None.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to fluid jetting devices, and more particularly, to systems for priming the fluid jetting devices.
2. Description of the Related Art
A typical fluid jetting device, such as an inkjet printhead, includes a fluid jetting chip having a nozzle plate either attached to or integrated with the fluid jetting chip that may be a thermal, piezoelectric, or mechanical jetting type of a chip. As used herein, the term fluid may relate to any type of a fluid, such as a priming solution, and the like. The fluid jetting chip is supported on a unit/substrate provided with one or more fluidic tiles. The fluid jetting device also includes one or more fluid chambers/tanks that supply a fluid to the fluid jetting chip and the nozzle plate for printing purposes.
Prior to use, a fluid jetting device needs to undergo priming in order to deliver reliable print quality and resolution. The term “priming” as used herein, refers to a critical maintenance step required to remove trapped air bubbles, which either restrict or even completely block fluid flow from being delivered to firing chambers from within a fluid jetting device in order to facilitate the fluid jetting device to operate properly without misprinting and to achieve a reliable print quality. Specifically, a fluid jetting device may be primed either during installation of a printer employing the fluid jetting device or during servicing of the fluid jetting device. In general, a disposable fluid jetting device is primed prior to sale, while a permanent or semi permanent fluid jetting device may be shipped to customers in either a dry or a primed state. A typical method for priming a fluid jetting device includes pumping of a fluid through a surface of a nozzle plate of the fluid jetting device using vacuum suction from nozzles' surface (i.e., vacuum priming), or raising fluid pressure from a fluid source (positive pressure priming), in order to remove trapped air bubbles from within the fluid jetting device.
Currently, it has been observed in the prior art that page wide fluid jetting devices (printheads) utilize narrow fluid jetting chips as very narrow print zones are required to tolerate unavoidable paper skew. However, such fluid jetting chips are more fragile and have a smaller surface area thereof than that of a usual fluid jetting chip. Accordingly, priming of the page wide printheads that employ narrow fluid jetting chips becomes difficult. Further, a narrow fluid jetting chip requires transverse fluidic fan-out to mitigate problems associated with the fabrication of a substrate of the fluid jetting chip and fluidic connections within the substrate that are coupled to one or more fluid tanks. It has been observed that fan-out micro fluidic channels associated with the available fluid jetting chip are easily inhabited by air bubbles due to their small cross sectional dimensions. At present, there is no method either disclosed or published that recites fluid recirculation through the fan-out fluidic channels. Accordingly, the aforementioned fluid jetting chip has a limited capability to remove trapped air bubbles from within the fan-out microfluidic channels.
Accordingly, there persists a need for an effective priming system for a fluid jetting device in order to overcome the drawbacks and limitations of prior art priming methods and/or systems. Specifically, there persists a need for systems for effective priming of fluid jetting devices that facilitate removal of trapped air bubbles from within the fluid jetting devices including the air bubbles entrapped within fan-out microfluidic channels of the fluid jetting devices, to achieve reliable print quality.
In view of the foregoing disadvantages inherent in the prior art, the general purpose of the present disclosure is to provide systems for priming fluid jetting devices by including all the advantages of the prior art, and overcoming the drawbacks inherent therein.
In one aspect, the present disclosure provides a system for priming a fluid jetting device. The system includes a fluid trench configured within a fluid jetting chip of the fluid jetting device. The system further includes at least one first channel fluidly coupled to the fluid trench. Further, the at least one first channel extends vertically between the fluid jetting chip and a mounting unit adapted to support the fluid jetting chip. The system also includes at least one second channel fluidly coupled to the fluid trench. The at least one second channel extends vertically between the fluid jetting chip and the mounting unit. The at least one first channel is adapted to supply a priming fluid to the fluid trench and the at least one second channel is adapted to drain-out the priming fluid from within the fluid trench.
In another aspect, the present disclosure provides a system for priming a fluid jetting device that includes a fluid trench configured within a fluid jetting chip of the fluid jetting device. The system further includes at least one flow feature channel disposed adjacent to the fluid trench and adapted to be fluidly coupled to the fluid trench. Furthermore, the system includes at least one first channel fluidly coupled to the fluid trench. The at least one first channel extends vertically between the fluid jetting chip and a mounting unit adapted to support the fluid jetting chip. Additionally, the system includes at least one second channel fluidly coupled to one or more flow feature channels of the at least one flow feature channel. Further, the at least one second channel extends vertically between the fluid jetting chip and the mounting unit. The at least one first channel is adapted to supply a priming fluid to the fluid trench, and the at least one second channel is adapted to drain-out the priming fluid from within the one or more flow feature channels of the at least one flow feature channel.
