Systems for flow control in electroslag refining process

Information

  • Patent Grant
  • 6250522
  • Patent Number
    6,250,522
  • Date Filed
    Monday, October 2, 1995
    29 years ago
  • Date Issued
    Tuesday, June 26, 2001
    23 years ago
Abstract
A system for controlling the flow rate of the stream from an electroslag refining apparatus is taught. The system includes the introduction of unrefined metal into an electroslag refining process in which the unrefined metal is first melted at the upper surface of the refining slag. The molten metal is refined as it passes through the molten slag. The refined metal is collected in a cold hearth apparatus having a skull of refined metal formed on the surface of the cold hearth for protecting the cold hearth from the leaching action of the refined molten metal. A cold finger bottom pour spout is formed at the bottom of the cold hearth to permit dispensing of molten refined metal from the cold hearth. The flow rate of molten metal through the cold finger apparatus is controlled by coordinating, among other parameters: the rate of melting of the unrefined metal; the hydrostatic head of molten metal and slag above the bottom pour cold finger orifice; the rate of induction heat supplied to the metal within the cold finger apparatus; the rate of heat removal from the metal within the cold finger apparatus through the cold finger apparatus itself and through adjacent gas cooling means; and by applying electromagnetic force to selectively speed up, slow down and/or interrupt the flow of metal through the cold finger apparatus via an electromagnetic orifice, preferably utilizing a processor, such as a computer.
Description




BACKGROUND OF THE INVENTION




The present invention relates generally to control of the flow of refined metal in an ESR-CIG apparatus. The ESR apparatus is an electroslag refining apparatus and the CIG apparatus is a cold wall induction guide tube apparatus, also referred to herein as a cold wall induction guide mechanism and a cold finger nozzle mechanism. More particularly, the invention relates to controlling the flow of liquid metal to, through and from (as a metal stream) the CIG apparatus. Most particularly, the invention relates to controlling the gas-to-metal ratio (GMR) in an atomization zone, which indicates the amount of atomization gas required to effectively atomize the metal stream during spray forming operations by varying the GMR dynamically in coordination with an atomization manifold oscillation angle.




Such control of the gas-to-metal ratio (GMR) is important to numerous applications which can be made of the refining apparatus including atomization processing and relates generally to direct processing of metal passing through an electroslag refining operation. One example of molten metal refining is referred to as electroslag refining, and is illustrated and described in U.S. Pat. No. 5,160,532—Benz et al, assigned to the same assignee as the present invention, the disclosure of which is hereby incorporated by reference.




In an electroslag process, a large ingot of a preferred metal may be effectively refined in a molten state to remove important impurities such as oxides and sulfides which may have been present in the ingot. Simply described, electroslag refining comprises positioning a metal ingot over a pool of molten material in a suitable vessel or furnace where the molten material pool includes a surface layer of solid slag, an adjacent underlayer of molten slag and a lowermost body of refined molten ingot metal. The ingot is connected as an electrode in an electrical circuit including the molten metal pool, a source of electrical power and the ingot. The ingot is brought into contact with the molten slag layer and an electrical current is caused to flow across the ingot/molten slag interface.




This arrangement and process provides electrical resistance heating and melting of the ingot at the noted interface with the molten ingot metal passing through the molten slag layer as a refining medium to become a part of the body of refined ingot metal. It is the combination of controlled resistance melting and passage of the molten ingot metal through the molten slag layer which refines the ingot metal to remove impurities such as oxides, sulfides, and other undesirable inclusions.




Spray forming is a process using gas atomization to produce a spray of droplets of liquid metal followed by solidification of the spray on a solid body to directly form a billet or billet preform. In metal spray forming, a small stream of refined molten metal from the furnace is directed to pass through a molten metal spray forming atomizer generally comprising a closed peripheral manifold about a central aperture. The manifold may be equipped with gas inlet means and plural gas jet exit means. A gas under pressure is supplied to the manifold to exit through the gas jets in converging streams which impinge the passing metal stream to convert or break up the metal stream into a generally expanding spray pattern of small molten metal droplets. This spray pattern is caused to impinge and deposit on a suitable collector surface to generate a metal billet or other metal object.




An important variable in this process is the gas-to-metal ratio (GMR) which indicates the amount of atomization gas relative to the amount of molten metal which is required to effectively atomize the metal stream to form a spray and to cool the spray in-flight before striking the billet or preform. The spray is scanned across a revolving substrate to build a uniform layer. As it becomes necessary to enlarge the diameter of the preform, it becomes increasingly necessary to control the local temperature of the spray. A relatively hotter spray is desired near the outer diameter of the preform, a relatively cooler spray is desired at the centerline of the preform.




Best results are believed obtained when the molten metal spray pattern from the atomization zone is directed angularly against the collector or preform object rather than perpendicular. An angular impingement provides improved deposition efficiency as well as improved preform metal density and microstructure.




Most previous attempts at varying the gas to metal ratio (GMR) targeted the variation of the gas pressure, thus varying the quantity of gas applied to the atomization process while maintaining the metal stream flow rate as near constant as possible. While this approach has been successful, such an approach is difficult to implement because the gas pressures must be rapidly pulsed. If methods and systems for varying the molten metal flow rate to the atomization zone while maintaining the rate of delivery of the atomizing gas to the molten metal stream constant, the gas pulsation control problem would be minimized if not eliminated and significant savings could be realized.




Thus, it would be desirable to develop methods and systems for varying the molten metal flow rate to the atomization zone while maintaining the rate of delivery of the atomizing gas to the molten metal stream constant in order to control the gas to metal ratio (GMR) of the atomization zone. Such methods and systems could include, among other means, providing varying power to the CIG unit, including the induction power, voltage or current so as to vary, for example, electromagnetically or thermally, the effective size of the metal orifice, which would in turn dynamically vary the metal flow rate to the atomizer and to further coordinate the controlled, varying metal flow rate with the scan angle of the atomizer relative to the preform in order to achieve the appropriate GMR at various oscillation angles.




