the catheter 960 and imaging device, an angle of the catheter at any position within the vessel lumen can be estimated and corrected directly from the dataset being acquired and without reference to an independent evaluation for the orientation of the device. Steps for corrections for angular distortions 960 are illustrated in FIG. 9 (b), in which there can be seven steps to correct for a catheter angle distortion.


Referring to FIG. 9 (b), block 961, the first step to correct for a catheter angle distortion involves identification of a lumen border and evaluation of a center of a lumen. These processes can be performed using techniques as described herein, such as calculating a lumen centroid, fitting a circle or ellipse to a set of lumen border data points and evaluating the positional center of the ellipse or circle, or determining a maximum sized circle or ellipse than can be fit into a lumen border and evaluating its positional center.


Referring to FIG. 9 (b), block 962, the second step to correct for a catheter angle distortion involves identifying the reference and non-reference positions in a Cartesian coordinate system between two images. The reference positions, for example, can be a center of a lumen (see step 1) as a reference position and a center of an imaging catheter or imaging device from a neighboring image 2 being a non-reference position. FIGS. 16 (a) and (b) provide notional examples of two neighboring image frames having respective catheter centers “C” and lumen centers “CG.” Next, transform image 2 into alignment with image 1 so that the position of the catheter center of image 2 is aligned to the lumen center of image 1 and preserving the rotational and angular orientation of the frames. The reference point of frame 1 now serves as a point of origin for evaluating angular relationships between image 1 and image 2.


Referring to FIG. 9 (b), block 963, the third step to correct for catheter angle distortion involves computing a longitudinal translation between successive frames. A vector Z can be defined as a coordinate and distance for longitudinal translation of the imaging device between catheter center “C” of image 1 and lumen center “CG” image 2. Image device longitudinal pullback rate is known from predetermined parameters derived by a clinician or one having skill in the art, from which the magnitude of the Z vector is easily derived.


Referring to FIG. 9 (b), block 964, the fourth step to correct for catheter angle distortion involves computing an angle “theta” between two vectors from image 1 to image 2. One vector can be defined as CG2 and is determined using the Cartesian coordinate of the reference point of image 1 and the lumen center of image 2. A second vector can be defined as C2 and is determined using the Cartesian coordinate of the reference point of image 1 and the catheter center of image 2. The angle between the vectors CG2 and C2 can be calculated using, for example, vector dot product formulation provided in Equation 6 and as is well known to those in the art:

θ=cos−1{(CG2·C2)/(|CG2∥C2)}  EQUATION 6


Referring to FIG. 9 (b), block 965, the fifth step to correct for catheter angle distortion involves computing a plane between the two vectors of step 4 and relative angular offset of the plane with an image 1 plane. A plane “CG2C2” can be defined by vectors CG2 and C2, and the angle of the plane determined in relation to the plane defined by image 1. Because the vectors CG2 and C2 are defined by three Cartesian coordinate positions (the position of the lumen center in image 1, the position of the lumen center in image 2, and the position of the catheter center in image 2), a CG2C2 plane can be determined in relation to the plane defined by image 1, and standard geometric formulation may be used to evaluate the relative angle θ between the CG2C2 and image 1 plane.


Referring to FIG. 9 (b), block 966, the sixth step to correct for catheter angle distortion involves determining an axis of rotation with which to reorient image 2 to image 1. The axis of rotation can be determined using standard geometric formulation known to those in the art (see references incorporated herein) wherein a calculated axis will possess the following criteria: orientation is perpendicular to plane CG2C2, lays within the plane of image 2, and intersects the original catheter position of image 2.


Referring to FIG. 9 (b), block 967, the seventh to correct for catheter angle distortion involves rotating the non-referenced image 2 into a proper orientation with reference image 1. The XYZ Cartesian coordinates of image 2 can, in their entirety, by uniformly rotated around the axis determined in step 6. An angular distance of rotation to be applied is the angle calculated in step 4.


Each of the steps illustrated in FIG. 9 (b) are repeated for all sequential image frames, wherein the non-referenced image from a preceding pair of aligned image frames becomes a reference image. The process is repeated for the entire set of images in an imaging run. In another embodiment, the final transformed data set may further incorporate interpolating a spacing parameter among the frames using interpolative techniques as described herein. Other exemplary reference positions that can be used for the calculations in each of the steps illustrated in FIG. 9 (b), in addition to a center of a lumen vessel calculated using techniques described herein (e.g. center of a circle or ellipse or a centroid), can be any position not directly limited to a position defined by the vascular anatomy. For example, any data point position common to all images in a data set can be used. In particular, any data point or position defined with image registration techniques are applicable to the methods described herein.


Referring to FIG. 9(a), block 980, the methods and systems contemplate removing distortion from a helical sampling patterns arising from an imaging device. Another correction to imaging data embodied by the methods and systems of the present invention compensates for a helical sampling pattern of the imaging apparatus (in this case OCT). A typical OCT catheter rotates as it moves longitudinally and collects data, resulting in a helical image acquisition pattern of the vessel lumen border. For each 360° degree rotation of the imaging core, an image data scan is created. Although each image data scan consists of a lumen border data set acquired at multiple longitudinal positions, a final scan is represented or displayed as a single plane acquired along a longitudinal trajectory. The single image plane displays distortions according to the rate of longitudinal displacement and rotational speed of the imaging device. In order to correct for the distortion due to the helical sampling pattern of the imaging core, interpolation algorithms can be applied to correct the distortion in those data points that lie ahead of and/or behind the final image display. The degree of interpolation applied to a data point can be proportional to an angular coordinate and corresponding longitudinal coordinate for each data point in a 360° image scan. The degree of interpolation applied to distorted XYZ coordinates of each pixel to correct to true XYZ coordinates can easily be computed based on the known pullback (or push-forward) rate of the catheter, after which interpolative transforming techniques (bilinear, bicubic, nearest neighbor, etc.) can be applied. Interpolation can be done with either the polar or scan converted data. FIG. 17 provides an example of the angular and longitudinal coordinates (Z) for each frame, and the dashed lines represent the position of the new interpolated frames.


The foregoing and other features and advantages of the invention are apparent from the following detailed description of exemplary embodiments, read in conjunction with the accompanying drawing. The systems and methods of use described herein may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Accordingly, the systems and methods of use described herein may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. The systems and methods of use described herein can be performed using any type of computing device, such as a computer, that includes a processor or any combination of computing devices where each device performs at least part of the process or method.


Suitable computing devices typically include mass memory and typically include communication between devices. The mass memory illustrates a type of computer-readable media, namely computer storage media. Computer storage media may include volatile, non-volatile, removable and non-removable media implemented in any method or technology for storage information, such as computer readable instructions, data structures, program modules or other data. Examples of storage media include RAM, ROM, EEPROM, flash memory, or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, radiofrequency identification tags or chips, or any other medium which can be used to store the desired information and which can be accessed by a computing device.


Methods of communication between devices or components of a system can include both wired and wireless (e.g., radiofrequency, optical or infrared, optics including fiber-optics and or lens systems) communications methods and such methods provide any other type of computer readable communications media. Such communications media typically embodies computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, data signal, or other transport mechanism and include any information delivery media. The terms “modulated data signal” and “carrier-wave signal” includes a signal that has one or more of its characteristics set or changed in such a manner as to encode information, instructions, data, and the like, in the signal. By way of example, communication media includes wired media and wireless media such as acoustic, radiofrequency, infrared, and other wireless media.


INCORPORATION BY REFERENCE

References and citations to other documents, such as patents, patent applications, patent publications, journals, books, papers, web contents, have been made throughout this disclosure. All such documents are hereby incorporated herein by reference in their entirety for all purposes.


EQUIVALENTS

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. A method for displaying a medical image of a lumen of a biological structure, the method comprising providing at least one computer-readable medium having instructions stored thereon which, when executed by a computing device, cause the computing device to carry out operations comprising: obtaining image data of a lumen of a biological structure from an imaging device;correcting the image data for translational distortions, wherein correcting is accomplished without reference to another data set and wherein correcting comprises compensating for device angular distortion, wherein compensating comprises:aligning a reference position of a first frame with a catheter center position of a neighboring frame;determining a longitudinal distance between neighboring frames;evaluating an angle between two vectors, wherein a first vector is defined by a distance between a reference position in a first frame and a catheter center position in a neighboring frame, and a second vector is defined by a distance between a reference position in a first frame and a reference position in said neighboring frame; androtating the neighboring frame about an axis through a value corresponding to the angle between the said two vectors, wherein said axis is located in a plane defined by the neighboring frame, intersecting the catheter center position of the neighboring frame, and oriented perpendicular to a plane in which said first vector and second vector are located; anddisplaying a corrected image.
  • 2. The method of claim 1, wherein the structure is a vessel.
  • 3. The method of claim 1, wherein the image data is selected from the group consisting of splayed image data, image longitudinal display (ILD) data, three dimensional image data, tomographic image data, and a combination thereof.
  • 4. The method of claim 3, wherein the medical imaging device comprises an optical coherence tomography (OCT) catheter and the image data is OCT image data.
  • 5. The method of claim 1, wherein the translational distortions are selected from the group consisting of frame alignment distortion, device angular distortion, helical offset distortion, and a combination thereof.
  • 6. The method of claim 1, wherein correcting comprises compensating for frame alignment distortions.
  • 7. The method of claim 6, wherein compensating comprises: identifying a reference position in each frame of the image data; andaligning each frame using the reference position.
  • 8. The method of claim 7, further comprising: aligning reference positions in all neighboring frames; and calculating a new reference position from the aligned frames.
  • 9. The method of claim 7, wherein the reference position is a lumen center.
  • 10. The method of claim 7, wherein identifying further comprises: fitting a geometric shape to a lumen border;calculating a reference position within the area circumscribed by the geometric shape; andaligning the image center to the reference position.
  • 11. The method of claim 10, wherein the geometric shape is a centroid, a circle, or an ellipse.
  • 12. The method of claim 10, wherein the reference position is smoothed across all image frames.
  • 13. A method for displaying a medical image of a lumen of a biological structure, the method comprising providing at least one computer-readable medium having instructions stored thereon which, when executed by a computing device, cause the computing device to carry out operations comprising: obtaining image data of a lumen of a biological structure from an imaging device;correcting the image data for translational distortions, wherein correcting is accomplished without reference to another data set and wherein correcting comprises compensating for helical offset distortion, wherein compensating comprises:evaluating the longitudinal displacement for a 360° set of image data points; andinterpolating data points to lie in a plane perpendicular to the direction of longitudinal displacement, wherein said interpolation is proportional to an angular coordinate and corresponding longitudinal coordinate for each data point in a 360° image scan; anddisplaying a corrected image.
  • 14. A system for displaying a medical image of a lumen of a biological structure, the system comprising a monitor to display an image of the lumen of the biological structure, a central processing unit (CPU), and storage coupled to the CPU for storing instructions that configure the CPU to: obtain image data of a lumen of a biological structure from an imaging device;correct the image data for translational distortions, wherein correcting is accomplished without reference to another data set and wherein to correct comprises compensating for device angular distortion, wherein compensating comprises: aligning a reference position of a first frame with a catheter center position of a neighboring frame;determining a longitudinal distance between neighboring frames;evaluating an angle between two vectors, wherein a first vector is defined by a distance between a reference position in a first frame and a catheter center position in a neighboring frame, and a second vector is defined by a distance between a reference position in a first frame and a reference position in said neighboring frame; androtating the neighboring frame about an axis through a value corresponding to the angle between the said two vectors, wherein said axis is located in a plane defined by the neighboring frame, intersecting the catheter center position of the neighboring frame, and oriented perpendicular to a plane in which said first vector and second vector are located; anddisplay a corrected image.
  • 15. The system of claim 14, wherein the structure is a vessel.
  • 16. The system of claim 15, wherein the image data is selected from the group consisting of splayed image data, image longitudinal display (ILD) data, three dimensional image data, tomographic image data, and a combination thereof.
  • 17. The system of claim 16, wherein the medical imaging device comprises an optical coherence tomography (OCT) catheter and the image data is OCT image data.
  • 18. The system of claim 14, wherein the translational distortions are selected from the group consisting of frame alignment distortion, device angular distortion, helical offset distortion, and a combination thereof.
  • 19. The system of claim 14, wherein to correct comprises compensating for frame alignment distortions.
  • 20. The system of claim 19, wherein compensating comprises: identifying a reference position in each frame of the image data; andaligning each frame using the reference point.
  • 21. The system of claim 20, further comprising: aligning reference positions all neighboring frames; andcalculating a new reference position from the aligned frames.
  • 22. The system of claim 20, wherein the reference position is a lumen center.
  • 23. The system of claim 20, wherein identifying further comprises: fitting a geometric shape to a lumen border;calculating a reference position within the area circumscribed by the geometric shape; andaligning the image center to the reference position.
  • 24. The system of claim 23, wherein the geometric shape is a centroid, a circle, or an ellipse.
  • 25. The system of claim 23, wherein the reference position is smoothed across all image frames.
  • 26. A system for displaying a medical image of a lumen of a biological structure, the system comprising a monitor to display an image of the lumen of the biological structure, a central processing unit (CPU), and storage coupled to the CPU for storing instructions that configure the CPU to: obtain image data of a lumen of a biological structure from an imaging device;correct the image data for translational distortions, wherein correcting is accomplished without reference to another data set and wherein to correct comprises compensating for device angular distortion and wherein to correct comprises compensating for helical offset distortion, wherein compensating comprises: evaluating the longitudinal displacement for a 360° set of image data points; andinterpolating data points to lie in a plane perpendicular to the direction of longitudinal displacement, wherein said interpolation is proportional to an angular coordinate and corresponding longitudinal coordinate for each data point in a 360° image scan; anddisplay a corrected image.
RELATED APPLICATION

