Since their initial development in the early 1960s, glucose meters have evolved into relatively small but sophisticated devices. These medical measurement devices are used to determine the approximate concentration of glucose in a person's blood. The monitoring of glucose levels is an important element of managing diabetes. With the introduction in the early 1980s of home glucose meters, diabetics were provided with a tool that allowed much more frequent monitoring of glucose levels. Such frequent monitoring enables diabetics and their doctors to better adjust a patient's diet and/or medication levels in order to achieve closer-to-normal levels of glucose for as much of the time as possible. By doing so, patients can reduce both the severity and rate of occurrence of both short term and long term complications that can accompany both hyperglycemia (high blood sugar) and hypoglycemia (low blood sugar).
Many home glucose meters include programmable processors that allow them to perform a wide variety of manipulations and computations using the raw glucose level data collected. Small and inexpensive non-volatile memories (e.g., flash memories) with large storage capacities have further enabled these meters to store large numbers of samples collected over long periods of time, as well as the results of large numbers of calculations performed on the sampled data. A number of home glucose meters can be connected to a computer (e.g., a home PC), enabling the transfer of the collected and/or processed data to be stored and displayed on the computer. This enables the patient to identify trends in the variations of glucose levels over the course of the day, thus improving the patient's ability to manage and reduce such variations. The data may also be transferred to a doctor's computer, either directly or via a network (e.g., the Internet) to provide the doctor with feedback regarding the effectiveness of the treatment, as well as the level of treatment compliance on the part of the patient. Current systems, however, generally only transfer the data for manipulation, storage, statistical assessment and display by a person (patient and/or doctor). Further, the communication of the information is one way, i.e., from the meter to a computer, with no substantive information being provided back to the patient's device.
Nonetheless, home glucose monitoring has proven to be an effective tool in managing diabetes by mitigating many of the long terms complications that can be brought on by this disease. The United States government has taken note of this benefit, and both the meters themselves as well as the consumables necessary to perform the tests (e.g., glucose test strips and calibration chemicals) are covered under Medicare, such that the cost of such components are partially or completely reimbursed by the government. However, because of the high level of Medicare fraud, a significant number of verification regulations have been instituted by the government to ensure that a patient has a legitimate medical need for such a meter and its consumables.
To assist with such verification, Medicare regulations require providers of the meters and/or the consumables used by the meters (sometimes referred to as “durable medical equipment” or DME providers) to collect the required verification information, and to supply the collected information to the government, specifically the U.S. Department of Health and Human Services (HHS) that administers the Medicare program. To this end, benefit payments made under Medicare for such devices and/or consumables are made directly to the DME provider once the provider has supplied HHS with the documentation required by the Medicare regulations—for example, prescriptions for the meters and consumables, confirmation of receipt of the meter by the patient, and confirmation of completion of meter training by the patient. The DME provider is thus motivated to secure the required documentation, since the provider will not get reimbursed by HHS under Medicare without such documentation.
A typical DME provider's process of collecting the required verification from its customers (i.e., the patients) is “low tech.” Individuals, referred to as “chasers,” are employed by the DME providers for the purpose of contacting each patient to obtain the required information by phone, fax, conventional mail and/or e-mail. This must be done not only for seeking reimbursement for the initial purchase of the meter, but periodically for each order of consumables such as glucose test strips. The difficulty in collecting such information is further compounded by the fact that many of the patients being contacted are elderly and may be ill, and thus difficult to communicate with. As a result, it can be difficult for the DME provider to ascertain, and ultimately prove when seeking Medicare reimbursement, such things as patient compliance with the doctor's treatment plan, or whether a patient that has completed training understands how to use their meter. Additionally, such patients may be prone to forgetting to order their consumables in a timely manner, which could cause them to not comply with their doctor's specified treatment. Such compliance failure can ultimately affect the DME's Medicare reimbursement claim.
The present disclosure describes, amongst other details, a system for obtaining from a patient, through a medical measurement device provided by a DME provider, regulatory data needed by the DME provider. The system includes a medical measurement device that collects measurement data concerning the physiological condition of the patient. The device also allows the DME provider to present inquiries directed to the patient. Answers by a user of the device to such inquiries produce at least some of the regulatory data needed by the DME provider, which regulatory data is stored as a record for each patient in a DME server. The regulatory data provided allows the DME provider to demonstrate to HHS that the patient is complying with Medicare regulations associated with the purchase and use of the device and any related consumables purchased by the patient from the DME provider. By demonstrating such compliance, the DME provider proves entitlement to receive reimbursement for at least part of the cost of the device and/or the consumables.