In yet another aspect, the present disclosure provides a system for priming a fluid jetting device. The system includes at least one feeding member coupled to a mounting unit of the fluid jetting device. The mounting unit is adapted to support a fluid jetting chip of the fluid jetting device. The system further includes at least one first fluid channel configured within the fluid jetting device. Each first fluid channel of the at least one first fluid channel is adapted to be fluidly coupled with one or more feeding members of the at least one feeding member to receive a priming fluid. Moreover, the system includes at least one draining member fluidly coupled to the each first fluid channel to drain-out the priming fluid from within the fluid jetting device.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
It is to be understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure. It is to be understood that the present disclosure is not limited in its application to the details of components set forth in the following description. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present disclosure provides priming systems for fluid jetting devices, such as inkjet printheads, to remove trapped air bubbles and/or residual fluid from within the fluid jetting devices. Specifically, the priming systems may be employed for page wide inkjet printheads. Various embodiments of the systems for priming the fluid jetting devices are explained in conjunction with
Referring again to
Further, the system includes at least one first channel, such as a channel 106 and a channel 108, fluidly coupled to the fluid trench 52. Each channel of the channels 106, 108 may extend transversely to the fluid trench 52. Further, the channels 106, 108 extend vertically between the fluid jetting chip 50 and the mounting unit 100. Specifically, the channels 106, 108 are fan-out microfluidic channels that extend vertically from the mounting unit 100 to the fluid jetting chip 50. Furthermore, the channels 106, 108 are adapted to supply a priming fluid to the fluid trench 52 (as shown by directional arrows “B” and “C” in
In addition, the system includes at least one inlet port, such as an inlet port 60 and an inlet port 62, configured in a spaced apart relation with each other within the fluid trench 52 of the fluid jetting chip 50. The inlet ports 60, 62 are joined ports between the fluid trench 52 and the respective channels 106, 108 of the mounting unit 100. The inlet ports 60, 62 are adapted to be fluidly coupled to the channel 106 and the channel 108, respectively for receiving the priming fluid therefrom.
The system also includes at least one second channel, such as a channel 112 and a channel 114 fluidly coupled to the fluid trench 52, that may extend transversely to the fluid trench 52. Each channel of the channels 112, 114 extends vertically between the fluid jetting chip 50 and the mounting unit 100. Specifically, the channels 112, 114 are fan-out microfluidic channels that extend vertically from the mounting unit 100 to the fluid jetting chip 50. The channels 112, 114 are adapted to drain-out the priming fluid from the fluid trench 52 (as shown by directional arrows “D” and “E”). The channels 112, 114 are also fluidly coupled to a fluid storage chamber (not shown). Specifically, a supply fluid channel 116 depicts the fluid coupling between the fluid storage chamber and the channels 112, 114.
Moreover, the system includes at least one outlet port, such as an outlet port 64 and an outlet port 66 configured in a spaced apart relation with each other, within the fluid trench 52 of the fluid jetting chip 50. The outlet ports 64, 66 are adapted to be fluidly coupled to the inlet ports 60, 62, respectively. Further, the outlet ports 64, 66 are adapted to be fluidly coupled to the channels 112, 114, respectively, for draining-out the priming fluid from within the fluid trench 52. The outlet ports 64, 66 are joined ports between the fluid trench 52 and the respective channels 112, 114 of the mounting unit 100. Each outlet port of the outlet ports 64, 66 may include a valve (not shown) adapted to shut the respective channels 112, 114 during a printing mode. In addition, the distance between the inlet ports 60, 62 and the respective outlet ports 64, 66 may range from about 1.5 millimeter (mm) to about 2.2 mm.
Priming of the fluid jetting device 1000 may be performed by circulating a fluid (priming fluid) into the fluid jetting device 1000 using a driving force such as a positive pressure applied at the channels 106, 108 and vacuum pumping at the channels 112, 114. Specifically, the fluid may be forced through the channels 106, 108 from the fluid storage chamber. Subsequently, the fluid may be allowed to circulate into the fluid trench 52. Thereafter, the fluid may be drained-out through the channels 112, 114 in order to remove trapped air bubbles and/or residual fluid from within the fluid jetting device 1000. The priming may be performed periodically to remove the trapped air bubbles and/or residual fluid during servicing of the fluid jetting device 1000.