SUMMARY OF THE INVENTION




In one of its broader aspects, the present invention includes systems for controlling the flow of melt from a cold wall induction guide tube mechanism comprising: a funnel shaped cold wall induction guide tube mechanism including a neck having an exit orifice; a skull of melt operatively formed in the mechanism; a reservoir of melt above the mechanism; a stream of melt exiting the exit orifice of the mechanism; means, operatively positioned relative to the mechanism, for selectively controlling the temperature of the neck of the mechanism such that the size of the skull in the neck of the mechanism is selectively increased or reduced, wherein the flow of melt from the exit orifice of the mechanism is selectively increased or decreased thereby controlling the rate of the flow of melt from the mechanism.




Another aspect of the present invention includes a system for controlling the spray from an atomization zone for impacting a preform during the spray forming of the preform comprising: a cold wall induction guide tube mechanism including an orifice having a diameter; a reservoir of melt operatively connected to the mechanism; a stream of melt exiting the orifice; a skull of melt operatively formed in the cold wall induction guide tube mechanism; means, operatively connected to the cold wall induction guide tube mechanism, for controlling the diameter of the orifice such that the flow rate of the melt from the orifice is selectively varied; means, operatively positioned below the orifice, for forming a preform; an atomizer, operatively positioned between the orifice and the preform forming means, for atomizing the melt into metal spray; means, operatively connected to the atomizer, for providing a substantially constant gas mass flow rate to the atomizer; and means, operatively connected to the diameter controlling means and the reservoir of melt, for selectively controlling the gas-to-metal ratio in the atomization zone.




It is, accordingly, one object of the present invention to provide systems for varying the effective size of the orifice in the cold wall induction guide tube during electroslag refining of metal used in spray forming operations.




Another object is to provide systems for coordinating the liquid metal flow rate to an atomizer during atomization of metal from an electroslag refining apparatus during the spray forming of a preform.




Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a semischematic vertical sectional view of a representative electroslag refining apparatus suitable for use with the present invention.





FIG. 2

is a semischematic vertical sectional representative illustration of the apparatus of

FIG. 1

but showing structural details of the cold wall induction guide tube and the atomizer;





FIG. 3

is a semischematic vertical section in detail of the cold finger nozzle and atomizer of the structures of

FIG. 2

;





FIG. 4

is a semischematic illustration in part in section of the cold finger nozzle portion of an apparatus similar to that illustrated in

FIG. 3

but showing the apparatus free of molten metal;





FIG. 5

is a graph in which flow rate in pounds per minute is plotted against the area of the nozzle opening in square millimeters for two different heads of molten metal and specifically a lower plot for a head of about 2 inches and an upper plot for a head of about 10 inches of molten metal;





FIG. 6

is a simplified schematic illustration of one form of a noncircular atomizer used in the spray forming process; and





FIG. 7

is a simplified schematic functional illustration of an atomizer impacting a stream of molten metal to produce spray from an atomization zone during the spray forming process.











DETAILED DESCRIPTION OF THE INVENTION




In carrying out the present invention, an electrode or ingot of metal to be refined is introduced directly into an electroslag refining apparatus for refining the metal and produce a melt of refined metal which is received and retained within a cold hearth apparatus mounted immediately below the electroslag refining apparatus. The molten metal is dispensed from the cold hearth through a cold finger orifice mounted directly below the cold hearth reservoir. The flow of melt from the cold finger apparatus is controlled by one or by a combination of mechanisms including thermal and electro-mechanical means.




If the rate of electroslag refining of metal and accordingly the rate of delivery of refined metal to a cold hearth approximates the rate at which molten metal is drained from the cold hearth through the cold finger orifice, an essentially steady state operation is accomplished in the overall apparatus and the process can operate continuously for an extended period of time and, accordingly, can process a large bulk of unrefined metal to refined metal.




The processing described herein is applicable to a wide range of alloys which can be processed beneficially through the electroslag refining processing. Such alloys include nickel- and cobalt-based superalloys, zirconium and titanium-based alloys, and ferrous-based alloys, among others. The slag used in connection with such metals will vary with the metal being processed and will usually be the slag conventionally used with a particular metal in the conventional electroslag refining thereof.




The several processing techniques may be combined to produce a large body of refined metal because the ingot which can be processed through the combined electroslag refining and cold hearth and cold finger mechanism can be a relatively large supply ingot and can, accordingly, produce a continuous stream of metal exiting from the cold finger orifice over a prolonged period to deliver a large volume of molten metal.





FIGS. 1 and 2

are semischematic elevational views in part in section of a number of the essential and auxiliary elements of apparatus for carrying out the electroslag refining and atomization aspects of the present invention. A vertical motion control apparatus


10


is shown schematically. It includes a structure


12


mounted to a vertical support


14


for containing a motor or other mechanism adapted to impart rotary motion to a member


16


for example, for illustrative purposes only, a screw or screw mechanism. An ingot support station


20


comprising means


22


, such as, for illustrative purposes only, a bar, threadedly engaged at one end to the member


16


and supporting the ingot


24


at the other end by conventional means


26


, for example, for illustrative purposes only, a bolt. It being understood that the present illustration is representative in nature only and that in an industrial setting pneumatic, electronic and other well-known methods and apparatus would actually be used, as is known in the art.




An electroslag refining station


30


comprises a cooled, such as, for example, by water, reservoir


32


containing a molten slag


34


, an excess of which is illustrated as solid slag granules


36


. A skull of slag


75


may form along the inside surfaces of the inner wall


82


of vessel


32


due to the cooling influence of the cooling water flowing against the outside of inner wall


82


.




A cold hearth station


40


is mounted immediately below the electroslag refining station


30


and includes a cooled, such as, for example, by water, hearth


42


containing a skull


44


of solidified refined metal and also a body


46


of liquid refined metal. Cooled reservoir


32


may be formed integrally with the cooled hearth


42


.




The bottom dispensing structure (shown as an empty dashed box)


80


of the apparatus is provided in the form of a cold finger orifice. The cold hearth dispensing station


80


and the cold finger orifice will be explained more fully below.




Electric refining current is supplied by station


70


. The station includes the electric power supply and control mechanism


74


. It also includes the conductor


76


carrying current to the bar


22


and, in turn, to ingot


24


. Conductor


78


carries current to the metal vessel wall


32


to complete the circuit of the electroslag refining mechanism.