I. System Overview
Such measurement data (e.g., glucose readings and time stamps) are stored in the device's memory, either in original form or as processed data to make the review of the data more clear or meaningful. The measurement data may later be retrieved from memory for additional processing, such as statistical analysis, trending and/or graphing by the patient or the patient's doctor as explained earlier. The measurement data allows a third party such as the patient's doctor, the DME provider, or HHS in its capacity as Medicare administrator, to verify compliance by the patient with the treatment plan prescribed by the doctor. The measurement data further facilitates the selection and transmission to device 106 of relevant, treatment-related promotions, as will be discussed later.
In the example shown in
Data uploaded from the device 106 is received by a server 116 operated by the DME provider via communication interface 151 of the server. The server 116 is referred to herein as the DME server 116 for convenience, because such server may be located with or controlled by a DME provider. However, this is not strictly necessary, as the server 116 could be located elsewhere or under the control of other parties having some relation to the system 100. For example, the server 116 could be located at or controlled by an entity that supplies products or services to the DME provider, such as distributors, manufacturers, insurance companies, hospitals, HMOs, government agencies, and/or others.
The data is processed by the CPU 152 (or other similar processing logic) and stored in memory 153 within a record 150, which record 150 is explained in further detail below. Other data required by HHS for Medicare reimbursement, such as proof of delivery of the medical measurement device and of related consumables, are also stored within record 150. The data so collected and stored within the record 150 thus comprises the regulatory data used by the DME provider to support reimbursement claims submitted to HHS under Medicare for the costs of the device and its related consumables. Part or all of record 150 may be submitted for this purpose by the DME provider to HHS as a printed document via regular mail 122, or electronically via network 102, assuming HHS allows (or will eventually allow) for electronic submission of Medicare claims. The centralized location of the data on the DME provider's server facilitates convenient access to the patient's data by authorized parties. Such centralization also facilitates the implementation of security measures that limit access to only duly authorized parties, thus safeguarding the patient's privacy.
From this brief description of the system 100, it can be appreciated that system 100 has many beneficial uses. For example, the system may be used to collect regulatory data required under Medicare for example, and so can assist the DME provider in seeking reimbursement while minimizing or eliminating the need for “chasers” as explained earlier. The system's bi-directional communication link between the device 106 and the network 102 may also be used to provide communications between a patient and any of a number of authorized third parties, such as the patient's doctor to allow the patient and doctor to consult concerning the patient's health. Such bi-directionality may additionally be used to present at the device interactive, treatment-specific promotions to the patient. Each of these uses is described in detail below.
II. Procuring Regulatory Data
A. Pre-Approval
As already noted, the cost of medical measurement devices and related consumables may be covered, at least partially, under a governmental program such as Medicare if compliance with Medicare regulations can be shown. For example, when a DME seeks reimbursement for the cost of a blood glucose level meter, proof of a diagnosis of a medical condition that requires blood sugar level monitoring (e.g., diabetes) must be provided to HHS. Likewise, when a DME provider seeks reimbursement for consumables used by the device, such as glucose test strips, the DME provider must provide proof that that the number of consumables for which reimbursement is sought is warranted. For example, if the treatment plan for the patient requires the patient to monitor glucose levels three times per day, the DME provider will use such treatment information to prove its right to reimbursement for 90 strips per month (assuming a 30-day month). A DME provider typically provides such proof of diagnosis and the treatment plan to HHS prior to shipment of the blood glucose meter to the patient, so that the DME provider's eventual reimbursement claim for the cost of the meter, and for the costs of consumables, can be pre-approved by HHS.
Such proof may include documents from the patient's doctor describing the tests performed, the resulting diagnosis (perhaps using Healthcare Common Procedure Coding System (HCPCS) codes), the doctor's treatment plan (e.g., that the patient test his glucose three times per day), and the doctor's prescription for the medical measurement device and the consumables (e.g., glucose test strips). Such diagnosis documents can be procured by the DME provider by conventional means, such as through the use of chasers as discussed earlier. Or, system 100 can be utilized, with the patient scanning such documents on their computer 104, and sending them to the DME provider through the communication links already discussed.
Either way, once received by the DME provider, the diagnosis documents can be used to create a record 150 in the DME server 116, as shown in
Once record 150 is compiled, the DME provider can provide it to HHS for pre-approval either electronically or by physical mail as already discussed. A pre-approval report suitable for submission to HHS can also be generated from the record 150. Once pre-approval is obtained from HHS, the DME provider ships the prescribed blood glucose level meter to the patient.