During the printing mode, the channels 106, 108 and 112, 114 feed inks, and more specifically, inks of different colors, into the fluid jetting chip 50, as shown by directional arrows “B,” “C,” “F,” and “G” in
The system of
The system of
Further, the system includes at least one first channel, such as a channel 252, a channel 254, a channel 256, and a channel 258, fluidly coupled to the fluid trench 202. The channels 252, 254, 256, 258 are similar to the channels 106, 108 of
In addition, the system includes at least one inlet port, such as an inlet port 210, an inlet port 212, an inlet port 214, and an inlet port 216 configured in a spaced apart relation with each other, within the fluid trench 202 of the fluid jetting chip 200. The inlet ports 210, 212, 214, 216 are joined ports between the fluid trench 202 and the respective channels 252, 254, 256, 258 of the mounting unit 250. Further, the inlet ports 210, 212, 214, 216 are adapted to be fluidly coupled to the channels 252, 254, 256, 258, respectively, for receiving the priming fluid (as shown by directional arrows “H,” “I” “J” and “K”).
The system also includes at least one second channel, such as a channel 262 and a channel 264 fluidly coupled to the fluid trench 202 at respective end portions 218, 220 thereof. Further, the channels 262, 264 may extend transversely to the fluid trench 202. Each channel of the channels 262, 264 extends vertically between the fluid jetting chip 200 and the mounting unit 250. Specifically, the channels 262, 264 are fan-out microfluidic channels extending vertically from the mounting unit 250 to the fluid jetting chip 200. Further, the channels 262, 264 are adapted to drain-out the priming fluid from the fluid trench 202. The channels 262, 264 are also fluidly coupled to a fluid storage chamber (not shown). Specifically, supply fluid channels 266, 268 depict the fluid coupling between the fluid storage chamber and the channels 262, 264, respectively. The channels 262, 264 are separated from the channels 252, 254, 256, 258, and are configured in the same plane of the mounting unit 250. Such an arrangement facilitates in an easy manufacturing of the fluid jetting device 2000.
Moreover, the system includes at least one outlet port, such as an outlet port 222 and an outlet port 224 configured within the fluid trench 202 of the fluid jetting chip 200. Specifically, the outlet ports 222, 224 are configured at the respective end portions 218, 220 of the fluid trench 202. The outlet ports 222, 224 may be adapted to be fluidly coupled to one or more of the inlet ports 210, 212214, 216. Specifically, the outlet port 222 may be fluidly coupled to the inlet ports 210, 212, and the outlet port 224 may be fluidly coupled to the inlet port 214, 216. Further, the outlet ports 222, 224 are adapted to be fluidly coupled to the channels 262, 264, respectively, for draining-out the priming fluid from within the fluid trench 202 (as shown by directional arrows “L” and “M”). Specifically, the outlet ports 222, 224 are joined ports between the fluid trench 202 and the respective channels 262, 264 of the mounting unit 250. Each outlet port of the outlet ports 222, 224 may include a valve (not shown) adapted to shut the respective channels 262, 264. The valve may be a mechanical valve adapted to the shut the channels 262, 264 during a printing mode. The distance between the inlet ports 210, 212, 214, 216 and the respective outlet ports 222, 224 may range from about 1.5 mm to about 2.2 mm.
Priming of the fluid jetting device 2000 may be performed by circulating a fluid into the fluid jetting device 2000, and specifically, the fluid trench 202, using a driving force such as a positive pressure applied at the channels 252, 254, 256, 258 and by vacuum pumping at the channels 262, 264. Specifically, the fluid may be forcefully fed into the fluid trench 202 through the channels 252, 254, 256, 258 for priming the fluid jetting device 2000. Subsequently, the outlet ports 222, 224 may pull air bubbles and fluid out from the fluid trench 202. The priming may be performed periodically to remove trapped air bubbles and/or residual fluid from within the fluid jetting device 2000 during servicing of the fluid jetting device 2000.
The system of
The system of
Further, the system includes at least one first channel, such as a channel 352, a channel 354, a channel 356, and a channel 358, fluidly coupled to the fluid trench 302. The channels 352, 354, 356, 358 are similar to the channels 252, 254, 256, 258 of
In addition, the system includes at least one inlet port, such as an inlet port 306, an inlet port 308, an inlet port 310 and an inlet port 312 configured in a spaced apart relation with each other, within the fluid trench 302 of the fluid jetting chip 300. The inlet ports 306, 308, 310, 312 are joined ports between the fluid trench 302 and the respective channels 352, 354, 356, 358 of the mounting unit 350. The inlet ports 306, 308, 310, 312 are adapted to be fluidly coupled to the channels 352, 354, 356, 358, respectively for receiving the priming fluid (as shown by directional arrows “N,” “O,” “P” and “Q”).