As illustrated by

FIG. 2

, the station


30


is an electroslag refining station disposed in the upper portion


32


of the vessel and the cold hearth station


40


is disposed in the lower portion


42


of the vessel. The vessel is preferably a double walled vessel having an inner wall


82


and an outer wall


84


. Between these two walls, a cooling liquid


86


, such as, for example, water is provided, as is conventional practice with some cold hearth apparatus. The cooling liquid


86


may be flowed to and through the flow channel between the inner wall


82


and outer wall


84


from supply means and through conventional inlet and outlet means which are conventional and which are not illustrated in the figures. The use of cooling liquid


86


to provide cooling to the walls of the cold hearth station


40


is necessary in order to provide cooling at the inner wall


82


and thereby to cause the skull


44


to form on the inner surface of the cold hearth structure.




The cooling liquid


86


is not essential to the operation of the electroslag refining or to the upper portion of the electroslag refining station


30


but such cooling may be provided to ensure that the liquid metal


46


will not make contact with the inner wall


82


of the containment structure because the liquid metal


46


could attack the wall


82


and cause some dissolution therefrom to contaminate the liquid metal of body


46


within the cold hearth station


40


. Also, in

FIG. 2

, a structural outer wall


88


is also illustrated. Such an outer wall may be made up of a number of flanged tubular sections


90


,


92


.




The cold finger structure is shown in detail in

FIG. 3

in its relation to the processing of the metal from the cold hearth structure and the delivery of liquid melt


46


from the cold hearth station


40


, as illustrated in

FIGS. 1 and 2

.

FIG. 3

shows the cold finger with the solid metal skull and with the liquid metal reservoir in place. By contrast,

FIG. 4

illustrates the cold finger structure without the liquid metal, or solid metal skull in order that more structural details may be provided and clarity of illustration may be achieved. Cold finger structures are not themselves novel structures and have been described in the literature (see for example the discussion in U.S. Pat. No. 5,348,566).




One structure useful in the present invention combines a cold hearth with a cold finger orifice so that the cold finger structure effectively forms part, and in the illustration of

FIG. 3

, the center lower part, of the cold hearth. This combination preserves the advantage of the cold hearth mechanism by permitting the purified alloy to form a skull, by its contact with the cold hearth, and thereby to serve as a container for the molten version of the same purified alloy. In addition, the cold finger orifice structure of station


180


of

FIG. 3

is employed to provide a more controllable generally funnel shaped skull


183


and particularly of a smaller thickness on the inside surface of the cold finger structure. As is evident from

FIG. 3

, the thicker skull


44


in contact with the cold hearth and the thinner skull


183


in contact with the generally funnel shaped cold finger structure are essentially continuous.




One reason why the skull


183


is thinner than


44


is that a controlled amount of heat may be put into the skull


183


and into the generally cone shaped portion of the liquid metal body


46


which is proximate the skull


183


by means of the induction heating coils


185


. The induction heating coil


185


is cooled by flow of a cooling liquid, such as, for example, water through the coolant and power supply


187


. Induction heating power supplied to the unit


187


from a power source


189


is shown schematically in FIG.


3


.




One significant advantage of the cold finger construction of the structure of station


180


is that the heating effect of the induction energy penetrates through the cold finger structure and acts on the body of liquid metal


46


as well as on the skull structure


183


to apply heat thereto. This is one of the features of the cold finger structure and it depends on each of the fingers of the structure being insulated from the adjoining fingers by an air or gas gap or by an insulating material. Hence the term CIG or cold wall induction guide tube mechanism.




This arrangement is clearly illustrated in

FIG. 4

where both the skull and the body of molten metal are omitted from the drawing for clarity of illustration. An individual cold finger


97


, as shown in

FIG. 4

, is separated from the adjoining finger


92


by a gap


94


, which may be provided with and filled with an insulating material such as a ceramic material or with an insulating gas. The details of the figure are fully disclosed in U.S. Pat. No. 5,348,566, assigned to the assignee of the present application, the disclosure of which is herein incorporated by reference.




Because it is possible to control the amount of heating and cooling passing from the induction coils


185


to and through the cold finger structure of station


180


, it is possible to adjust the amount of heating or cooling which is provided through the cold finger structure both to the skull


183


as well as to the generally cone shaped portion of the body


46


of molten metal in contact with the skull


183


.




As shown in

FIG. 4

, the individual fingers such as


90


and


92


of the cold finger structure are provided with a cooling fluid such as water by passing water into the receiving pipe


96


from a source not shown, and around through the manifold


98


to the individual cooling tubes such as


100


. Water leaving the end of tube


100


flows back between the outside surface of tube


100


and the inside surface of finger


90


to be collected in manifold


102


and to pass out of the cold finger structure through water outlet tube


104


. This arrangement of the individual cold finger water supply tubes such as


100


and the individual separated cold fingers such as


90


is essentially the same for all of the fingers of the structure so that the cooling of the structure as a whole is achieved by passing water in through inlet pipe


96


and out through outlet pipe


104


.




The net result of this action is best illustrated in

FIG. 3

where a stream


156


of molten metal is shown exiting from the cold finger orifice structure. This flow is maintained when a desirable balance is achieved between the input of cooling water and the input of heating electric power to and through the induction heating coils


185


and


135


.




The induction heating coils


85


of

FIG. 4

show a single set of coils operating from a single power supply


87


supplied with power from the power source


89


. In the structure of

FIG. 3

, two induction heating coils are employed, the first is placed adjacent the tapered portion of the funnel shaped cold finger device and supplies heat principally to the controllable skull


183


. A power source


189


supplies power to power supply


187


and this power supply furnishes the power to the set of coils


185


positioned immediately beneath the tapered portion of the funnel shaped cold finger structure. A second power source


139


furnishes power to power supply


137


and power is supplied from the source


137


to a set of coils


135


which are positioned along the vertical down spout portion of the cold finger apparatus to permit a control of the flow of molten metal from bath


46


through the vertical portion of the cold finger apparatus.




An increase in the amount of induction heating through coil


135


(see

FIG. 3

) can cause a remelting of the solidified plug of metal in the vertical portion of the cold finger apparatus and a renewal of stream


156


of molten metal through passageway


130


. When the stream


156


is stopped or slowed, there is a corresponding growth and thickness of the skull


128


in the vertical portion or neck of the funnel shaped cold finger apparatus.




