The present invention relates to a system for corrosion protection of storage tank soil side bottoms located on a substrate by application of an inhibitor ring delivery system about the periphery of the tank and wherein corrosion inhibitors can be readily admitted via the ring delivery system into the spaces between the substrate and the tank bottom (soil side) to protect the same against corrosion.
In aboveground storage tanks, corrosion of soil side bottoms and double bottoms is unpredictable and can reduce the thickness of the tank bottom up to about 5 mm/year. There are multiple tank bottom and foundation designs that address some of the corrosion problems. A typical corrosion protection method, i.e., cathodic protection system, in most cases is not effective due to inherent dry soil conditions at least during some part of a year. The use of soluble corrosion inhibitors, as with cathodic systems, is only viable in fully saturated sand or soil and it is generally difficult to obtain such saturated conditions. Protective coatings cannot be applied to existing or new tank soil side bottoms.
In summary, corrosion of aboveground storage tanks either with a single soil side bottom or a double bottom is a major worldwide problem. Such tanks face unpredictable application and environmental conditions that often cause the bottoms to leak. Polymer protection layers can be damaged or become water permeable over time and result in leaks of the stored product, which can lead to severe environmental impact requiring extensive cleanup activities along with environmental fines and other costs. Moreover, dangerous operating conditions occur when the leaking product is volatile or flammable. Another disadvantage is that repair of tank bottoms generally requires down time.
An aspect of the present invention is to provide an apparatus and method (e.g. retrofitting) to protect soil side bottoms of either existing or new storage tanks in a quick, generally inexpensive, and convenient manner. Another aspect of the present invention is that the corrosion protection maintains the operation of the existing tank and does not require the same to be taken out of operation. A further aspect of the present invention is that the apparatus and method are readily applied to different designs and sizes of aboveground storage tanks that have soil side bottoms that reside on a substrate at least part of which is typically hard. Yet another aspect of the present invention is that it can be used either as a stand-alone soil side bottom inhibitor delivery system or in combination with other soil side bottom inhibitor delivery systems. Still another aspect of the present invention is that it is applicable to various different environmental and application conditions.
In general, the apparatus and process of the present invention relates to retrofitting aboveground storage tanks. It further relates to the use of a chime seal and a perforated pipe system, installed around the periphery of the tank bottom plate, to deliver various types of corrosion inhibiting compounds that permeate the spaces above and within a contained substrate area located beneath the tank soil side bottom plate. The tank can also have a ring wall located beneath the tank side wall and a liner located beneath any porous substrate.
A method for retrofitting and protecting a storage tank soil side bottom, comprising the steps of obtaining a storage tank having side walls and a bottom base plate; said bottom base plate having an edge extending outward of said tank side walls, said tank located on a substrate; installing a perforated pipe system around at least a portion of said tank bottom plate edge so that perforations of said pipe system are in communication with said substrate under said tank bottom base plate; installing a chime seal system about at least a portion of said tank bottom base plate edge, said chime seal forming an enclosure for said perforated pipe system, said tank base plate having one or more openings to provide access for said perforated pipe system to said substrate under the tank bottom base plate, said chime seal having one leg contacting said tank base plate; and introducing a corrosion inhibitor into said perforated pipe system so that said corrosion inhibitor is dispersed into said substrate under the said tank bottom base plate.
A retrofitted storage tank soil side bottom, comprising a storage tank having side walls and a bottom base plate; said bottom base plate having an edge extending outward of said tank side walls; said bottom base plate located on a substrate; said substrate being completely hard, or porous, or both and contained within a ring wall, said ring wall located under said tank base plate and below said tank side walls, an impermeable containment liner, said containment liner extending beneath any said porous substrate; a perforated pipe, forming a ring, installed on at least a portion of said bottom base plate edge, wherein said pipe perforations are in communication with area between the underside of said tank base plate and said substrate below said tank base plate; a chime seal located around at least a majority of said tank base plate edge, said chime seal enclosing said perforated pipe, said chime seal having one leg contacting the top side of said tank base plate outer edge and one leg contacting the top side of said substrate outside of the periphery of said perforated pipe ring system; said chime seal having one or more refill ports in communication with said perforated pipe system so that a corrosion inhibitor can be fed to said perforated pipe; and a corrosion inhibitor adapted to be fed into said perforated pipe through said refill ports so that said corrosion inhibitor can be introduced and dispersed through said area between said tank base plate and said substrate below tank base plate.
