Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body

Information

  • Patent Grant
  • 12132261
  • Patent Number
    12,132,261
  • Date Filed
    Tuesday, September 6, 2022
    2 years ago
  • Date Issued
    Tuesday, October 29, 2024
    a month ago
Abstract
An antenna for receiving wireless power from a transmitter is provided. The antenna includes multiple antenna elements, coupled to an electronic device, configured to receive radio-frequency (RF) power waves from the transmitter, each antenna element being adjacent to at least one other antenna element. Furthermore, the multiple antenna elements are arranged so that an efficiency of reception of the RF power waves by the antenna elements remains above a predetermined threshold efficiency when a human hand is in contact with the electronic device, the predetermined threshold efficiency being at least 50%. Lastly, at least one antenna element is coupled to conversion circuitry, which is configured to (i) convert energy from the received RF power waves into usable power and (ii) provide the usable power to the electronic device for powering or charging of the electronic device.
Description
TECHNICAL FIELD

The present disclosure relates generally to wireless power transmission, and more particularly to omnidirectional antennas that are minimally affected by the presence of the human body.


BACKGROUND

Portable electronic devices such as smartphones, tablets, notebooks and other electronic devices have become a necessity for communicating and interacting with others. The frequent use of portable electronic devices, however, uses a significant amount of power, which quickly depletes the batteries attached to these devices. Inductive charging pads and corresponding inductive coils in portable devices allow users to wirelessly charge a device by placing the device at a particular position on an inductive pad to allow for a contact-based charging of the device due to magnetic coupling between respective coils in the inductive pad and in the device.


Conventional inductive charging pads, however, suffer from many drawbacks. For one, users typically must place their devices at a specific position and in a certain orientation on the charging pad because gaps (“dead zones” or “cold zones”) exist on the surface of the charging pad. In other words, for optimal charging, the coil in the charging pad needs to be aligned with the coil in the device in order for the required magnetic coupling to occur. Additionally, placement of other metallic objects near an inductive charging pad may interfere with operation of the inductive charging pad. Thus, even if the user places their device at the exact right position, if another metal object is also on the pad, then magnetic coupling still may not occur and the device will not be charged by the inductive charging pad. This results in a frustrating experience for many users as they may be unable to properly charge their devices. Also, inductive charging requires a relatively large receiver coil to be placed within a device to be charged, which is less than ideal for devices where internal space is at a premium.


Inductive charging pads more recently have been used to wireless charge electronic devices that frequently move, e.g., a computer mouse. However, these types of pads are expensive and heavy, and they also suffer from the inherent drawbacks associated with inductive charging. For example, a computer mouse can be slightly raised off the surface during usage (e.g., during gaming, where movements of the computer mouse are abrupt and aggressive). When the computer mouse is raised off the inductive charging pads, magnetic coupling between the pad of the mouse is degraded, or lost completely. This result is unsatisfactory to users as the cursor on the computer screen tends to jump or skip when magnetic coupling is interfered with or lost. Additionally, as mentioned in the paragraph above, metal objects interfere with magnetic coupling. As such, jewelry worn by users (e.g., rings, bracelets, etc.) can interfere with the magnetic coupling between the inductive charging pad and the corresponding circuitry located on the computer mouse.


Charging using electromagnetic radiation (e.g., microwave radiation waves) offers promise.


SUMMARY

Accordingly, there is a need for a wireless charging solution that: (i) can be integrated with movable electronic devices, such as a computer mouse, (ii) is not affected by known uses of the electronic device, and (iii) is minimally affected by presence of the human body (among other objects that may interfere with reception of RF energy). One solution is to incorporate antennas into movable electronic devices that, together with the appropriate circuitry, can charge the device's battery or directly power the device using electromagnetic radiation. Antenna systems that charge using electromagnetic radiation are far less susceptible to interference from metallic objects, relative to inductive charging pads. Furthermore, the antennas disclosed herein are designed to substantially reduce interferences caused by the human body, while ensuring that the reception of RF energy is still safe for human users.


(A1) In some embodiments, an antenna for receiving wireless power from a wireless-power-transmitting device is provided. The antenna (e.g., loop antenna 300, FIG. 3A) includes a plurality of antenna elements, forming a planar loop, configured to receive horizontally polarized (polarization parallel to the plane of the loop) electromagnetic (radio frequency, RF) power waves transmitted by a wireless-power-transmitting device. Each antenna element of the plurality of antenna elements includes a male component and a female component, and the male component of a first respective antenna element of the plurality of antenna elements mates with the female component of a second respective antenna element of the plurality of antenna elements (the first and second respective antenna elements being adjacent to each other, e.g., adjacent/neighboring segments in the planar loop). Furthermore, at least one of the plurality of antenna elements is coupled to a transmission line. Moreover, conversion circuitry, coupled to the transmission line, is configured to: (i) convert energy from the received electromagnetic power waves into usable power, and (ii) provide the usable power to an electronic device for powering or charging of the electronic device.


