Organ preservation techniques typically involve hypothermic storage of the organ in a chemical perfusate solution on ice. In the case of a heart, it is typically arrested, and cooled with a cardioplegic solution until it reaches a hypothermic, non-functioning state and then is stored in or perfused with a cold preservation solution. These techniques utilize a variety of cardioplegic and cold preservation solutions, none of which sufficiently protect the heart from myocardial damage resulting from ischemia. Such injuries are particularly undesirable when an organ, such as a heart, is intended to be transplanted from a donor into a recipient. In addition to myocardial damage resulting from ischemia, reperfusion of a heart may exacerbate the myocardial injury and may cause coronary vascular endothelial and smooth muscle injury, which may lead to coronary vasomotor dysfunction.
Using conventional approaches, such injuries increase as a function of the length of time an organ is maintained ex-vivo. For example, in the case of a heart, typically it may be maintained ex-vivo for only 4-6 hours before it becomes unusable for transplantation. This relatively brief time period limits the number of recipients who can be reached from a given donor site, thereby restricting the recipient pool for a harvested heart. Even within the 4-6 hour time limit, the heart may nevertheless be significantly damaged. A significant issue is that there may not be any apparent indication of the damage. Compounding the effects of cold ischemia, current cold preservation techniques preclude the ability to evaluate and assess an organ ex-vivo. Because of this, less-than-optimal organs may be transplanted, resulting in post-transplant organ dysfunction or other injuries. Thus, it would be desirable to develop techniques that can extend the time during which an organ can be preserved in a healthy state ex-vivo and that can provide an environment within which an organ can be evaluated ex-vivo. Such techniques would improve transplant outcomes and enlarge potential donor and recipient pools.
Effective maintenance of an ex-vivo organ would also provide numerous other benefits. For instance, ex-vivo maintenance of an organ in a living, functioning, near-physiologic state would permit more careful monitoring and evaluation of the harvested organ. This would in turn allow earlier detection and potential repair of defects in the harvested organ, further improving transplant at outcomes. The ability to perform simple repairs on the organ would also allow many organs with minor defects to be saved, whereas current transplantation techniques require them to be discarded.
In addition, more effective matching between the organ and a particular recipient may be achieved, further reducing the likelihood of eventual organ rejection. Current transplantation techniques rely mainly on matching donor and recipient blood types, which by itself is not a foolproof indicator of whether or not the organ will be rejected by the recipient. A more complete test for organ compatibility is a Human Leukocyte Antigen (HLA) matching test, but current cold ischemic organ preservation approaches preclude the use of this test, which can often require twelve hours or more to complete.
Prolonged and reliable ex-vivo organ care would also provide benefits outside the context of organ transplantation. For example, a patient's body, as a whole, can typically tolerate much lower levels of chemo-, bio- and radiation therapy than many particular organs. An ex-vivo organ care system would permit an organ to be removed from the body and treated in isolation, reducing the risk of damage to other parts of the body.
Electrodes are used in some heart perfusion systems to measure the electrical activity of the explanted heart and to deliver defibrillation energy. There are a number of issues associated with these electrodes, such as their size, which makes them difficult to position and may cause them to come in contact with each other resulting in erroneous signals, particularly on smaller hearts. In addition, these electrodes require wetting with blood to establish electrical contact with the heart, have a tendency to move around due to vibration during transport and beating of the heart resulting in a loss of signal fidelity, have biocompatibility issues, and are incompatible with the sterilization method (ETO) used to sterilize components of the perfusion systems.
Electrode systems have been developed for use in perfusion systems to measure the electrical activity of an explanted heart and to provide defibrillation energy as necessary. The perfusion systems maintain the heart in a beating state at, or near, normal physiologic conditions; circulating oxygenated, nutrient enriched perfusion fluid to the heart at or near physiologic temperature, pressure and flow rate. These systems include a pair of electrodes that are placed epicardially on the right atrium and left ventricle of the explanted heart, as well as an electrode placed in the aortic blood path.
An advantage of this configuration allows an electrode to be held against the right atrium of the explanted heart under the heart's own weight, which reduces the likelihood that the electrode will shift during transport of the heart due to vibrations or the beating of the heart itself. As well, placing the electrode epicardially allows the electrode to be manipulated to ensure better electrical connection as well as adjustments for differently shaped and sized hearts.
Further, placement of an electrode in the aortic bloodpath supplies a more stable position for the sensing and detection of electrocardiogram (ECG) signals from the heart. This configuration provides an electrical connection for sensing and detecting ECG signals from the electrode in the aortic bloodpath, through the blood and heart muscle to the electrode, placed epicardially, on the right atrium. This electrode configuration has been shown to provide more stable ECG signals than two electrodes placed epicardially on the heart.
In addition to sensing and detecting ECG signals, the right atrial electrode, in combination with a left ventricle electrode, is used to deliver defibrillation energy and/or pacing signals to the explanted heart after being placed in a perfusion system to ensure the heart is beating normally before the organ chamber is sealed. After the heart is beating normally, the left ventricle electrode may be moved aside, such that fewer elements are in contact with the heart that may cause irritation to the tissue. However, it is envisioned that in some embodiments, the left ventricle electrode may be left in place after a normal heart beat is achieved so defibrillation energy and/or pacing signals may be delivered to the heart after the organ chamber is sealed without the need for further manipulating the electrode through the membrane.
A perfusion system for maintaining an organ ex-vivo may include a housing comprising an outer lid and an intermediate lid. The intermediate lid covers an opening to the housing for substantially enclosing the organ within the housing, and includes a frame and a flexible membrane suspended within the frame. The flexible membrane includes sufficient excess membrane material to contact an organ contained within the chamber, which enables a medical operator to touch/examine the organ indirectly through the membrane or manipulate one or more electrodes contained within the organ chamber while still maintaining sterility of the system and the organ. The outer lid opens and closes over the intermediate lid independently from the intermediate lid. Preferably, the outer lid is rigid enough to protect the organ from physical contact, indirect or direct, and provide structural integrity to the organ chamber assembly.
The organ chamber assembly includes a pad or a sac assembly sized and shaped for interfitting within a bottom of the housing. Preferably, the pad assembly includes a pad formed from a material resilient enough to cushion the organ from mechanical vibrations and shocks during transport. In a preferred embodiment, the pad assembly is formed from silicone, which is biocompatible, impervious to liquids, capable of surviving sterilization processes (ETO, etc.) and provides a non-slip surface for electrodes. According to one embodiment, the pad of the invention includes a mechanism for receiving at least one electrode. The mechanism allows for adjustable placement of the at least one electrode on or in the pad to accommodate differently sized and shaped hearts. The pad may include a through-aperture through which an electrical lead of the at least one electrode may pass. The sac assembly may be two or more layers of silicone film sealed together and filled with air or fluid.
In all embodiments of the present invention, all blood and tissue contacting materials have been selected for their high degree of biocompatibility.
Three electrodes are provided such that various connections may be made to a system for monitoring organ electrical activity in a perfusion system and providing, when appropriate, electrical energy to the organ. Two electrodes are placed proximate an explanted heart, preferably within a sterile environment. A third electrode is placed in the flow of the aortic perfusion fluid. This configuration allows for the monitoring of ECG signals of the explanted heart as well as for the delivery of defibrillation energy and/or pacing signals to the heart.
Electrodes for epicardial placement are constructed of 304 stainless steel and are partially covered with silicone, which provides electrical insulation, is impervious to fluids, is biocompatible and provides a non-slip surface to aid in maintaining placement of the electrodes. The metal surface of the stainless steel electrodes is passivated to improve electrical performance, provide corrosion resistance and enhance biocompatibility. Electrodes for epicardial placement are resistance welded to 304 stainless steel wire contained within silicone insulation. The silicone wire insulation and silicone electrode covering are joined to provide protection for the weld as well as flexibility in the wire. The electrode placed in the flow of the aortic perfusion fluid is a thermal well constructed of 304 stainless steel and polycarbonate, into which has been potted a gold plated pin using electrically conductive epoxy. In certain embodiments, at least a portion of the electrode placed in the flow of the aortic perfusion fluid is covered with silicone to improved biocompatibility.
Placement of one electrode in the flow of the aortic perfusion fluid allows for more stable ECG readings as the electrode is less susceptible to vibrations during transport as well as movement from a beating heart. After a normal heart beat is achieved, one electrode for epicardial placement may be removed or moved aside, which may reduce any potential irritation of the heart tissue, provide fewer opportunities for the electrodes to touch, as well as provide more maneuverability of the remaining electrode for obtaining better placement on the heart. After placement, the electrodes for epicardial placement are maintained in position, at least partially, by the weight of the explanted heart.
