Embodiments of the subject matter described herein relate generally to fluid infusion devices for delivering a medication fluid to the body of a user. More particularly, embodiments of the subject matter relate to systems for managing pressure in a fluid reservoir chamber of a fluid infusion device.
Certain diseases or conditions may be treated, according to modern medical techniques, by delivering a medication or other substance to the body of a user, either in a continuous manner or at particular times or time intervals within an overall time period. For example, diabetes is commonly treated by delivering defined amounts of insulin to the user at appropriate times. Some common modes of providing insulin therapy to a user include delivery of insulin through manually operated syringes and insulin pens. Other modern systems employ programmable fluid infusion devices (e.g., insulin pumps) to deliver controlled amounts of insulin to a user.
A fluid infusion device suitable for use as an insulin pump may be realized as an external device or an implantable device, which is surgically implanted into the body of the user. External fluid infusion devices include devices designed for use in a generally stationary location (for example, in a hospital or clinic), and devices configured for ambulatory or portable use (to be carried by a user). External fluid infusion devices may establish a fluid flow path from a fluid reservoir to the patient via, for example, a suitable hollow tubing. Generally, in order to advance fluid from the fluid reservoir, a pressure is applied to the fluid to direct the fluid out of the reservoir and through the hollow tubing.
Accordingly, it is desirable to provide systems for managing pressure in a fluid reservoir chamber of a fluid infusion device. Furthermore, other desirable features and characteristics will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background.
In one embodiment, a fluid infusion device is provided. The fluid infusion device comprises a housing having a chamber for receiving a fluid reservoir. The fluid infusion device also comprises a drive system contained within the housing. A portion of the drive system is movable for dispensing fluid from the fluid reservoir. The fluid infusion device comprises a pressure management system at least partially defined in the portion of the drive system to vent air from the chamber.
According to one embodiment, a fluid infusion device is also provided. The fluid infusion device comprises a housing having a chamber and a fluid reservoir contained within the chamber of the housing. The fluid infusion device also comprises a connector body coupled to the housing and the fluid reservoir to define a fluid flow path out of the housing. The connector body includes one or more vents to vent air from the chamber. The fluid infusion device comprises a drive system contained within the housing and coupled to the fluid reservoir. The drive system includes a slide movable relative to the fluid reservoir to dispense fluid from the fluid reservoir. The fluid infusion device further comprises a pressure management system at least partially defined in the portion of the drive system to vent air from the chamber.
Also provided is a fluid infusion device. The fluid infusion device includes a housing having a reservoir chamber that receives a fluid reservoir and a pump chamber. The fluid infusion device includes a drive system contained within the pump chamber of the housing. The drive system includes a slide that is movable relative to the fluid reservoir. The slide includes a proximal slide end that cooperates with a portion of the fluid reservoir to dispense fluid from the fluid reservoir, and the proximal slide end has a projection. The fluid infusion device includes a seal disposed between the reservoir chamber and the pump chamber that defines an opening, and the slide is movable relative to the seal through the opening. The fluid infusion device includes a pressure management system defined in the projection of the slide. The pressure management system includes at least one bore defined through the projection. The at least one bore is spaced a distance apart from a perimeter of the projection to vent air from the reservoir chamber into the pump chamber.
Further provided is a fluid infusion device. The fluid infusion device includes a housing having a reservoir chamber that receives a fluid reservoir and a pump chamber. The fluid infusion device includes a drive system contained within the pump chamber of the housing. The drive system includes a slide that is movable relative to the fluid reservoir. The slide includes a proximal slide end that cooperates with a portion of the fluid reservoir to dispense fluid from the fluid reservoir, and the proximal slide end has a projection with a counterbore. The fluid infusion device includes a seal disposed between the reservoir chamber and the pump chamber that defines an opening and the slide is movable relative to the seal through the opening. The fluid infusion device includes a pressure management system defined in the counterbore of the projection of the slide. The pressure management system includes at least one bore defined through the counterbore. The at least one bore is spaced a distance apart from a perimeter of the counterbore to vent air from the reservoir chamber into the pump chamber.