B. Device Receipt
Although the DME may have the cost of the device 106 pre-approved by HHS, final payment of the DME provider's claim is not made until the DME provider provides HHS with proof of delivery of the device 106 to the patient—with such proof of delivery comprising but one kind of regulatory data required by HHS. Method 300 of
When the device 106 is shipped by the DME provider to the patient, the device 106 is “locked” such that it cannot be operated until a password is entered and transmitted back to the DME server 116. That password, along with an ID for the device shipped to the patient, is stored by the DME in the patient's record 150 (
When the device 106 is powered on by the patient or the patient's representative (e.g., a nurse or relative) (302), a check is performed to determine if the device is already unlocked (304) for use. This check can comprise reading an unlock status register in the nonvolatile memory of the device 106 for example (303). If the device has already been unlocked (304), the rest of unlock method 300 is bypassed and the device is allowed to be operated normally, ending the method (314).
If the device 106 has not yet been unlocked (304), the user is prompted to enter a password using the user interface of the device 106 (306), which user interface typically comprises at least a display and input buttons. The password is preferably provided by the DME provider to the patient independently from shipment of the device, such as by a separate letter mailed to the patient. A copy of the password letter can be included by the DME provider as part of the patient's record 150 (see
Once a network connection is established, the device 106 transmits to DME server 116 a “device received” message (309), which includes a “device received” notification, a device identifier (ID) and the entered password. The device ID is preferably written into tamper-proof memory within the device, and may be written into the device by its manufacture or by the DME provider. In either case, the ID of the device 106 provided to the patient, like the password, was previously incorporated into the patient's record 150 on the DME server 116 (
The received message is processed by the DME server 116 (400), as explained in more detail below with respect to
Alternatively, the password may be programmed into the device 106 by the DME provider before the device is shipped. When the user enters the password, it is verified locally by the device 106 with a verification message sent to the DME server 116 instead of the password. The DME server 116 can then issue the acknowledgment to the device 106 contingent on receipt of the verification message. Also, other types of authentication data may be used instead of, or in addition to, the password described above. Such authentication data may include, for example, biometric data such as fingerprint and retina data. The biometric data may be stored within patient record 150, and compared with biometric data collected by the device 106. For example, a microphone built into the device may be used to record the patient verbally identifying themselves, with the recording being formatted as an audio file that can be transmitted to DME server 116 (e.g., an MP3 file).
As previously noted in the example of
The combined methods 300 and 400 not only provide a safeguard against unauthorized use of the medical measurement device 106, they also provide confirmation of the patient's receipt, since the DME server 116 can only generate an acknowledgment upon receipt of the correct information (e.g., device ID and password) from the device. Therefore, the updated record 150, including particularly the logged acknowledgment, can be used by the DME provider to prove receipt of the device by the patient—one piece of regulatory data needed by the DME to prove its entitlement to its Medicare reimbursement claim. The remaining steps in method 400 illustrate how the system 100 assists in generating a report, complete with proof, for a Medicare reimbursement claim relating to the cost of the device 106.
Once the record 150 has been updated to reflect transmission of the acknowledgment (408), the DME server 116 generates an HHS report (410) specific to the message received. For example, a Medicare reimbursement report is generated when a “device received” message is received and processed by the DME server 116. That report can comprise the entirety of the patient's record 150, because that record has all of the information needed to prove the DME provider's claim for Medicare reimbursement for the cost of the device, including all relevant patient data, diagnosis, and patient receipt of the device as reflected in the acknowledgment transmittal (and perhaps as bolstered by a copy of the password letter). Alternatively, the DME server 116 can process the record 150 to pick out necessary fields of data when generating the Medicare reimbursement report. This alternative can result in a report which is more summary and perhaps shorter in nature, and which may require less review of raw data by HHS when adjudging the DME provider's Medicare claim.
Regardless, once the report corresponding to the received message is generated (410), it can then be transmitted to HHS at an appropriate time when the DME is seeking reimbursement. In this regard, it is useful to know whether HHS can receive the report electronically (412). If so, the report is electronically transmitted from DME server 116 to HHS server 120 via network 102 (414). If not, the report is printed (416) so it can be physically mailed to HHS (417). Alternatively, the report can be saved in electronic form to a physical media, such as a CD-ROM, which may also be physically mailed to HHS if/when reports are accepted by HHS in such a format.