This invention claims the benefit of and priority to U.S. Provisional No. 61/710,410, filed Oct. 5, 2012, which is incorporated by reference in its entirety.

US Referenced Citations (999)
Number Name Date Kind
3301258 Werner Jan 1967 A
3617880 Cormack et al. Nov 1971 A
3789841 Antoshkiw Feb 1974 A
3841308 Tate Oct 1974 A
4140364 Yamashita et al. Feb 1979 A
4274423 Mizuno et al. Jun 1981 A
4344438 Schultz Aug 1982 A
4398791 Dorsey Aug 1983 A
4432370 Hughes et al. Feb 1984 A
4552554 Gould et al. Nov 1985 A
4577543 Wilson Mar 1986 A
4676980 Segal et al. Jun 1987 A
4682895 Costello Jul 1987 A
4733665 Palmaz Mar 1988 A
4744619 Cameron May 1988 A
4762129 Bonzel Aug 1988 A
4766386 Oliver et al. Aug 1988 A
4771774 Simpson et al. Sep 1988 A
4794931 Yock Jan 1989 A
4800886 Nestor Jan 1989 A
4803639 Steele et al. Feb 1989 A
4816567 Cabilly et al. Mar 1989 A
4819740 Warrington Apr 1989 A
4821731 Martinelli et al. Apr 1989 A
4824435 Giesy et al. Apr 1989 A
4830023 de Toledo et al. May 1989 A
4834093 Littleford et al. May 1989 A
4841977 Griffith et al. Jun 1989 A
4864578 Proffitt et al. Sep 1989 A
4873690 Adams Oct 1989 A
4877314 Kanamori Oct 1989 A
4887606 Yock et al. Dec 1989 A
4917085 Smith Apr 1990 A
4917097 Proudian et al. Apr 1990 A
4928693 Goodin et al. May 1990 A
4932413 Shockey et al. Jun 1990 A
4932419 de Toledo Jun 1990 A
4948229 Soref Aug 1990 A
4951677 Crowley et al. Aug 1990 A
4969742 Falk et al. Nov 1990 A
4987412 Vaitekunas et al. Jan 1991 A
4993412 Murphy-Chutorian Feb 1991 A
4998972 Chin et al. Mar 1991 A
5000185 Yock Mar 1991 A
5024234 Leary et al. Jun 1991 A
5025445 Anderson et al. Jun 1991 A
5032123 Katz et al. Jul 1991 A
5037169 Chun Aug 1991 A
5039193 Snow et al. Aug 1991 A
5040548 Yock Aug 1991 A
5041108 Fox et al. Aug 1991 A
5054492 Scribner et al. Oct 1991 A
5065010 Knute Nov 1991 A
5065769 de Toledo Nov 1991 A
5085221 Ingebrigtsen et al. Feb 1992 A
5095911 Pomeranz Mar 1992 A
5100424 Jang et al. Mar 1992 A
5120308 Hess Jun 1992 A
5125137 Corl et al. Jun 1992 A
5135486 Eberle et al. Aug 1992 A
5135516 Sahatjian et al. Aug 1992 A
5155439 Holmbo et al. Oct 1992 A
5158548 Lau et al. Oct 1992 A
5163445 Christian et al. Nov 1992 A
5167233 Eberle et al. Dec 1992 A
5174295 Christian et al. Dec 1992 A
5176141 Bom et al. Jan 1993 A
5176674 Hofmann Jan 1993 A
5178159 Christian Jan 1993 A
5183048 Eberle Feb 1993 A
5188632 Goldenberg Feb 1993 A
5201316 Pomeranz et al. Apr 1993 A
5202745 Sorin et al. Apr 1993 A
5203779 Muller et al. Apr 1993 A
5220922 Barany Jun 1993 A
5224953 Morgentaler Jul 1993 A
5226421 Frisbie et al. Jul 1993 A
5240003 Lancee et al. Aug 1993 A
5240437 Christian Aug 1993 A
5242460 Klein et al. Sep 1993 A
5243988 Sieben et al. Sep 1993 A
5257974 Cox Nov 1993 A
5266302 Peyman et al. Nov 1993 A
5267954 Nita Dec 1993 A
5301001 Murphy et al. Apr 1994 A
5312425 Evans et al. May 1994 A
5313949 Yock May 1994 A
5313957 Little May 1994 A
5319492 Dorn et al. Jun 1994 A
5321501 Swanson et al. Jun 1994 A
5325198 Hartley et al. Jun 1994 A
5336178 Kaplan et al. Aug 1994 A
5346689 Peyman et al. Sep 1994 A
5348017 Thornton et al. Sep 1994 A
5348481 Ortiz Sep 1994 A
5353798 Sieben Oct 1994 A
5358409 Obara Oct 1994 A
5358478 Thompson et al. Oct 1994 A
5368037 Eberle et al. Nov 1994 A
5373845 Gardineer et al. Dec 1994 A
5373849 Maroney et al. Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5377682 Ueno et al. Jan 1995 A
5383853 Jung et al. Jan 1995 A
5387193 Miraki Feb 1995 A
5396328 Jestel et al. Mar 1995 A
5397355 Marin et al. Mar 1995 A
5405377 Cragg Apr 1995 A
5411016 Kume et al. May 1995 A
5419777 Hofling May 1995 A
5421338 Crowley et al. Jun 1995 A
5423806 Dale et al. Jun 1995 A
5427118 Nita et al. Jun 1995 A
5431673 Summers et al. Jul 1995 A
5436759 Dijaili et al. Jul 1995 A
5439139 Brovelli Aug 1995 A
5443457 Ginn et al. Aug 1995 A
5453575 O'Donnell et al. Sep 1995 A
5456693 Conston et al. Oct 1995 A
5459570 Swanson et al. Oct 1995 A
5480388 Zadini et al. Jan 1996 A
5485845 Verdonk et al. Jan 1996 A
5492125 Kim et al. Feb 1996 A
5496997 Pope Mar 1996 A
5507761 Duer Apr 1996 A
5512044 Duer Apr 1996 A
5514128 Hillsman et al. May 1996 A
5529674 Hedgcoth Jun 1996 A
5541730 Chaney Jul 1996 A
5546717 Penczak et al. Aug 1996 A
5546948 Hamm et al. Aug 1996 A
5565332 Hoogenboom et al. Oct 1996 A
5573520 Schwartz et al. Nov 1996 A
5581638 Givens et al. Dec 1996 A
5586054 Jensen et al. Dec 1996 A
5592939 Martinelli Jan 1997 A
5596079 Smith et al. Jan 1997 A
5598844 Diaz et al. Feb 1997 A
5609606 O'Boyle Mar 1997 A
5630806 Inagaki et al. May 1997 A
5651366 Liang et al. Jul 1997 A
5660180 Malinowski et al. Aug 1997 A
5667499 Welch et al. Sep 1997 A
5667521 Keown Sep 1997 A
5672877 Liebig et al. Sep 1997 A
5674232 Halliburton Oct 1997 A
5693015 Walker et al. Dec 1997 A
5713848 Dubrul et al. Feb 1998 A
5745634 Garrett et al. Apr 1998 A
5771895 Slager Jun 1998 A
5779731 Leavitt Jul 1998 A
5780958 Strugach et al. Jul 1998 A
5798521 Froggatt Aug 1998 A
5800450 Lary et al. Sep 1998 A
5803083 Buck et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817025 Alekseev et al. Oct 1998 A
5820594 Fontirroche et al. Oct 1998 A
5824520 Mulligan-Kehoe Oct 1998 A
5827313 Ream Oct 1998 A
5830222 Makower Nov 1998 A
5848121 Gupta et al. Dec 1998 A
5851464 Davila et al. Dec 1998 A
5857974 Eberle et al. Jan 1999 A
5872829 Wischmann et al. Feb 1999 A
5873835 Hastings et al. Feb 1999 A
5882722 Kydd Mar 1999 A
5912764 Togino Jun 1999 A
5916194 Jacobsen et al. Jun 1999 A
5921931 O'Donnell et al. Jul 1999 A
5925055 Adrian et al. Jul 1999 A
5949929 Hamm Sep 1999 A
5951586 Berg et al. Sep 1999 A
5974521 Akerib Oct 1999 A
5976120 Chow et al. Nov 1999 A
5978391 Das et al. Nov 1999 A
5997523 Jang Dec 1999 A
6021240 Murphy et al. Feb 2000 A
6022319 Willard et al. Feb 2000 A
6031071 Mandeville et al. Feb 2000 A
6036889 Kydd Mar 2000 A
6043883 Leckel et al. Mar 2000 A
6050949 White et al. Apr 2000 A
6059738 Stoltze et al. May 2000 A
6068638 Makower May 2000 A
6074362 Jang et al. Jun 2000 A
6078831 Belef et al. Jun 2000 A
6080109 Baker et al. Jun 2000 A
6091496 Hill Jul 2000 A
6094591 Foltz et al. Jul 2000 A
6095976 Nachtomy et al. Aug 2000 A
6097755 Guenther, Jr. et al. Aug 2000 A
6099471 Torp et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6106476 Corl et al. Aug 2000 A
6120445 Grunwald Sep 2000 A
6123673 Eberle et al. Sep 2000 A
6134003 Tearney et al. Oct 2000 A
6139510 Palermo Oct 2000 A
6141089 Thoma et al. Oct 2000 A
6146328 Chiao et al. Nov 2000 A
6148095 Prause et al. Nov 2000 A
6151433 Dower et al. Nov 2000 A
6152877 Masters Nov 2000 A
6152878 Nachtomy et al. Nov 2000 A
6159225 Makower Dec 2000 A
6165127 Crowley Dec 2000 A
6176842 Tachibana et al. Jan 2001 B1
6179809 Khairkhahan et al. Jan 2001 B1
6186949 Hatfield et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6200268 Vince et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6208415 De Boer et al. Mar 2001 B1
6210332 Chiao et al. Apr 2001 B1
6210339 Kiepen et al. Apr 2001 B1
6212308 Donald Apr 2001 B1
6231518 Grabek et al. May 2001 B1
6245066 Morgan et al. Jun 2001 B1
6249076 Madden et al. Jun 2001 B1
6254543 Grunwald et al. Jul 2001 B1
6256090 Chen et al. Jul 2001 B1
6258052 Milo Jul 2001 B1
6261246 Pantages et al. Jul 2001 B1
6275628 Jones et al. Aug 2001 B1
6283921 Nix et al. Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6295308 Zah Sep 2001 B1
6299622 Snow et al. Oct 2001 B1
6312384 Chiao Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6328696 Fraser Dec 2001 B1
6343168 Murphy et al. Jan 2002 B1
6343178 Burns et al. Jan 2002 B1
6350240 Song et al. Feb 2002 B1
6364841 White et al. Apr 2002 B1
6366722 Murphy et al. Apr 2002 B1
6367984 Stephenson et al. Apr 2002 B1
6373970 Dong et al. Apr 2002 B1
6375615 Flaherty et al. Apr 2002 B1
6375618 Chiao et al. Apr 2002 B1
6375628 Zadno-Azizi et al. Apr 2002 B1
6376830 Froggatt et al. Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6381350 Klingensmith et al. Apr 2002 B1
6387124 Buscemi et al. May 2002 B1
6396976 Little et al. May 2002 B1
6398792 O'Connor Jun 2002 B1
6417948 Chowdhury et al. Jul 2002 B1
6419644 White et al. Jul 2002 B1
6421164 Tearney et al. Jul 2002 B2
6423012 Kato et al. Jul 2002 B1
6426796 Pulliam et al. Jul 2002 B1
6428041 Wohllebe et al. Aug 2002 B1
6428498 Uflacker Aug 2002 B2
6429421 Meller et al. Aug 2002 B1
6440077 Jung et al. Aug 2002 B1
6443903 White et al. Sep 2002 B1
6450964 Webler Sep 2002 B1
6457365 Stephens et al. Oct 2002 B1
6459844 Pan Oct 2002 B1
6468290 Weldon et al. Oct 2002 B1
6475149 Sumanaweera Nov 2002 B1
6480285 Hill Nov 2002 B1
6491631 Chiao et al. Dec 2002 B2
6491636 Chenal et al. Dec 2002 B2
6501551 Tearney et al. Dec 2002 B1
6504286 Porat et al. Jan 2003 B1
6508824 Flaherty et al. Jan 2003 B1
6514237 Maseda Feb 2003 B1
6520269 Geiger et al. Feb 2003 B2
6520677 Iizuka Feb 2003 B2
6535764 Imran et al. Mar 2003 B2
6538778 Leckel et al. Mar 2003 B1