In operation, a completed electrical circuit for measuring ECG signals from the explanted heart exists from the electrode in the flow of the aortic perfusion fluid to an electrode for epicardial placement on the heart through the perfusion fluid and heart muscle. Defibrillation energy and/or pacing signals may be provided to the explanted heart by the electrodes for
Illustrative apparatuses, systems and methods of perfusing an organ that may be adapted to incorporate the electrode systems of the present invention are described in co-pending application Ser. No. 11/246,902, titled “Systems and Methods for Ex-Vivo Organ Care,” filed Oct. 5, 2005, which is incorporated herein by reference in its entirety, an example of which is shown in
Referring to
The illustrative perfusion system 10 also includes a plurality of sensors, including without limitation: temperature sensors 120, 122 and 124; pressure sensors 126, 128, 130 and 132; perfusion flow rate sensors 134, 136 and 138; a perfusion fluid oxygenation and hematocrit sensor 140; and sensor/defib electrodes 12, 50 and 52, and defibrillation source 143.
The system 10 further includes: various components employed for maintaining suitable flow conditions to and from the heart 102; an operator interface 146 for assisting an operator in monitoring operation of the system 10, and the condition of the heart 102, and for enabling the operator to select various operating parameters; a power subsystem 148 for providing fault tolerant power to the system 10; and a controller 150 for controlling operation of the organ care system 10.
With continued reference to
As shown in
The heart rests and is supported by a foam pad or sac 222, preferably made of a biocompatible material resilient enough to cushion the heart 102 from vibrations and shocks during transport. In a preferred embodiment, the foam pad or sac 222 is comprised of silicone, although other biocompatible materials are envisioned. For reference, the heart is placed in a posterior arrangement, with the right atria in the top right and the left ventricle in the left-bottom. As shown, a right atrium electrode 52 and left ventricle electrode 50 are placed epicardially on the explanted heart 102 and are held in place by the weight of the heart 102 against the foam pad or sac 222. In a preferred embodiment, at least one side of at least one of the right atrial electrode 52 and left ventricle electrode 50 are over-molded with silicone, and friction created by the contact between the silicone over-molding of the at least one electrode and the silicone pad or sac 222 further aids in maintaining the epicardial placement of the electrode. The structure of the electrode is described in more detail below.
At least one of the right atrial electrode 52 and the left ventricle electrode 50 may be electrodes 142 and 144, described in U.S. application Ser. No. 11/246,902.
An aortic electrode 12 is placed in the aortic bloodpath for use in detecting ECG signals from the heart 102 during transport as blood travels to or from the aorta 158. The organ chamber assembly 104 includes apertures for the pulmonary artery interface 166, which carries perfusion fluid 108 from the pulmonary artery 164, and the pulmonary vein interface 170, which carries perfusion fluid to the pulmonary vein 168.
The aortic electrode 12 is placed in the aortic blood path outside the organ chamber 102, which provides a stable position from which ECG signals from the heart may be measured and is less susceptible to the electrode shifting due to movements from the beating heart or the vibrations in the system during transport. The right atrial electrode 52 and left ventricle electrode 50 are placed epicardially on the heart within the organ chamber. Reference to “epicardially” includes, but is not limited to, on or near the heart. A silicone covering on at least a portion of the right atrial electrode 52 and the left ventricle electrode 50 aids in providing a non-slip surface to maintain the position of the electrodes.
According to one feature of the embodiment, the perfusion-fluid contacting components may be coated or bonded with heparin or other anticoagulant or biocompatible material to reduce the inflammatory response that may otherwise arise when the perfusion fluid contacts the surfaces of the components.
In a preferred operation, ECG signals are detected by both the aortic electrode 12 and the right atrial electrode 52. An electric circuit is completed between the aortic electrode 12, through the blood and heart muscle, to the right atrial electrode 52. This placement allows more variability in the placement of the right atrial electrode 52 within the organ chamber 104 to accommodate differently shaped and sized hearts while maintaining a completed circuit.
In addition, using two epicardially placed electrodes within the organ chamber 104 to detect ECG signals from the heart 102 increases the likelihood that the electrodes would touch due to being placed in an improper position or from shifting during transport, a possibility which is eliminated by the preferred configuration. In a preferred embodiment, the right atrial electrode 52 is at least partially held in place by the weight of the heart 102, which further aids in maintaining a completed circuit for detecting ECG signals.
Electrical connection is made by placing the heart 102 on the one or more electrodes. One advantage of the invention is that it does not require the electrodes to be permanently or temporarily sutured or otherwise mechanically connected to the heart 102. However, one skilled in the art would recognize circumstances in which such a connection is desirable. The present invention can be equally useful in such circumstances.
In certain embodiments, one or more electrodes are provided for placement in the bloodpath and one or more electrodes are provided for epicardial placement on an explanted heart. In these embodiments, ECG signals may be received by varying circuits comprising two electrodes placed in the bloodstream, two electrodes placed epicardially on the explanted heart, one electrode in the bloodstream and one electrode placed epicardially on the explanted heart, or any combination of the above. One of ordinary skill in the art will recognize that two electrodes are required to measure ECG signals, and as such, numerable combinations of electrode placements will provide ECG measurements.
After explantation, defibrillation energy and/or pacing signals may be necessary to restore a normal heart beat during transport to a donor site. In addition to detecting ECG signals from the heart 102, the right atrial electrode 52, in conjunction with a left ventricle electrode 50, may be used to provide defibrillation energy and/or pacing signals to the explanted heart 102. In operation, after a normal heart rhythm is achieved by delivering a defibrillation energy and/or pacing signals to the heart 102, the left ventricle electrode 50 may be removed from the heart 102 by manipulating the electrode through the flexible membrane. Removing the electrode reduces the likelihood of irritation to the heart tissue during transport. However, it is envisioned in certain embodiments, that an operator may allow the left ventricle electrode 50 to remain epicardially placed should further defibrillation energy and/or pacing signals be required and without further need of manipulating the heart 102 and or electrodes 50 and 52.
A front end board connector 16 is provided as an interface between at least one electrode and one or more subsystems of the system 10. At least one binding post 20, is provided to allow electrical connections to at least one electrode within the heart chamber 104 while maintaining the sterile integrity of the chamber. The aortic electrode 12 is connected to the front end board connector 16 by a first wire 30. The right atrial electrode 52 is connected to a binding post 20b by a second wire 32, which is connected to the front end board connector by a third wire 34. This connection configuration allows a completed circuit for the measurement of ECG signals from the explanted heart 102. One of ordinary skill in the art will recognize that various other connections utilizing either fewer electrodes, wires or both could be used to achieve the same electrical circuit.
A defibrillator connector 18 is provided as an interface between at least one electrode and a defibrillation source for providing defibrillation energy and/or pacing signals to the heart 102. The right atrial electrode 52 is connected to a binding post 20b by a second wire 32, which is connected to the defibrillator connector 18 by a fourth wire 36. The left ventricle electrode 50 is connected to a binding post 20a by a fifth wire 38, which is connected to the defibrillator connector 18 by a sixth wire 40. This connection configuration allows a completed circuit for the delivery of defibrillation energy and/or pacing signals to the explanted heart 102. One of ordinary skill in the art will recognize that various other connections utilizing either fewer electrodes, wires or both could be used to achieve the same electrical circuit.
In a preferred embodiment, at least one of the first wire 30, third wire 34, fourth wire 36, and sixth wire 40 is a custom-made wire preferably comprised of tinned soft copped with a PVC jacket. At least one of the third wire 34, fourth wire 36, fifth wire 38, and sixth wire 40 is modified for purposes of defibrillation.
As best seen in
Referring to
In a preferred embodiment, the epicardial electrodes are comprised of 304 stainless steel and over-molded with silicone. At least one aperture 68 in the stainless steel is provided to aid in securing the silicone to the stainless steel. The metal surface of the stainless steel is passivated to increase electrical performance, provide corrosion resistance and improve biocompatibility. Reference to “over-molded” includes, but is not limited to, covering or partially covering the electrode by means of molding, or other process that results in an electrode at least partially surrounded with silicone. Each epicardial electrode is resistance welded to 304 stainless steel wire 90 at a weld point 72, which is surrounded with silicone and which is terminated in a gold plated pin. In a preferred embodiment, the over-molding of the wire 90 and the electrode 60 is overlapped at an interface 74 to reduce stress on the wire at the welding point but maintain wire flexibility.
The electrode 60 is approximately a one inch by one inch square (2.5 cm by 2.5 cm), with a rounded edge 70 to reduce irritation to the tissue. It is large enough to easily contact at least part of the critical heart area and small enough to not have two electrodes touch, particularly on a small heart. These dimensions allow the electrodes to be placed precisely as well as maintain sufficient current density, i.e. keep it below damage threshold, although other electrode sizes and shapes are contemplated. In alternative embodiments, it is envisioned that each of the epicardial electrodes and wire may be comprised of other electrically conductive materials and biocompatible materials.
Referring to
The silicone over-molding of the electrode 60 provides a non-slip surface when the electrode is placed against the pad or sac 222, which may also be constructed of silicone or have a surface that allows a reduced likelihood of slipping, which preferably aids in maintaining the positioning of the electrode after it has been epicardially placed on the heart 102.