The regulation of the amount of cooling water flowing to the cold finger apparatus itself as well as the flow of induction heating current through the coils


185


and


135


and particularly the coil


135


regulates the thickness of the thinner skull


128


and the thickness of skull


128


is one of several parameters which regulates the rate of flow of metal from the reservoir


46


, thus having an effect on the gas to metal ratio during atomization prior to the spray forming of the preform.




A further increase in the amount of induction heating power through the coil


135


can cause a desired electromagnetic effect, namely the electromagnetic repulsion of the liquid metal stream away from the passageway


130


. The electromagnetic restriction of the flow through the cold finger apparatus effectively results in an electromagnetic orifice that may be controlled and caused to fluctuate at high rates which in turn has the effect of enabling the flow rate of the stream therethrough to be rapidly varied, i.e. selectively increased or decreased. Thus, the power applied to the coil


135


has a direct influence on the rate of flow of metal from the reservoir


46


, thus having a direct effect on the gas to metal ratio during atomization and subsequently on the spray


228


impacting the preform


229


.




As mentioned above, when the rate of flow of metal from the cold hearth station


40


through the cold finger mechanism


180


is selectively increased or reduced, it is necessary to also increase or reduce the flow of the refining current passing through the body of refined metal


46


as well as through the slag


34


and through the electrode


24


. Such reduction in refining current has the effect of reducing the rate of melting of the electrode


24


at the upper surface of the slag


34


and in this way reducing the rate at which metal accumulates in the cold hearth


40


.




When the flow rate of stream


156


is increased, decreased or brought to a stop, such as, for example, through the enlargement of the thickness of the skull


128


in the vertical neck portion of the cold finger apparatus, the liquid metal


46


in the cold hearth, as well as the liquid slag


34


in the slag station, can be kept molten by selectively adjusting a current through the apparatus, in coordination with the requirements for the spray for the preform. However, when the stream is stopped, a sufficiently lower level of current is required, such that the reservoir


46


of molten metal remains molten and the slag bath


34


remains molten but the melting of the electrode at the upper surface of the slag bath


34


proceeds at a very low or negligible level so that the level of molten metal in cold hearth station


40


does not excessively build up.




In operation, as illustrated in

FIG. 1

, the ingot


24


of unrefined metal is processed in a single pass through the electroslag refining and related apparatus and through the cold hearth station


40


to form a continuous stream


156


of refined metal. The stream


156


formed by the processing is a stream of refined metal free of the oxide, sulfide and other impurities which can be removed by the electroslag refining of station


30


.




Depending on the application for the electroslag refining apparatus, there is a need to control the rate at which a metal stream


156


is removed from the cold finger orifice structure


130


. The rate at which such a stream of molten metal is drained from the cold hearth through the cold finger structure


180


is, at least partially, controlled by the cross-sectional area of the orifice


130


and by the hydrostatic head of liquid above the orifice. This hydrostatic head is the result of the column of liquid metal and of liquid slag which extends above the orifice of the cold finger structure


180


. The flow rate of liquid from the cold finger orifice or nozzle has been determined experimentally for a cylindrical orifice. This relationship is shown in

FIG. 5

for two different hydrostatic head heights. The lower plot defined by X's is for a two inch head of molten metal and the upper plot defined by +'s and o's is for a 10 inch head of molten metal. In

FIG. 5

, the flow rate of metal from the cold finger nozzle is given on the ordinate in pounds per minute. Two abscissa are shown in the figure—the lower is the nozzle area in square millimeters and the upper ordinate is the nozzle diameter in millimeters.




Based on the data plotted in

FIG. 5

, it is seen that for a nozzle area of 30 square millimeters, the flow rate in pounds per minute was found to be approximately 60 pounds per minute for the 10 inch hydrostatic head. For the 2 inch hydrostatic head, this nozzle area of 30 square millimeters gave the flow rate of approximately 20 pounds per minute.




What is made apparent from this experiment is that, if an electroslag refining apparatus, such as that illustrated in

FIG. 2

, is operated with a given hydrostatic head, a nozzle area can be selected and provided which permits an essentially constant rate of flow of liquid metal from the refining vessel so long as the hydrostatic head above the nozzle is maintained essentially constant. It is believed to be important in the operation of such an apparatus to establish and maintain control of the hydrostatic head, which is essentially constant during steady state operations. To provide such a constant hydrostatic head, it is important that the electroslag refining current flowing through the refining vessel be such that the rate of melting of metal from the ingot such as


24


be continuously adjusted to provide a rate of melting of ingot metal which corresponds to the rate of withdrawal of metal in stream


156


from the refining vessel. With the establishment of such control, maintenance of a constant hydrostatic head of two inches or more can achieved, by means, such as, for example, melt level sensing means.




In other words, one control on the rate at which the metal from ingot


24


is refined in the apparatus of

FIG. 1

is determined by the level of refining power supplied to the vessel from a source such as


74


of

FIG. 1. A

primary control, therefore, in adjusting the rate of ingot melting and, accordingly, the rate of introduction of metal into the refining vessel is the level of power supplied to the vessel.




In general, a steady state is desired in which the rate of metal melted and entering the refining station


30


as a liquid is equal to the rate at which liquid metal is removed as a stream


156


(see

FIG. 3

) through the cold finger structure and provided to the atomizer


231


for atomization into spray to be formed into a preform. Slight adjustments to increase or decrease the rate of melting of metal are made by adjusting the power delivered to the refining vessel from a power supply such as


74


. Also, in order to establish and maintain a steady state of operation of the apparatus, the ingot must be maintained in contact with the upper surface of the body of molten slag


34


and the rate of descent of the ingot into contact with the melt must be adjusted through control means within box


12


to ensure that touching contact of the lower surface of the ingot with the upper surface of the molten slag


34


is maintained.




The deep melt pool


46


within cold hearth station


40


is an advantage in the electroslag refining because a specific flow rate can be established from the reservoir of melt


46


through the flow path


130


(see

FIG. 3

) from the cold finger apparatus


180


.