Also provided is a fluid infusion device. The fluid infusion device includes a housing having a reservoir chamber that receives a fluid reservoir and a pump chamber. The fluid infusion device includes a drive system contained within the pump chamber of the housing. The drive system includes a slide that is movable relative to the fluid reservoir. The slide includes a proximal slide end that cooperates with a portion of the fluid reservoir to dispense fluid from the fluid reservoir, and the proximal slide end has a projection with a counterbore. The fluid infusion device includes a seal disposed between the reservoir chamber and the pump chamber that defines an opening and the slide is movable relative to the seal through the opening. The fluid infusion device includes a pressure management system defined in the projection of the slide. The pressure management system includes at least one bore defined through a surface of the counterbore and a membrane. The at least one bore is spaced a distance apart from a perimeter of the counterbore to vent air from the reservoir chamber into the pump chamber and the membrane is coupled to the surface of the counterbore to substantially cover the at least one bore.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Certain terminology may be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “top”, “bottom”, “upper”, “lower”, “above”, and “below” could be used to refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” could be used to describe the orientation and/or location of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second”, and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
The following description relates to a fluid infusion device of the type used to treat a medical condition of a user. The infusion device can be used for infusing fluid into the body of a user. The non-limiting examples described below relate to a medical device used to treat diabetes (more specifically, an insulin pump), although embodiments of the disclosed subject matter are not so limited. Accordingly, the infused medication fluid is insulin in certain embodiments. In alternative embodiments, however, many other fluids may be administered through infusion such as, but not limited to, disease treatments, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like. For the sake of brevity, conventional features and characteristics related to infusion system operation, insulin pump and/or infusion set operation, fluid reservoirs, and fluid syringes may not be described in detail here. Examples of infusion pumps and/or related pump drive systems used to administer insulin and other medications may be of the type described in, but not limited to: U.S. Patent Publication Nos. 2009/0299290 and 2008/0269687; U.S. Pat. Nos. 4,562,751; 4,678,408; 4,685,903; 5,080,653; 5,505,709; 5,097,122; 6,485,465; 6,554,798; 6,558,351; 6,659,980; 6,752,787; 6,817,990; 6,932,584; 7,621,893; 7,828,764; and 7,905,868; which are each incorporated by reference herein.
With reference to
With reference to
The power supply 110 is any suitable device for supplying the fluid infusion device 100 with power, including, but not limited to, a battery. In one example, the power supply 110 can be removable relative to the housing 106, however, the power supply 110 can be fixed within the housing 106. The controller 112 is in communication with the user interface 102, display 104, power supply 110 and drive system 114. The controller 112 controls the operation of the fluid infusion device 100 based on patient specific operating parameters. For example, the controller 112 controls the supply of power from the power supply 110 to the drive system 114 to activate the drive system 114 to dispense fluid from the fluid reservoir system 118. Further detail regarding the control of the fluid infusion device 100 can be found in U.S. Pat. Nos. 6,485,465 and 7,621,893, the relevant content of which was previously incorporated herein by reference.
The drive system 114 cooperates with the fluid reservoir system 118 to dispense the fluid from the fluid reservoir system 118. In one example, the drive system 114 includes a motor 122, a gear box 124, a drive screw 126 and a slide 128. The motor 122 receives power from the power supply 110. In one example, the motor 122 is an electric motor. The motor 122 includes an output shaft 130, which is coupled to the gear box 124. In one embodiment, the gear box 124 is a reduction gear box. The gear box 124 includes an output shaft 132, which is coupled to the drive screw 126.
The drive screw 126 includes a generally cylindrical distal portion 134 and a generally cylindrical proximal portion 136. The distal portion 134 has a diameter, which can be larger than a diameter of the proximal portion 136. The distal portion 134 includes a plurality of threads 138. The threads 138 are generally formed about an exterior circumference of the distal portion 134. The proximal portion 136 is generally unthreaded, and can be sized to be received within a portion of the slide 128. Thus, the proximal portion 136 can serve to align the drive screw 126 within the slide 128 during assembly, for example.