A soil side storage tank bottom, comprising a storage tank having side walls and a bottom base plate; said base plate extending outward of said side walls; said tank located on a substrate; a chime seal located around at least an external portion of the perimeter of said tank bottom, base plate, said chime seal having one or more openings therein that communicate with said substrate, said chime seal having a leg contacting said tank base plate; a perforated pipe located within said chime seal having at least one perforation and wherein said perforation is in communication with said tank base plate and said substrate; and a corrosion inhibitor adapted to be fed into said perforated pipe so that said corrosion inhibitor is dispersed into said substrate.
A method for protecting a soil side storage tank bottom, comprising the steps of obtaining a storage tank having side walls and a bottom base plate, said base plate extending outward of said side walls, said tank located on a substrate; installing a chime seal around at least an external portion of the perimeter of said tank bottom base plate, said tank bottom base plate having one or more openings therein that communicate with said substrate, said chime having a leg contacting said tank base plate; installing a perforated pipe having at least one perforation within said chime seal wherein said perforation is in communication with said tank base plate and said substrate; and injecting a corrosion inhibitor into said perforated pipe so that said corrosion inhibitor is dispersed into said substrate.
Storage tanks 1 have side walls 2 and bottom base plates 7 that inherently are contained or located upon a substrate 6. The bottom base plate extends across the entire bottom of the tank and generally extends outwardly thereof to form an external bottom base plate edge, flange, or annulus 7A. Substrates typically encompass hard surface materials such as concrete and asphalt, etc., either alone or in conjunction with porous materials such as soil, e.g. clay, loam, sandy soils, sand, fine or small-sized stones, pebbles, etc. The external side of the tank bottom plate surface that is situated on or contacts the substrate typically is referred to as the soil side bottom 5. Hard materials or substrates can be located under the entire tank bottom or at least desirably in the vicinity under the tank sides to support the weight thereof. Various porous substrates sometimes referred to as being partially hard can also extend under the entire tank bottom base plate, but it is often desirable that they extend only in the internal tank area as within the tank sides. In this situation, the area beneath the tank side walls will either contain a hard substrate or a ring wall as further set forth herein below. Of course, combinations of hard substrates and porous substrates can be utilized such as concentric ring portions, and the like. Original or natural substrate 15 is typically firm earth such as soil or clay and optionally can be located beneath tank 1 within tank side wall 2 in lieu of porous substrate 6.
The tank soil side bottoms are subject to corrosion during the course of time. The present invention relates to an apparatus and system to protect the tank soil side bottoms 5 with respect to old or existing storage tanks and/or new or installed storage tanks. Corrosion protection of the present system is also achieved through the utilization of various one or more corrosion inhibitors such as water soluble corrosion inhibitors (SCI) and preferably volatile corrosion inhibitors (VCI) to protect tank soil side bottoms 5.
Another important aspect of the present invention that relates to fully protecting tank soil side bottoms from corrosion is the utilization of an inhibitor ring delivery system such as chime seal 3 that extends at least around an external (perimeter) portion of the tank bottom base plate 7 circumference, desirably around a majority of the tank bottom plate circumference, and preferably around the entire tank bottom plate circumference thereof. The chime seal can be plastic, mastic, asphalt, bitumen or elastomer and exists generally on the external edge of the tank bottom base plate or, preferably can be an integral part thereof. Chime seal 3 has at least one refill port 8 that is an opening at the end thereof as shown in
Perforated pipe 9 can be made out of any material that is not affected by the corrosion inhibitors and is not degraded by water. Flexible plastics such as thermoplastics and rubbers are thus preferred. The perforated pipe diameter, as well as the sizes, positions and number of the one or more perforations (holes) can vary. For example, using a 1-inch diameter pipe, one or two rows of perforations are typically used. If two rows are used, the rows are typically positioned at 180° of arc. The perforations are typically round, in the range of 0.25-inch diameter, but can also be oblong or slotted, and spaced in the range of 2 inches apart.
It is important that the perforated pipe holes 9 be in communication with the substrate so that corrosion inhibitors admitted or injected therefrom can permeate the substrate and contact the soil side of the tank bottom plate to protect the same from corrosion. The term “communication” is defined here are meaning there are pathways, channels, openings, and the like for the corrosive inhibitor to be introduced into the area formed between the substrate, the tank soil side bottom and the chime seal.
Additional advantages of the corrosion inhibitor delivery systems for tank soil side bottoms are that it is very convenient to supply various corrosion inhibitors to the substrate area, that one or more different corrosion inhibitors can be utilized, that the corrosion inhibitors can be applied at any desired time and duration, and that the corrosion inhibitors can be replenished in the inhibitor ring delivery system without disruption to tank operations. Inhibitor replenishment can be performed when needed and can be controlled manually, automatically with respect to certain times and duration thereof, or automatically upon receiving feedback as from sensors, etc.