(A2) In some embodiments of the antenna of A1, each of the plurality of antenna element includes: (i) a segment body with first and second opposing ends, (ii) the female component is a slot (e.g., slot 306, FIG. 3A) defined by the segment body, the slot extending from the first end into the segment body, and (iii) the male component is a protrusion (e.g., protrusion 308, FIG. 3A) extending from the second end away from the segment body.


(A3) In some embodiments of the antenna of A2, the protrusion of the first respective antenna element is positioned within the slot defined by the second respective antenna element. The protrusion of the first respective antenna element does not contact the second respective antenna element.


(A4) In some embodiments of the antenna of any of A1-A3, the plurality of antenna elements creates an omnidirectional antenna as a result of at least: (i) a shape of each of the plurality of antenna elements, and (ii) an arrangement of the plurality of antenna elements.


(A5) In some embodiments of the antenna of any of A1-A4, at least one antenna element of the plurality of antenna elements includes one or more tuning elements, and the one or more tuning elements are configured to adjust an operating frequency of the antenna by adjusting a length of the at least one antenna element's male component.


(A6) In some embodiments of the antenna of A5, the one or more tuning elements are switchably coupled to each other and the at least one antenna element's male component via diodes.


(A7) In some embodiments of the antenna of any of A5-A6, the one or more tuning elements are configured to adjust the operating frequency of the antenna to a first operating frequency when no human hand is in contact with the electronic device, and the one or more tuning elements are configured to adjust the operating frequency of the antenna to a second operating frequency, different from (or the same as) the first operating frequency, when a human hand is in contact with the electronic device. The contact of the hand shifts the frequency away from the desired operation frequency. With the tuning elements, the desired frequency can be regained (i.e., in some embodiments, the same operating frequency is targeted with and without the hand being in contact with the electronic device).


In some embodiments, a sensor may detect the human hand, and in response, a processor in communication with the one or more tuning elements and the processor may connect (or disconnect) one or more of the tuning elements with the at least one antenna element. In another example, a feedback loop may be used to determine (e.g., by a processer in communication with the one or more tuning elements) that the human hand is in contact with the electronic device (e.g., an unexpected drop in reception efficiency is detected). In response to detecting the unexpected drop, the processor may connect (or disconnect) one or more of the tuning elements with the at least one antenna element. In this way, the antenna can be dynamically tuned to account for the human hand being in contact with the electronic device.


(A8) In some embodiments of the antenna of any of A1-A7, the plurality of antenna elements has a reception efficiency above a predetermined threshold efficiency when a human hand is in contact with the electronic device, the predetermined threshold efficiency being at least 50%.


(A9) In some embodiments of the antenna of any of A1-A8, the first antenna element of the plurality of antenna elements has a surface area that is less than respective surface areas of other antenna elements of the plurality of antenna elements, and the surface area of the first antenna element is reduced, relative to the respective surface areas of the other antenna elements, to increase a gain of the antenna in a predefined direction.


(A10) In some embodiments of the antenna of any of A1-A9, the antenna is integrated with an electronic device, and the first antenna element is located towards a preferred direction of the electronic device that can maximize the link with the wireless-power-transmitting device. In such embodiments, the first antenna element can be located towards a nose of the electronic device (e.g., a front-end of a computer mouse).


(A11) In some embodiments of the antenna of A10, the transmission line is connected to the first antenna element.


(A12) In some embodiments of the antenna of any of A10-A11, a housing of the electronic device has a first surface shaped for a palmar surface of a user's hand and a second surface, opposite the first surface, to translate on a working surface; and the plurality of antenna elements forming the planar loop is coupled to the second surface of the housing. In other embodiments, the plurality of antenna elements forming the planar loop may be placed anywhere parallel to the second surface and inside a volume (e.g., cavity) defined by the two surfaces, but not necessarily attached to the second surface.


(A13) In some embodiments of the method of any of A1-A12, the electromagnetic power waves are transmitted at a frequency of approximately 5.8 GHz, 2.4 GHz, or 900 MHz.