C. Consumables
As already noted, the cost of consumables used with the medical measurement device 106, such as glucose test strips, is also covered by Medicare, and reimbursement may be pre-approved. However, the DME provider ultimately has to prove to HHS that such consumables are warranted, and have been delivered to the patient. System 100 allows for the provision of such regulatory data relating to consumables. Additionally, system 100 provides convenience to the user in ordering such consumables by automating the ordering process. The two-way communication link between the device 106 and the network 102 facilitates such functionality.
An example consumables ordering method 500 using system 100 is illustrated in
After the patient's record 150 is updated, the process proceeds to the generation of a consumables order prompt, which can be initiated in several ways illustrated in steps 502-504 of
The device 106 can also anticipate when a patient should be ready to order more consumables, and can locally generate a consumables order prompt, as set forth in step 503. In this regard, the DME server's record 150, or portions of it, can be transferred to the device 106 to in effect store a shadow copy of the record on the device. Such transfer of the record 150 can occur periodically, such as every time a connection between the device 106 and the DME server 116 is established. The device 106 can then generate the order prompt in the same manner just discussed with respect to the DME server 116 (505). Additionally, the device 106 can keep count of the number of times a measurement has been taken by the patient, and can be programmed with the amount of consumables that have been ordered by the patient. In any event, the device 106 in step 503 automatically generates a consumables order prompt at an appropriate time.
The patient can also attempt to order consumables at any time and without the benefit of the generation of an automatic consumables order prompt, as set forth in step 504. In step 504, the patient simply accesses a consumables ordering menu on the device 106, so that the patient can input his consumables order manually. Regardless of the ways in which ordering in instigated, the patient is presented with a consumables order prompt in step 505. Such message may be presented on the display of the device 106, and invites the patient to order more consumables using his device 106. For example, the device 106 may display the message “would you like to order 50 more glucose test strips now,” and provide user selections for “yes” or “no.” (Fifty strips are used in this example because they are normally packaged in this amount. However, another number could be specified).
If the user opts to postpone the order by choosing “no” (506), the system 100 (i.e., either the DME server 116 or the device 106 depending on which automatically generated the message) will store such fact and re-present the message to the patient at some later time (for example, a few days) (507), ending the consumables order processing (526) without placing an order. However, if the patent decides to order the consumables (506), the system 100 (i.e., DME server 116 or device 106) next inquires whether the patient's treatment plan has changed (508). This could occur for example if the patient's doctor has now prescribed the patient to take his glucose readings more frequently. If the user does indicate a change in the treatment plan, the device 106 prompts the patient to provide an updated treatment plan prescription to the DME provider (509). This can occur in several different ways: for example, the patient can mail his treatment plan prescription to the DME provider, or can use his device 106 or computer 104 to provide a scanned copy of his new prescription to the DME server 116.
In any event, once the DME provider has received this new treatment plan prescription, the DME provider can update the patient's record 150 in the DME server 116 (510). In the example shown, this update to the patient's record completes the consumables order processing (526) without placing the order or re-prompting the user to place an order. This may be done to allow the DME provider to obtain independent verification of the prescription change. Once such verification is obtained, a new consumables order prompt may be generated (e.g., by the DME server 116) the next time measurement data is uploaded (i.e., the next time method 500 is performed).
If the user indicates that the prescription has not changed (508), the method 500 prompts the user to enter his password (512), which can be the same password used to unlock the device as previously discussed. As before, other types of authentication data may also or alternatively be used if supported by the system 100. The device ID (coded into the device as discussed earlier), the password, and the order are then transmitted from the device 106 to the DME server 116 (514), with the password being used as before to authenticate the transaction.
At this point, method 500 optionally allows the DME server 116 to confirm that the received order is reasonable and therefore will likely be reimbursed by HHS at step 516. This step 516 is particular useful in the event that the user decides of his own accord to order consumables using device 106 (step 504). By contrast, if the DME server 116 or the device 106 has automatically generated the consumables order request (steps 502, 503) using the data in the patient's record 150, it can be assumed that the number and timing of the consumables order is appropriate and hence likely reimbursable through Medicare, because data relevant to proving reimbursement (i.e., last order specifics, treatment, plan, actual consumables usage, etc.) has been acquired and scrutinized in earlier steps.
Therefore, optional step 516 automatically confirms the order by comparing the order to the data in record 150. For example, assume the patient tries to order 50 glucose test strips, but his record 150 confirms that 50 glucose test strips were delivered to him last week and that he is only prescribed to test three times a day. In such a case, automatic comparison at the DME server 116 would reflect that the patient is not in need of further glucose test strips at this time, and therefore that if the DME provider fills this order that HHS would likely not reimburse the DME provider. Accordingly, the confirmation at step 518 would fail, and the patient would be prompted to contact the DME provider (520) through any reasonable means such as those already discussed. The consumables order processing is thus again ended (526) without placing the order.