With continued reference to
The plurality of threads 144 of the slide 128 are formed along an interior surface 128a of the slide 128 between the distal slide end 140 and the proximal slide end 142. Generally, the threads 144 do not extend into the projection 146 of the proximal slide end 142. The threads 144 are formed so as to threadably engage the threads 138 of the drive screw 126. Thus, the rotation of the drive screw 126 causes the linear translation of the slide 128.
In this regard, the slide 128 is generally sized such that in a first, retracted position, the motor 122, the gear box 124 and the drive screw 126 are substantially surrounded by the slide 128. The slide 128 is movable to a second, fully extended position through the operation of the motor 122. The slide 128 is also movable to a plurality of positions between the first, retracted position and the second, fully extended position via the operation of the motor 122. Generally, the operation of the motor 122 rotates the output shaft 130, which is coupled to the gear box 124. The gear box 124 reduces the torque output by the motor 122, and the output shaft 132 of the gear box 124 rotates the drive screw 126, which moves along the threads 144 formed within the slide 128. The movement or rotation of the drive screw 126 relative to the slide 128 causes the movement or linear translation of the slide 128 within the housing 106. The advancement of the slide 128 into a portion of the fluid reservoir system 118 causes the fluid reservoir system 118 to dispense fluid.
With reference to
In one example, with reference to
In one example, with reference to
With reference to
In this regard, as the slide 128 moves relative to the seal 116 and advances into the fluid reservoir system 118, one or more of the air conduits 148 are exposed to enable air from the fluid reservoir system 118 to pass through the one or more air conduits 148 into the housing 106. In other words, with reference to
With reference back to
In one example, the connector body 154 accommodates the fluid path from the fluid reservoir 156 to a tube 158. The tube 158 represents the fluid flow path that couples the fluid reservoir 156 to an infusion unit that couples the tube 158 to the patient (not shown). In one example, the tube 158 is coupled to the fluid reservoir 156 via a connector needle 160, which is coupled to the connector body 154 and pierces a septum 162 associated with the fluid reservoir 156. It should be noted, however, that any suitable technique could be employed to create a fluid path from the fluid reservoir 156 to the patient, and thus, this embodiment is merely exemplary.
With reference to
With reference back to
The stopper 172 is disposed within the barrel 170. The stopper 172 is movable within and relative to the barrel 170 to dispense fluid from the fluid reservoir 156. When the barrel 170 is full of fluid, the stopper 172 is adjacent to the distal barrel end 174, and the stopper 172 is movable to a position adjacent to the proximal barrel end 176 to empty the fluid from the fluid reservoir 156. In one example, the stopper 172 is substantially cylindrical, and includes a distal stopper end 178, a proximal stopper end 180, at least one friction element 182 and a counterbore 184 defined from the distal stopper end 178 to the proximal stopper end 180.
The distal stopper end 178 is open about a perimeter of the distal stopper end 178, and thus, is generally circumferentially open. The proximal stopper end 180 is closed about a perimeter of the proximal stopper end 180 and is generally circumferentially closed. The proximal stopper end 180 includes a slightly conical external surface, however, the proximal stopper end 180 can be flat, convex, etc. The at least one friction element 182 is coupled to the stopper 172 about an exterior surface 172a of the stopper 172. In one example, the at least one friction element 182 comprises two friction elements, which include, but are not limited to, O-rings. The friction elements 182 are coupled to circumferential grooves 186 defined in the exterior surface 172a of the stopper 172.
The counterbore 184 receives the projection 146 of the slide 128 and the movement of the slide 128 causes the shoulder 147 of the slide 128 to contact and move the stopper 172. In one example, the counterbore 184 includes threads 188, however, the projection 146 of the slide 128 is not threadably engaged with the stopper 172. Thus, the threads 188 illustrated herein are merely exemplary.