Generally, control or stoppage of the flow through passageway


130


is accomplished by supplying or withdrawing heat from the melt and essentially increasing or decreasing the size of the skull


128


in the passage way


130


with stoppage occurring with the freezing the metal within the passageway


130


. In supplying or withdrawing heat from the melt, it will be appreciated that there are essentially two sources of heat for the metal within passageway


130


. One source is heat which is generated in the metal by operation of the coils


135


and


185


. The second source is the heat within the melt itself as it flows down from reservoir


46


. Although it is possible to stop heating the melt in passageway


130


by stopping the supply of power from power source


137


the metal will remain molten because molten metal is flowing down reservoir


46


to passageway


130


and brings with it the heat of fusion and a degree of superheat already present in the melt.




There are also a number of ways in which heat is removed from melt in passageway


130


. A primary source of heat removal and the one which causes the skull


128


to remain in place is the cooling accomplished by flow of water in the cold fingers, such as


100


. It is possible to increase or reduce the rate of cooling water flow through the cold fingers in order to increase or decrease the size of the skull


128


. Such increase or decrease in the size of the skull


128


will increase or decrease the flow rate of molten metal delivered to the atomization zone. Thus, one method of controlling the gas to metal ratio is to control the size of the skull


128


in passageway


130


to increase or decrease the flow rate of molten metal delivered to the atomization zone


237


.




An additional method for controlling the size of the skull


183


is to provide a source


190


of cold gas, such as, for example, via a gas supply pipe


192


, for directing the gas against the bottom surface


101


of the cold finger apparatus


180


. It is well known that high pressure gas will expand as it leaves the end of pipe


192


and will become spontaneously cooled to low temperatures of about minus


200


degrees centigrade or lower. Such high pressure gas cooling of the neck of the CIG structure can be very effective in rapidly removing heat from the structure and controlling the size of the skull


128


in passageway


130


to increase or decrease and thus increase or decrease the flow rate of molten metal delivered to the atomization zone or for causing a freeze up of melt in the passageway


130


.




There are accordingly a number of ways in which heat can be removed from molten metal in passageway


130


in order to solidify or freeze metal in the passageway and to control or block further flow through the passageway. Depending on the hydrostatic head within the cold hearth


40


and the hydrostatic head of slag in the station


30


, there will be greater or smaller tendency for metal to continue flowing through passageway


130


. Where the hydrostatic head is relatively small, an increase or decrease in the size of the skull


183


in passageway


130


or the complete blockage of passageway


130


can be achieved simply by increasing or decreasing heat through a combined manipulation of the induction heating from power unit


137


and adjusting the rate of ingot melting and, accordingly, the rate of introduction of metal into the refining vessel by controlling the level of power supply to the vessel.




Where the hydrostatic head is higher, one way in which the flow of metal through passageway


130


can be controlled is by placing a negative pressure on the electroslag refining station and the cold hearth station


40


. This may be accomplished, as indicated in

FIG. 1

, by providing an enclosure, such as enclosure


41


shown in phantom above station


30


, and exhausting gas from the enclosed structure in the direction of arrow


43


. In general, the hydrostatic head above the flow path


130


is lower when a run is completed and the hydrostatic head is at a lower value so that the application of relatively small negative pressure in the enclosure


41


can reduce the flow through passageway


130


and permit the cooling to control the size of the passageway


130


or to cause a freeze-up or blockage of the passageway


130


.




It will be appreciated that the heat regulating means, as discussed above, can be used in combinations, such as, for example, in conjunction with a processor or computer, for controlling the size of the passageway


130


and, subsequently, for controlling the flow rate of the metal stream delivered to the atomization zone


237


.




When either an increase or a decrease in the flow rate of molten metal or restart of the flow of metal within the passageway


130


is desired, the cooling is appropriately increased or reduced, induction heating through coil


135


is appropriately increased or reduced in order to control the size of the passageway


130


and is coordinated with the power provided to the ingot to control the hydrostatic head.




At the lowermost part of vessel


32


a controlled drain orifice


130


communicates with molten metal pool


46


. A stream of molten metal


156


is caused to flow from orifice


130


through a spray forming atomizer


231


. In one form, atomizer


231


comprises a hollow atomizer manifold with a central aperture


232


which is concentrically positioned to receive metal stream


156


therethrough. Atomizer


231


also includes a peripheral row of gas jets or orifices


225


in a peripherally continuous tapered or conical edge surface


226


. Atomizer


231


is connected to a source (not shown) of an inert gas under pressure, and the combination of the gas jet orifices


225


and conical surface


226


provides a plurality of gas streams


227


which converge at a downstream apex on the passing metal stream


156


. The controlled interaction of the gas jet streams


227


with metal stream


156


causes metal stream


156


to break down and be converted to an expanding spray plume or pattern


228


of small molten metal droplets.




Spray pattern


228


is directed against a collector or preform


229


to provide, for example, a billet of refined ingot metal or other ingot metal objects. Collector


229


may be a fixed or moving surface including a rotating surface such as the surface of a rotating cylinder or mandrel. The efficiency and effectiveness of deposition of molten metal spray


228


on a collector surface to provide a refined metal object is facilitated and improved when the spray pattern


228


may be angularly adjusted with respect to the collector. Angular adjustment also leads to improved density and microstructure of the refined metal product. Continuous and repetitive angular adjustment may also be utilized to provide an oscillating or scanning motion of the atomizer


231


.




In order to provide angular adjustment, atomizer


231


may be mounted for angular adjustment rotation about a transverse axis so that the plane of the atomizer is not perpendicular to the metal stream


156


. Also, by mounting atomizer


231


for angular adjustment rotation, the defined spray pattern


228


may be more advantageously matched to different surface configurations of collector or preform


229


as compared to a non-adjustable atomizer where the spray pattern is fixedly directed to a limited area of the collector, a condition which may require a complex adjustable mounting of a collector which, for example, may weigh from about 50 lbs. to about 15 tons.




One simple and convenient adjustable mounting for atomizer


231


may comprise a pair of diametrically opposed radially extending stub shafts


233


with atomizer


231


therebetween.




In the past, there have been definite limits to the degree of angular adjustment of atomizer


231


. For example, metal stream


156


is a smooth cohesive stream passing concentrically through atomizer


231


with a predetermined atomizer clearance with respect to overall structure of atomizer


231


and its operating characteristics including the use of gas jets from orifices


225


or projecting nozzles.