The system also includes at least one flow feature channel, such as a flow feature channel 314 and a flow feature channel 316 disposed adjacent to the fluid trench 302 and adapted to be fluidly coupled to the fluid trench 302. Specifically, the fluid trench 302 may be associated with one or more parallel rows of nozzles (not shown) configured on a nozzle plate (not shown) of the fluid jetting chip 300. Each row of the nozzles may have a single flow feature channel, such as the flow feature channel 314.
Referring again to
Moreover, the system includes at least one outlet port, such as an outlet port 328, an outlet port 330 configured within the flow feature channel 314 of the fluid jetting chip 300. Specifically, the outlet ports 328, 330 may be configured respectively at a first end portion (not numbered) and a second end portion (not numbered) opposite to the first end portion of the flow feature channel 314. The outlet ports 328, 330 are adapted to be fluidly coupled to one or more inlet ports of the inlet ports 306, 308, 310, 312. Specifically, the outlet port 328 may be fluidly coupled to the inlet ports 306, 308, and the outlet port 330 may be fluidly coupled to the inlet ports 310, 312. Further, the outlet ports 328, 330 are adapted to be fluidly coupled to the channels 362, 364 for draining-out the priming fluid along with air bubbles from within the fluid trench 302 and the flow feature channel 314 (as shown by directional arrows “R” and “S”). The outlet ports 328, 330 are joined ports between the flow feature channel 314 and the respective channels 362, 364 of the mounting unit 350. Each outlet port of the outlet ports 328, 330 may include a valve (not shown) adapted to shut the respective channels 362, 364. The valve may be a mechanical valve adapted to shut the channels 362, 364 during a printing mode. The distance between the inlet ports 306, 308, 310, 312 and the respective outlet ports 328, 330 may range from about 1.5 mm to about 2.2 mm.
Similarly, the system includes at least one outlet port, such as an outlet port 332, an outlet port 334 configured within the flow feature channel 316 of the fluid jetting chip 300. Specifically, the outlet ports 332, 334 may be configured respectively at a first end portion (not numbered) and a second end portion (not numbered) opposite to the first end portion of the flow feature channel 316. The outlet ports 332, 334 are adapted to be fluidly coupled to the one or more inlet ports of the inlet ports 306, 308, 310, 312. Specifically, the outlet port 332 may be fluidly coupled to the inlet ports 306, 308, and the outlet port 334 may be fluidly coupled to the inlet ports 310, 312. Further, the outlet ports 332, 334 are adapted to be fluidly coupled to the channels 362, 364 for draining-out the priming fluid along with air bubbles from within the fluid trench 302 and the flow feature channel 316 (as shown by directional arrows “R” and “S”). The outlet ports 332, 334 are joined ports between the flow feature channel 316 and the respective channels 362, 364 of the mounting unit 350. Each outlet port of the outlet ports 332, 334 may include a valve (not shown) adapted to shut the respective channels 362, 364. The valve may be a mechanical valve adapted to shut the channels 362, 364 during the printing mode. The distance between the inlet ports 306, 308, 310, 312 and the respective outlet ports 332, 334 may range from about 1.5 mm to about 2.2 mm.
Priming of the fluid jetting device 3000 may be performed by circulating a fluid into the fluid jetting device 3000, and specifically, the fluid trench 302, and the flow feature channels 314, 316. Further, priming may be performed by feeding the fluid into the fluid jetting device 3000 using a driving force such as a positive pressure applied at the channels 352, 354, 356, 358 and by vacuum pumping at the channels 362, 364. Accordingly, the fluid may be circulated through the channels 352, 354, 356, 358, the fluid trench 302, the flow feature channels 314, 316 and the channels 362, 364 for priming the fluid jetting device 3000. Specifically, the channels 352, 354, 356, 358 feed fluid into the fluid trench 302 that passes through the flow feature channels 314, 316. Further, the outlet ports 328, 330, 332, 334 pull air bubbles and fluid out from the fluid trench 302 and the flow feature channels 314, 316. Such a system facilitates in circulating the priming fluid through fluid firing chambers (not shown) that encompass the flow feature channels 314, 316 and are coupled to the nozzle plate 318 (as shown in
As mentioned above, the system may also include other fluid trenches, such as the fluid trench 304, which may include at least one first channel (not numbered), at least one inlet port (not numbered), at least one flow feature channel (not numbered), at least one second channel (not numbered), and at least one outlet port (not numbered). However, the system of
The system includes at least one feeding member, such as a feeding member 456, a feeding member 458, a feeding member 460, and a feeding member 462, coupled to the mounting unit 450. The system further includes at least one first fluid channel, such as a fluid channel 464, a fluid channel 466, a fluid channel 468, and a fluid channel 470, configured within the fluid jetting device 4000. The fluid channels 464, 466, 468, 470 are adapted to be fluidly coupled with the feeding members 456, 458, 460, 462, respectively, to receive a priming fluid (as shown by directional arrows “T”, “U,” “V” and “W”). The priming fluid is a flushing solution. The flushing solution as used herein may be a solution of a surfactant in water that is capable of improving wetting capability of various components, such as flow feature channels (not shown), firing chambers (not shown), and the like, of the fluid jetting device 4000. Alternatively, the priming fluid may be any solution known in the art that may be used for priming of the fluid jetting device 4000.