6544217 Gulachenski Apr 2003 B1
6544230 Flaherty et al. Apr 2003 B1
6545760 Froggatt et al. Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6551250 Khalil Apr 2003 B2
6566648 Froggatt May 2003 B1
6570894 Anderson May 2003 B2
6572555 White et al. Jun 2003 B2
6579311 Makower Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6592612 Samson et al. Jul 2003 B1
6594448 Herman et al. Jul 2003 B2
6602241 Makower et al. Aug 2003 B2
6611322 Nakayama et al. Aug 2003 B1
6611720 Hata et al. Aug 2003 B2
6612992 Hossack et al. Sep 2003 B1
6615062 Ryan et al. Sep 2003 B2
6615072 Izatt et al. Sep 2003 B1
6621562 Durston Sep 2003 B2
6631284 Nutt et al. Oct 2003 B2
6638227 Bae Oct 2003 B2
6645152 Jung et al. Nov 2003 B1
6646745 Verma et al. Nov 2003 B2
6655386 Makower et al. Dec 2003 B1
6659957 Vardi et al. Dec 2003 B1
6660024 Flaherty et al. Dec 2003 B1
6663565 Kawagishi et al. Dec 2003 B2
6665456 Dave et al. Dec 2003 B2
6669716 Gilson et al. Dec 2003 B1
6671055 Wavering et al. Dec 2003 B1
6673015 Glover et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6685648 Flaherty et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6689144 Gerberding Feb 2004 B2
6696173 Naundorf et al. Feb 2004 B1
6701044 Arbore et al. Mar 2004 B2
6701176 Halperin et al. Mar 2004 B1
6709444 Makower Mar 2004 B1
6712836 Berg et al. Mar 2004 B1
6714703 Lee et al. Mar 2004 B2
6719717 Johnson et al. Apr 2004 B1
6725073 Motamedi et al. Apr 2004 B1
6726677 Flaherty et al. Apr 2004 B1
6730107 Kelley et al. May 2004 B2
6733474 Kusleika May 2004 B2
6738144 Dogariu May 2004 B1
6740113 Vrba May 2004 B2
6746464 Makower Jun 2004 B1
6780157 Stephens et al. Aug 2004 B2
6795188 Ruck et al. Sep 2004 B2
6795196 Funakawa Sep 2004 B2
6798522 Stolte et al. Sep 2004 B2
6822798 Wu et al. Nov 2004 B2
6830559 Schock Dec 2004 B2
6832024 Gerstenberger et al. Dec 2004 B2
6842639 Winston et al. Jan 2005 B1
6847449 Bashkansky et al. Jan 2005 B2
6855115 Fonseca et al. Feb 2005 B2
6856138 Bohley Feb 2005 B2
6856400 Froggatt Feb 2005 B1
6856472 Herman et al. Feb 2005 B2
6860867 Seward et al. Mar 2005 B2
6866670 Rabiner et al. Mar 2005 B2
6878113 Miwa et al. Apr 2005 B2
6886411 Kjellman et al. May 2005 B2
6891984 Petersen et al. May 2005 B2
6895106 Wang et al. May 2005 B2
6898337 Averett et al. May 2005 B2
6900897 Froggatt May 2005 B2
6912051 Jensen Jun 2005 B2
6916329 Zhao Jul 2005 B1
6922498 Shah Jul 2005 B2
6937346 Nebendahl et al. Aug 2005 B2
6937696 Mostafavi Aug 2005 B1
6943939 DiJaili et al. Sep 2005 B1
6947147 Motamedi et al. Sep 2005 B2
6947787 Webler Sep 2005 B2
6949094 Yaron Sep 2005 B2
6952603 Gerber et al. Oct 2005 B2
6954737 Kalantar et al. Oct 2005 B2
6958042 Honda Oct 2005 B2
6961123 Wang et al. Nov 2005 B1
6966891 Ookubo et al. Nov 2005 B2
6969293 Thai Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6985234 Anderson Jan 2006 B2
7004963 Wang et al. Feb 2006 B2
7006231 Ostrovsky et al. Feb 2006 B2
7010458 Wilt Mar 2006 B2
7024025 Sathyanarayana Apr 2006 B2
7027211 Ruffa Apr 2006 B1
7027743 Tucker et al. Apr 2006 B1
7033347 Appling Apr 2006 B2
7035484 Silberberg et al. Apr 2006 B2
7037269 Nix et al. May 2006 B2
7042573 Froggatt May 2006 B2
7044915 White et al. May 2006 B2
7044964 Jang et al. May 2006 B2
7048711 Rosenman et al. May 2006 B2
7049306 Konradi et al. May 2006 B2
7058239 Singh et al. Jun 2006 B2
7060033 White et al. Jun 2006 B2
7060421 Naundorf et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7068852 Braica Jun 2006 B2
7074188 Nair et al. Jul 2006 B2
7095493 Harres Aug 2006 B2
7110119 Maestle Sep 2006 B2
7113875 Terashima et al. Sep 2006 B2
7123777 Rondinelli et al. Oct 2006 B2
7130054 Ostrovsky et al. Oct 2006 B2
7139440 Rondinelli et al. Nov 2006 B2
7153299 Tu et al. Dec 2006 B1
7171078 Sasaki et al. Jan 2007 B2
7175597 Vince et al. Feb 2007 B2
7177491 Dave et al. Feb 2007 B2
7190464 Alphonse Mar 2007 B2
7215802 Klingensmith et al. May 2007 B2
7218811 Shigenaga et al. May 2007 B2
7236812 Ballerstadt et al. Jun 2007 B1
7245125 Harer et al. Jul 2007 B2
7245789 Bates et al. Jul 2007 B2
7249357 Landman et al. Jul 2007 B2
7291146 Steinke et al. Nov 2007 B2
7292715 Furnish Nov 2007 B2
7292885 Scott et al. Nov 2007 B2
7294124 Eidenschink Nov 2007 B2
7300460 Levine et al. Nov 2007 B2
7335161 Von Arx et al. Feb 2008 B2
7337079 Park et al. Feb 2008 B2
7355716 de Boer et al. Apr 2008 B2
7356367 Liang et al. Apr 2008 B2
7358921 Snyder et al. Apr 2008 B2
7359062 Chen et al. Apr 2008 B2
7359554 Klingensmith et al. Apr 2008 B2
7363927 Ravikumar Apr 2008 B2
7366376 Shishkov et al. Apr 2008 B2
7382949 Bouma et al. Jun 2008 B2
7387636 Cohn et al. Jun 2008 B2
7391520 Zhou et al. Jun 2008 B2
7397935 Kimmel et al. Jul 2008 B2
7399095 Rondinelli Jul 2008 B2
7408648 Kleen et al. Aug 2008 B2
7414779 Huber et al. Aug 2008 B2
7440087 Froggatt et al. Oct 2008 B2
7447388 Bates et al. Nov 2008 B2
7449821 Dausch Nov 2008 B2
7450165 Ahiska Nov 2008 B2
RE40608 Glover et al. Dec 2008 E
7458967 Appling et al. Dec 2008 B2
7463362 Lasker et al. Dec 2008 B2
7463759 Klingensmith et al. Dec 2008 B2
7491226 Palmaz et al. Feb 2009 B2
7515276 Froggatt et al. Apr 2009 B2
7527594 Vardi et al. May 2009 B2
7534251 WasDyke May 2009 B2
7535797 Peng et al. May 2009 B2
7547304 Johnson Jun 2009 B2
7564949 Sattler et al. Jul 2009 B2
7577471 Camus et al. Aug 2009 B2
7583857 Xu et al. Sep 2009 B2
7603165 Townsend et al. Oct 2009 B2
7612773 Magnin et al. Nov 2009 B2
7633627 Choma et al. Dec 2009 B2
7645229 Armstrong Jan 2010 B2
7658715 Park et al. Feb 2010 B2
7660452 Zwirn et al. Feb 2010 B2
7660492 Bates et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7672790 McGraw et al. Mar 2010 B2
7680247 Atzinger et al. Mar 2010 B2
7684991 Stohr et al. Mar 2010 B2
7711413 Feldman et al. May 2010 B2
7720322 Prisco May 2010 B2
7728986 Lasker et al. Jun 2010 B2
7734009 Brunner et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7743189 Brown et al. Jun 2010 B2
7762954 Nix et al. Jul 2010 B2
7766896 Kornkven Volk et al. Aug 2010 B2
7773792 Kimmel et al. Aug 2010 B2
7775981 Guracar et al. Aug 2010 B1
7777399 Eidenschink et al. Aug 2010 B2
7781724 Childers et al. Aug 2010 B2
7783337 Feldman et al. Aug 2010 B2
7787127 Galle et al. Aug 2010 B2
7792342 Barbu et al. Sep 2010 B2
7801343 Unal et al. Sep 2010 B2
7801590 Feldman et al. Sep 2010 B2
7813609 Petersen et al. Oct 2010 B2
7831081 Li Nov 2010 B2
7846101 Eberle et al. Dec 2010 B2
7853104 Oota et al. Dec 2010 B2
7853316 Milner et al. Dec 2010 B2
7860555 Saadat Dec 2010 B2
7862508 Davies et al. Jan 2011 B2
7872759 Tearney et al. Jan 2011 B2
7880868 Aoki Feb 2011 B2
7881763 Brauker et al. Feb 2011 B2
7909844 Alkhatib et al. Mar 2011 B2
7921854 Hennings et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7929148 Kemp Apr 2011 B2
7930014 Huennekens et al. Apr 2011 B2
7930104 Baker et al. Apr 2011 B2
7936462 Jiang et al. May 2011 B2
7942852 Mas et al. May 2011 B2
7947012 Spurchise et al. May 2011 B2
7951186 Eidenschink et al. May 2011 B2
7952719 Brennan, III May 2011 B2
7972353 Hendriksen et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
7977950 Maslen Jul 2011 B2
7978916 Klingensmith et al. Jul 2011 B2
7981041 McGahan Jul 2011 B2
7981151 Rowe Jul 2011 B2
7983737 Feldman et al. Jul 2011 B2
7993333 Oral et al. Aug 2011 B2
7995210 Tearney et al. Aug 2011 B2
7996060 Trofimov et al. Aug 2011 B2
7999938 Wang Aug 2011 B2
8021377 Eskuri Sep 2011 B2
8021420 Dolan Sep 2011 B2
8036732 Milner Oct 2011 B2
8040586 Smith et al. Oct 2011 B2
8047996 Goodnow Nov 2011 B2
8049900 Kemp Nov 2011 B2
8050478 Li et al. Nov 2011 B2
8050523 Younge et al. Nov 2011 B2
8052605 Muller Nov 2011 B2
8057394 Dala-Krishna Nov 2011 B2
8059923 Bates et al. Nov 2011 B2
8070800 Lock et al. Dec 2011 B2
8080800 Hoctor et al. Dec 2011 B2
8088102 Adams et al. Jan 2012 B2
8100838 Wright Jan 2012 B2
8104479 Glynn et al. Jan 2012 B2
8108030 Castella et al. Jan 2012 B2
8114102 Galdonik et al. Feb 2012 B2
8116605 Petersen et al. Feb 2012 B2
8125648 Milner et al. Feb 2012 B2
8126239 Sun et al. Feb 2012 B2
8133199 Weber et al. Mar 2012 B2
8133269 Flechsenhar et al. Mar 2012 B2
8140708 Zaharia et al. Mar 2012 B2
8148877 Jiang et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8172757 Jaffe et al. May 2012 B2
8177809 Mavani et al. May 2012 B2
8187191 Hancock et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8187830 Hu et al. May 2012 B2
8199218 Lee et al. Jun 2012 B2
8206429 Gregorich et al. Jun 2012 B2
8208995 Tearney et al. Jun 2012 B2
8222906 Wyar et al. Jul 2012 B2
8233681 Aylward et al. Jul 2012 B2
8233718 Klingensmith et al. Jul 2012 B2
8238624 Doi et al. Aug 2012 B2
8239938 Simeral et al. Aug 2012 B2
8277386 Ahmed et al. Oct 2012 B2
8280470 Milner et al. Oct 2012 B2
8289284 Glynn et al. Oct 2012 B2
8289522 Tearney et al. Oct 2012 B2
8298147 Huennekens et al. Oct 2012 B2
8298149 Hastings et al. Oct 2012 B2
8301000 Sillard et al. Oct 2012 B2