Reference is now made to a specific embodiment as set forth in
As known to those skilled in the art, the bottom of the storage tank performs a breathing action due to slight movement of the tank bottom with respect to filling and entering operations, draining operations, temperature, and the like. Due to these inherent breathing aspects, the corrosion inhibitors are drawn or pulled into the small open or void areas 11 beneath tank bottom plate 5. As with the other embodiments, the corrosion inhibitors can even be soluble inhibitors, generally not preferred, volatile corrosion inhibitors, which are preferred, or a mixture thereof, which is also preferred.
An important aspect of the present invention is that it is essentially or preferably free of any perforated pipe or similar embodiments that extend to substrate area 6 located beneath tank 1 generally within side walls 2. Thus, there is no need to drill or dig into substrate area 6 to install perforated pipes therein. An advantage of the same is that expensive construction and/or installation costs are eliminated. Other advantages are similar to those set forth above and the fact that the corrosion inhibitors can be replenished as needed, automatically, or by any other system as described herein above. Another advantage is that the present invention is ideally suited for storage tanks wherein the void space or volume between the tank bottom and substrate are small.
The inhibitors can be applied in solid form or in liquid form.
With respect to soluble corrosion inhibitors, they include, but are not limited to, mixtures of ZnSO4 and NaH2PO4, organic nitrites, imidazoles and organic aminophosphites. Suitable solvents for such soluble corrosion inhibitors include, but are not limited to, aqueous solutions including those of sodium, potassium, and calcium compounds, or mixtures of two or more thereof. The strength and/or concentration of such aqueous solvents will depend, in part, upon the amount of soluble corrosion inhibitor to be dissolved therein. Accordingly, the present invention is not limited to any one set of strengths and/or concentrations of solvents for the soluble corrosion inhibitors disclosed herein. Suitable sodium and calcium compounds for use in forming the above-mentioned aqueous solvents include, but are not limited to, Na2MoO4, Na3PO4, NaH2PO4, NaNO2, Na2SiO3, calcium phosphonate, or suitable mixtures of two or more thereof. In another instance, corresponding potassium compounds can be used in place of the above-mentioned sodium compounds. In another embodiment, the one or more soluble corrosion inhibitors of the present invention are powders in granular form. However, the present invention is not limited to only the above-mentioned forms.
In connection with the present invention, suitable VCI compounds for use in connection with the present invention are known in the art and, as such, any suitable volatile or vapor phase corrosion inhibitors can be used in the rust-resistant perforated pipes of the present invention. Suitable VCIs for use in the present invention are disclosed in U.S. Pat. Nos. 4,290,912; 5,320,778; and 5,855,975, which are incorporated by reference in their entirety for their teachings of such compounds. Examples of VCIs set forth in U.S. Pat. No. 4,290,912 include inorganic nitrite salts including metal nitrites, preferably Group I and II metal nitrites such as potassium nitrite, sodium nitrite, barium nitrite, and calcium nitrite. Examples of VCIs set forth in U.S. Pat. No. 5,320,778 include anhydrous sodium molybdate [Na2MoO4], anhydrous ammonium dimolybdate [(NH4)2MoO4], or an anhydrous amine-molybdate. The preferred amine molybdates of this component of the composites of the present invention are amine-molybdates comprising dicyclohexylamine, 2-ethylhexylamine, and cyclohexylamine.
Another group of VCIs comprise amine benzoates, amine nitrates, and benzotriazole. Other VCIs comprise cyclohexylamine benzoate, ethylamine benzoate, dicyclo-hexylamine nitrate and benzotriazole. Examples of VCIs set forth in U.S. Pat. No. 5,855,975 include sodium nitrite and benzotriazole. Useful volatile or vapor phase corrosion inhibitors also include but are not limited to, benzotriazole, tolytriazole and salts thereof, mixtures of benzoates of amine salts with benzotriazole, nitrates of amine salts, and C13H26O2N.
While in the embodiment of
While in accordance with the Patent Statutes, the best mode and preferred embodiments have been set forth, the scope of the invention is not limited thereto, but rather, by the scope of the attached claims.
This application is a conversion application of U.S. patent application No. 61/892,785, filed Oct. 18, 2013, for “Systems for Corrosion Protection of Storage Tank Soil Side Bottoms”, which is hereby fully incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61892785 | Oct 2013 | US |