Should the order be confirmed at step 518, the user is informed using the display on his device 106 that the order has been placed (522). This current consumables order, including the number of consumables ordered, is then logged in the patient's record 150 (524) as the next sequential consumables order (see “consumables order X (number)” in
As previously noted, once an order for consumables has been placed, the DME provider must secure proof of delivery of the consumables to the patient in order to secure reimbursement from HHS under Medicare.
After some delay (606) to allow for shipping (perhaps a few days), and upon sensing a connection with the device 106 if not already established, the DME server 116 transmits a consumables order receipt inquiry to the patient's device 106 (608), which inquiry is then presented to the patient (610) using the device's display for example. For example, the device 106 may ask the patient “have you received glucose test strips shipped on [date], yes or no?” The patient responds to this inquiry via the user interface of his device 106, and is subsequently prompted to enter the password associated with the delivered consumables. After the password is entered, the response and password are transmitted back to the DME server 116 as part of a “consumables inquiry response” message (612). If the patient cannot confirm receipt, another delay is instituted (perhaps a day or so), and then the method 600 essentially repeats by eventually re-presenting another consumables order receipt inquiry to the device 106 (608). If however the patient does confirm receipt, the “consumables inquiry response” message is further processed by the DME server 116 according to method 400 of
D. Training
It can also be important to the DME provider when seeking Medicare reimbursement to prove to HHS that the patient knows how to use the medical measurement device, which can require proof that the patient or his representative has been trained to use the device. Such proof of training, like the device delivery and consumables delivery proof discussed previously, can be included in a patient's record 150 at the DME server 116, and can be included in a Medicare reimbursement report, such as those discussed earlier. Even if the DME is not seeking reimbursement at a given time, it may still wish to send a report confirming training to HHS as a compliance measure or to assist in the processing of reimbursement reports to be sent in the future.
The bi-directional nature of the communication link to the device 106 makes it possible for the DME provider to send training to the patient's device 106, which training can be textual, audial, or audio-visual. Video training is illustrated below as one example. Such training may be reviewed by the patient only once (e.g., upon unlocking the device 106 for the first time) or periodically (e.g., as the DME provider provides additional functionality to the device through software upgrades).
At step 704, the device 106 prompts the user to view the training video on his device 106. If the user refuses, a no-acknowledgment is stored in the patient's record 150 (e.g., “training X ack” is not flagged in
After completion, the user is prompted by the DME server 116 to confirm whether the training was understood (712). If the user indicates using his device 106 that the training was not understood, the user is asked whether he wishes to view the training video again (714). If the user indicates “no,” then a no-acknowledgment is stored in the patient's record 150 as described earlier, ending the method (720). If the user indicates “yes,” the video is once again played. After indicating at the device 106 that he understood the training (712), the user is prompted for a password (716), and once entered a “training completed” message is transmitted from the device 106 to the DME server 116 (718). The message is further processed by the DME server 116 according to method 400 of
III. Bidirectional Communication
Because the communication links in system 100 are bidirectional, information can be provided between the devices, computers and servers shown, and thus between the patient operating a device and various third parties operating a computer and/or server. Some examples of the information that may be exchanged include messages to and from a patient, doctor alerts and reminders, device status data, and device configuration data. Flow charts depicting the flow of such information between third parties and the patient in the system 100 are found in
A. Third Party/Patient Communication
1. Doctor/Patient Message Exchange
The bidirectional communication link between device 106 and the other elements of the system 100 of
Referring to the example method 800 of
If the requestor is authorized to communicate with the patient, the message is next checked to determine whether it is a status request message (820) or a configuration request message (824). These types of messages are each described further below. In the present example, however, the received message is a message directed to the user (828) that is queued for subsequent transmission to device 106 (830), ending the processing of the message (816). If the type of the received message cannot be identified (i.e., not a status request, configuration request or a message to a user), the message is ignored (828), also ending the processing of the message (816).
When the medical measurement device 106 is connected to DME server 116, any previously queued messages and/or requests are transmitted to the device 106 (not shown). Referring now to the method 900 of
If the user of the device chooses to read the message with the inquiry from the doctor, the user will be prompted to respond to the message (907). The user may choose not to respond at that time (908), ending the processing of the received message (914). If the user does choose to respond to the message (908), a user response message is built from input provided by the user (910). The response is then uploaded from the device to DME server 116 (912), completing the method 900. The response is later transferred to doctor computer 112 (not shown). The doctor can then respond accordingly after assessing the patient's response, using the mechanisms previously described to send a message. Moreover, if part of the same communication session, the doctor may not need to enter a password again.