8309428 Lemmerhirt et al. Nov 2012 B2
8317713 Davies et al. Nov 2012 B2
8323201 Towfiq et al. Dec 2012 B2
8329053 Martin et al. Dec 2012 B2
8336643 Harleman Dec 2012 B2
8349000 Schreck Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8353954 Cai et al. Jan 2013 B2
8357981 Martin et al. Jan 2013 B2
8361097 Patel et al. Jan 2013 B2
8386560 Ma et al. Feb 2013 B2
8398591 Mas et al. Mar 2013 B2
8412312 Judell et al. Apr 2013 B2
8417491 Trovato et al. Apr 2013 B2
8449465 Nair et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8454686 Alkhatib Jun 2013 B2
8475522 Jimenez et al. Jul 2013 B2
8478384 Schmitt et al. Jul 2013 B2
8486062 Belhe et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8491567 Magnin et al. Jul 2013 B2
8500798 Rowe et al. Aug 2013 B2
8550911 Sylla Oct 2013 B2
8594757 Boppart et al. Nov 2013 B2
8597349 Alkhatib Dec 2013 B2
8600477 Beyar et al. Dec 2013 B2
8600917 Schimert et al. Dec 2013 B1
8601056 Lauwers et al. Dec 2013 B2
8620055 Barratt et al. Dec 2013 B2
8644910 Rousso et al. Feb 2014 B2
20010007940 Tu et al. Jul 2001 A1
20010029337 Pantages et al. Oct 2001 A1
20010037073 White et al. Nov 2001 A1
20010046345 Snyder et al. Nov 2001 A1
20010049548 Vardi et al. Dec 2001 A1
20020034276 Hu et al. Mar 2002 A1
20020041723 Ronnekleiv et al. Apr 2002 A1
20020069676 Kopp et al. Jun 2002 A1
20020089335 Williams Jul 2002 A1
20020099289 Crowley Jul 2002 A1
20020163646 Anderson Nov 2002 A1
20020186818 Arnaud et al. Dec 2002 A1
20020196446 Roth et al. Dec 2002 A1
20020197456 Pope Dec 2002 A1
20030004412 Izatt et al. Jan 2003 A1
20030016604 Hanes Jan 2003 A1
20030018273 Corl et al. Jan 2003 A1
20030023153 Izatt et al. Jan 2003 A1
20030032886 Dgany et al. Feb 2003 A1
20030050871 Broughton Mar 2003 A1
20030065371 Satake Apr 2003 A1
20030069723 Hegde Apr 2003 A1
20030077043 Hamm et al. Apr 2003 A1
20030085635 Davidsen May 2003 A1
20030090753 Takeyama et al. May 2003 A1
20030092995 Thompson May 2003 A1
20030093059 Griffin et al. May 2003 A1
20030103212 Westphal et al. Jun 2003 A1
20030152259 Belykh et al. Aug 2003 A1
20030181802 Ogawa Sep 2003 A1
20030187369 Lewis et al. Oct 2003 A1
20030194165 Silberberg et al. Oct 2003 A1
20030195419 Harada Oct 2003 A1
20030208116 Liang et al. Nov 2003 A1
20030212491 Mitchell et al. Nov 2003 A1
20030219202 Loeb et al. Nov 2003 A1
20030220749 Chen et al. Nov 2003 A1
20030228039 Green Dec 2003 A1
20040015065 Panescu et al. Jan 2004 A1
20040023317 Motamedi et al. Feb 2004 A1
20040028333 Lomas Feb 2004 A1
20040037742 Jen et al. Feb 2004 A1
20040042066 Kinoshita et al. Mar 2004 A1
20040054287 Stephens Mar 2004 A1
20040067000 Bates et al. Apr 2004 A1
20040068161 Couvillon Apr 2004 A1
20040082844 Vardi et al. Apr 2004 A1
20040092830 Scott et al. May 2004 A1
20040106853 Moriyama Jun 2004 A1
20040111552 Arimilli et al. Jun 2004 A1
20040126048 Dave et al. Jul 2004 A1
20040143160 Couvillon Jul 2004 A1
20040146546 Gravett et al. Jul 2004 A1
20040186369 Lam Sep 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040195512 Crosetto Oct 2004 A1
20040220606 Goshgarian Nov 2004 A1
20040225220 Rich Nov 2004 A1
20040239938 Izatt Dec 2004 A1
20040242990 Brister et al. Dec 2004 A1
20040248439 Gernhardt et al. Dec 2004 A1
20040260236 Manning et al. Dec 2004 A1
20050013778 Green et al. Jan 2005 A1
20050031176 Hertel et al. Feb 2005 A1
20050036150 Izatt et al. Feb 2005 A1
20050078317 Law et al. Apr 2005 A1
20050101859 Maschke May 2005 A1
20050140582 Lee et al. Jun 2005 A1
20050140682 Sumanaweera et al. Jun 2005 A1
20050140981 Waelti Jun 2005 A1
20050140984 Hitzenberger Jun 2005 A1
20050147303 Zhou et al. Jul 2005 A1
20050165439 Weber et al. Jul 2005 A1
20050171433 Boppart et al. Aug 2005 A1
20050171438 Chen et al. Aug 2005 A1
20050182297 Gravenstein et al. Aug 2005 A1
20050196028 Kleen et al. Sep 2005 A1
20050197585 Brockway et al. Sep 2005 A1
20050213103 Everett et al. Sep 2005 A1
20050215942 Abrahamson et al. Sep 2005 A1
20050234445 Conquergood et al. Oct 2005 A1
20050243322 Lasker et al. Nov 2005 A1
20050249391 Kimmel et al. Nov 2005 A1
20050251567 Ballew et al. Nov 2005 A1
20050254059 Alphonse Nov 2005 A1
20050264823 Zhu et al. Dec 2005 A1
20060013523 Childlers et al. Jan 2006 A1
20060015126 Sher Jan 2006 A1
20060029634 Berg et al. Feb 2006 A1
20060036167 Shina Feb 2006 A1
20060038115 Maas Feb 2006 A1
20060039004 de Boer et al. Feb 2006 A1
20060041180 Viswanathan et al. Feb 2006 A1
20060045536 Arahira Mar 2006 A1
20060055936 Yun et al. Mar 2006 A1
20060058622 Tearney et al. Mar 2006 A1
20060064009 Webler et al. Mar 2006 A1
20060067620 Shishkov et al. Mar 2006 A1
20060072808 Grimm et al. Apr 2006 A1
20060074442 Noriega et al. Apr 2006 A1
20060098927 Schmidt et al. May 2006 A1
20060100694 Globerman May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060132790 Gutin Jun 2006 A1
20060135870 Webler Jun 2006 A1
20060142703 Carter et al. Jun 2006 A1
20060142733 Forsberg Jun 2006 A1
20060173299 Romley et al. Aug 2006 A1
20060179255 Yamazaki Aug 2006 A1
20060184048 Saadat Aug 2006 A1
20060187537 Huber et al. Aug 2006 A1
20060195269 Yeatman et al. Aug 2006 A1
20060204119 Feng et al. Sep 2006 A1
20060229591 Lee Oct 2006 A1
20060239312 Kewitsch et al. Oct 2006 A1
20060241342 Macaulay et al. Oct 2006 A1
20060241465 Huennekens et al. Oct 2006 A1
20060241503 Schmitt et al. Oct 2006 A1
20060244973 Yun et al. Nov 2006 A1
20060258895 Maschke Nov 2006 A1
20060264743 Kleen et al. Nov 2006 A1
20060267756 Kates Nov 2006 A1
20060270976 Savage et al. Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060279742 Tearney et al. Dec 2006 A1
20060279743 Boesser et al. Dec 2006 A1
20060285638 Boese et al. Dec 2006 A1
20060287595 Maschke Dec 2006 A1
20060293597 Johnson et al. Dec 2006 A1
20070015969 Feldman et al. Jan 2007 A1
20070016029 Donaldson et al. Jan 2007 A1
20070016034 Donaldson Jan 2007 A1
20070016062 Park et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070036417 Argiro et al. Feb 2007 A1
20070038061 Huennekens et al. Feb 2007 A1
20070038121 Feldman et al. Feb 2007 A1
20070038125 Kleen et al. Feb 2007 A1
20070043292 Camus et al. Feb 2007 A1
20070043597 Donaldson Feb 2007 A1
20070049847 Osborne Mar 2007 A1
20070060973 Ludvig et al. Mar 2007 A1
20070065077 Childers et al. Mar 2007 A1
20070066888 Maschke Mar 2007 A1
20070066890 Maschke Mar 2007 A1
20070066983 Maschke Mar 2007 A1
20070084995 Newton et al. Apr 2007 A1
20070100226 Yankelevitz et al. May 2007 A1
20070135887 Maschke Jun 2007 A1
20070142707 Wiklof et al. Jun 2007 A1
20070156019 Larkin et al. Jul 2007 A1
20070161893 Milner et al. Jul 2007 A1
20070161896 Adachi et al. Jul 2007 A1
20070161963 Smalling Jul 2007 A1
20070162860 Muralidharan et al. Jul 2007 A1
20070165141 Srinivas et al. Jul 2007 A1
20070167710 Unal et al. Jul 2007 A1
20070167804 Park et al. Jul 2007 A1
20070191682 Rolland et al. Aug 2007 A1
20070201736 Klingensmith et al. Aug 2007 A1
20070206193 Pesach Sep 2007 A1
20070208276 Kornkven Volk et al. Sep 2007 A1
20070225220 Ming et al. Sep 2007 A1
20070225590 Ramos Sep 2007 A1
20070229801 Tearney et al. Oct 2007 A1
20070232872 Prough et al. Oct 2007 A1
20070232874 Ince Oct 2007 A1
20070232890 Hirota Oct 2007 A1
20070232891 Hirota Oct 2007 A1
20070232892 Hirota Oct 2007 A1
20070232893 Tanioka Oct 2007 A1
20070232933 Gille et al. Oct 2007 A1
20070238957 Yared Oct 2007 A1
20070247033 Eidenschink et al. Oct 2007 A1
20070250000 Magnin et al. Oct 2007 A1
20070250036 Volk et al. Oct 2007 A1
20070258094 Izatt et al. Nov 2007 A1
20070260138 Feldman et al. Nov 2007 A1
20070278389 Ajgaonkar et al. Dec 2007 A1
20070287914 Cohen Dec 2007 A1
20080002183 Yatagai et al. Jan 2008 A1
20080013093 Izatt et al. Jan 2008 A1
20080021275 Tearney et al. Jan 2008 A1
20080027481 Gilson et al. Jan 2008 A1
20080043024 Schiwietz et al. Feb 2008 A1
20080045842 Furnish Feb 2008 A1
20080051660 Kakadaris et al. Feb 2008 A1
20080063304 Russak et al. Mar 2008 A1
20080085041 Breeuwer Apr 2008 A1
20080095465 Mullick et al. Apr 2008 A1
20080095714 Castella et al. Apr 2008 A1
20080097194 Milner Apr 2008 A1
20080101667 Begelman et al. May 2008 A1
20080108867 Zhou May 2008 A1
20080114254 Matcovitch et al. May 2008 A1
20080119739 Vardi et al. May 2008 A1
20080124495 Horn et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080139897 Ainsworth et al. Jun 2008 A1
20080143707 Mitchell Jun 2008 A1
20080146941 Dala-Krishna Jun 2008 A1
20080147111 Johnson et al. Jun 2008 A1
20080154128 Milner Jun 2008 A1
20080161696 Schmitt et al. Jul 2008 A1
20080171944 Brenneman et al. Jul 2008 A1
20080175465 Jiang et al. Jul 2008 A1
20080177183 Courtney et al. Jul 2008 A1
20080180683 Kemp Jul 2008 A1
20080181477 Izatt et al. Jul 2008 A1
20080187201 Liang et al. Aug 2008 A1
20080228086 Ilegbusi et al. Sep 2008 A1
20080247622 Aylward et al. Oct 2008 A1
20080247716 Thomas et al. Oct 2008 A1
20080262470 Lee et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080269599 Csavoy et al. Oct 2008 A1