(B1) In another aspect, an electronic device is provided. The electronic device includes electronics to track movement of the electronic device and a housing having a first surface shaped for a palmar surface of a user's hand and a second surface, opposite the first surface, to translate on a working surface. The electronic device also includes a loop antenna, coupled to the second surface of the housing, that includes a plurality of antenna elements forming a planar loop. The plurality of antenna elements is configured to receive horizontally polarized (polarization parallel to the plane of the loop) electromagnetic power waves transmitted by a wireless-power-transmitting device. The electronic device also includes conversion circuitry, coupled to the loop antenna and the electronics, configured to: (i) convert energy from the received electromagnetic power waves into usable power and (ii) provide the usable power to the electronics. The loop antenna included in the electronic device of (B1) includes any of the structural characteristics of the antenna described above in any of A1-A12.


(C1) In yet another aspect, an antenna for receiving wireless power from a wireless-power-transmitting device is provided. The antenna (e.g., stack antenna 600, FIG. 6A) includes a plurality of substrates, arranged in a stack, forming a pyramidal frustum. The antenna also includes a plurality of antenna elements configured to receive vertically polarized (along the pyramid axis) electromagnetic power waves transmitted by a wireless-power-transmitting device. Each antenna element of the plurality of antenna elements is attached to one of the plurality of substrates. In addition, one (or more) of the plurality of antenna elements is coupled to a transmission line. Conversion circuitry, coupled to the transmission line, is configured to: (i) convert energy from the received electromagnetic power waves into usable power, and (ii) provide the usable power to an electronic device for powering or charging of the electronic device.


(C2) In some embodiments of the antenna of C1, substrates in the plurality of substrates do not directly contact one another. Instead, the substrates are spaced-apart, thereby forming a layered pyramidal frustum.


(C3) In some embodiments of the antenna of any of C1-C2, further including multiple sets of metal rods, where each of the plurality of substrates is supported by one set of metal rods from the multiple sets of metal rods.


(C4) In some embodiments of the antenna of C3, each substrate includes a set of vias defined through the substrate and connected to: (i) predefined portions of one of the plurality of antenna elements at one end, and (ii) one of the sets of metal rods at the other end.


(C5) In some embodiments of the antenna of any of C3-C4, each set of metal rods separates two neighboring substrates by a predefined distance.


(C6) In some embodiments of the antenna of any of C1-05, the plurality of substrates includes first and second substrates. The first substrate includes: (i) a first antenna element of the plurality of antenna elements, the first antenna element being a first four-pronged antenna element; and (ii) four vias positioned at respective ends of the first four-pronged antenna element. In addition, the second substrate, which is positioned above the first substrate in the stack, includes: (i) a second antenna element of the plurality of antenna elements, the second antenna element being a second four-pronged antenna element; and (ii) four vias, vertically aligned with the four vias of the first substrate, positioned at respective ends of the second four-pronged antenna element. In some embodiments, a design of the first four-pronged antenna element is the same as a design of the second four-pronged antenna element. However, in some other embodiments a design of the first four-pronged antenna element differs from a design of the second four-pronged antenna element. For example, with reference to FIGS. 6D-6E, the two antenna element designs differ from each other.


(C7) In some embodiments of the antenna of C6, further including four metal rods that each have a first length, where: (i) each of the four metal rods connects one of the four vias of the second substrate with one of the four vias of the first substrate, and (ii) the second substrate is vertically offset from the first substrate by the first length.


(C8) In some embodiments of the antenna of any of C6-C7, the first and second substrates are parallel. For example, with reference to FIG. 6C, substrate 602-E parallels substrate 602-D, and vice versa (e.g., both substrates are horizontally oriented).


(C9) In some embodiments of the antenna of any of C6-C8, an operating frequency of the antenna corresponds, at least in part, to a magnitude of the first length.


(C10) In some embodiments of the antenna of any of C6-C9, the first and second substrates are rectangular; and a largest cross-sectional dimension of the second substrate is less than a largest cross-section dimension of the first substrate.


(C11) In some embodiments of the antenna of any of C6-C10, the first four-pronged antenna element has a first surface area, the second four-pronged antenna element has a second surface area, and the second surface area is less than the first surface area.


(C12) In some embodiments of the antenna of any of C1-C11, the ground plane forms a bottom of the stack, and a first respective antenna element, of the plurality of antenna elements, is partially coupled to the ground plane. For example, the first respective antenna element may include a plurality of prongs, and one or more of the plurality of prongs are coupled to the ground plane while one or more other prongs of the plurality of prongs are not coupled to the ground plane. Instead, the one or more other prongs are coupled to the transmission line. In some embodiments, the first respective antenna element is nearest the ground plane, relative to the other antenna elements in the stack.


(C13) In some embodiments of the antenna of C12, the transmission line is coupled to the first respective antenna element.