In a recently issued patent, U.S. Pat. No. 5,366,206, the disclosure of which is hereby incorporated by reference, the spray


228


forming atomizer


231


, disclosed therein, had a defined aperture elongated and non-circular such as an elliptical or oval configuration. An elongated, ovate, or elliptical aperture provides an extended range of angular adjustment of an atomizer


231


while maintaining a satisfactory central aperture exposure for the passing metal stream


156


during spray forming.




Such an elongated non-circular aperture spray forming atomizer is illustrated in FIG.


6


. The atomizer


31


comprises a hollow tubular manifold ovately formed to define a central and elongated aperture


232


, elliptical, for example and is fitted with and supported by diametrically opposite shafts


233


so that atomizer


231


may be rotated about the common axis of shafts


233


, i.e. about a transverse and minor axis of the elliptical aperture


232


. One or both shafts


233


may be hollow or tubular to also serve as gas supply conduits for atomizer


231


.




The ability to selectively adjust the direction of the molten metal spray pattern


228


provides a greater choice in the position and kind of collector or preform object which is employed. For example, in order to avoid the large bending moments in correspondingly large billets, e.g. approaching 20,000 lbs., it is desirable to orient the billet in a vertical position. Ordinarily, the usual metal melting structure, such as electroslag assembly,

FIG. 1

, also occupies a vertical position and supplies a vertical melt stream


156


. Accordingly, some means is required to provide extended angular adjustability for atomizer


231


,

FIG. 6

, in order to direct spray pattern


228


at selectively advantageous angles to a vertical billet preform. The elongated, oval, or elliptical aperture in the atomizer


231


serves as such means. Very large and cumbersome preforms may be placed in a vertical position where bending moments are minimal and subjected to an advantageously directed spray pattern


228


.




As shown in

FIG. 7

, the molten metal stream


156


passes through an atomizer


231


(

FIG. 6

) for conversion into a molten metal plume or spray pattern


228


(FIG.


2


). As illustrated, the atomizer


231


is angularly adjustable about a transverse axis so that it is tilted from its horizontal position, from the viewer's perspective. Maximum adjustment angle is achieved without interference between the atomizer and the passing molten metal stream because of the elongated aperture


213


in atomizer


231


which permits an increased angular adjustment over a circular atomizer. The oval or elliptical aperture


213


provides ample clearance for molten metal stream


156


to provide a gas jet impact or atomization zone


217


for a molten metal spray pattern


228


of increased angular adjustment or deflection.




As illustrated in

FIG. 7

, a major elongation is not required to obtain the benefits of increasing the angle of adjustment without ring/metal stream interference. Consequently the atomizer used, in the illustration of the present invention, provides maximum advantage where the space available may be at a minimum. The oval or elliptical atomizer


231


(

FIG. 2

) is supported for angular adjustment rotation about the minor axis of an elliptical aperture


232


, i.e. across the illustrated shaft supports


233


to take maximum advantage of the extended range of adjustment provided by the elliptical configuration of aperture


232


. Various rotational adjustment means may be attached to one or both shafts


233


for remote electrical or mechanical operation.




The above configuration provided an improved spray forming atomizing for converting a molten metal stream, passing through the atomizer, into a molten metal spray


228


. An elongated aperture in the atomizer provided increased angular adjustment of the spray pattern for increased spray


228


deposition effectiveness. Ovate and other elongated aperture configurations may be considered to have major and minor transverse axis dimensions, one of which is longer than the other resulting in what may be defined as providing more clearance, in one direction for the passing metal stream than in the same direction if the atomizer were axially rotated 90°.




Referring again to

FIG. 2

, it may be the case that the atomized molten metal spray


228


impacts an area on the large preform


229


that is substantially less than the cross-sectional area of the preform


229


. In such a case, it is necessary to manipulate either the spray forming atomizer


231


, the preform


229


, or both, beneath the spray


228


to achieve a uniform build up of atomized and reconsolidate material on the preform


229


.




For example, the atomizer


231


may be caused to rock, or “scan” about an axis perpendicular to the axis of the preform


229


while, simultaneously, the preform


229


is caused to rotate beneath the spray


228


and withdraw from the spray


228


at a rate equal to the rate at which material is added to the top of the preform. A steady state operation is accomplished and the process can operate continuously for an extended period of time. In those cases where the preform


229


is substantially larger than the impinging atomized molten metal spray


228


, it has been found experimentally that undesirable thermal transients may occur in the resulting metal preform


229


. More particularly, the temperature of the preform


229


at the center line may remain at an elevated temperature for a period of time sufficient to allow undesired metallurgical processes to occur such as, for example, grain growth.




In the past, the gas-to-metal ratio (GMR) has been statically adjusted so as to eliminate the undesired thermal transients at the center line of the preform


229


. Unfortunately, the resulting cooler spray


228


causes a separate, but equally undesired, thermal transient at the outer diameter which gives rise to other metallurgical defects, typically porosity. Statically adjusting the GMR to satisfy the conflicting requirements of the center line and the outer diameter of the preform


229


has, in the past, limited the maximum diameter preform


229


that can be obtained with the process.




Since preform


229


diameter directly effects the process throughput and thus, process economics, it is desirable to achieve as large a diameter as possible. One method to achieve the higher diameter is to manipulate the GMR with scan angle such that the spray


228


enthalpy is optimized for the location on the preform


229


onto which it will be attached. Typically, this requires a cooler spray


228


at the centerline, and a hotter spray


228


at the outer diameter. Previous attempts at varying the GMR have targeted the variation in gas pressure, thus varying the quantity of gas applied to the atomization process.




The present invention varies the GMR by accomplishing the controlled variation in the metal flow rate, thus, varying the flow rate of the metal supplied to the atomization process in order to vary the GMR. In order to be effective, the metal flow rate must be modulated in coordination with the scan angle of the atomizer


231


to ensure that the appropriate spray


228


conditions exist at the appropriate geometric locations on the preform


229


, including the correct GMR.




As mention above, in spray forming, the spray


228


is scanned across a revolving substrate to build a uniform layer. As it becomes necessary to enlarge the diameter of the preform


229


, it becomes increasingly necessary to control the local temperature of the spray


228


. A hot spray


228


is desired near the outer diameter, a cool spray


228


is desired at the centerline. Thus, controlling the GMR by varying the rate of flow of the molten stream


156


to the atomization zone in coordination with or as a function of scan angle is one method to optimize the subsequent heat transfer conditions of the spray on the preform.