20080281205 Naghavi et al. Nov 2008 A1
20080281248 Angheloiu et al. Nov 2008 A1
20080285043 Fercher et al. Nov 2008 A1
20080287795 Klingensmith et al. Nov 2008 A1
20080291463 Milner et al. Nov 2008 A1
20080292173 Hsieh et al. Nov 2008 A1
20080294034 Krueger et al. Nov 2008 A1
20080298655 Edwards Dec 2008 A1
20080306766 Ozeki et al. Dec 2008 A1
20090009801 Tabuki Jan 2009 A1
20090018393 Dick et al. Jan 2009 A1
20090034813 Dikmen et al. Feb 2009 A1
20090043191 Castella et al. Feb 2009 A1
20090046295 Kemp et al. Feb 2009 A1
20090052614 Hempel et al. Feb 2009 A1
20090069843 Agnew Mar 2009 A1
20090079993 Yatagai et al. Mar 2009 A1
20090088650 Corl Apr 2009 A1
20090093980 Kemp et al. Apr 2009 A1
20090122320 Petersen et al. May 2009 A1
20090138544 Wegenkittl et al. May 2009 A1
20090149739 Maschke Jun 2009 A9
20090156941 Moore Jun 2009 A1
20090174886 Inoue Jul 2009 A1
20090174931 Huber et al. Jul 2009 A1
20090177090 Grunwald et al. Jul 2009 A1
20090177183 Pinkernell et al. Jul 2009 A1
20090195514 Glynn et al. Aug 2009 A1
20090196470 Carl et al. Aug 2009 A1
20090198125 Nakabayashi et al. Aug 2009 A1
20090203991 Papaioannou et al. Aug 2009 A1
20090264768 Courtney et al. Oct 2009 A1
20090269014 Winberg et al. Oct 2009 A1
20090270695 Mceowen Oct 2009 A1
20090284322 Harrison et al. Nov 2009 A1
20090284332 Moore et al. Nov 2009 A1
20090284749 Johnson et al. Nov 2009 A1
20090290167 Flanders et al. Nov 2009 A1
20090292048 Li et al. Nov 2009 A1
20090299195 Muller et al. Dec 2009 A1
20090299284 Holman et al. Dec 2009 A1
20090318951 Kashkarov et al. Dec 2009 A1
20090326634 Vardi Dec 2009 A1
20100007669 Bethune et al. Jan 2010 A1
20100030042 Denninghoff et al. Feb 2010 A1
20100061611 Xu et al. Mar 2010 A1
20100063400 Hall et al. Mar 2010 A1
20100087732 Eberle et al. Apr 2010 A1
20100094125 Younge et al. Apr 2010 A1
20100094127 Xu Apr 2010 A1
20100094135 Fang-Yen et al. Apr 2010 A1
20100094143 Mahapatra et al. Apr 2010 A1
20100113919 Maschke May 2010 A1
20100125238 Lye et al. May 2010 A1
20100125268 Gustus et al. May 2010 A1
20100125648 Zaharia et al. May 2010 A1
20100128348 Taverner May 2010 A1
20100152717 Keeler Jun 2010 A1
20100160788 Davies et al. Jun 2010 A1
20100161023 Cohen et al. Jun 2010 A1
20100168714 Burke et al. Jul 2010 A1
20100179421 Tupin Jul 2010 A1
20100179426 Davies et al. Jul 2010 A1
20100220334 Condit et al. Sep 2010 A1
20100226607 Zhang et al. Sep 2010 A1
20100234736 Corl Sep 2010 A1
20100249601 Courtney Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100272432 Johnson Oct 2010 A1
20100284590 Peng et al. Nov 2010 A1
20100290693 Cohen et al. Nov 2010 A1
20100331950 Strommer Dec 2010 A1
20110010925 Nix et al. Jan 2011 A1
20110021926 Spencer et al. Jan 2011 A1
20110025853 Richardson Feb 2011 A1
20110026797 Declerck et al. Feb 2011 A1
20110032533 Izatt et al. Feb 2011 A1
20110034801 Baumgart Feb 2011 A1
20110044546 Pan et al. Feb 2011 A1
20110066073 Kuiper et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110072405 Chen et al. Mar 2011 A1
20110077528 Kemp et al. Mar 2011 A1
20110080591 Johnson et al. Apr 2011 A1
20110087104 Moore et al. Apr 2011 A1
20110137140 Tearney et al. Jun 2011 A1
20110144502 Zhou et al. Jun 2011 A1
20110152771 Milner et al. Jun 2011 A1
20110157597 Lu et al. Jun 2011 A1
20110160586 Li et al. Jun 2011 A1
20110178413 Schmitt et al. Jul 2011 A1
20110190586 Kemp Aug 2011 A1
20110216378 Poon et al. Sep 2011 A1
20110220985 Son et al. Sep 2011 A1
20110238061 van der Weide et al. Sep 2011 A1
20110238083 Moll et al. Sep 2011 A1
20110245669 Zhang Oct 2011 A1
20110249094 Wang et al. Oct 2011 A1
20110257545 Suri Oct 2011 A1
20110264125 Wilson et al. Oct 2011 A1
20110274329 Mathew et al. Nov 2011 A1
20110282334 Groenhoff Nov 2011 A1
20110301684 Fischell et al. Dec 2011 A1
20110306995 Moberg Dec 2011 A1
20110319752 Steinberg Dec 2011 A1
20120004529 Tolkowsky et al. Jan 2012 A1
20120004668 Wallace et al. Jan 2012 A1
20120013914 Kemp et al. Jan 2012 A1
20120016344 Kusakabe Jan 2012 A1
20120016395 Olson Jan 2012 A1
20120022360 Kemp Jan 2012 A1
20120026503 Lewandowski et al. Feb 2012 A1
20120029007 Graham et al. Feb 2012 A1
20120059253 Wang et al. Mar 2012 A1
20120059368 Takaoka et al. Mar 2012 A1
20120062843 Ferguson et al. Mar 2012 A1
20120065481 Hunter et al. Mar 2012 A1
20120071823 Chen Mar 2012 A1
20120071838 Fojtik Mar 2012 A1
20120075638 Rollins et al. Mar 2012 A1
20120083696 Kitamura Apr 2012 A1
20120095340 Smith Apr 2012 A1
20120095372 Sverdlik et al. Apr 2012 A1
20120108943 Bates et al. May 2012 A1
20120113108 Dala-Krishna May 2012 A1
20120116353 Arnold et al. May 2012 A1
20120130243 Balocco et al. May 2012 A1
20120130247 Waters et al. May 2012 A1
20120136259 Milner et al. May 2012 A1
20120136427 Palmaz et al. May 2012 A1
20120137075 Vorbach May 2012 A1
20120155734 Barratt et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120162660 Kemp Jun 2012 A1
20120165661 Kemp et al. Jun 2012 A1
20120170848 Kemp et al. Jul 2012 A1
20120172698 Teo et al. Jul 2012 A1
20120176607 Ott Jul 2012 A1
20120184853 Waters Jul 2012 A1
20120184859 Shah et al. Jul 2012 A1
20120184977 Wolf Jul 2012 A1
20120215094 Rahimian et al. Aug 2012 A1
20120220836 Alpert et al. Aug 2012 A1
20120220851 Razansky et al. Aug 2012 A1
20120220865 Brown et al. Aug 2012 A1
20120220874 Hancock et al. Aug 2012 A1
20120220883 Manstrom et al. Aug 2012 A1
20120224751 Kemp et al. Sep 2012 A1
20120226153 Brown et al. Sep 2012 A1
20120230565 Steinberg et al. Sep 2012 A1
20120232400 Dickinson et al. Sep 2012 A1
20120238869 Schmitt et al. Sep 2012 A1
20120238956 Yamada et al. Sep 2012 A1
20120244043 Leblanc et al. Sep 2012 A1
20120250028 Schmitt et al. Oct 2012 A1
20120253186 Simpson et al. Oct 2012 A1
20120253192 Cressman Oct 2012 A1
20120253276 Govari et al. Oct 2012 A1
20120257210 Whitney et al. Oct 2012 A1
20120262720 Brown et al. Oct 2012 A1
20120265077 Gille et al. Oct 2012 A1
20120265268 Blum et al. Oct 2012 A1
20120265296 McNamara et al. Oct 2012 A1
20120271170 Emelianov et al. Oct 2012 A1
20120271175 Moore et al. Oct 2012 A1
20120271339 O'Beirne et al. Oct 2012 A1
20120274338 Baks et al. Nov 2012 A1
20120276390 Ji et al. Nov 2012 A1
20120277722 Gerber et al. Nov 2012 A1
20120279764 Jiang et al. Nov 2012 A1
20120283758 Miller et al. Nov 2012 A1
20120289987 Wilson et al. Nov 2012 A1
20120299439 Huang Nov 2012 A1
20120310081 Adler et al. Dec 2012 A1
20120310332 Murray et al. Dec 2012 A1
20120319535 Dausch Dec 2012 A1
20120323075 Younge et al. Dec 2012 A1
20120323127 Boyden et al. Dec 2012 A1
20120330141 Brown et al. Dec 2012 A1
20130015975 Huennekens et al. Jan 2013 A1
20130023762 Huennekens et al. Jan 2013 A1
20130023763 Huennekens et al. Jan 2013 A1
20130026655 Lee et al. Jan 2013 A1
20130030295 Huennekens et al. Jan 2013 A1
20130030303 Ahmed et al. Jan 2013 A1
20130030410 Drasler et al. Jan 2013 A1
20130053949 Pintor et al. Feb 2013 A1
20130109958 Baumgart et al. May 2013 A1
20130109959 Baumgart et al. May 2013 A1
20130137980 Waters et al. May 2013 A1
20130150716 Stigall et al. Jun 2013 A1
20130158594 Carrison et al. Jun 2013 A1
20130218201 Obermiller et al. Aug 2013 A1
20130218267 Braido et al. Aug 2013 A1
20130223789 Lee et al. Aug 2013 A1
20130223798 Jenner et al. Aug 2013 A1
20130296704 Magnin et al. Nov 2013 A1
20130303907 Corl Nov 2013 A1
20130303920 Corl Nov 2013 A1
20130310698 Judell et al. Nov 2013 A1
20130331820 Itou et al. Dec 2013 A1
20130338766 Hastings et al. Dec 2013 A1
20130339958 Droste et al. Dec 2013 A1
20140039294 Jiang Feb 2014 A1
20140180067 Stigall et al. Jun 2014 A1
20140180128 Corl Jun 2014 A1
20140200438 Millett et al. Jul 2014 A1
Foreign Referenced Citations (79)
Number Date Country
1041373 Oct 2000 EP
01172637 Jan 2002 EP
2438877 Apr 2012 EP
2280261 Jan 1995 GB
2000-262461 Sep 2000 JP
2000-292260 Oct 2000 JP
2001-125009 May 2001 JP
2001-272331 Oct 2001 JP
2002-374034 Dec 2002 JP
2003-143783 May 2003 JP
2003-172690 Jun 2003 JP
2003-256876 Sep 2003 JP
2003-287534 Oct 2003 JP
2005-274380 Oct 2005 JP
2006-184284 Jul 2006 JP
2006-266797 Oct 2006 JP
2006-313158 Nov 2006 JP
2007-024677 Feb 2007 JP
2009-233001 Oct 2009 JP
2011-56786 Mar 2011 JP
9101156 Feb 1991 WO
9216865 Oct 1992 WO
9306213 Apr 1993 WO
9308829 May 1993 WO
9838907 Sep 1998 WO
9857583 Dec 1998 WO
0011511 Mar 2000 WO
0044296 Aug 2000 WO
0111409 Feb 2001 WO
03062802 Jul 2003 WO
03073950 Sep 2003 WO
2004010856 Feb 2004 WO
2004023992 Mar 2004 WO
2004096049 Nov 2004 WO
2005047813 May 2005 WO
2005106695 Nov 2005 WO
2006029634 Mar 2006 WO
2006037132 Apr 2006 WO
2006039091 Apr 2006 WO
2006061829 Jun 2006 WO
2006068875 Jun 2006 WO
2006111704 Oct 2006 WO
2006119416 Nov 2006 WO
2006121851 Nov 2006 WO
2006130802 Dec 2006 WO
2007002685 Jan 2007 WO
2007025230 Mar 2007 WO
2007045690 Apr 2007 WO
2007058895 May 2007 WO
2007067323 Jun 2007 WO
2007084995 Jul 2007 WO
2008058084 May 2008 WO