Referring to
Referring to
According to one feature, the flexible membrane includes sufficient excess membrane material to contact the heart 102 when contained within the housing 194. This feature enables a medical operator to touch/examine the heart 102 indirectly through the membrane 198b, or apply an ultrasound probe to the heart 102 through the membrane 198b, while maintaining sterility of the housing 194. The membrane 198b may be made, for example, from any suitable flexible polymer plastic, for example polyurethane. Apertures 199a and 199b in the membrane 198b are provided through which electrodes 50 and 52 may be fed.
The outer lid 196 opens and closes over the intermediate lid 198 independently from the intermediate lid 198. Preferably, the outer lid 196 is rigid enough to protect the heart 102 from physical contact, direct or indirect. The outer lid 196 and the chamber 194 may also be made from any suitable polymer plastic, for example polycarbonate.
According to one implementation, the housing 194 includes two hinge sections 202a and 202b, and the intermediate lid frame 198a includes two corresponding mating hinge sections 204a and 204b, respectively. The hinge sections 202a and 202b on the housing 194 interfit with the hinge sections 204a and 204b on the intermediate lid frame 198a to enable the intermediate lid 198 to open and close relative to the opening of the housing 194. The organ chamber assembly 104 also includes two latches 206a and 206b for securing the intermediate lid 198 closed over the opening 200. The latches 206a and 206b rotatably snap fit onto latch hinge section 208a and 208b, respectively, of the housing 194.
The intermediate lid frame 198a also includes a hinge section 210. The hinge section 210 rotatably snap fits with a mating hinge section 212 on the outer lid 196 to enable the outer lid 196 to open without opening the intermediate lid 198. The outer lid 196 also includes two cutouts 214a and 214b for enabling the latches 206a and 206b to clamp down on the edge 216 of the intermediate lid frame 198a.
The organ chamber assembly 104 also includes a latch 218, which rotatably snap fits onto a hinge part (not shown) on the wall 194c of the housing 194. In operation, the latch 218 engages a tab 221 on the edge 225 of the outer lid 196 to secure the outer lid 196 closed over the intermediate lid 198. The intermediate lid also includes two gaskets 198c and 198d. The gasket 198d interfits between a periphery of the intermediate lid frame 198a and a periphery of the outer lid 196 to form a fluid seal between the intermediate lid 198 and the outer lid 196 when the outer lid 196 is closed. The gasket 198c interfits between an outer rim 194f of the housing 194 and the intermediate lid frame 198a to form a fluid seal between the intermediate lid 198 and the periphery 194f of the housing 194 when the intermediate lid 198 is closed, thereby providing a sterile environment for the heart once the organ care system is removed from the sterile operating room.
Optionally, the organ chamber assembly 104 includes a pad 222 or a sac assembly sized and shaped for interfitting over an inner bottom surface 194g of the housing 194. Preferably, the pad 222 is formed from a material resilient enough to cushion the heart 102 from mechanical vibrations and shocks during transport, for example a silicone foam.
Again referring to
In some illustrative embodiments, the pad 222 is configured as a pad assembly, with the assembly including one or more electrodes, such as the electrodes 50 and 52, adjustably located in or on the pad 222. According to one advantage, the pad/electrode configuration of the invention facilitates contact between the electrodes and the heart 102 placed on the pad 222, without temporarily or permanently suturing or otherwise mechanically connecting the electrodes to the heart 102. The weight of the heart 102 (illustrated in
As shown in
The interface connections 235a and 235b and aorta electrode 12 couple electrical signals, such as ECG signals, from the electrodes out of the housing 194, for example, to a controller and/or an operator interface. According to one embodiment, the electrodes couple to the controller and/or the operator interface via the front end board connector 16 (not shown). The interface connections 235a and 235b may also couple to a defibrillation source, which may be either provided by external instrumentation or through circuitry within the system 10, and which can send a defibrillation and/or pacing signal through electrodes to the heart 102. According to one embodiment, the interface connections 235a and 235b are coupled to a defibrillation source via the defibrillation connector 18.
Still referring to
The organ chamber assembly also includes a drain 201 for draining perfusion fluid 108 out of the housing 194 back into the reservoir 160. Further, at least one mounting receptacle 203 is provided for mounting the organ chamber assembly 104 onto further components of the system 10. As well, a plurality of apertures 228a-c located on the organ chamber assembly 104 are provided for cannulation to vascular tissue of the heart 102.
Operationally, according to one embodiment, the heart 102 is harvested from a donor and cannulated into the organ chamber assembly 104. The perfusion fluid 108 is prepared for use within system 10 by being loaded into the reservoir 160 via portal 774 and, optionally, being treated with therapeutics via portal 762. The pump 106 pumps the loaded perfusion fluid 108 from a reservoir 160 to the heater assembly 110. The heater assembly 110 heats the perfusion fluid 108 to or near a normal physiological temperature. According to another aspect, embodiments of the disclosed subject matter are directed to a method of perserving a heart ex vivo, the method including the steps of placing a heart on one or more electrodes in a protective chamber of portable organ care system, pumping a perfusion fluid to the heart, the perfusion fluid being at a temperature of between about 25 ° C. and about 37° C., and at a volume of between about 200 ml/min and about 5 L/min, and monitoring electrical signals from the electrodes while pumping the perfusion fluid to the heart to preserve the heart ex vivo. According to one embodiment, the heater assembly 110 heats the perfusion fluid to between about 32° C. and about 37° C. The heater assembly 110 has an internal flow channel with a cross-sectional flow area that is approximately equal to the inside cross-sectional area of fluid conduits that carry the perfusion fluid 108 into and/or away from the heater assembly 110, so as to minimize disturbance of fluid flow. From the heater assembly 110, the perfusion fluid 108 flows to the flow mode selector valve 112.
One or more electrical signals related to the activity of the heart 102, i.e., ECG signals, are received by one or more electrodes 50 and 52 placed epicardially on the explanted heart 102. The one or more electrical signals are transmitted along at least one wire 32 and 38 inside the organ chamber to one or more binding posts 20a-b located at an interface between the inside of the organ chamber 104 and the outside of the organ chamber. This binding post configuration allows one or more signals to enter and exit the organ chamber 104 while maintaining the sterile environment within the organ chamber during transport of the explanted organ.
The binding posts 20a and 20b may send or receive one or more signals to one or more units, systems, controllers or the like for the maintenance of the heart 102. In one embodiment, one or more signals from electrodes 50 and 52 placed epicardially on an explanted heart 102 are transmitted to the binding posts 20a-b at the interface of the organ chamber 104 and are received by a front end board connector 16, which may be connected to one or more units, systems or controllers for measuring signals from the explanted heart 102 and providing responses to the one or more signals. In some embodiments, the one or more signals received by the front end board connector 16 are used to determine at least one of, but not limited to, the rate of a pump for providing perfusion fluid to the explanted heart 102, the temperature to which the heating elements inside the heater should be set, determining whether pacing signals to maintain regular heart rhythm are required, the timing of pacing signals to be delivered to the heart 102, etc.
According to another advantage of the present invention, the binding posts 20a,b may send or receive at least one signal to a defibrillator connector 18. According to one embodiment, the defibrillator connector 18 sends signals to the binding posts 20a-b, which are received by electrodes placed epicardially on an explanted heart 102. It is contemplated that in some embodiments, the electrodes are a right atrial electrode 52 and a left ventricle electrode 50. In some embodiments, the signals sent by the defibrillator connector 18 are pacing signals for maintaining a proper heart 102 rhythm of the explanted heart 102.
According to another embodiment of the present invention, signals received by the front end board connector 16 are transduced and analyzed; the analysis determining at least one output signal from the defibrillator connector 18 to be transmitted to an explanted heart 102 by the binding posts 20a-b and electrodes placed on the explanted heart 102, respectively.
In the previous description, reference is made to the accompanying drawings that form a part of the present disclosure, and in which are shown, by way of illustration, specific embodiments of the invention. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural and other changes may be made without departing from the scope of the present invention. The present disclosure is, therefore, not to be taken in a limiting sense. The present disclosure is neither a literal description of all embodiments of the invention nor a listing of features of the invention that must be present in all embodiments.
Numerous embodiments are described in this patent application, and are presented for illustrative purposes only. The described embodiments are not intended to be limiting in any sense. The invention is widely applicable to numerous embodiments, as is readily apparent from the disclosure herein. Those skilled in the art will recognize that the present invention may be practiced with various modifications and alterations. Although particular features of the present invention may be described with reference to one or more particular embodiments or figures, it should be understood that such features are not limited to usage in the one or more particular embodiments or figures with reference to which they are described.