(C14) In some embodiments of the antenna of any of C1-C13, at least one of the plurality of antenna elements follows a meandered path to increase an effective length of the antenna element, thereby lowering a resonant frequency of the antenna and reducing an overall size of the antenna. Furthermore, in some embodiments, the other antenna elements of the plurality of antenna elements have a different design from the at least one antenna element.


(D1) In yet another aspect, an electronic device is provided. The electronic device includes electronics to track movement of the electronic device and a housing having a first surface shaped for a palmar surface of a user's hand and a second surface, opposite the first surface, to translate on a working surface. The electronic device also includes an antenna, integrated with the housing, including multiple substrates that are spaced apart and arranged in a stack. In addition, (i) each substrate includes a respective antenna element, (ii) the multiple substrates arranged in the stack form a pyramidal frustum, and (iii) the antenna is configured to receive vertically polarized radio frequency (RF) power waves transmitted from a wireless-power-transmitting device. The electronic device also includes conversion circuitry, coupled to the loop antenna and the electronics, configured to: (i) convert energy from the received electromagnetic power waves into usable power and (ii) provide the usable power to the electronics. The antenna included in the electronic device of (D1) includes the structural characteristics of the antenna described above in C1-C14.


(E1) In another aspect, an antenna for receiving wireless power from a wireless-power-transmitting device is provided. The antenna (e.g., loop-slot antenna 800, FIG. 8A) includes: (i) an inner antenna element, coupled to a transmission line, configured to receive electromagnetic power waves by a wireless-power-transmitting device, wherein the inner antenna element forms an open loop, (ii) an outer antenna element, separated from the inner antenna element, configured to receive electromagnetic power waves by the wireless-power-transmitting device, wherein the outer antenna element forms an open-loop and surrounds the inner antenna element, and (iii) first and second sets of tuning elements positioned adjacent to first and second ends of the outer antenna element, respectively, the first and second sets of tuning elements being configured to adjust an operating frequency of the antenna. In addition, conversion circuitry, coupled to the transmission line, is configured to: (i) convert energy from the received electromagnetic power waves into usable power, and (ii) provide the usable power to an electronic device for powering or charging of the electronic device.


(E2) In some embodiments of the antenna of E1, the antenna is attached to the electronic device of B1. For example, the antenna of E1 is attached to a bottom surface of the electronic device, in a similar manner as the loop antenna 300 (FIG. 3A).


(E3) In some embodiments of the antenna of E2, the first and second sets of tuning elements are configured to adjust the operating frequency of the antenna to a first operating frequency when no human hand is in contact with the electronic device, and the first and second sets of tuning elements are configured to adjust the operating frequency of the antenna to a second operating frequency when a human hand is in contact with the electronic device.


(E4) In some embodiments of the antenna of E3, the second operating frequency is the same as the first operating frequency.


(E5) In some embodiments of the antenna of E4, the human hand in contact with the electronic device shifts a frequency of the antenna away from the first operating frequency, and the first and second sets of tuning elements are used to regain the first operating frequency when the human hand is in contact with the electronic device.


(E6) In some embodiments of the antenna of any of E3-E5, a sensor (e.g., receiving sensor 128) signals a processor (e.g., processor 140) when a human hand is in contact with the electronic device, and the processor is in communication with the first and second sets of tuning elements. In such instances, the processor is configured to connect (or disconnect) one or more tuning elements of the first and second sets of tuning elements with the outer antenna element in response to being signaled by the sensor.


(E7) In some embodiments of the antenna of any of E1-E6, the inner antenna element and the outer antenna element together form an omnidirectional antenna.


(E8) In some embodiments of the antenna of any of E1-E7, the inner antenna element and the outer antenna element are positioned on a plane, and the inner and outer antenna elements are configured to receive electromagnetic power waves with polarizations parallel to the plane.


(E9) In some embodiments of the antenna of any of E1-E8, the inner antenna element, the outer antenna element, and the first and second sets of elements are coupled to a substrate.


(E10) In some embodiments of the antenna of any of E1-E9, a surface area of the outer antenna element is greater than a surface area of the inner antenna element.


(E11) In some embodiments of the antenna of any of E1-E10, ends of the inner antenna element are coupled to a transmission line or other feed mechanism.


(F1) In yet another aspect, another antenna is provided. The antenna includes a plurality of antenna elements configured to receive radio-frequency power waves from a wireless-power-transmitting device, each antenna element being adjacent to at least one other antenna element in the plurality of antenna elements. Moreover, the plurality of antenna elements is arranged so that an efficiency of reception of the radio-frequency power waves by the plurality of antenna elements remains above a predetermined threshold efficiency when a human hand is in contact with the electronic device, the predetermined threshold efficiency being at least 50%. Furthermore, at least one of the plurality of antenna elements is coupled to conversion circuitry, the conversion circuitry being configured to (i) convert energy from the received RF power waves into usable power and (ii) provide the usable power to an electronic device for powering or charging of the electronic device.