2008069991 Jun 2008 WO
2008107905 Sep 2008 WO
2009009799 Jan 2009 WO
2009009801 Jan 2009 WO
2009046431 Apr 2009 WO
2009121067 Oct 2009 WO
2009137704 Nov 2009 WO
2011006886 Jan 2011 WO
2011038048 Mar 2011 WO
2011081688 Jul 2011 WO
2012003369 Jan 2012 WO
2012061935 May 2012 WO
2012071388 May 2012 WO
2012087818 Jun 2012 WO
2012098194 Jul 2012 WO
2012109676 Aug 2012 WO
2012130289 Oct 2012 WO
2012154767 Nov 2012 WO
2012155040 Nov 2012 WO
2013033414 Mar 2013 WO
2013033415 Mar 2013 WO
2013033418 Mar 2013 WO
2013033489 Mar 2013 WO
2013033490 Mar 2013 WO
2013033592 Mar 2013 WO
2013126390 Aug 2013 WO
2014109879 Jul 2014 WO
Non-Patent Literature Citations (191)
Entry
Little et al., 1991, The underlying coronary lesion in myocardial infarction:implications for coronary angiography, Clinical Cardiology, 14(11):868-874.
Loo, 2004, Nanoshell Enabled Photonics-Based Imaging and Therapy of Cancer, Technology in Cancer Research & Treatment 3(1):33-40.
Machine translation of JP 2000-097846.
Machine translation of JP 2000-321034.
Machine translation of JP 2000-329534.
Machine translation of JP 2004-004080.
Maintz et al., 1998, An Overview of Medical Image Registration Methods, Technical Report UU-CS, (22 pages).
Mamas et al., 2010, Resting Pd/Pa measured with intracoronary pressure wire strongly predicts fractional flow reserve, Journal of Invasive Cardiology 22(6):260-265.
Marks et al., 1991, By-passing Immunization Human Antibodies from V-gene Libraries Displayed on Phage, J. Mol. Biol. 222:581-597.
Marks et al., 1992, By-Passing Immunization:Building High Affinity Human Antibodies by Chain Shuffling, BioTechnol., 10:779-783.
Maruno et al., 1991, Fluorine containing optical adhesives for optical communications systems, J. Appl. Polymer. Sci. 42:2141-2148.
McCafferty et al., 1990, Phage antibodies: filamentous phage displaying antibody variable domains, Nature 348:552-554.
Mendieta et al., 1996, Complementary sequence correlations with applications to reflectometry studies, Instrumentation and Development 3(6):37-46.
Mickley, 2008, Steal Syndrome-strategies to preserve vascular access and extremity, Nephrol Dial Transplant 23:19-24.
Miller et al., 2010, The Miller banding procedure is an effective method for treating dialysis-associated steal syndrome, Kidney International 77:359-366.
Milstein et al., 1983, Hybrid hybridomas and their use in immunohistochemistry, Nature 305:537-540.
Mindlin et al., 1936, A force at a point of a semi-infinite solid, Physics, 7:195-202.
Morrison et al., 1984, Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains, PNAS 81:6851-6855.
Munson et al., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Analytical Biochemistry, 107:220-239.
Nezam, 2008, High Speed Polygon-Scanner-Based Wavelength-Swept Laser Source in the Telescope-Less Configurations with Application in Optical Coherence Tomography, Optics Letters 33(15):1741-1743.
Nissen, 2001, Coronary Angiography and Intravascular Ultrasound, American Journal of Cardiology, 87 (suppl):15A-20A.
Nitenberg et al., 1995, Coronary vascular reserve in humans: a critical review of methods of evaluation and of interpretation of the results, Eur Heart J. 16(Suppl 1):7-21.
Notice of Reason(s) for Refusal dated Apr. 30, 2013, for Japanese Patent Application No. 2011-508677 for Optical Imaging Catheter for Aberation Balancing to Volcano Corporation, which application is a Japanese national stage entry of PCT/US2009/043181 with international filing date May 7, 2009, of the same title, published on Nov. 12, 2009, as WO 2009/137704, and accompanying English translation of the Notice of Reason(s) for Refusal and machine translations of JP11-56786 and JP2004-290548 (56 pages).
Nygren, 1982, Conjugation of horseradish peroxidase to Fab fragments with different homobifunctional and heterobifunctional cross-linking reagents. A comparative study, J. Histochem. and Cytochem. 30:407-412.
Oesterle et al., 1986, Angioplasty at coronary bifurcations: single-guide, two-wire technique, Cathet Cardiovasc Diagn., 12:57-63.
Okuno et al., 2003, Recent Advances in Optical Switches Using Silica-based PLC Technology, NTT Technical Review 1(7):20-30.
Oldenburg et al., 1998, Nanoengineering of Optical Resonances, Chemical Physics Letters 288:243-247.
Oldenburg et al., 2003, Fast-Fourier-Domain Delay Line for In Vivo Optical Coherence Tomography with a Polygonal Scanner, Applied Optics, 42(22):4606-4611.
Othonos, 1997, Fiber Bragg gratings, Review of Scientific Instruments 68(12):4309-4341.
Owens et al., 2007, A Survey of General-Purpose Computation on Graphics Hardware, Computer Graphics Forum 26(1):80-113.
Pain et al., 1981, Preparation of protein A-peroxidase mono conjugate using a heterobifunctional reagent, and its use in enzyme immunoassays, J Immunol Methods, 40:219-30.
Park et al., 2005, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 um., Optics Express 13(11):3931-3944.
Pasquesi et al., 2006, In vivo detection of exercise induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography, Optics Express 14(4)1547-1556.
Pepe et al., 2004, Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker, American Journal of Epidemiology 159(9):882-890.
Persson et al., 1985, Acoustic impedance matching of medical ultrasound transducers, Ultrasonics, 23(2):83-89.
Placht et al., 2012, Fast time-of-flight camera based surface registration for radiotherapy patient positioning, Medical Physics 39(1):4-17.
Rabbani et al., 1999, Review: Strategies to achieve coronary arterial plaque stabilization, Cardiovascular Research 41:402-417.
Radvany et al., 2008, Plaque Excision in Management of Lower Extremity Peripheral Arterial Disease with the SilverHawk Atherectomy Catheter, Seminars in Interventional Radiology, 25(1):11-19.
Reddy et al., 1996, An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration, IEEE Transaction on Image Processing 5(8):1266-1271.
Riechmann et al., 1988, Reshaping human antibodies for therapy, Nature, 332:323-327.
Rivers et al., 1992, Correction of steal syndrome secondary to hemodialysis access fistulas: a simplified quantitative technique, Surgery, 112(3):593-7.
Robbin et al., 2002, Hemodialysis Arteriovenous Fistula Maturity: US Evaluation, Radiology 225:59-64.
Rollins et al., 1998, In vivo video rate optical coherence tomography, Optics Express 3:219-229.
Sarunic et al., 2005, Instantaneous Complex Conjugate Resolved Spectral Domain and Swept-Source OCT Using 3×3 Fiber Couplers, Optics Express 13(3):957-967.
Satiani et al., 2009, Predicted Shortage of Vascular Surgeons in the United States, J. Vascular Surgery 50:946-952.
Schneider et al., 2006, T-banding: A technique for flow reduction of a hyper-functioning arteriovenous fistula, J Vase Surg. 43(2):402-405.
Sen et al., 2012, Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis, Journal of the American College of Cardiology 59(15):1392-1402.
Setta et al., 2005, Soft versus firm embryo transfer catheters for assisted reproduction: a systematic review and meta-analysis, Human Reproduction, 20(11):3114-3121.
Seward et al., 1996, Ultrasound Cardioscopy: Embarking on New Journey, Mayo Clinic Proceedings 71(7):629-635.
Shen et al., 2006, Eigengene-based linear discriminant model for tumor classification using gene expression microarray data, Bioinformatics 22(21):2635-2642.
International Search Report and Written Opinion mailed Nov. 2, 2012, for International Patent Application No. PCT/US12/53168, filed Aug. 30, 2013 (8 pages).
International Search Report and Written Opinion mailed on Apr. 14, 2014, for International Patent Application No. PCT/US2013/076148, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion mailed on Apr. 21, 2014, for International Patent Application No. PCT/US2013/076015, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion mailed on Apr. 23, 2014, for International Patent Application No. PCT/US2013/075328, filed Dec. 16, 2013 (8 pages).
International Search Report and Written Opinion mailed on Apr. 29, 2014, for International Patent Application No. PCT/US13/76093, filed Dec. 18, 2013 (6 pages).
International Search Report and Written Opinion mailed on Apr. 9, 2014, for International Patent Application No. PCT/US13/75089, filed Dec. 13, 2013 (7 pages).
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US13/76053, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion mailed on Feb. 21, 2014, for International Patent Application No. PCT/US2013/076965, filed Dec. 20, 2013 (6 pages).
International Search Report and Written Opinion mailed on Feb. 27, 2014, for International Patent Application No. PCT/US13/75416, filed Dec. 16, 2013 (7 pages).
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75653, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion mailed on Feb. 28, 2014, for International Patent Application No. PCT/US13/75990, filed Dec. 18, 2013 (7 pages).