Furthermore, the system includes at least one draining member, such as a draining member 402, a draining member 404, a draining member 406, and a draining member 408, fluidly coupled to the fluid channels 464, 466, 468, 470, respectively, to drain-out the priming fluid from within the fluid jetting device 4000. The draining members 402, 404, 406, 408 are nozzles of a nozzle plate (not shown) that may be attached to/integral to the fluid jetting chip 400 of the fluid jetting device 4000.
As shown in
The system includes at least one feeding member, such as a feeding member 556 coupled to the mounting unit 550. The system further includes at least one first fluid channel, such as a fluid channel 558, configured within the fluid jetting device 5000. The fluid channel 558 is adapted to be fluidly coupled with the feeding member 556 to receive a priming fluid (as shown by a directional arrow “X”). The feeding member 556, as shown in
The priming fluid is a flushing solution. The flushing solution as used herein may be a solution of a surfactant in water that is capable of improving wetting capability of various components, such as flow feature channels (not shown), firing chambers (not shown), and the like, of the fluid jetting device 5000. Alternatively, the priming fluid may be any solution known in the art that may be used for priming of the fluid jetting device 5000.
Furthermore, the system includes a trench 602 configured within the compliant layer 600. The trench 602 is fluidly coupled to the fluid channel 558 for receiving the priming fluid. The system also includes at least one second fluid channel, such as a fluid channel 560, a fluid channel 562, and a fluid channel 564, configured within the fluid jetting device 5000 and fluidly coupled to the trench 602 for receiving the priming fluid (as shown by directional arrow “Y”).
In addition, the system includes at least one draining member, such as a draining member 566, a draining member 568, and a draining member 570, fluidly coupled to the fluid channels 560, 562, 564, respectively, to drain-out the priming fluid from within the fluid jetting device 5000 (as shown by directional arrows “a,” “b” and “c”). The draining members 566, 568, 570, as shown in
The priming fluid may be provided to the feeding member 556. Subsequently, the priming fluid is allowed to pass to the trench 602 of the compliant layer 600 through the fluid channel 558 and one or more nozzles (not shown) fluidly coupled to the fluid channel 558. Accordingly, the priming fluid flows through regular fluid paths of the fluid jetting device 5000. The priming fluid then fills the trench 602 on the compliant layer 600. Subsequently, the priming fluid is allowed to flow back to the fluid channels 560, 562, 564 and is drained-out via the draining members 566, 568, 570. Thereafter, the feeding member 556 and the draining members 566, 568, 570 are provided with inks to push the priming fluid out through the one or more nozzles. Specifically, colored inks may be fed into the feeding member 556 and the draining members 566, 568, 570. The priming fluid may optionally be evacuated by clean air just before feeding the inks through the feeding member 556 and the draining members 566, 568, 570 without loss of wetting capability of the fluid channels 558, 560, 562, 564. Subsequently, ink is fed-in to replace the priming fluid until the priming fluid purges out of the fluid jetting device 5000 completely.
The present disclosure provides systems for priming fluid jetting devices, such as the fluid jetting devices 1000-5000. The systems of the present disclosure facilitate fluid recirculation through a respective fluid jetting chip and a mounting unit arranged in a vertical relation with each other. Specifically, the systems facilitate fluid recirculation at a level encompassing fan-out microfluidic channels that extend vertically between the fluid jetting chip and the mounting unit of the fluid jetting devices in order to remove trapped air bubbles therewithin and within other components, such as fluid trenches, of the fluid jetting devices. Such systems are capable of removing trapped air bubbles from within the fluid jetting devices in order to exhibit high print quality.
The foregoing description of several embodiments of the present disclosure has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the disclosure be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
7556367 | Langford et al. | Jul 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20120127241 A1 | May 2012 | US |