With continued reference to
As the pressure increases in the reservoir chamber 106b, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference now to
In this example, the pressure management system 220 is defined in a slide 228 for use with the fluid infusion device 100. The slide 228 is substantially cylindrical and includes the distal slide end 140, a proximal slide end 242 and the plurality of threads 144. The proximal slide end 242 includes a projection 246, which cooperates with the fluid reservoir system 118 to dispense the fluid from the fluid reservoir system 118. In one example, the projection 246 can have a diameter that is smaller than a diameter of a remainder of the slide 228.
The pressure management system 220 is defined on the projection 246 of the slide 228. In one example, the pressure management system 220 comprises one or more bores 248, which are defined in and through an uppermost surface 246a of the projection 246. The bores 248 may be defined through the uppermost surface 246a in any desired pattern, and in one example, may be defined through the uppermost surface 246a so as to be spaced apart from or inward from an outer circumference of the uppermost surface 246a. In addition, it should be noted that while three bores 248 are illustrated herein, the pressure management system 220 can include any number of bores 248. The bores 248 can have any desired size or diameter, and the size or diameter may be varied amongst the bores 248 to enable tuning of the pressure management system 220 to the desired air flow rate. Moreover, while the bores 248 are illustrated herein as being cylindrical or with a circular perimeter, the bores 248 can have any desired polygonal shape, such as triangular or pentagonal, for example. It should be noted that the use of the projection 246 is merely exemplary, as the slide 228 need not include the projection 246 such that the proximal slide end 242 can be flat or planar, with the pressure management system 220 defined through the flat or planar end. Further, while the bores 248 are illustrated and described herein as being defined in the slide 228, the bores 248 may be defined at any desirable location to enable venting of the fluid reservoir 156, for example, the bores 248 may be defined in and through the seal 116. Thus, the location of the bores 248 is merely exemplary.
As discussed above, with the slide 228 assembled within the fluid infusion device 100, in order to dispense fluid from the fluid reservoir 156, the drive screw 126 rotates and the slide 228 translates linearly to move the stopper 172 (
As the pressure increases in the reservoir chamber 106b, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference to
In this example, the pressure management system 320 is defined in a slide 328 for use with the fluid infusion device 100. The slide 328 is substantially cylindrical and includes the distal slide end 140, a proximal slide end 342 and the plurality of threads 144. The proximal slide end 342 includes a projection 346, which cooperates with the fluid reservoir system 118 to dispense the fluid from the fluid reservoir system 118. In one example, the projection 346 can have a diameter that is smaller than a diameter of a remainder of the slide 328.
The pressure management system 320 is defined on the projection 346 of the slide 328. In one example, the pressure management system 320 comprises one or more bores 348 and a membrane 350. In this example, the projection 346 includes an annular counterbore 352 defined in a proximalmost surface 346a. It should be noted that the use of the projection 346 is merely exemplary, as the slide 328 need not include the projection 346 such that the proximal slide end 342 can be flat or planar, with the annular counterbore 352 defined through the flat or planar end.
The bores 348 are defined in and through a surface 352a of the annular counterbore 352. The bores 348 may be defined through the surface 352a in any desired pattern, and in one example, may be defined through the surface 352a so as to be spaced apart from or inward from a perimeter or circumference of the annular counterbore 352. In addition, it should be noted that while a single bore 348 is illustrated herein, the pressure management system 320 can include any number of bores 348. The bore 348 can have any desired size or diameter, and the size or diameter may be varied to enable tuning of the pressure management system 320 to the desired air flow rate. Moreover, while the bore 348 is illustrated herein as being cylindrical or with a circular perimeter, the bore 348 can have any desired polygonal shape, such as triangular or pentagonal, for example.
The membrane 350 is coupled to the annular counterbore 352. In one example, the membrane 350 is coupled to the annular counterbore 352 so as to substantially cover the surface 352a, and thus, the one or more bores 348. The membrane 350 is coupled to the annular counterbore 352 through any suitable technique, including, but not limited to, ultrasonic welding of the membrane 350 to the surface 352a. Generally, the membrane 350 is hydrophobic, such that air may pass through the membrane, but fluid, such as water, does not.