International Search Report and Written Opinion mailed on Jan. 16, 2009, for International Patent Application No. PCT/US08/78963 filed on Oct. 6, 2008 (7 pages).
International Search Report and Written Opinion mailed on Jul. 30, 2014, for International Patent Application No. PCT/US14/21659, filed Mar. 7, 2014 (15 pages).
International Search Report and Written Opinion mailed on Mar. 10, 2014, for International Patent Application No. PCT/US2013/076212, filed Dec. 18, 2013 (8 pages).
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76173, filed Dec. 16, 2013 (9 pages).
International Search Report and Written Opinion mailed on Mar. 11, 2014, for International Patent Application No. PCT/US13/76449, filed Dec. 19, 2013 (9 pages).
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076502, filed Dec. 19, 2013 (7 pages).
International Search Report and Written Opinion mailed on Mar. 18, 2014, for International Patent Application No. PCT/US2013/076788, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US13/75349, filed Dec. 16, 2013 (10 pages).
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076587, filed Dec. 19, 2013 (10 pages).
International Search Report and Written Opinion mailed on Mar. 19, 2014, for International Patent Application No. PCT/US2013/076909, filed Dec. 20, 2013 (7 pages).
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076304, filed Dec. 18, 2013 (9 pages).
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076480, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076512, filed Dec. 19, 2013 (8 pages).
International Search Report and Written Opinion mailed on Mar. 7, 2014, for International Patent Application No. PCT/US2013/076531, filed Dec. 19, 2013 (10 pages).
Jakobovits et al., 1993, Analysis of homozygous mutant chimeric mice:deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production, PNAS USA 90:2551-255.
Jakobovits et al., 1993, Germ-line transmission and expression of a human-derived yeast artificial chromosome, Nature 362:255-258.
Jang et al., 2002, Visualization of Coronary Atherosclerotic Plaques in Patients Using Optical Coherence Tomography: Comparison With Intravascular Ultrasound, Journal of the American College of Cardiology 39:604-609.
Jiang et al., 1992, Image registration of multimodality 3-D medical images by chamfer matching, Proc. SPIE 1660, Biomedical Image Processing and Three-Dimensional Microscopy, 356-366.
Johnson et al., 1993, Human antibody engineering: Current Opinion in Structural Biology, 3:564-571.
Jones et al., 1986, Replacing the complementarity-determining regions in a human antibody with those from a mouse, Nature, 321:522-525.
Juviler et al., 2008, Anorectal sepsis and fistula-in-ano, Surgical Technology International, 17:139-149.
Karapatis et al., 1998, Direct rapid tooling:a review of current research, Rapid Prototyping Journal, 4(2):77-89.
Karp et al., 2009, The benefit of time-of-flight in PET imaging, J Nucl Med 49:462-470.
Kelly et al., 2005, Detection of Vascular Adhesion Molecule-1 Expression Using a Novel Multimodal Nanoparticle, Circulation Research 96:327-336.
Kemp et al., 2005, Depth Resolved Optic Axis Orientation in Multiple Layered Anisotropic Tissues Measured with Enhanced Polarization Sensitive Optical Coherence Tomography, Optics Express 13(12):4507-4518.
Kersey et al., 1991, Polarization insensitive fiber optic Michelson interferometer, Electron. Lett. 27:518-520.
Kheir et al., 2012, Oxygen Gas-Filled Microparticles Provide Intravenous Oxygen Delivery, Science Translational Medicine 4(140):140ra88 (10 pages).
Khuri-Yakub et al., 2011, Capacitive micromachined ultrasonic transducers for medical imaging and therapy, J Micromech Microeng. 21(5):054004-054014.
Kirkman, 1991, Technique for flow reduction in dialysis access fistulas, Surg Gyn Obstet, 172(3):231-3.
Kohler et al., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, 256:495-7.
Koo et al., 2011, Diagnosis of IschemiaCausing Coronary Stenoses by Noninvasive Fractional Flow Reserve Computed From Coronary Computed Tomographic Angiograms, J Am Coll Cardiol 58(19):1989-1997.
Kozbor et al., 1984, A human hybrid myeloma for production of human monoclonal antibodies, J. Immunol., 133:3001-3005.
Kruth et al., 2003, Lasers and materials in selective laser sintering, Assembly Automation, 23(4):357-371.
Kumagai et al., 1994, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm, Applied Physics Letters, 65(14):1850-1852.
Larin et al., 2002, Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography: a pilot study in human subjects, Diabetes Care, 25(12):2263-7.
Larin et al., 2004, Measurement of Refractive Index Variation of Physiological Analytes using Differential Phase OCT, Proc of SPIE 5325:31-34.
Laufer, 1996, Introduction to Optics and Lasers in Engineering, Cambridge University Press, Cambridge UK:156-162.
Lefevre et al., 2001, Stenting of bifurcation lesions:a rational approach, J. Interv. Cardiol., 14(6):573-585.
Li et al., 2000, Optical Coherence Tomography: Advanced Technology for the Endoscopic Imaging of Barrett's Esophagus, Endoscopy, 32(12):921-930.
Abdi et al., 2010, Principal component analysis, Wiley Interdisciplinary Reviews: Computational Statistics 2:433-459.
Adler et al., 2007, Phase-Sensitive Optical Coherence Tomography at up to 370,000 Lines Per Second Using Buffered Fourier Domain Mode-Locked Lasers, Optics Letters, 32(6):626-628.
Agresti, 1996, Models for Matched Pairs, Chapter 8, An Introduction to Categorical Data Analysis, Wiley-Interscience a John Wiley & Sons, Inc., Publication, Hoboken, New Jersey.
Akasheh et al., 2004, Development of piezoelectric micromachined ultrasonic transducers, Sensors and Actuators A Physical, 111:275-287.
Amini et al., 1990, Using dynamic programming for solving variational problems in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(9):855-867.
Bail et al., 1996, Optical coherence tomography with the “Spectral Radar”—Fast optical analysis in volume scatterers by short coherence interferometry, Optics Letters 21(14):1087-1089.
Bain, 2011, Privacy protection and face recognition, Chapter 3, Handbook of Face Recognition, Stan et al., Springer-Verlag.
Barnea et al., 1972, A class of algorithms for fast digital image registration, IEEE Trans. Computers, 21(2):179-186.
Blanchet et al., 1993, Laser Ablation and the Production of Polymer Films, Science, 262(5134):719-721.
Bonnema, 2008, Imaging Tissue Engineered Blood Vessel Mimics with Optical Tomography, College of Optical Sciences dissertation, University of Arizona (252 pages).
Bouma et al., 1999, Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography, Optics Letters, 24(8):531-533.
Breiman, 2001, Random forests, Machine Learning 45:5-32.
Brown, 1992, A survey of image registration techniques, ACM Computing Surveys 24(4):325-376.
Bruining et al., 2009, Intravascular Ultrasound Registration/Integration with Coronary Angiography, Cardiology Clinics, 27(3):531-540.
Brummer, 1997, An euclidean distance measure between covariance matrices of speechcepstra for text-independent speaker recognition, in Proc. South African Symp. Communications and Signal Processing:167-172.
Burr et al., 2005, Searching for the Center of an Ellipse in Proceedings of the 17th Canadian Conference on Computational Geometry:260-263.
Canny, 1986, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8:679-698.
Cavalli et al., 2010, Nanosponge formulations as oxygen delivery systems, International Journal of Pharmaceutics 402:254-257.
Choma et al., 2003, Sensitivity Advantage of Swept Source and Fourier Domain Optical Coherence Tomography, Optics Express 11(18):2183-2189.
Clarke et al., 1995, Hypoxia and myocardial ischaemia during peripheral angioplasty, Clinical Radiology, 50(5):301-303.
Collins, 1993, Coronary flow reserve, British Heart Journal 69:279-281.
Communication Mechanisms for Distributed Real-Time Applications, NI Developer Zone, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Cook, 2007, Use and misuse of receiver operating characteristic curve in risk prediction, Circulation 115(7):928-35.
D'Agostino et al., 2001, Validation of the Framingham coronary heart disease prediction score: results of a multiple ethnic group investigation, JAMA 286:180-187.
David et al., 1974, Protein iodination with solid-state lactoperoxidase, Biochemistry 13:1014-1021.
Davies et al., 1985, Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina, British Heart Journal 53:363-373.
Davies et al., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, British Heart Journal 69:377-381.
Deterministic Data Streaming in Distributed Data Acquisition Systems, NI Developer Zone, “What is Developer Zone?”, http://zone.ni.eom/devzone/cda/tut/p/id/3105, accessed Jul. 23, 2007.
Eigenwillig, 2008, K-Space Linear Fourier Domain Mode Locked Laser and Applications for Optical Coherence Tomography, Optics Express 16(12):8916-8937.