Similarly, a patient may send a message to the doctor to ask questions or request additional information. When connected to the DME server 116, any message originated at the device 106 (not shown) is also uploaded. Measurement data may also be uploaded at this time. Referring again to
If a message has been received (808), authentication data within the received message similar is checked to determine if the addressee of the message is authorized to communicate with the patient (810). If the addressee is not authorized, the authorization failure is logged by the DME server 116 (812), ending the processing of the uploaded data and message (816). If the addressee is authorized (810), the message is forwarded by the DME server 116 to the addressee (814), also ending the processing of the message (816). When the message is later received at computer 112 (not shown), the doctor will be notified of the received message and prompted for a response.
Messages may comprise or be accompanied by alerts and/or reminders from the doctor to the patient. Thus, if in the previous example a doctor notices that a patient's blood glucose level has been too low for too long, the doctor can upload a message to the DME server 116 to alert the patient of the problem, and to have the patient contact the doctor as soon as possible. The message is uploaded and processed by DME server 116 using the mechanisms already described above and shown in
2. Doctor Device Management
In addition to enabling the exchange of patient/doctor messages, the bidirectional communication links of device 106 also enable the device's status to be reported, and remote configuring of the device. For example, a doctor may wish to verify that the device 106 is in working order, and that it is configured properly and in a manner that is consistent with the prescribed treatment. To do so, the doctor causes computer 112 to send a status request message for device 106 to DME server 116.
Referring once again to
When the device 106 is connected to DME server 116, the previously queued status request message initiated by the doctor is transmitted from the DME server 116 to the device 106 (not shown). Referring again to
The patient's doctor may also use computer 112 to send configuration requests for device 106 to DME server 116. Such requests allow the doctor to remotely setup or modify the configuration of the device 106 so that the device operates properly and in a manner consistent with the treatment of the patient. Referring again to
When device 106 is connected to DME server 116, the previously queued configuration request message initiated by the doctor is transmitted from the DME server 116 to the device 106 (not shown). Referring again to
In summary, the bidirectional communication capabilities of the system 100 can be used to ensure that the device 106 is operating properly, and to make corrections to the device 106 if necessary. Thus, for example, the doctor can verify that alarm threshold levels of a patient's home glucose meter are set to the proper levels for that particular patient. Similarly, other historical parameters, such as when the medical measurement device was last calibrated, may be reviewed to ensure that the data provided by the device 106 is reliable. It should be recognized that a wide variety of device status, state, configuration and calibration parameters may be accessed in the manner described above, and access to all such parameters are contemplated by the present disclosure.
3. Communication with Other Third Parties
Although the exchanges of data described thus far have been between a doctor and a patient/user, authorized third parties other than a patient's doctor may also use the system 100 to exchange data with the patient/user and access the device in the manner described. Such authorized third parties may include, for example, a family member or a private in-home caregiver, or organizations such as the DME provider, private insurance companies, or employers. It should be recognized that any number and any type of authorized individuals and/or organizations may access some or all of a patient's information using the systems and methods disclosed herein.
B. Treatment-Related Promotions
As previously noted, a significant amount of useful data is collected and stored in the patient records 150 at the DME server 116. Such data has uses beyond regulatory reimbursement and monitoring a patient's health. For example, promotions such as advertisements for products and services may be presented by the DME provider to a user of the device 106, based at least in part on the information contained in the patient's record 150. Because of the bidirectional nature of the communication link between the device 106 and the DME server 116, it is also possible to present interactive promotions at the device 106 in the form of a product or service solicitation. Unlike an advertisement, which merely describes products and services to the user, a solicitation offers the user the option of using the device 106 to purchase the product or service described. The bidirectional communication link between the device and the DME server also facilitates the use of interactive invitations that present the user with the option of whether to view an advertisement or a solicitation.
Referring now to the example method 1000 of
The invitation presented may include a brief description of the product or service advertised or offered. If the invitation is for a solicitation and not an advertisement (1007), the user is also given the option to skip directly to the purchase of the product or service offered (1008). Invitations to view both advertisements and solicitations provide the user with the option to view the promotion or decline the invitation altogether (1010). If the user chooses to decline the invitation, a “not viewed” response is built (1020) and transmitted to the DME server 116 (1040), ending the method (1042). By tracking which solicitations are rejected, the DME provider can further refine the selection of promotions presented to the user and thus more precisely target the needs of the patient, as described in more detail below.