(F2) In some embodiments of the antenna of F1, the antenna elements in the plurality form a planar loop and are coupled to a surface of a peripheral device.


(F3) In some embodiments of the antenna of F2, the antenna elements in the plurality are arranged in the planar loop to prevent interference with functional components of the peripheral device.


(F4) In some embodiments of the antenna of any of F2-F3, the peripheral device is a computer mouse, and the surface of the peripheral device is a bottom surface of the computer mouse.


(F5) In some embodiments of the antenna of any of F2-F4, the antenna elements in the plurality that form the planar loop are configured to receive horizontally polarized radio-frequency power waves.


(F6) In some embodiments of the antenna of F1, the antenna elements in the plurality form a pyramidal frustum and are embedded in a peripheral device.


(F7) In some embodiments of the antenna of F6, the antenna elements in the plurality that form the pyramidal frustum are configured to receive vertically polarized radio-frequency power waves.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


So that the present disclosure can be understood in greater detail, a more particular description may be had by reference to the features of various embodiments, some of which are illustrated in the appended drawings. The appended drawings, however, merely illustrate pertinent features of the present disclosure and are therefore not to be considered limiting, for the description may admit to other effective features.



FIG. 1 is a block diagram showing components of a wireless power transmission system in accordance with some embodiments.



FIG. 2 illustrates an example working environment in accordance with some embodiments.



FIGS. 3A-3B show different views of a loop antenna minimally affected by the presence of the human body in accordance with some embodiments.



FIG. 4A illustrates a resulting radiation pattern produced by the loop antenna of FIGS. 3A-3B without the human body present in accordance with some embodiments.



FIG. 4B illustrates a cross-sectional view of the resulting radiation pattern of FIG. 4A (taken along the X-Y plane shown in FIG. 4A), in accordance with some embodiments.



FIG. 4C illustrates a return loss graph for the loop antenna depicted in FIGS. 3A-3B in accordance with some embodiments.



FIG. 5A illustrates a resulting radiation pattern produced by the loop antenna of FIGS. 3A-3B in the presence of the human body, in accordance with some embodiments.



FIG. 5B illustrates a cross-sectional view of the resulting radiation pattern of FIG. 5A (taken along the X-Y plane shown in FIG. 5A), in accordance with some embodiments.



FIG. 5C illustrates a return loss graph for the loop antenna depicted in FIGS. 3A-3B in the presence of the human body, in accordance with some embodiments.



FIGS. 6A-6C show different views of a stack antenna minimally affected by the presence of the human body in accordance with some embodiments.



FIGS. 6D-6H show example designs of each antenna element included in the stack antenna depicted in FIGS. 6A-6C.



FIG. 7A illustrates a resulting radiation pattern produced by the stack antenna of FIGS. 6A-6C in accordance with some embodiments.



FIG. 7B illustrates a cross-sectional view of the resulting radiation pattern of FIG. 7A (taken along the X-Y plane shown in FIG. 7A), in accordance with some embodiments.



FIG. 7C illustrates a return loss graph for the stack antenna depicted in FIGS. 6A-6C in accordance with some embodiments.



FIG. 8A shows a loop-slot antenna minimally affected by the presence of the human body in accordance with some embodiments.



FIG. 8B illustrates a resulting radiation pattern produced by the loop-slot antenna of FIG. 8A without the human body present, in accordance with some embodiments.



FIG. 8C illustrates a return loss graph for the loop-slot antenna depicted in FIG. 8A in accordance with some embodiments.



FIG. 9A illustrates a resulting radiation pattern produced by the loop-slot antenna of FIG. 8A in the presence of the human body, in accordance with some embodiments.



FIG. 9B illustrates a return loss graph for the loop-slot antenna depicted in FIG. 8A in accordance with some embodiments.





In accordance with common practice, the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.


DETAILED DESCRIPTION

Numerous details are described herein in order to provide a thorough understanding of the example embodiments illustrated in the accompanying drawings. However, some embodiments may be practiced without many of the specific details, and the scope of the claims is only limited by those features and aspects specifically recited in the claims. Furthermore, well-known processes, components, and materials have not been described in exhaustive detail so as not to unnecessarily obscure pertinent aspects of the embodiments described herein.