It is known that the temperature of the metal stream is a prime variable in determining the temperature of the substrate on the spray formed preform


229


. For example, an about 25° C. change in the superheat of the metal entering the atomization zone


237


can change temperature of the spray at the preform by about 5% of the freezing range.




In the past, it was not practical or desirable to vary the temperature of the metal stream at the high frequencies (1-50 Hz) required in spray forming because a large mass of metal must be effected in conventional melting systems other than that described in the present application. However, the cold-walled induction guide does allow such high frequency variation because the energy is applied to a relatively small volume of metal. A ten percent (10%) variation in power can result in a change in the superheat of approximately 10° C. which, in turn, can effect the temperature of the substrate on the spray formed preform


229


.




Such controlled power variation is useful during spray forming to control the temperature of the spray


228


emanating from the atomization zone and impacting on the preform


229


. Specifically, by controlling the flow rate and/or the temperature of the stream of metal exiting the cold-walled induction guide orifice


130


, along with other variable and controllable parameters, it is possible to ensure a relatively hotter spray


228


near the outer diameter and a relatively cooler spray


228


at and proximate the centerline of the preform


229


. By modulating the power output to the cold-walled induction guide in coordination with the oscillation angle of the scanning atomizer


231


such that the flow rate of the flowing metal is appropriately controlled, and thus, the gas to metal ratio, and in coordination with the scan angle of the atomizer


231


, a near optimum preform


229


can be formed.




It will also be appreciated that the induction heating power through the coil


135


, as discussed above, can cause a desired electromagnetic effect, namely the electromagnetic repulsion of the liquid metal stream away from the passageway


130


and can be used so that the effective size of the passageway


130


can be controlled such that the rate of metal delivered to the atomization zone or that freeze-up of metal within passageway


130


can be accomplished. The electromagnetic restriction of the flow through the cold finger apparatus effectively results in an electromagnetic orifice that may be controlled and caused to fluctuate at high rates resulting in a high rate of fluctuation in the metal flow rate from the passageway


130


to the atomization zone


237


. This high rate of fluctuation provides a means for rapidly varying the metal flow rate supplied to the atomization zone and subsequently, when coordinated with the atomizer scan angle relative to the preform, control of both the amount and the temperature of the spray impacting the preform. It should be understood that, since the operating parameters differ for various geometries, materials and the like, those skilled in the art should be able to design an induction coil and associated power supply or other functionally equivalent means to accomplish the above.




To obtain the desired effect of a varying GMR with preform scan angle, it may be necessary to coordinate the induction power with the spray scan angle using an appropriate control system, such as, for example, a computer. It may further be necessary to determine the temperature of the resulting preform using an appropriate temperature measuring means, such as, for example, an optical pyrometer adjusted such that a series of temperature readings are sent to the computer. Alternatively, a video imaging system, appropriately calibrated to send the spatial variation in temperature on the preform to the computer may be employed. The measured temperature is then used as a parameter for manipulating the induction power provided the coils to selectively increase or decrease the effective diameter of the passageway


130


coordinated and controlled by the computer. Such control system provides for spray temperature control so important in the spray forming of preforms, as discussed above. An appropriate control system could include any number of well know systems which a person skilled in the art could modify and implement to effectuate the controlled spray forming of a preform by varying the GMR of the spray according to the appropriate scan angle.




Best spray forming results are believed obtained when the size of the spray pattern impacting the preform/collector is substantially smaller than the size of the overall preform/collector and the spray is scanned across the surface of the preform/collector and when the gas-to-metal ratio is varied in the atomization zone in order to apply spray having the desired conditions at the various locations on the preform/collector.




While the systems contained herein constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to these precise systems, and that changes may be made therein without departing from the scope of the invention which is defined in the appended claims.