If the user of the device 106 accepts the invitation (1010), a request for the promotion is sent by the device 106 to the DME server 116. An advertisement or solicitation is received by the device 106 from the DME server 116 and presented to the user (1012), or alternatively streamed to the device. The received advertisement or solicitation may comprise a video file (e.g., a *MWV or *.MP4 file), which is presented to the user as video on the device screen, audio through the device speaker, or both. Alternatively, the video file may have been pre-stored locally at the device 106, in which case it is retrieved and played locally. If an advertisement is presented at the device 106 (1014), no further processing is required once the presentation is complete, and the method ends (1042). If a solicitation is presented (1014), after the presentation completes the user is offered the option to use the device 106 to purchase the advertised product or service (1016). The offer may include pricing that reflects the actual cost to the patient, based at least in part upon the patient's insurance coverage such as that provided by Medicare, as described in more detail below. If the user declines the offer (1018), a “no purchase” response is built (1038) and sent from the device 106 to the DME server 116 (1040), completing the method (1042).
If the user accepts the offer (1018), or has skipped directly to the purchase of the product or service offered (1008), information needed to place the order is retrieved from patient record 150 (1024). The record 150 can either comprise the master record stored in the DME server 116, or the local “shadow” copy stored at the device 106. If present, the record 150 can also be used to determine a suitable number of products to offer to the patient. For example, if a user accepts an invitation to purchase lancets, the patient record 150 is checked to determine the frequency with which the patient has been instructed to check their blood glucose level. This allows the number of lancets needed for a given period to be calculated and presented.
The gathered and/or calculated order information, together with information from the solicitation such as pricing, is presented on the display of device 106 and the user is prompted to confirm the order (1024). If the order is not confirmed (1026), a prompt is presented asking if the user wishes to contact the DME provider (1028). If the user responds “no” (1034), a “no purchase” request is built (1038) and sent to the DME server 116 as previously described (1040), ending the method (1042). If the user requests contact with the DME provider (1034), a “DME contact requested” response is built (1036) and sent to the DME server 116 (1040), also ending the method (1042). For example, if the user cancelled the order because of questions regarding the order information presented, the user has the opportunity to request assistance from a DME provider representative. Once received by the DME provider, the request may be forwarded to a DME provider representative (e.g., via email) who can provide the user with the required assistance (not shown).
If the user confirms the order information (1026), the user is prompted to provide a password or other type of authentication data (1030), e.g., biometric data. Once the authentication data has been provided, the order information and authentication data are incorporated into a “purchase request” response (1032) which is sent to the DME server 116 (1040), ending the method (1042). In at least some examples of the system 100 the order information and confirmation are forwarded by the DME server 116 to a DME representative for further processing (not shown), while in other examples the purchase information and confirmation are both sent to an automated purchasing system (also not shown).
As noted earlier,
The record 150 is first read (1102) and checked to see if the user has authorized the DME provider to use information within patient record 150 (1104) to provide patient-specific, treatment-related promotions (see
If the patient record 150 has been newly created or modified (1106), a list of promotions associated with the patient record is built for a new record, or rebuilt for an existing record. These promotions may include the invitations, advertisements and/or solicitations previously described. The resulting patient's promotions list is stored in the patient's record 150 (see
After checking for a patient record creation/update (1106) and, if needed, building/rebuilding the patient's promotions list (1107), the DME server 116 determines whether it is time to send the patient a promotion for a specific product or service from the patient's promotions list (1108). This determination may be based on a flag within patient record 150 (not shown) indicating, for example, that method 1100 was invoked in response to a connection with the device. Alternatively, the determination may be based on the amount of time since a promotion was last sent to the patient's device 106 and the number of allowed promotions per time period specified by the patient (e.g., no more than one promotion per day) and stored in the patient record 150 (also not shown). If it is not time to send a promotion to the patient's device 106 (1108), that patient's record is skipped, ending the method (1146).