With the slide 328 assembled within the fluid infusion device 100, in order to dispense fluid from the fluid reservoir 156, the drive screw 126 rotates, the slide 328 translates linearly. The advancement of the slide 328 decreases the volume of the reservoir chamber 106b, which may result in an increase in the pressure in the reservoir chamber 106b. As the pressure increases in the reservoir chamber 106b, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference now to
In this example, the pressure management system 420 is defined in a portion of the housing 106 of the fluid infusion device 100. For example, the pressure management system 420 is defined in a reservoir chamber 422 of the housing 106 that receives the fluid reservoir 156 of the fluid reservoir system 118 (
In addition, it should be noted that while five bores 448 are illustrated herein, the pressure management system 420 can include any number of bores 448. The bores 448 can have any desired size or diameter, and the size or diameter may be varied amongst the bores 448 to enable tuning of the pressure management system 420 to the desired air flow rate. Moreover, while the bores 448 are illustrated herein as being cylindrical or with a circular perimeter, the bores 448 can have any desired polygonal shape, such as triangular or pentagonal, for example. Further, while the bores 448 are illustrated and described herein as being defined in the wall 422a, the bores 448 may be defined at any desirable location to within the reservoir chamber 422 to enable venting of the reservoir chamber 422. Thus, the location of the bores 448 is merely exemplary.
With the fluid reservoir 156 received in the reservoir chamber 422, as the drive screw 126 rotates, a slide 428 translates linearly. As the slide 428 can be substantially similar to the slide 128 but without the one or more air conduits 148, the slide 428 will not be discussed in great detail herein. The advancement of the slide 428 decreases the volume of the reservoir chamber 422, which may result in an increase in the pressure in the reservoir chamber 422. As the pressure increases in the reservoir chamber 422, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference to
In the example of
The membrane 522 is coupled to the wall 422a of the reservoir chamber 422. In one example, the membrane 522 is coupled to the wall 422a so as to substantially cover the bores 448. Thus, the membrane 522 in this example is coupled to the wall 422a on a side of the wall substantially opposite a side of the wall in contact with the fluid reservoir 156. The membrane 522 is coupled to the wall 422a through any suitable technique, including, but not limited to, ultrasonic welding. In the example of ultrasonic welding, a weld 524 extends between the membrane 522 and the wall 422a about a perimeter of the membrane 522. Generally, the membrane 522 is hydrophobic, such that air may pass through the membrane, but fluid, such as water, does not.
With the fluid reservoir 156 received in the reservoir chamber 422, as the drive screw 126 rotates, the slide 428 translates linearly. The advancement of the slide 428 decreases the volume of the reservoir chamber 422, which may result in an increase in the pressure in the reservoir chamber 422. As the pressure increases in the reservoir chamber 422, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference to
In this example, the pressure management system 620 is defined in a portion of the housing 106 of the fluid infusion device 100. For example, the pressure management system 620 is defined in a reservoir chamber 622 of the housing 106 that receives the fluid reservoir 156 of the fluid reservoir system 118 (
In one example, the expandable member 624 is defined as a portion of a wall 622a of the reservoir chamber 622, which has a thickness T, which is less than a thickness T2 and a thickness T3 of the remainder of the wall 622a. The reduced thickness T of the expandable member 624 enables the expandable member 624 to move or flex from a first, relaxed position (
With the fluid reservoir 156 received in the reservoir chamber 622, as the drive screw 126 rotates, the slide 428 translates linearly. The advancement of the slide 428 decreases the volume of the reservoir chamber 622, which may result in an increase in the pressure in the reservoir chamber 622. As the pressure increases, in most instances, the pressure is relieved through the vents 164 of the connector body 154 (
With reference to
In this example, the pressure management system 720 is coupled to a portion of the housing 106 of the fluid infusion device 100. For example, the pressure management system 720 is coupled to a reservoir chamber 722 of the housing 106 that receives the fluid reservoir 156 of the fluid reservoir system 118 (
The one or more bores 748 are defined in and through a wall 722a of the reservoir chamber 722. The bores 748 may be defined through the wall 722a in any desired pattern, and in one example, may be defined through the wall 722a of the reservoir chamber 722 such that a centerline of each bore 748 is substantially parallel to the longitudinal axis L2 of the reservoir chamber 722. The bores 748 may be arranged such that the bores 748 extend along the longitudinal axis L2 of the reservoir chamber 722, however, it should be noted that this arrangement of bores 748 is merely exemplary, as the bores 748 may be arranged offset from each other. In addition, it should be noted that while two bores 748 are illustrated herein, the pressure management system 720 can include any number of bores 748. The bores 748 can have any desired size or diameter, and the size or diameter may be varied amongst the bores 748 to enable tuning of the pressure management system 720 to the desired air flow rate. Moreover, while the bores 748 are illustrated herein as being cylindrical or with a circular perimeter, the bores 748 can have any desired polygonal shape, such as triangular or pentagonal, for example. Further, while the bores 748 are illustrated and described herein as being defined in the wall 722a, the bores 748 may be defined at any desirable location to within the reservoir chamber 722 to enable venting of the reservoir chamber 722. Thus, the location of the bores 748 is merely exemplary. A first end 748a of each of the bores 748 is in communication with the reservoir chamber 722 and an opposite, second end 748b of each of the bores 748 is in communication with the valve 750.