FIG. 1 is a block diagram of components of wireless power transmission environment 100, in accordance with some embodiments. Wireless power transmission environment 100 includes, for example, transmitters 102 (e.g., transmitters 102a, 102b . . . 102n) and one or more receivers 120 (e.g., receivers 120a, 120b . . . 120n). In some embodiments, each respective wireless power transmission environment 100 includes a number of receivers 120, each of which is associated with a respective electronic device 122. In some instances, a transmitter 102 is referred to herein as a “wireless-power-transmitting device” or a “wireless power transmitter.” Additionally, in some instances, a receiver 120 is referred to herein as a “wireless-power-receiving device” or a “wireless power receiver.”


An example transmitter 102 (e.g., transmitter 102a) includes, for example, one or more processor(s) 104, a memory 106, one or more antenna arrays 110, one or more communications components 112 (also referred to herein as a communications radio), and/or one or more transmitter sensors 114. In some embodiments, these components are interconnected by way of a communications bus 108. References to these components of transmitters 102 cover embodiments in which one or more of these components (and combinations thereof) are included.


In some embodiments, the memory 106 stores one or more programs (e.g., sets of instructions) and/or data structures, collectively referred to as “modules 107” herein. In some embodiments, the memory 106, or the non-transitory computer readable storage medium of the memory 106 stores the following programs, modules, and data structures, or a subset or superset thereof:

    • information received from receiver 120 (e.g., generated by receiver sensor 128 or processor 140, and then transmitted to the transmitter 102a);
    • information received from transmitter sensor 114;
    • an adaptive pocket-forming module that adjusts one or more power waves transmitted by one or more transmitters 102; and/or
    • a beacon transmitting module that transmits a communication signal 118 for detecting a receiver 120 (e.g., within a transmission field of the transmitter 102).


The above-identified modules (e.g., data structures and/or programs including sets of instructions) need not be implemented as separate software programs, procedures, or modules, and thus various subsets of these modules may be combined or otherwise re-arranged in various embodiments. In some embodiments, the memory 106 stores a subset of the modules identified above. In some embodiments, an external mapping memory 133 that is communicatively connected to communications component 112 stores one or more modules identified above. Furthermore, the memory 106 and/or external mapping memory 133 may store additional modules not described above. In some embodiments, the modules stored in the memory 106, or a non-transitory computer readable storage medium of memory 106, provide instructions for implementing respective operations in the methods described below. In some embodiments, some or all of these modules may be implemented with specialized hardware circuits that subsume part or all of the module functionality. One or more of the above-identified elements may be executed by one or more of processor(s) 104. In some embodiments, one or more of the modules described with regard to the memory 106 is implemented on the memory of a server (not shown) that is communicatively coupled to one or more transmitters 102 and/or by a memory of electronic device 122 and/or receiver 120.


In some embodiments, a single processor 104 (e.g., processor 104 of transmitter 102a) executes software modules for controlling multiple transmitters 102 (e.g., transmitters 102b . . . 102n). In some embodiments, a single transmitter 102 (e.g., transmitter 102a) includes multiple processors 104, such as one or more transmitter processors (configured to, e.g., control transmission of signals 116 by antenna array 110), one or more communications component processors (configured to, e.g., control communications transmitted by communications component 112 and/or receive communications by way of communications component 112) and/or one or more sensor processors (configured to, e.g., control operation of transmitter sensor 114 and/or receive output from transmitter sensor 114).


The wireless power receiver 120 receives power transmission signals 116 and/or communications 118 transmitted by transmitters 102. In some embodiments, the receiver 120 includes one or more antennas 124 (e.g., an antenna array including multiple antenna elements), power converter 126, receiver sensor 128, and/or other components or circuitry (e.g., processor(s) 140, memory 142, and/or communication component(s) 144). In some embodiments, these components are interconnected by way of a communications bus 146. References to these components of the receiver 120 cover embodiments in which one or more of these components (and combinations thereof) are included.


The receiver 120 converts energy from received signals 116 (also referred to herein as RF power transmission signals, or simply, RF signals, RF waves, electromagnetic (EM) power waves, power waves, or power transmission signals) into electrical energy to power and/or charge electronic device 122. For example, the receiver 120 uses the power converter 126 to convert energy derived from power waves 116 to alternating current (AC) electricity or direct current (DC) electricity usable to power and/or charge the electronic device 122. Non-limiting examples of the power converter 126 include rectifiers, rectifying circuits, voltage conditioners, among suitable circuitry and devices. The power converter 126 is also referred to herein as “conversion circuitry.”


In some embodiments, the receiver 120 is a standalone device that is detachably coupled to one or more electronic devices 122. For example, the electronic device 122 has processor(s) 132 for controlling one or more functions of the electronic device 122, and the receiver 120 has processor(s) 140 for controlling one or more functions of the receiver 120. In some other embodiments, the receiver 120 is a component of the electronic device 122. For example, processors 132 control functions of the electronic device 122 and the receiver 120. In addition, in some embodiments, the receiver 120 includes one or more processors 140, which communicates with processors 132 of the electronic device 122.