If it is time to send a promotion to the patient's device 106 (1108), a promotion is selected from the patient's promotions list. The selection of the promotion may be based on any of a number of mechanisms, including a random selection mechanism or a round-robin selection mechanism, just to name two examples. If an invitation to view the promotion is required (1112), the invitation is transmitted to the device 106 (1114) and presented to the user. Such invitations may be required, for example, by the user (see
If the transmitted promotion is an advertisement (1124), no further processing is required and the method ends (1146). If the transmitted promotion is not an advertisement but instead a solicitation requiring further user input (1124), and after some delay (1126), a user response to the solicitation is received and logged in the patient's record 150 (see “user response x (date)” in
If a “no purchase” response was received, indicating that the user expressly declined the purchase request (1130), the method ends (1146). If a “purchase request” response was received (1132), the DME server 116 checks whether a prescription is needed for the requested product or service (1136), and if needed whether such a prescription is on file in the record 150 for the patient (1140). If no prescription is needed or a required prescription is on file, the purchase request is forwarded for further processing (1144), ending the method (1146). For example, the purchase request may be forwarded to a separate purchase processing system or to other purchase processing software executing on DME server 116. If a prescription is needed (1136) and the required prescription is not on file (1140), the requested product or service cannot be provided to the patient. A message requesting that the DME provider be supplied the required prescription is queued for transmission to the device 106 (1142), ending the method (1146).
If the purchase request was not confirmed (1132), the DME server 116 checks whether a “DME contact requested” response was received (1134). If the user has requested contact with a DME representative, the request is forwarded (e.g., to a customer service center) for further processing (1138), ending the method (1146). If the received message is not a request for DME contact from the user (1134), the message is not recognized and is ignored, ending the method (1146). Alternatively, the error may be logged in record 150 before ending the method (not shown).
Because the solicitations and advertisements presented are based at least in part upon information directly related to a patient's medical condition and/or prescribed treatment, the products and services advertised are more likely to be of use to the patient, and the DME provider is also likely to receive a higher percentage of orders. As previously noted, such targeting may be further refined by tracking which advertisements are viewed, as well as which products and services are ultimately purchased.
The use of the patient's information to identify treatment-related solicitations and advertisements require prior authorization by the patient, in compliance with applicable laws and regulations such as the Health Insurance Portability and Accountability Act of 1996 (HIPAA).
IV. Conclusion
Other variations and modifications to system 100 will become apparent to those of ordinary skill in the art once the above disclosure is fully appreciated. Thus, although blood glucose level meters are presented herein, other medical measurement devices (e.g., blood oxygen level meters) may benefit from system 100, as may a variety of non-medical devices perhaps subject to compliance verification by other governmental entities (e.g., aviation maintenance and test equipment subject to Federal Aviation Administration regulations).
Although the DME and Medicare servers 116 and 120 are shown as standalone servers, the functionality of each may be integrated into existing servers used for producing and processing the required regulatory data, for exchanging data and messages between a patient's device and a computer system operated by an authorized third party, and for processing purchase requests for DME provider products. Product and service promotions may be presented by providers other than the DME provider.
Also, although the examples shown thus far have been described within the context of a single-patient glucose meter, other examples may include multi-patient medical measurement devices, wherein at least some of the previously described collection, processing and delivery of required data to a governmental entity such as Medicare are performed on a per-patient basis. The information collected may be used to support claims submitted by a healthcare service provider to HHS, rather than (or in addition to) a claim by a DME. Such claims may be submitted by the healthcare service provider directly to HHS, or indirectly through a DME provider. Additionally, other information that may be required from a healthcare service provider, such as proof of proficiency of the operators of the device and/or calibration and quality control data of the medical measurement device, may also be provided to one or more governmental agencies. Examples of such agencies may include the United States Food and Drug Administration, and state medical professional licensing agencies. The data may also be used to obtain certifications required as a prerequisite to submitting claims for services provided using the medical measurement device, or to prove compliance with regulations governing the use of such devices by a service provider.
One skilled in the art will realize that the disclosed techniques are usefully implemented as software running on a computer system, and ultimately stored in a computer-readable medium, such as a magnetic or optical disk, a solid-state memory, etc. Such a computer system can be broadly construed as any machine or system capable or useful in reading and executing instructions of the software program. Ccomputer-readable media can comprise a single medium or multiple media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or more sets of instructions.
It should also be noted that although the example methods described above and shown in the drawings indicate steps performed in a specific order, the claimed subject matter of the present disclosure is not limited to embodiments that perform such steps only in the order shown. Other alternative examples of these methods are contemplated that may perform steps in a different order.
The present disclosure is related to U.S. patent application Ser. No. ______ entitled “Systems for Bidirectional Communication with a Patient via a Medical Measurement Device,” and U.S. patent application Ser. No. ______ entitled “Systems for Treatment-Related Product Promotion and Ordering via a Medical Measurement Device,” both filed concurrently with the present disclosure, and both of which are hereby incorporated by reference.