Elghanian et al., 1997, Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science, 277(5329):1078-1080.
Ergun et al., 2003, Capacitive Micromachined Ultrasonic Transducers:Theory and Technology, Journal of Aerospace Engineering, 16(2):76-84.
Evans et al., 2006, Optical coherence tomography to identify intramucosa carcinoma and high-grade dysplasia in Barrett's esophagus, Clin Gast Hepat 4(1):38-43.
Fatemi et al., 1999, Vibro-acoustography: an imaging modality based on ultrasound-stimulated acoustic emission, PNAS U.S.A., 96(12):6603-6608.
Felzenszwalb et al., 2005, Pictorial Structures for Object Recognition, International Journal of Computer Vision, 61(1):55-79.
Ferring et al., 2008, Vasculature ultrasound for the pre-operative evaluation prior to arteriovenous fistula formation for haemodialysis: review of the evidence, Nephrol. Dial. Transplant. 23(6):1809-1815.
Fischler et al., 1973, The representation and matching of pictorial structures, IEEE Transactions on Computer 22:67-92.
Fleming et al., 2010, Real-time monitoring of cardiac radio-frequency ablation lesion formation using an optical coherence tomography forward-imaging catheter, Journal of Biomedical Optics 15 (3):030516-1 (3 pages).
Fookes et al., 2002, Rigid and non-rigid image registration and its association with mutual information:A review, Technical Report ISBN:1 86435 569 7, RCCVA, QUT.
Forstner & Moonen, 1999, A metric for covariance matrices, In Technical Report of the Dpt of Geodesy and Geoinformatics, Stuttgart University, 113-128.
Goel et al., 2006, Minimally Invasive Limited Ligation Endoluminal-assisted Revision (MILLER) for treatment of dialysis access-associated steal syndrome, Kidney Int 70(4):765-70.
Gotzinger et al., 2005, High speed spectral domain polarization sensitive optical coherence tomography of the human retina, Optics Express 13(25):10217-10229.
Gould et al., 1974, Physiologic basis for assessing critical coronary stenosis, American Journal of Cardiology, 33:87-94.
Griffiths et al., 1993, Human anti-self antibodies with high specificity from phage display libraries, The EMBO Journal, 12:725-734.
Griffiths et al., 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires, The EMBO Journal, 13(14):3245-3260.
Grund et al., 2010, Analysis of biomarker data:logs, odds, ratios and ROC curves, Curr Opin HIV AIDS 5(6):473-479.
Harrison et al., 2011, Guidewire Stiffness: What's in a name?, J Endovasc Ther, 18(6):797-801.
Huber et al., 2005, Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles, Optics Express 13(9):3513-3528.
Huber et al., 2006, Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography, Optics Express 14(8):3225-3237.
International Search Report and Written Opinion mailed Mar. 11, 2014, for International Patent Application No. PCT/US13/75675, filed Dec. 17, 2013 (7 pages).
International Search Report and Written Opinion mailed Mar. 19, 2014, for International Patent Application No. PCT/US13/075353, filed Dec. 16, 2013 (8 pages).
Sihan et al., 2008, A novel approach to quantitative analysis of intraluminal optical coherence tomography imaging, Comput. Cardiol:1089-1092.
Siwy et al., 2003, Electro-responsive asymmetric nanopores in polyimide with stable ion-current signal, Applied Physics A: Materials Science & Processing 76:781-785.
Smith et al., 1989, Absolute displacement measurements using modulation of the spectrum of white light in a Michelson interferometer, Applied Optics, 28(16):3339-3342.
Smith, 1997, The Scientist and Engineer's Guide to Digital Signal Processing, California Technical Publishing, San Diego, CA:432-436.
Soller, 2003, Polarization diverse optical frequency domain interferometry:All coupler implementation, Bragg Grating, Photosensitivity, and Poling in Glass Waveguides Conference MB4:30-32.
Song et al., 2012, Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography, Optics Express, 20(21):23414-23421.
Stenqvist et al., 1983, Stiffness of central venous catheters, Acta Anaesthesiol Scand., 2:153-157.
Strickland, 1970, Time-Domain Reflectometer Measurements, Tektronix, Beaverton, OR, (107 pages).
Strobl et al., 2009, An Introduction to Recursive Partitioning:Rationale, Application and Characteristics of Classification and Regression Trees, Bagging and Random Forests, Psychol Methods., 14(4):323-348.
Sutcliffe et al., 1986, Dynamics of UV laser ablation of organic polymer surfaces, Journal of Applied Physics, 60 (9):3315-3322.
Suzuki, 2013, A novel guidewire approach for handling acute-angle bifurcations, J Inv Cardiol 25(1):48-54.
Tanimoto et al., 2008, A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection, Cathet Cardiovascular Intervent., 72(2):228-235.
Tearney et al., 1997, In vivo Endoscopic Optical Biopsy with Optical Coherence Tomography, Science, 276:2037-2039.
Tonino et al., 2009, Fractional flow reserve versus angiography for guiding percutaneous coronary intervention, The New England Journal of Medicine, 360:213-224.
Toregeani et al., 2008, Evaluation of hemodialysis arteriovenous fistula maturation by color-flow Doppler ultrasound, J Vasc. Bras. 7(3):203-213.
Translation of Notice of Reason(s) for Refusal dated Apr. 30, 2014, for Japanese Patent Application No. 2011-508677, (5 pages).
Translation of Notice of Reason(s) for Refusal dated May 25, 2012, for Japanese Patent Application No. 2009-536425, (3 pages).
Translation of Notice of Reason(s) for Refusal dated Nov. 22, 2012, for Japanese Patent Application No. 2010-516304, (6 pages).
Traunecker et al., 1991, Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells, EMBO J., 10:3655-3659.
Trolier-McKinstry et. al., 2004, Thin Film Piezoelectric for MEMS, Journal of Electroceramics 12:7-17.
Tuniz et al., 2010, Weaving the invisible thread: design of an optically invisible metamaterial fibre, Optics Express 18 (17):18095-18105.
Turk et al., 1991, Eigenfaces for Recognition, Journal of Cognitive Neuroscience 3(1):71-86.
Tuzel et al., 2006, Region Covariance: A Fast Descriptor for Detection and Classification, European Conference on Computer Vision (ECCV).
Urban et al., 2010, Design of a Pressure Sensor Based on Optical Bragg Grating Lateral Deformation, Sensors (Basel), 10(12):11212-11225.
Vakhtin et al., 2003, Common-path interferometer for frequency-domain optical coherence tomography, Applied Optics, 42(34):6953-6958.
Vakoc et al., 2005, Phase-Resolved Optical Frequency Domain Imaging, Optics Express 13(14):5483-5493.
Verhoeyen et al., 1988, Reshaping human antibodies: grafting an antilysozyme activity, Science, 239:1534-1536.
Villard et al., 2002, Use of a blood substitute to determine instantaneous murine right ventricular thickening with optical coherence tomography, Circulation, 105:1843-1849.
Wang et al., 2002, Optimizing the Beam Patten of a Forward-Viewing Ring-Annular Ultrasound Array for Intravascular Imaging, Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49(12).
Wang et al., 2006, Multiple biomarkers for the prediction of first major cardiovascular events and death, The New England Journal of Medicine, 355(25):2631-2639.
Wang et al., 2009, Robust Guidewire Tracking in Fluoroscopy, IEEE Conference on Computer Vision and Pattern Recognition—CVPR 2009:691-698.
Wang et al., 2011, In vivo intracardiac optical coherence tomography imaging through percutaneous access: toward image-guided radio-frequency ablation, J. Biomed. Opt. 0001 16(11):110505-1 (3 pages).
Waterhouse et. al., 1993, Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires, Nucleic Acids Res., 21:2265-2266.
Wegener, 2011, 3D Photonic Metamaterials and Invisibility Cloaks: The Method of Making, MEMS 2011, Cancun, Mexico, Jan. 23-27, 2011.
West et al., 1991, Arterial insufficiency in hemodialysis access procedures: correction by banding technique, Transpl Proc 23(2):1838-40.
Wyawahare et al., 2009, Image registration techniques: an overview, International Journal of Signal Processing, Image Processing and Pattern Recognition, 2(3):11-28.
Yaqoob et al., 2006, Methods and application areas of endoscopic optical coherence tomography, J. Biomed. Opt., 11, 063001-1-063001-19.
Yasuno et al., 2004, Polarization-sensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples, Applied Physics Letters 85(15):3023-3025.
Zhang et al., 2004, Full range polarization-sensitive Fourier domain optical coherence tomography, Optics Express, 12(24):6033-6039.
Zitova et al., 2003, Image registration methods: A survey. Image and Vision Computing, 21(11):977-1000.
International Search Report and Written Opinion mailed on Apr. 10, 2014, for International Patent Application No. PCT/US2013/063543, filed Oct. 4, 2013 (10 pages).
Related Publications (1)
Number Date Country
20140099012 A1 Apr 2014 US
Provisional Applications (1)
Number Date Country
61710410 Oct 2012 US