The enumerated listing of items does not imply that any or all of the items are mutually exclusive. The enumerated listing of items does not imply that any or all of the items are collectively exhaustive of anything, unless expressly specified otherwise. The enumerated listing of items does not imply that the items are ordered in any manner according to the order in which they are enumerated.
The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
Headings of sections provided in this patent application and the title of this patent application are for convenience only, and are not to be taken as limiting the disclosure in any way.
Other embodiments, extensions, and modifications of the ideas presented above are comprehended and within the reach of one skilled in the art upon reviewing the present disclosure. Accordingly, the scope of the present invention in its various aspects should not be limited by the examples and embodiments presented above. The individual aspects of the present invention, and the entirety of the invention should be regarded so as to allow for modifications and future developments within the scope of the present disclosure. The present invention is limited only by the claims that follow.
This application is related to Application Ser. No. 60/919,306, titled “Systems for Monitoring Organ Electrical Activity in a Perfusion System,” filed Mar. 20, 2007, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3253595 | Murphy, Jr. et al. | May 1966 | A |
3388803 | Scott | Jun 1968 | A |
3406531 | Swenson et al. | Oct 1968 | A |
3468136 | Whittington | Sep 1969 | A |
3537956 | Falcone | Nov 1970 | A |
3545221 | Swenson et al. | Dec 1970 | A |
3545605 | Robins | Dec 1970 | A |
3587567 | Schiff | Jun 1971 | A |
3607646 | de Roissart | Sep 1971 | A |
3632473 | Belzer et al. | Jan 1972 | A |
3639084 | Goldhaber | Feb 1972 | A |
3654085 | Norr et al. | Apr 1972 | A |
3738914 | Thorne et al. | Jun 1973 | A |
3772153 | De Roissart | Nov 1973 | A |
3777507 | Burton et al. | Dec 1973 | A |
3843455 | Bier | Oct 1974 | A |
3851646 | Sarns | Dec 1974 | A |
3881990 | Burton et al. | May 1975 | A |
3995444 | Clark et al. | Dec 1976 | A |
4186565 | Toledo-Pereyra | Feb 1980 | A |
4231354 | Kurtz et al. | Nov 1980 | A |
4415556 | Bretschneider et al. | Nov 1983 | A |
4598697 | Numazawa et al. | Jul 1986 | A |
4605644 | Foker | Aug 1986 | A |
4666425 | Fleming | May 1987 | A |
4719201 | Foker | Jan 1988 | A |
4723939 | Anaise | Feb 1988 | A |
4745759 | Bauer et al. | May 1988 | A |
4759371 | Franetzki | Jul 1988 | A |
4847470 | Bakke | Jul 1989 | A |
4920044 | Bretan, Jr. | Apr 1990 | A |
5051352 | Martindale et al. | Sep 1991 | A |
5066578 | Wikman-Coffelt | Nov 1991 | A |
5141847 | Sugimachi et al. | Aug 1992 | A |
5145771 | Lemasters et al. | Sep 1992 | A |
5157930 | McGhee et al. | Oct 1992 | A |
5200398 | Strasberg et al. | Apr 1993 | A |
5217860 | Fahy et al. | Jun 1993 | A |
5285657 | Bacchi et al. | Feb 1994 | A |
5306711 | Andrews | Apr 1994 | A |
5326706 | Yland et al. | Jul 1994 | A |
5338662 | Sadri | Aug 1994 | A |
5356593 | Heiberger et al. | Oct 1994 | A |
5356771 | O'Dell | Oct 1994 | A |
5362622 | O'Dell et al. | Nov 1994 | A |
5370989 | Stern et al. | Dec 1994 | A |
5381510 | Ford et al. | Jan 1995 | A |
5385821 | O'Dell et al. | Jan 1995 | A |
5395314 | Klatz et al. | Mar 1995 | A |
5405742 | Taylor | Apr 1995 | A |
5407669 | Lindstrom et al. | Apr 1995 | A |
5407793 | Del Nido et al. | Apr 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5473791 | Holcomb et al. | Dec 1995 | A |
5494822 | Sadri | Feb 1996 | A |
5498427 | Menasche et al. | Mar 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5514536 | Taylor | May 1996 | A |
5552267 | Stern et al. | Sep 1996 | A |
5554123 | Herskowitz | Sep 1996 | A |
5554497 | Raymond | Sep 1996 | A |
5571801 | Segall et al. | Nov 1996 | A |
5584804 | Klatz et al. | Dec 1996 | A |
5586438 | Fahy | Dec 1996 | A |
5588816 | Abbott et al. | Dec 1996 | A |
5599173 | Chen et al. | Feb 1997 | A |
5599659 | Brasile et al. | Feb 1997 | A |
5613944 | Segall et al. | Mar 1997 | A |
5643712 | Brasile | Jul 1997 | A |
5656420 | Chien | Aug 1997 | A |
5679565 | Mullen et al. | Oct 1997 | A |
5693462 | Raymond | Dec 1997 | A |
5698536 | Segall et al. | Dec 1997 | A |
5699793 | Brasile | Dec 1997 | A |
5702881 | Brasile et al. | Dec 1997 | A |
5716378 | Minten | Feb 1998 | A |
5723281 | Segall et al. | Mar 1998 | A |
5733894 | Segall et al. | Mar 1998 | A |
5747071 | Segall et al. | May 1998 | A |
5752929 | Klatz et al. | May 1998 | A |
5770149 | Raible | Jun 1998 | A |
5776063 | Dittrich et al. | Jul 1998 | A |
5786136 | Mayer et al. | Jul 1998 | A |
5787544 | Meade | Aug 1998 | A |
5807737 | Schill et al. | Sep 1998 | A |
5823799 | Tor et al. | Oct 1998 | A |
5843024 | Brasile | Dec 1998 | A |
5856081 | Fahy | Jan 1999 | A |
5882328 | Levy et al. | Mar 1999 | A |
5965433 | Gardetto et al. | Oct 1999 | A |
5998240 | Hamilton et al. | Dec 1999 | A |
6024698 | Brasile | Feb 2000 | A |
6034109 | Ramasamy et al. | Mar 2000 | A |
6042550 | Haryadi et al. | Mar 2000 | A |
6046046 | Hassanein | Apr 2000 | A |
6050987 | Rosenbaum | Apr 2000 | A |
6100082 | Hassanein | Aug 2000 | A |
6110139 | Loubser | Aug 2000 | A |
6110504 | Segall et al. | Aug 2000 | A |
6144444 | Haworth et al. | Nov 2000 | A |
6168877 | Pedicini et al. | Jan 2001 | B1 |
6365338 | Bull et al. | Apr 2002 | B1 |
6375611 | Voss et al. | Apr 2002 | B1 |
6375613 | Brasile | Apr 2002 | B1 |
6389308 | Shusterman | May 2002 | B1 |
6475716 | Seki et al. | Nov 2002 | B1 |
6490880 | Walsh | Dec 2002 | B1 |
6492103 | Taylor | Dec 2002 | B1 |
6492745 | Colley, III et al. | Dec 2002 | B1 |
6524785 | Cozzone et al. | Feb 2003 | B1 |
6569615 | Thatte et al. | May 2003 | B1 |
6582953 | Brasile | Jun 2003 | B2 |
6600941 | Khuri | Jul 2003 | B1 |
6609987 | Beardmore | Aug 2003 | B1 |
6631830 | Ma et al. | Oct 2003 | B2 |
6642045 | Brasile | Nov 2003 | B1 |
6673594 | Owen et al. | Jan 2004 | B1 |
6696238 | Murphy et al. | Feb 2004 | B2 |
6783328 | Lucke et al. | Aug 2004 | B2 |
6792309 | Noren | Sep 2004 | B1 |
6794124 | Steen et al. | Sep 2004 | B2 |
6811965 | Vodovotz et al. | Nov 2004 | B2 |
6878339 | Akiyama et al. | Apr 2005 | B2 |
6925324 | Shusterman | Aug 2005 | B2 |
6953655 | Hassanein et al. | Oct 2005 | B1 |
6974436 | Aboul-Hosn et al. | Dec 2005 | B1 |
7001354 | Suzuki et al. | Feb 2006 | B2 |
7008380 | Rees et al. | Mar 2006 | B1 |
7238165 | Vincent et al. | Jul 2007 | B2 |
7316666 | Entenman et al. | Jan 2008 | B1 |
7452711 | Daykin | Nov 2008 | B2 |
7572622 | Hassanein et al. | Aug 2009 | B2 |
7651835 | Hassanein et al. | Jan 2010 | B2 |
8304181 | Hassanein et al. | Nov 2012 | B2 |
8409846 | Hassanein et al. | Apr 2013 | B2 |
8420380 | Fishman et al. | Apr 2013 | B2 |
8465970 | Hassanein et al. | Jun 2013 | B2 |
8535934 | Hassanein et al. | Sep 2013 | B2 |
8585380 | Hassanein et al. | Nov 2013 | B2 |
20010003652 | Freeman | Jun 2001 | A1 |
20020012988 | Brasile | Jan 2002 | A1 |
20020102720 | Steen | Aug 2002 | A1 |
20020132220 | Berens et al. | Sep 2002 | A1 |
20020151950 | Okuzumi | Oct 2002 | A1 |
20020164795 | Gen | Nov 2002 | A1 |
20020177117 | Wolf | Nov 2002 | A1 |