In some embodiments, the electronic device 122 includes one or more processors 132, memory 134, one or more communication components 136, and/or one or more batteries 130. In some embodiments, these components are interconnected by way of a communications bus 138. In some embodiments, communications between the electronic device 122 and receiver 120 occur via communications component(s) 136 and/or 144. In some embodiments, communications between the electronic device 122 and receiver 120 occur via a wired connection between communications bus 138 and communications bus 146. In some embodiments, the electronic device 122 and the receiver 120 share a single communications bus.


The receiver 120 is configured to receive one or more power waves 116 directly from the transmitter 102 (e.g., via one or more antennas 124). Furthermore, the receiver 120 is configured to harvest power waves from one or more pockets of energy created by one or more power waves 116 transmitted by the transmitter 102. In some embodiments, the transmitter 102 is a near-field transmitter that transmits the one or more power waves 116 within a near-field distance (e.g., less than approximately six inches away from the transmitter 102). In some other embodiments, the transmitter 102 is a far-field transmitter that transmits the one or more power waves 116 within a far-field distance (e.g., more than approximately six inches away from the transmitter 102).


In some embodiments, after the power waves 116 are received and/or energy is harvested from a pocket of energy, circuitry (e.g., integrated circuits, amplifiers, rectifiers, and/or voltage conditioner) of the receiver 120 converts the energy of the power waves (e.g., radio frequency electromagnetic radiation) to usable power (i.e., electricity), which powers the electronic device 122 and/or is stored to battery 130 of the electronic device 122. In some embodiments, a rectifying circuit of the receiver 120 translates the electrical energy from AC to DC for use by the electronic device 122. In some embodiments, a voltage conditioning circuit increases or decreases the voltage of the electrical energy as required by the electronic device 122. In some embodiments, an electrical relay conveys electrical energy from the receiver 120 to the electronic device 122.


In some embodiments, the electronic device 122 obtains power from multiple transmitters 102 and/or using multiple receivers 120. In some embodiments, the wireless power transmission environment 100 includes a plurality of electronic devices 122, each having at least one respective receiver 120 that is used to harvest power waves from the transmitters 102 into usable power for charging the electronic devices 122.


In some embodiments, the one or more transmitters 102 adjust values of one or more characteristics (e.g., waveform characteristics, such as phase, gain, direction, amplitude, polarization, and/or frequency) of power waves 116. For example, a transmitter 102 selects a subset of one or more antenna elements of antenna array 110 to initiate transmission of power waves 116, cease transmission of power waves 116, and/or adjust values of one or more characteristics used to transmit power waves 116. In some embodiments, the one or more transmitters 102 adjust power waves 116 such that trajectories of power waves 116 converge at a predetermined location within a transmission field (e.g., a location or region in space), resulting in controlled constructive or destructive interference patterns. The transmitter 102 may adjust values of one or more characteristics for transmitting the power waves 116 to account for changes at the wireless power receiver 120 that may negatively impact transmission of the power waves 116.


In some embodiments, respective antenna arrays 110 of the one or more transmitters 102 may include antennas having one or more polarizations. For example, a respective antenna array 110 may include vertical or horizontal polarization, right hand or left hand circular polarization, elliptical polarization, or other polarizations, as well as any number of polarization combinations. In some embodiments, antenna array 110 is capable of dynamically varying the antenna polarization (or any other characteristic) to optimize wireless power transmission.


In some embodiments, respective antenna arrays 110 of the one or more transmitters 102 may include a set of one or more antennas configured to transmit the power waves 116 into respective transmission fields of the one or more transmitters 102. Integrated circuits (not shown) of the respective transmitter 102, such as a controller circuit (e.g., a radio frequency integrated circuit (RFIC)) and/or waveform generator, may control the behavior of the antennas. For example, based on the information received from the receiver 120 by way of the communication signal 118, a controller circuit (e.g., processor 104 of the transmitter 102, FIG. 1) may determine values of the waveform characteristics (e.g., amplitude, frequency, trajectory, direction, phase, polarization, among other characteristics) of power waves 116 that would effectively provide power to the receiver 120, and in turn, the electronic device 122. The controller circuit may also identify a subset of antennas from the antenna arrays 110 that would be effective in transmitting the power waves 116. In some embodiments, a waveform generator circuit (not shown in FIG. 1) of the respective transmitter 102 coupled to the processor 104 may convert energy and generate the power waves 116 having the specific values for the waveform characteristics identified by the processor 104/controller circuit, and then provide the power waves to the antenna arrays 110 for transmission.