The valve 750 includes a valve seat 752, a valve stem 754 and a valve seal 756. In one example, the valve 750 comprises a check valve, but the valve 750 can comprise any suitable one-way valve, such as an umbrella valve or duckbill valve. The valve seat 752 is coupled to the wall 722a on a side of the wall 722a opposite the side of the wall 722a that contacts the fluid reservoir 156 when the fluid reservoir 156 is received in the reservoir chamber 722. The valve seat 752 may be coupled to the wall 722a through any suitable technique, such as ultrasonic welding, for example. The valve seat 752 defines one or more bores 758. Generally, the valve seat 752 defines substantially the same number of bores 758 as the number of bores 748. Thus, in this example, the valve seat 752 includes two bores 758. The bores 758 are defined in the valve seat 752 such that a centerline of a respective one of the bores 758 is coaxial with the centerline of a respective one of the bores 748 to enable communication between the bores 758 of the valve seat 752 and the bores 748. Generally, the second end 748b of each of the bores 748 is in communication with the respective one of the bores 758 to define an airflow path.
The valve stem 754 is coupled to the wall 722a. In one example, the valve stem 754 is fixedly coupled to the wall 722a such that the valve stem 754 does not interfere with or contact the fluid reservoir 156 when the fluid reservoir 156 is installed in the chamber 722. Thus, the valve stem 754 may be flush with the side of the wall 722a that contacts the fluid reservoir 156.
The valve seal 756 is coupled to the valve stem 754. The valve seal 756 is sized and shaped to seal the bores 758 of the valve seat 752. Generally, the valve seal 756 is composed of a resilient material such that the valve seal 756 is movable between a first, closed position (
With the fluid reservoir 156 received in the reservoir chamber 722, as the drive screw 126 rotates, the slide 428 translates linearly. The advancement of the slide 428 decreases the volume of the reservoir chamber 722, which may result in an increase in the pressure in the reservoir chamber 722. Once the pressure reaches the predefined pressure threshold, the valve seal 756 moves from the first, closed position (
With reference to
In this example, the pressure management system 820 is coupled to a portion of the housing 106 of the fluid infusion device 100. For example, the pressure management system 820 is coupled to a chamber 822 of the housing 106 that receives the fluid reservoir 156 of the fluid reservoir system 118 (
The one or more bores 848 are defined in and through a wall 822a of the reservoir chamber 822. In this example, a single bore 848 is defined through the wall 822a, however, any number of bores 848 may be defined in the wall 822a in any desired pattern. The bore 848 is defined through the wall 822a of the reservoir chamber 822 such that a centerline of the bore 848 is substantially parallel to the longitudinal axis L2 of the reservoir chamber 822. The bore 848 can have any desired size or diameter, and while the bore 848 is illustrated herein as being cylindrical or with a circular perimeter, the bore 848 can have any desired polygonal shape, such as triangular or pentagonal, for example. Further, while the bore 848 is illustrated and described herein as being defined in the wall 822a, the one or more bores 848 may be defined at any desirable location to within the reservoir chamber 822 to enable venting of the reservoir chamber 822. Thus, the location of the bore 848 is merely exemplary. A first end 848a of the bore 848 is in communication with the fluid reservoir 156 when installed in the reservoir chamber 822 and an opposite, second end 848b of the bore 848 is in communication with the valve 850.