20030011604 | Capers | Jan 2003 | A1 |
20030040665 | Khuri et al. | Feb 2003 | A1 |
20030050689 | Matson | Mar 2003 | A1 |
20030053998 | Daemen et al. | Mar 2003 | A1 |
20030073227 | Hull et al. | Apr 2003 | A1 |
20030074760 | Keller | Apr 2003 | A1 |
20030086830 | Haywood et al. | May 2003 | A1 |
20030135152 | Kollar et al. | Jul 2003 | A1 |
20030147466 | Liang | Aug 2003 | A1 |
20040015042 | Vincent et al. | Jan 2004 | A1 |
20040017658 | Lo et al. | Jan 2004 | A1 |
20040018966 | Segall et al. | Jan 2004 | A1 |
20040029096 | Steen | Feb 2004 | A1 |
20040038192 | Brasile | Feb 2004 | A1 |
20040058432 | Owen et al. | Mar 2004 | A1 |
20040082057 | Alford et al. | Apr 2004 | A1 |
20040086578 | Segall et al. | May 2004 | A1 |
20040102415 | Thatte et al. | May 2004 | A1 |
20040102678 | Haindl | May 2004 | A1 |
20040106958 | Mathis et al. | Jun 2004 | A1 |
20040110800 | Bril et al. | Jun 2004 | A1 |
20040115689 | Augello et al. | Jun 2004 | A1 |
20040138542 | Khuri et al. | Jul 2004 | A1 |
20040168341 | Petersen et al. | Sep 2004 | A1 |
20040170950 | Prien | Sep 2004 | A1 |
20040171138 | Hassanein et al. | Sep 2004 | A1 |
20040202993 | Poo et al. | Oct 2004 | A1 |
20040224298 | Brassil et al. | Nov 2004 | A1 |
20040235142 | Schein et al. | Nov 2004 | A1 |
20040236170 | Kim | Nov 2004 | A1 |
20040248281 | Wright et al. | Dec 2004 | A1 |
20050010118 | Toyoda et al. | Jan 2005 | A1 |
20050019917 | Toledo-Pereyra et al. | Jan 2005 | A1 |
20050142532 | Poo et al. | Jun 2005 | A1 |
20050147958 | Hassanein et al. | Jul 2005 | A1 |
20050153271 | Wenrich | Jul 2005 | A1 |
20050170019 | Roth | Aug 2005 | A1 |
20050182349 | Linde et al. | Aug 2005 | A1 |
20050187469 | Phillips | Aug 2005 | A1 |
20060039870 | Turner | Feb 2006 | A1 |
20060074470 | Bartels et al. | Apr 2006 | A1 |
20060121438 | Toledo-Pereyra et al. | Jun 2006 | A1 |
20060124130 | Bonassa | Jun 2006 | A1 |
20060134073 | Naka et al. | Jun 2006 | A1 |
20060148062 | Hassanein et al. | Jul 2006 | A1 |
20060154357 | Hassanein et al. | Jul 2006 | A1 |
20060154359 | Hassanein et al. | Jul 2006 | A1 |
20060160204 | Hassanein et al. | Jul 2006 | A1 |
20060292544 | Hassanein et al. | Dec 2006 | A1 |
20070196461 | Weers | Aug 2007 | A1 |
20080017194 | Hassanein et al. | Jan 2008 | A1 |
20080234768 | Hassanein et al. | Sep 2008 | A1 |
20080286746 | Poo et al. | Nov 2008 | A1 |
20090142830 | Yamashiro et al. | Jun 2009 | A1 |
20090143417 | Smith et al. | Jun 2009 | A1 |
20090197240 | Fishman et al. | Aug 2009 | A1 |
20090197292 | Fishman et al. | Aug 2009 | A1 |
20090197324 | Fishman et al. | Aug 2009 | A1 |
20090197325 | Fishman et al. | Aug 2009 | A1 |
20090215022 | Page et al. | Aug 2009 | A1 |
20090312724 | Pipkin et al. | Dec 2009 | A1 |
20110136096 | Hassanein et al. | Jun 2011 | A1 |
20110190572 | Brophy et al. | Aug 2011 | A1 |
20130011823 | Hassanein et al. | Jan 2013 | A1 |
20130078710 | Hassanein et al. | Mar 2013 | A1 |
20130157248 | Fishman et al. | Jun 2013 | A1 |
20130295552 | Hassanein et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1232723 | Oct 1999 | CN |
4201259 | Jul 1993 | DE |
10121159 | Nov 2002 | DE |
4201259 | Jul 1993 | DK |
0347923 | Dec 1989 | EP |
0376763 | Jul 1990 | EP |
1942726 | Jul 2008 | EP |
H02-306901 | Dec 1990 | JP |
04-099701 | Mar 1992 | JP |
2001061956 | Mar 2001 | JP |
2004513889 | May 2004 | JP |
2004525290 | Aug 2004 | JP |
2004529938 | Sep 2004 | JP |
2009-521931 | Jun 2009 | JP |
2011-511000 | Apr 2011 | JP |
WO-8805261 | Jul 1988 | WO |
WO 8805261 | Jul 1988 | WO |
WO-9531897 | Nov 1995 | WO |
WO-9618293 | Jun 1996 | WO |
WO-9629865 | Oct 1996 | WO |
WO-9746091 | Dec 1997 | WO |
WO-9915011 | Apr 1999 | WO |
WO-0060936 | Oct 2000 | WO |
WO-2004026031 | Apr 2004 | WO |
WO-2006042138 | Apr 2006 | WO |
WO-2006124820 | Nov 2006 | WO |
WO-2007079185 | Jul 2007 | WO |
WO-2008106724 | Sep 2008 | WO |
Entry |
---|
“2002 Design & Engineering Awards, Portable Organ Preservation System,” Science (2002). |
Ahmad, et al., “A Pathophysiologic Study of the Kidney Tubule to Optimize Organ Preservation Solutions,” Kidney Int. 66(1):77-90 (2004). |
Anathaswamy, “Machine Keeps Organs Alive for Longer,” New Scientist.com (2002). |
Aoki, M. et al. “Anti-CD18 Attenuates Deleterious Effects of Cardiopulmonary Bypass and Hypothermic Circulatory Arrest in Piglets,” J. Card. Surg. 10:407-17 (1995). |
Bando, et al., “Oxygenated Perfluorocarbon, Recombinant Human Superoxide Dismutase, and Catalase Ameliorate Free Radical Incuded Myocardial Injury During Heart Preservation and Transplantation,” J. Thorac Cardiovasc Surb. 96:930-8 (Dec. 1988). |
Belzer, “Formula for Belzer MPS Solution,” University of Wisconsin-Madison Organ Preservation (internet reference) (2003). |
Benichou, et al., “Canine and Human Liver Preservation for 6 to 18 Hours by Cold Infusion,” Transplation, 24(6):407-411 (Dec. 1977). |
Birkett et al., “The Fatty Acid Content and Drug Binding Characteristics of Commercial Albumin Preparations,” Clin. Chem. Acta. 85:253-258 (1978). |
Blanchard, et al., “Techniques for Perfusion and Storage of Heterotopic Heart Transplants in Mice,” Microsurgery, 6:169-174 (1985). |
Boggi, et al., “Pancreas Preservation with University of Wisconsin and Celsior Solutions,” Transplant Proc. 36(3):563-5 (2004). |
Boggi, et al., “Pancreas Preservation with University of Wisconsin and Celsior Solutions: A Single-Center Prospective, Randomized Pilot Study,” Transplantation 27:77(8):1186-90 (2004). |
Boyle, Jr. et al., “Ischemia-Reperfusion Injury,” Ann. Thorac. Surg. 64:524-30 (1997). |
Burt, et al, “Myocardial Function After Preservation for 24 Hours,” Jour. Thorac. and Cardiovascular Surg., 92(2):238-46 (1986). |
Brasile, et al., “Organ Preservation Without Extreme Hypothermia Using an Oxygen Supplemented Perfusate,” Art. Cells. Blood Subs. and Immob. Biotech., 22(4):1463-68 (1994). |
Calhoon, et al., “Twelve-Hour Canine Heart Preservation With a Simple, Portable Hypothermic Organ Perfusion Device,” Ann. Thorac. Surg., 62:91-3 (1996). |
Canelo R., et al., “Experience with Hystidine Tryptophan Ketoglutarate Versus University Wisconsin Preservation Solutions in Transplatation,” Int. Surg. 88(3):145-51 (2003). |
“CELSIOR Cold Storage Solution,” Sangstat Medical Corporation (internet reference) (1999). |
Chambers, et al., “Long-Term Preservation of the Heart: The Effect of Infusion Pressure During Continuous Hypothermic Cardioplegia,” Jour. of Heart and Lung Transp., 11(4):665-75 (1992). |
Chen, et al., “Development of New Organ Preservation Solutions in Kyoto University,” Yonsei Medical Journal, 46(6):1107-40 (2004). |
Chien, et al., “A Simple Technique for Multiorgan Preservation,” Jour. of Thor. and Card. Surg., 95(1):55-61 (1988). |
Chien, et al., Canine Lung Transplantation After More Than Twenty-four Hours of Normothermic Preservation, J. Heart Lung Transplant, 16:3340-51 (1997). |
Chien, et al., “Functional Studies of the Heart During a 24-Hour Preservation Using a New Autoperfusion Preparation,” The Journal of Heart and Lung Transplantation, 10(3):401-8 (1991). |
Cimino, Adria, “Doctor Develops Device to Preserve Donated Organs,” Mass High Tech (2001). |