Claims
  • 1. A system for controlling the flow of melt from a cold wall induction guide tube mechanism comprising:a funnel shaped cold wall induction guide tube mechanism including a neck having an exit orifice; a skull of melt operatively formed in the mechanism; a reservoir of melt above the mechanism; a stream of melt exiting the exit orifice of the mechanism; means, operatively positioned relative to the mechanism, for dynamically controlling the temperature of the neck of the mechanism at a plurality of cycles per second to correspondingly vary the size of the skull in the neck of the mechanism, wherein the flow of melt from the exit orifice of the mechanism is selectively increased or decreased thereby controlling the rate of the flow of melt from the mechanism.
  • 2. The system of claim 1 wherein the temperature controlling means comprises an induction heater.
  • 3. The system of claim 1 wherein the temperature controlling means comprises a cooling gas.
  • 4. A system for controlling the spray from an atomization zone for impacting a preform during the spray forming of the preform comprising:a cold wall induction guide tube mechanism including an orifice having a diameter; a reservoir of melt operatively connected to the mechanism; a stream of melt exiting the orifice; a skull of melt operatively formed in the cold wall induction guide tube mechanism; means, operatively connected to the cold wall induction guide tube mechanism, for controlling the diameter of the orifice such that the flow rate of the melt from the orifice is selectively varied; means, operatively positioned below the orifice, for forming a preform; an atomizer, operatively positioned between the orifice and the preform forming means, for atomizing the melt into metal spray in said atomization zone; means, operatively connected to the atomizer, for providing a substantially constant gas mass flow rate to the atomizer; and means, operatively connected to the diameter controlling means and the reservoir of melt, for selectively varying said orifice melt flow rate at a plurality of cycles per second to correspondingly dynamically vary the gas-to-metal ratio in the atomization zone.
  • 5. The system of claim 4 wherein the diameter controlling means further comprises:induction heating means, operatively positioned proximate the mechanism orifice, for transferring heat to the melt in the mechanism.
  • 6. The system of claim 4 wherein the diameter controlling means further comprises:electromagnetic means, operatively positioned proximate the mechanism orifice, for electromagnetically repulsing the liquid melt away from the interior surfaces of the orifice.
  • 7. The system of claim 4 further comprising:a hydrostatic head of molten metal above the cold finger orifice.
  • 8. The system of claim 4 further comprising:means, operatively connected to an ingot, for regulating the hydrostatic head of molten metal above the cold finger orifice.
  • 9. The system of claim 4 wherein said gas-to-metal ratio controlling means are operatively connected to a heat regulating means, the orifice diameter controlling means, a hydrostatic head regulating means and the gas providing means, for selectively controlling the gas-to-metal ratio in the atomization zone.
  • 10. An electroslag refining assembly including a reservoir of molten metal and an exit orifice in the reservoir through which a molten metal stream exits from the reservoir;induction coil means for induction heating of the mechanism; a skull of melt in the mechanism; a stream of the melt exiting the bottom of the mechanism; and means, operatively connected to the induction coil means, for selectively increasing and reducing the induction heating power supplied to the mechanism at a plurality of cycles per second to correspondingly vary the rate of flow of the melt exiting the bottom of the mechanism; a spray forming atomizer, operatively positioned relative the exit orifice, for generating a spray pattern of metal droplets; and mounting means, operatively connected to the spray forming atomizer and a gas supply means, for directing the spray pattern of metal droplets toward a perform.
  • 11. The electroslag refining assembly of claim 10 wherein the spray forming atomizer further comprises:a manifold for receiving gas and having an aperture formed therein for passing the stream of melt therethrough; a plurality of gas jets, operatively positioned in the manifold for directing the gas through the gas jets so as to engage the stream wherein a spray pattern of metal droplets is produced, the manifold aperture having different radial dimensions from the center thereof; and mounting means, operatively connected to the manifold, for angular adjustment about a transverse axis of the aperture.
  • 12. A molten metal assembly comprising:a reservoir of molten metal; an exit orifice operatively positioned in the reservoir; a skull of melt formed in the reservoir; a stream of molten metal exiting the bottom of the reservoir; means, operatively connected to the exit orifice, for selectively heating and cooling the stream passing through the reservoir such that the molten metal flow rate is controlled; a spray forming atomizer, operatively positioned relative the exit orifice, for generating a spray pattern of droplets; mounting means, operatively connected to the spray forming atomizer and a gas supply means, for directing the atomizer at a varying scan angle such that the spray pattern of droplets impact a preform; and wherein said metal flow rate control means are effective to vary said metal flow rate in coordination with said varying scan angle.
  • 13. A system for controlling the spray from an atomization zone for impacting a preform during the spray forming of the preform comprising:an electroslag refining station; a cold hearth station having molten metal therein operatively positioned relative to the electroslag refining station; a cold hearth dispensing station including a cold finger orifice, operatively positioned relative to the cold hearth station, for dispensing the molten metal therefrom; a skull operatively formed in the cold hearth and the cold finger orifice; induction coils, operatively positioned proximate the cold finger orifice, for providing heat; a hydrostatic head of molten metal above the cold finger orifice; means, operatively connected to the induction coils, for regulating the heat transmitted from the coils to the cold finger orifice; means, operatively connected to an ingot, for regulating the hydrostatic head of molten metal above the cold finger orifice; means, operatively connected to the heat regulating means, for controlling the diameter of the orifice such that the flow rate of the melt from the orifice is selectively varied; means, operatively positioned below the orifice, for forming a preform; an atomizer, operatively positioned between the orifice and the preform forming means, for converting the melt into metal spray; means, operatively connected to the atomizer, for providing gas at a substantially constant gas pressure to the atomizer; and means, operatively connected to the heat regulating means, the orifice diameter controlling means, the hydrostatic head regulating means and the gas providing means, for selectively varying said orifice melt flow rate at a plurality of cycles per second to correspondingly vary the gas-to-metal ratio in the atomization zone.
  • 14. The system of claim 13 wherein the diameter controlling means further comprises:induction heating means, operatively positioned proximate the mechanism orifice, for transferring heat to the melt in the mechanism.
  • 15. The system of claim 13 wherein the diameter controlling means further comprises:electromagnetic means, operatively positioned proximate the mechanism orifice, for electromagnetically repulsing the liquid melt away from the interior surfaces of the orifice.
  • 16. A system for refining a metal ingot comprising:means for electroslag refining said ingot to produce a discharge stream of refined liquid metal; means for injecting an atomization gas to impinge said stream for spray forming a solidified spray deposit thereof on a billet; and means for dynamically varying discharge flow rate of said stream at a plurality of cycles per second relative to a flow rate of said atomization gas to correspondingly vary a gas-to-metal ratio therebetween.
  • 17. A system according to claim 16 further comprising:means for rotating said billet; means for scanning said injected atomization gas at an oscillating scan angle; and said stream discharge varying means being further effective to vary said discharge flow rate in coordination with said oscillating scan angle.
  • 18. A system according to claim 17 wherein said stream discharge varying means are further effective to vary said gas-to-metal ratio to increase temperature of said stream as said billet increases in diameter.
  • 19. A system according to claim 18 wherein said spray forming means are effective to maintain constant delivery rate of said atomization gas.
CROSS REFERENCE TO RELATED APPLICATION

The present systems invention is related to co-pending method invention in patent application Ser. No. 08/537,963, filed Oct. 2, 1995.

US Referenced Citations (24)
Number Name Date Kind
2837790 Rozian Jun 1958
3356489 Feichtinger Dec 1967
3519059 Voskoboinikov et al. Jul 1970
3650518 Moffatt Mar 1972
3779743 Olsson et al. Dec 1973
3817503 Lafferty et al. Jun 1974
3826301 Brooks Jul 1974
3868987 Galey et al. Mar 1975
3909921 Brooks Oct 1975
3951577 Okayama et al. Apr 1976
3988084 Esposito et al. Oct 1976
4575325 Duerig et al. Mar 1986
4619597 Miller Oct 1986
4619845 Ayers et al. Oct 1986
4631013 Miller Dec 1986
4779802 Coombs Oct 1988
4801412 Miller Jan 1989
4926923 Brooks et al. May 1990
5004153 Sawyer Apr 1991
5160532 Benz et al. Nov 1992
5196049 Coombs et al. Mar 1993
5348566 Sawyer et al. Sep 1994
5366204 Gigliotti, Jr. et al. Nov 1994
5366206 Sawyer et al. Nov 1994