The valve 850 includes a valve seat 852, a valve stem 854 and a biasing member 856. The valve seat 852 is coupled to the wall 822a on a side of the wall 822a opposite the side of the wall 822a that contacts the fluid reservoir 156 when the fluid reservoir 156 is received in the reservoir chamber 822. The valve seat 852 may be coupled to the wall 822a through any suitable technique, such as ultrasonic welding, for example. The valve seat 852 is composed of any suitable material, and in one example, is composed of an elastomeric material. The valve seat 852 defines one or more bores 858. Generally, the valve seat 852 defines substantially the same number of bores 858 as the number of bores 848. Thus, in this example, the valve seat 852 includes one bore 858. The bore 858 is defined in the valve seat 852 such that a centerline of the bore 858 is coaxial with the centerline of the bore 848 to enable communication between the bore 858 of the valve seat 852 and the bore 848. Generally, the second end 848b of the bore 848 is in communication with the bore 858 to define an airflow path. The bore 858 is shaped to receive the valve stem 854. In one example, a first end 858a of the bore 858 has a diameter that is less than a diameter of a second end 858b of the bore 858. Thus, in this example, the bore 858 tapers from the second end 858b to the first end 858a to conform with the shape of the valve stem 854.
The valve stem 854 is received in the valve seat 852. In one example, the valve stem 854 is a spherical ball, however, the valve stem 854 can have any desired shape that cooperates with the valve seat 852. Thus, the valve stem 854 and the valve seat 852 illustrated herein are merely exemplary. The valve stem 854 is received within the valve seat 852 and is movable relative to the valve seat 852 and the wall 822a. Generally, the valve stem 854 is sized so as to extend outwardly from the valve seat 852 and the wall 822a, such that a portion of the valve stem 854 extends into the reservoir chamber 822. By extending into the reservoir chamber 822, the fluid reservoir 156 contacts the valve stem 854 upon insertion to move the valve stem 854 between a first, closed position (
The biasing member 856 is coupled to the valve stem 854 and the wall 822a. In one example, the biasing member 856 comprises a leaf spring, which includes a first end 860 and a second end 862. In this example, the first end 860 contacts the valve stem 854 and biases the valve stem 854 into the first, closed position. The second end 862 is fixedly mounted to the wall 822a. In this example, the second end 862 includes a bore 862a for receipt of a suitable coupling device, such as a mechanical fastener 864. It should be noted that the biasing member 856 can be coupled to the wall 822a through any suitable technique, and thus, the use of the mechanical fastener 864 is merely exemplary. Moreover, it should be noted that nay suitable biasing member could be employed to bias the valve stem 854 into the first, closed position, and thus, the use of a leaf spring is merely exemplary.
Upon insertion of the fluid reservoir 156 into the reservoir chamber 822, the fluid reservoir 156 contacts the valve stem 854 (
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application.