Christophi, et al., “A Comparison of Standard and Rapid Infusion Methods of Liver Preservation During Multi-Organ Procurement,” Aust. N.Z.J. Surg., 61(9):692-94 (1991). |
Collins, B.H., “Organ Transplantation: What Is the State of the Art?,” Ann. Surg., 238(6 Suppl):S72-89 (2003). |
Cronin, et al., “Liver Transplantation at the University of Chicago,” Clin. Transpl. 231-8 (1999). |
Daemen, et al., “Short-Term Outcome of Kidney Transplants Fron Non-Heart-Beating Donors After Preservation by Machine Perfusion,” Transpl. Int. 9(Supp 1):S76-S80 (1996). |
Demertzis et al., “University of Wisconsin Versus St. Thomas' Hospital Solution for Human Donor Heart Preservation,” Ann. Thorac. Surg. 55:1131-7 (1993). |
Den Butter, et al., “Comparison of Solutions for Preservation of the Rabbit Liver as Tested by Isolated Perfusion,” Transpl. Int. 8(6):466-71 (1995). |
Denham, et al., “Twenty-Four Hour Canine Renal Preservation by Pulsatile Perfusion, Hypothermic Storage, and Combinations of the Two Methods,” Transplant Proc. 9(3):1553-56 (1977). |
Dobrian, et al., “In vitro formation of oxidatively-modified and reassembled human low-density lipoproteins,” Biochimica et Biophysica Acta (BBA) 1169:12-24 (1993). |
Drexler et al., “Effect of L-Arginine on Coronary Endothelial Function in Cardiac Transplant Recipients,” Circulation.89(4):1615-23 (1994). |
Eiseman, et al., “A Disposable Liver Perfusion Chamber,” Surgery 6:1163-66 (1966). |
Engelman et al. “Influence of Steroids on Complement and Cytokine Generation After Cardiopulmonary Bypass,” Ann. Thorac. Surg. 60(3):801-04 (1995). |
Fabregas, Luis, “UPMC Tests Machine to Aid Heart Transplants,” Pittsburg Tribune-Review (2002). |
Faggian, et al., “Donor Organ Preservation in High-Risk Cardiac Transplantation,” Transplant Proc. 36:617-19 (2004). |
Fehrenberg, et al., “Protective Effects of B2 Preservation Solution in Comparison to a Standard Solution (Histidine-Tryptophan-Ketoglutarate/Bretschneider) in a Model of Isolated Autologous Hemoperfused Porcine Kidney,” Nephron. Physiol. 96:52-58 (2004). |
Ferrera et al., “Comparison of Different Techniques of Hypothermic Pig Heart Preservation,” Ann. Thorac. Surg. 57(5):1233-39 (1994). |
Finn et al., Effects of Inhibition of Complement Activation Using Recombinant Soluble Complement Receptor 1 on Neutrophil CD11B/CD18 and L-Selectin Expression and Release of Interleukin-8 and Elastase in Simulated Cardiopulmonary Bypass. J. Thorac. Cardiovasc. Surg. 111(2):451-49 (1996). |
Fourcade, et al., “A New Method of Kidney Preservation with Collins' Solution,” Biomed. 21(7):308-11 (1974). |
Fraser, et al., “Evaluation of Current Organ Preservation Methods for Heart-Lung Transplantation,” Transplant. Proc. 20(1 Suppl. 1):987-90 (1988). |
Guarrera, et al., “Pulsatile Machine Perfusion with Vasosol Solution Improves Early Graft Function After Cadaveric Renal Transplantation,” Transplantation 77(8):1264-68 (2004). |
Gundry et al., “Successful Transplantation of Hearts Harvested 30 Minutes After Death From Exsanguination,” Ann. Thorac. Surg. 53(5):772-75 (1992). |
Habazetti et al., “Improvement in Functional Recovery of the Isolated Guinea Pig Heart After Hyperkalemic Reperfusion with Adenosine,” J. Thorac. Cardiovasc. Surg. 111(1):74-84 (1996). |
Hachida, et al., Abstract “Efficacy of Myocardial Preservation using HTK Solution in Continuous 120 Min. Cross-Clamping Method—a Comparative Study with GIK Method,” Nippon Kyobu Geka Gakkai Zasshi 41(9):1495-1501 (1993). |
Hartman, J.C. “The Role of Bradykinin and Nitric Oxide in the Cardioprotective Action of ACE Inhibitors,” Ann Thor. Surg. 60:789-92 (1995). |
Hassanein, et al., “A Novel Approach for 12-Hour Donor Heart Preservation, Presented at the 70th Scientific Session of the American Heart Association,” Abstract was published in Circulation (1977). |
Hassanein, et al., “Continuous Perfusion of Donor Hearts in the Beating State Extends Preservation Time and Improves Recovery of Function,” The Journal of Thoracic and Cardiovascular Surgery, pp. 821-830 (1988). |
“Heart Kept Beating Outside Body,” Associated Press, CNN.com (2001). |
Heil, et al., “A Controlled Comparison of Kidney Preservation by Two Methods: Machine Perfusion and Cold Storage,” Transplant. Proc. 19(1):2046 (1987). |
History of Transplantation and Organ Preservation, Barr Laboratories,Inc. (internet reference) (2004). |
“Human Heart Beats on its own Outside Body,” USA Today (2001). |
“Human Heart Kept Alive Outside Body for First Time in Study of Portable Organ Preservation System™ at University of Pittsburgh Medical Center,” UPMC, McGowan Institute for Regenerative Medicine (2001). |
Imber, et al., “Advantages of Normothermic Perfusion Over Cold Storage in Liver Preservation,” Transplantation, 73(5):701-09 (2002). |
Janssen, et al., “UW is Superior to Celsior and HTK in the Protection of Human Liver Endothelial Cells Against Preservation Injury,” Liver Transpl., 10(12):1514-23 (2004). |
Kawamura, et al., “Long-Term Preservation of Canine Pancreas by a New Simple Cold Storage Method Using Perfluorochemical—The Two-Layer Cold Storage Method (Euro-Collins' Solution/Perfluorochemical),” Kobe J. Med. Sci., 38(2):135-45 (1992). |
Kelly, “Current Strategies in Lung Preservation,” J. Lab Clin. Med., 136:427-40 (2000). |
Keshavjee, et al., “A Method for Safe Twelve-Hour Pulmonary Preservation,” J. Thorac. Cardiovasc Surg., 98:529-34 (1989). |
Kioka, et al., “Twenty-Four-Hour Isolated Heart Preservation by Perfusion Method With Oxygenated Solution Containing Perfluorochemicals and Albumin,” J. Heart Transplant., 5:437-43 (1986). |
Kozaki, et al., “Usefulness of a Combination of Machine Perfusion and Pentoxifylline for Porcine Liver Transplantation From Non-Heart-Beating Donors With Prolonged Hypotension,” Transplant Proc., 29:3476-77 (1997). |
Kuroda, et al., “A New, Simple Method for Cold Storage of the Pancreas Using Perfluorochemical,” Transplantation, 46(3):457-60 (1988). |
Lasley, et al., “Protective Effects of Adenosine in the Reversibly Injured Heart,” Ann. Thorac. Surg., 60(3):843-46 (1995). |
Lawrence, “Machine Preserves Organs Outside Body,” Chicago Sun Times (2001). |
Lefer, A.M., “Attenuation of Myocardial Ischemia-Reperfusion Injury With Nitric Oxide Replacement Therapy.” Ann. Thorac. Surg. 60(3):847-51 (1995). |
Li, et al., “Insulin in University of Wisconsin Solution Exacerbates the Ischemic Injury and Decreases the Graft Survival Rate in Rat Liver Transplantation,” Transplantation, 15:76(1):44-49 (2003). |
Li, et al., “Insulin in UW Solution Exacerbates Hepatic Ischemia/Reperfusion Injury by Energy Depletion Through the IRS-2/SREBP-1C Pathway,” Liver Transp., 10(9):1173-82 (2004). |
Li, G. et al., “Functional Recovery in Rabbit Heart after Preservation with a Blood Cardioplegic Solution and Perfusion,” J. Herat Lung Transplant. 12(2)263-70 (1993). |
Liu, et al., “Annexin V Assay-proven Anti-apopototic Effect of Ascorbic Acid 2-glucoside after Cold Ischemia/Reperfusion Injury in Rat Liver Transplantation,” Acta Med. Okayama, 57(5):209-16 (2003). |
“Machine Keeps Human Kidney Alive for 24-Hours,” 222.worldhealth.net, Aug. 25, 2001. |
“Machine May Be Organ Transplant Breakthrough,” USA Today (2001). |
Mankad et al., “Endothelial dysfunction caused by University of Wisconsin preservation solution in the rat heart,” J. Thorac. Cardiovasc. Surg. 104(6): 1618-24 (1992). |
Matsuno et al., “Effectiveness of Machine Perfusion Preservation as a Viability Determination Method for Kidneys Procured from Non-Heart-Beating Donors,” Transplant. Proc. 26(4):2421-22 (1994). |
Matsuno et al., “The Effect of Machine Perfusion Preservation Versus Cold Storage on the Function of Kidneys from Non-Heart-Beating Donors,” Transplantation. 57(2):293-94 (1994). |
Menasche et al., “Experimental evaluation of Celsior®. a new heart preservation solution,” Eur. J. Cardiothor. Surg. 8:207-13 (1994). |
Menasche, et al., “Improved Recovery of Heart Transplants With a Specific Kit of Preservation Solutions,” J. Thorac. Cardiovasc. Surg., 105(2):353-63 (1993). |
Menasche, P., “The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function”, Curr. Opin. Cardiology. 10:597-604 (1995). |
Moisiuk, et al., “Histidine-Tryptophan-Ketoglutarate Versus Euro-Collins for Preservation of Kidneys from Non-Heart-Beating Donors,” Transplant Proc., 28(1):202 (1996). |
Moller-Pedersen, et al., “Evaluation of Potential Organ Culture Media for Eye Banking Using Human Donor Corneas,” Br. J. Ophthamol, 85(9):1075-79 (2001). |
Morimoto, et al., “A Simple Method for Extended Heart-Lung Preservation by Autoperfusion,” Trans. Am. Soc. Artif Intern Organs., 30:320-24 (1984). |
“New Discovery in Organ Transplantation,” MSNBC (2001). |
Innovations—Report “New Organ Preservation Solution Easier to Use,” (internet reference) (2003). |
Nicholson, et al., “A Comparison of Renal Preservation by Cold Storage and Machine Perfusion Using a Procine Autotransplant Model,” Transplantation 78(3):333-37 (2004). |
Opelz, et al., “Advantage of Cold Storage Over Machine Perfusion for Preservation of Cadaver Kidneys,” Transplantation, 33(1):64-68 (1982). |
Opelz, et al., “Comparative Analysis of Kidney Preservation Methods, Collaborative Transplant Study,” Transplant Proc. 28(1):87-90 (1996). |
Pearl et al., “Loss of endothelium-dependent vasodilation and nitric oxide release after myocardial protection with University of Wisconnsin solution,” J. Thorac. Cardiovasc. Surg., 107(1):257-64 (1994). |
Petrovsky, et al., Justification and Application of a New Method for Transorganic Oxygen Preservation of the Kidneys, Vestn. Akad. Med. Nauk, SSSR., (2):69-82 (1989). |
Pinsky et al., “Restoration of the cAMP Second Messenger Pathway Enhances Cardiac Preservation for Transplantation in a Heterotopic Rat Model,” J. Clin. Invest. 92(6):2944-3002 (1993). |
Ploeg, et al., “Successful 72-Hour Cold Storage of Dog Kidneys with UW Solution,” Transplantation, 46(2):191-96 (1988). |
Pokorny, et al., “Histidine-Tryptophan-Ketoglutarate Solution for Organ Preservation in Human Liver Transplantation—A Prospective Multi-Centre Observation Study,” Transpl. Int. 17(5):256-60 (2004). |
Potdar, et al., “Initial Experience Using Histidine-Tryptophan-Ketoglutarate Solution in Clinical Pancreas Transplantation,” Clin. Transplant., 18(6):661-65 (2004). |
Pozniak, “Keeping Hearts Alive: Doctors Develop a High-Tech System to Salvage Donated Organs,” ABC News.com (2001). |
Rao et al., “Donor blood Perfusion Improves Myocardial Recovery After Heart Transplantaion,” J. Heart Lung Transplant, 16(6):667-73 (1997). |
Reddy, et al., “Preservation of Porcine Non-Heart Beating Donor Livers by Sequential Cold Storage and Warm Perfusion,” Transplantation, 77(9):1328-32 (2004). |
Richens et al., “Clinical Study of Crystalloid Cardioplegia vs Aspartate-Enriched Cardioplegia Plus Warm Reperfusion for Donor Heart Preservation,” Transplant. Proc. 24(1): 1608-10 (1993). |
Rinder et al., “Blockade of C5a and C5b-9 Generation Inhibits Leukocyte and Platelet Activation during Extracorporeal Circulation,” J. Clin. Invest. 96:3(1564-72). 1995. |
Rossi, “Portable Organ Preservation System™ Keeps Human Heart Alive Outside Body,” PITT Campaign Chronicle (2001). |
Rosenkranz, E.R. “Substrate Enhancement of Cardioplegic Solution: Experimental Studies and Clinical Evaluation,” Ann. Thorac. Surg. 60:797-800 (1995). |
Sato, H. et al., “Supplemental L-Arginine During Cardioplegic Arrest and Reperfusion Avoids Regional Postischemic Injury,” J. Thorac. Cardiovasc. Surg. 110(2):302-14 (1995). |
Schmid, et al., “The Use of Myocytes as a Model for Developing Successful Heart Preservation Solutions,” Transplantation, 52(1):20-6 (Jul. 1991). |
Schon, et al., “Liver Transplantation After Organ Preservation by Normothermic Extracorporeal Perfusion,” Ann. Surg. 233(1):114-23 (2001). |
Schwalb et al., “New Solution for Prolonged Myocardial Preservation for Transplantation,” J. Heart Lung Transplant. 17(2):222-29 (1998). |
Seccombe et al., “Coronary Artery Endothelial Function After Myocardial Ischemia and Reperfusion,” Ann. Thorac. Surg. 60(3):778-88 (1995). |
Segel et al., “Posttransplantation Function of Hearts Preserved with Fluorochemical Emulsion”, J. Heart Lung Transplant. 13(4):669-80 (1994). |
Segel, et al., “Recovery of Sheep Hearts After Perfusion Preservation or Static Storage With Crystalloid Media,” The Journal of Heart and Lung Transplantation, 17:211-21 (1998). |
Shimokawa, et al., “A New Lung Preservation Method of Topical Cooling by Ambient Cold Air Combined with High-Frequency Oscillation: An Experimental Study,” Transplant. Proc., 26(4):2364-66 (1994). |
Shimokawa, et al., “A New Lung Preservation Method of Topical Cooling by Ambient Cold Air: An Experimental Study,” Transplant. Proc., 23 (1 Pt 1):653-54 (1991). |
Shirakura et al., “Multiorgan Procurement from Non-Heart-Beating Donors by use of Osaka University Cocktail, Osaka Rinse Solution, and the Portable Cardiopulmonary Bypasss Machine,” Transplant. Proc. 25(6):3093-94 (1993). |
Southard, “The Right Solution for Organ Preservation”, Business Briefings: Global Surgery, 79-84 (2004). |
Stubenitsky, et al., “Kidney Preservation in the Next Millenium,” Transpl. Int., 12:83-91 (1999). |
Sunamori et al., “Relative Advantages of Nondepolarizing Solution to Depolarizing University of Wisconsin Solution in Donor Heart Preservation,” Transplant. Proc. 25(1): 1613-17 (1993). |
Tang, et al., “Warm Ischemia Lung Protection with Pinacidil: An ATP Regulated Potassium Channel Opener,” Ann. Thorac. Surg., 76:385-9 (2003). |
Tesi et al., “Pulsatile Kidney Perfusion for Preservation and Evaluation: Use of High-Risk Kidney Donors to Expand the Donor Pool,” Transplant. Proc. 25(6):3099-100 (1993). |
The Merck Index, 11th ed. Entry 4353 (pp. 699-700) (1989). |
“The Nation Warm-Storage Device May Aid Organ Transplants,” Dow Jones Publications Library (2001). |
Turpin, et al., “Perfusion of Isolated Rat Adipose Cells,” The Journal of Clinical Investigation, 60:442-448 (1977). |
“ViaSpan (Belzer UW) Cold Storage Solution,” Barr Laboratories, Inc. (2002). |
Vinten-Johansen, et al., “Reduction in Surgical Ischemic-Reperfusion Injury With Adenosine and Nitric Oxide Therapy,” Ann. Thorac. Surg. 60(3):852-57 (1995). |
“Warm-Storage for Donor Organs,” Univ. of Chicago Magazine (2001). |
Watanabe, et al., “Effects of free fatty acids on the binding of bovine and human serum albumin with steroid hormones,” Biochimica et Biophysica Acta (BGBA), 1289:385-96 (1996). |