This application is a continuation of U.S. patent application Ser. No. 14/497,878, filed on Sep. 26, 2014. The relevant content of the above application is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4000741 | Binard et al. | Jan 1977 | A |
4373535 | Martell | Feb 1983 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4755173 | Konopka et al. | Jul 1988 | A |
5080653 | Voss et al. | Jan 1992 | A |
5097122 | Colman et al. | Mar 1992 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5485408 | Blomquist | Jan 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5522803 | Teissen-Simony | Jun 1996 | A |
5665065 | Colman et al. | Sep 1997 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5954643 | Van Antwerp et al. | Sep 1999 | A |
6017328 | Fischell et al. | Jan 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6355021 | Nielsen et al. | Mar 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6511439 | Tabata et al. | Jan 2003 | B1 |
6544212 | Galley et al. | Apr 2003 | B2 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6591876 | Safabash | Jul 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6801420 | Talbot et al. | Oct 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
6817990 | Yap et al. | Nov 2004 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7029444 | Shin et al. | Apr 2006 | B2 |
7066909 | Peter et al. | Jun 2006 | B1 |
7137964 | Flaherty | Nov 2006 | B2 |
7303549 | Flaherty et al. | Dec 2007 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7442186 | Blomquist | Oct 2008 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7621893 | Moberg et al. | Nov 2009 | B2 |
7647237 | Malave et al. | Jan 2010 | B2 |
7699807 | Faust et al. | Apr 2010 | B2 |
7727148 | Talbot et al. | Jun 2010 | B2 |
7785313 | Mastrototaro | Aug 2010 | B2 |
7806886 | Kanderian, Jr. et al. | Oct 2010 | B2 |
7819843 | Mann et al. | Oct 2010 | B2 |
7828764 | Moberg et al. | Nov 2010 | B2 |
7879010 | Hunn et al. | Feb 2011 | B2 |
7890295 | Shin et al. | Feb 2011 | B2 |
7892206 | Moberg et al. | Feb 2011 | B2 |
7892748 | Norrild et al. | Feb 2011 | B2 |
7901394 | Ireland et al. | Mar 2011 | B2 |
7905868 | Moberg et al. | Mar 2011 | B2 |
7942844 | Moberg et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7955305 | Moberg et al. | Jun 2011 | B2 |
7963954 | Kavazov | Jun 2011 | B2 |
7977112 | Burke et al. | Jul 2011 | B2 |
7979259 | Brown | Jul 2011 | B2 |
7985330 | Wang et al. | Jul 2011 | B2 |
8024201 | Brown | Sep 2011 | B2 |
8100852 | Moberg et al. | Jan 2012 | B2 |
8114268 | Wang et al. | Feb 2012 | B2 |
8114269 | Cooper et al. | Feb 2012 | B2 |
8137314 | Mounce et al. | Mar 2012 | B2 |
8181849 | Bazargan et al. | May 2012 | B2 |
8182462 | Istoc et al. | May 2012 | B2 |
8192395 | Estes et al. | Jun 2012 | B2 |
8195265 | Goode, Jr. et al. | Jun 2012 | B2 |
8202250 | Stutz, Jr. | Jun 2012 | B2 |
8207859 | Enegren et al. | Jun 2012 | B2 |
8226615 | Bikovsky | Jul 2012 | B2 |
8257259 | Brauker et al. | Sep 2012 | B2 |
8267921 | Yodfat et al. | Sep 2012 | B2 |
8275437 | Brauker et al. | Sep 2012 | B2 |
8277415 | Mounce et al. | Oct 2012 | B2 |
8292849 | Bobroff et al. | Oct 2012 | B2 |
8298172 | Nielsen et al. | Oct 2012 | B2 |
8303572 | Adair et al. | Nov 2012 | B2 |
8305580 | Aasmul | Nov 2012 | B2 |
8308679 | Hanson et al. | Nov 2012 | B2 |
8313433 | Cohen et al. | Nov 2012 | B2 |
8318443 | Norrild et al. | Nov 2012 | B2 |
8323250 | Chong et al. | Dec 2012 | B2 |
8343092 | Rush et al. | Jan 2013 | B2 |
8352011 | Van Antwerp et al. | Jan 2013 | B2 |
8353829 | Say et al. | Jan 2013 | B2 |
9839753 | Alderete, Jr. | Dec 2017 | B2 |
20040133166 | Moberg et al. | Jul 2004 | A1 |
20050197626 | Moberg et al. | Sep 2005 | A1 |
20070123819 | Mernoe et al. | May 2007 | A1 |
20080132843 | Sharifi | Jun 2008 | A1 |
20080269687 | Chong et al. | Oct 2008 | A1 |
20090299290 | Moberg | Dec 2009 | A1 |
20100160861 | Causey, III et al. | Jun 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20180064888 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14497878 | Sep 2014 | US |
Child | 15811230 | US |