Wicomb et al., “24-Hour Rabbit Heart Storage with UW Solution,” Transplantation. 48(1):6-9 (1989). |
Wicomb, et al., “Cardiac Transplantation Following Storage of the Donor Heart by a Portable Hypothermic Perfusion System,” The Annals of Thoracic Surgery, 37(3):243-48 (1984). |
Wicomb, et al., “Orthotopic Transplantation of the Baboon Heart After 20 to 24 Hours Preservation by Continuous Hypothermic Perfusion With an Oxygenated Hyperosmolar Solution,” The Journal of Thoracic and Cardiovascular Surgery, 83(1):133-40 (1982). |
Yland, et al., “New Pulsatile Perfusion Method for Non-Heart-Beating Cadaveric Donor Organs: A Preliminary Report,” Transplantation Proceedings, 25(6):3087-90 (1993). |
Zhang, et al., “Research Progress on Preservation of Severed Limbs,” Chinese Journal of Reparative and Reconstructive Surgery, 14(3):189-192 (2000). |
Zhengquang, et al., “A Study on the Preservation of Rat Kidney with HX-III Solution,” WCUMS, 31(3):347-49 (2000). |
Barinov, et al. “Hormonal-metabolic disturbances during biological preservation of the heart,” Fiziol. ZH., (Kiev), 29(3):293-299 (1983) (7 pages)—Russian Language. |
Brandes, H et al. “Influence of high molecular dextrans on lung function in an ex vivo porcine lung model.” J. of Surgical Research. 101:2 225-231. Dec. 2001, 7 pages. |
European Search Report for European Patent Application No. 08795820.3 mailed Apr. 17, 2014. 6 pages. |
European Search Report for European Patent Application No. 09707471.0 mailed May 27, 2014. 7 pages. |
Featherstone et al. “Comparison of Phosphodiesterase Inhibitors of Differing Isoenzyme Selectivity Added to St. Thomas' Hospital Cardioplegic Solution Used for Hypothermic Preservation of Rat Lungs.” Am. J. Respir. Crit. Care Med. Mar. 2000. 162(3):850-856, 7 pages. |
File History for U.S. Appl. No. 60/616,835, filed Oct. 7, 2004. 82 pages. |
File History for U.S. Appl. No. 60/694,971, filed Jun. 28, 2005. 280 pages. |
File History for U.S. Appl. No. 60/725,168, filed Oct. 6, 2005. 699 pages. |
Grynberg et al. “Fatty acid oxidation in the heart,” Journal of Cardiovascular Pharmacology, 28(Suppl. 1):S11-S17 (No Month Given1996) (8 pages). |
Hardesty et al. Original Communications, “Autoperfusion of the heart and lungs for preservation during distant procurement,” J. Thorac. Cardiovasc. Surg., 93:11-18 (No Month Given 1987) (8 pages). |
Hülsmann et al. “Loss of cardiac contractility and severe morphologic changes by acutely lowering the pH of the perfusion medium: protection by fatty acids,” BBAGEN 20256, Biochimica et Biophysica Acta., 1033:214-218 (Feb. 26, 1990) (5 pages). |
International Search Report and Written Opinion for International Application No. PCT/US12/33626 mailed Sep. 20, 2012. 12 pages. |
International Search Report for PCT/US07/009652 mailed Apr. 18, 2008, 7 pages. |
Johnson, Kerry et al: “POPS: Portable Organ Preservation System.” UPMC Health System and TransMedics, Inc. Tribune Review (No date) 1 page. |
Katz, Robert et al. “Physics, Chapter 9: Hydrodynamics (Fluids in Motion).” Hydrodynamics. University of Nebraska—Lincoln. Paper143. No Month Listed 1958. 18 pages. |
Macchiarini et al. “Ex vivo lung model of pig-to-human hyperacute xenograft rejection,” J. of Thoracic and Cardiovascular Surgery, 114:3, 315-325 (Sep. 1997) (9 pages). |
No Author Listed. “Custodiol HTK Solution for Multi-Organ Protection.” Saudi Center for Organ Transplantation. Date Unknown. 2 pages. |
No Author Listed. “Custodiol HTK.” Physicians' Desk Reference. 57th Edition, Thomson PDR. ISBN:1-56363-445-7. No Month Listed—2003. 3 pages. |
No Author Listed. “Soltran Kidney Perfusion Fluid.” Baxter. No Month Listed—2001-2004. 1 page. |
No Author Listed. “The Comprehensive Resource for Physicians, Drug and Illness Information.” Viaspan DuPont Pharma Cold Storage Solution. Date Unknown. 3 pages. |
No Author Listed. “UW Solution Composition.” Date Unknown. 1 page. |
PCT/US08/61454 International search report mailed Dec. 5, 2008 (3 pages). |
PCT/US09/032619 International search report mailed Jun. 4, 2009 (4 pages). |
PCT/US98/19912 International search report mailed May 3, 1999 (4 pages). |
Probst et al. “Carbohydrate and fatty acid metabolism of cultured adult cardiac myocytes,” Am. J. Physiol. 250 (Heart, Circ. Physiol. 19):H853-H860 (1986) (8 pages). |
“Celsior, Cold Storage Solution.” Sangstat Medical Corporation and Fresenius Kabi France. (No date), 5 pages. |
Solu-Medrol, Drug Details, U.S. Food and Drug Administration, Center for Drug Evaluation and Research, “Drugs@FDA—Drug Details” (Accessible online at http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails) (1 page). |
Solu-Medrol, Label and Approval History U.S. Food and Drug Administration, Center for Drug Evaluation and Research, “Drugs@FDA—Label and Approval History,” (Available online at http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.Label—ApprovalHistory#apphist) (3 pages). |
Voiglio et al. “Rat multiple organ blocks: microsurgical technique of removal for ex vivo aerobic organ preservation using a fluorocarbon emulsion,” Microsurgery 20: 109-115 (No Month Given 2000), 7 pages. |
Wright, N. et al. “A porcine ex vivo paracorporeal model of lung transplantation.” Laboratory Animals. 34:1 56-62 (No Month Given 2000), 7 Pages. |
Aitchison, J. Douglas et al. “Nitric Oxide During Perfusion Improves Posttransplantation Function of Non-Heart-Beating Donor Lungs.” Transplantation. Jun. 27, 2003. vol. 75, No. 12, pp. 1960-1964. |
European Search Report for European Patent Application No. 12770852.7 mailed Sep. 23, 2014. 8 pages. |
Odagiri, Shigetoh et al. “New Pulsatile Pump Using Pulsatile Assist Device—Hemodynamic Comparison of Pulsatile V-A Bypass (VABP), Pulsatile Left Heart ByPass (LHBP) and Constant Flow Left Heart Bypass (LHB).” Journal of Japan Surgical Society. V83, No Month Listed 1983. pp. 515-523, 12 pages. |
Ota et al. “Artificial Organ—Current State and Future of Substitution of Functions.” No Month Listed 1983. pages 150-151, 4 pages. |
Steen, Stig et al. “Transplantation of Lungs from Non-Heart-Beating Donors After Functional Assessment Ex Vivo.” The Annals of Thoracic Surgery. Elsevier Inc. No Month Listed 2003. vol. 76, pp. 244-252. |
Carrier, B. et al., “Chapter 4: Hypoxia and Oxygenation”, Alaska Air Medical Escort Training Manual, Fourth Edition, pp. 71-82, 2006 (12 pages). |
Definition of Synchrony, http://dictionary.reference.com/browse/synchrony. Random House Unabridged Dictionary, 2006 (1 page). |
Egan, T. M. et al., “Ex Vivo Evaluation of Human Lungs for Transplant Suitability”, Ann Thorac Surg, vol. 81, No. 4, pp. 1205-1213 (Apr. 2006) (9 pages). |
Howarth, F.C. et al., “Effects of extracellular magnesium and beta adrenergic stimulation on contractile force and magnesium mobilization in the Isolated rat heart”, Magnesium Research, 7:187-197, 1994 (13 pages). |
Poston, R.S. et al., “Optimizing Donor Herat Outcome After Prolonged Storage With Endothelial Function Analysis and Continuous Perfusion”, Ann Thorac Surg, 78:1362-1370, 2004 (9 pages). |
Number | Date | Country | |
---|---|---|---|
20080234768 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
60919306 | Mar 2007 | US |