In some embodiments, constructive interference of power waves occurs when two or more power waves 116 (e.g., RF power transmission signals) are in phase with each other and converge into a combined wave such that an amplitude of the combined wave is greater than amplitude of a single one of the power waves. For example, the positive and negative peaks of sinusoidal waveforms arriving at a location from multiple antennas “add together” to create larger positive and negative peaks. In some embodiments, a pocket of energy is formed at a location in a transmission field where constructive interference of power waves occurs.


In contrast, destructive interference of power waves occurs when two or more power waves are out of phase and converge into a combined wave such that the amplitude of the combined wave is less than the amplitude of a single one of the power waves. For example, the power waves “cancel each other out,” thereby diminishing the amount of energy concentrated at a location in the transmission field. In some embodiments, destructive interference is used to generate a negligible amount of energy or “null” at a location within the transmission field where the power waves converge.


In some embodiments, the communications component 112 transmits communication signals 118 by way of a wired and/or wireless communication connection to the receiver 120. In some embodiments, the communications component 112 generates communication signals 118 used for triangulation of the receiver 120. In some embodiments, the communication signals 118 are used to convey information between the transmitter 102 and receiver 120 for adjusting values of one or more waveform characteristics used to transmit the power waves 116. In some embodiments, the communication signals 118 include information related to status, efficiency, user data, power consumption, billing, geo-location, and other types of information.


In some embodiments, the communications component 112 includes a communications component antenna for communicating with the receiver 120 and/or other transmitters 102 (e.g., transmitters 102b through 102n). In some embodiments, these communication signals 118 are sent using a first channel (e.g., a first frequency band) that is independent and distinct from a second channel (e.g., a second frequency band distinct from the first frequency band) used for transmission of the power waves 116.


In some embodiments, the receiver 120 includes a receiver-side communications component 144 (also referred to herein as a communications radio) configured to communicate various types of data with one or more of the transmitters 102, through a respective communication signal 118 generated by the receiver-side communications component (in some embodiments, a respective communication signal 118 is referred to as an advertising signal). The data may include location indicators for the receiver 120 and/or electronic device 122, a power status of the device 122, status information for the receiver 120, status information for the electronic device 122, status information about the power waves 116, and/or status information for pockets of energy. In other words, the receiver 120 may provide data to the transmitter 102, by way of the communication signal 118, regarding the current operation of the system 100, including: information identifying a present location of the receiver 120 or the device 122, an amount of energy (i.e., usable power) received by the receiver 120, and an amount of usable power received and/or used by the electronic device 122, among other possible data points containing other types of information.


In some embodiments, the data contained within communication signals 118 is used by the electronic device 122, the receiver 120, and/or the transmitters 102 for determining adjustments to values of one or more waveform characteristics used by the antenna array 110 to transmit the power waves 116. Using a communication signal 118, the transmitter 102 communicates data that is used, e.g., to identify receivers 120 within a transmission field, identify electronic devices 122, determine safe and effective waveform characteristics for power waves, and/or hone the placement of pockets of energy. In some embodiments, the receiver 120 uses a communication signal 118 to communicate data for alerting transmitters 102 that the receiver 120 has entered or is about to enter a transmission field, provide information about the electronic device 122, provide user information that corresponds to the electronic device 122, indicate the effectiveness of received power waves 116, and/or provide updated characteristics or transmission parameters that the one or more transmitters 102 use to adjust transmission of the power waves 116.


In some embodiments, transmitter sensor 114 and/or receiver sensor 128 detect and/or identify conditions of the electronic device 122, the receiver 120, the transmitter 102, and/or a transmission field. In some embodiments, data generated by the transmitter sensor 114 and/or receiver sensor 128 is used by the transmitter 102 to determine appropriate adjustments to values of waveform characteristics used to transmit the power waves 116. Data from transmitter sensor 114 and/or receiver sensor 128 received by the transmitter 102 includes, e.g., raw sensor data and/or sensor data processed by a processor 104, such as a sensor processor. Processed sensor data includes, e.g., determinations based upon sensor data output. In some embodiments, sensor data received from sensors that are external to the receiver 120 and the transmitters 102 is also used (such as thermal imaging data, information from optical sensors, and others).


In some embodiments, the receiver sensor 128 is a gyroscope that provides raw data such as orientation data (e.g., tri-axial orientation data), and processing this raw data may include determining a location of the receiver 120 and/or or a location of receiver antenna 124 using the orientation data. Furthermore, the receiver sensor 128 can indicate an orientation of the receiver 120 and/or electronic device 122. As one example, the transmitters 102 receive orientation information from the receiver sensor 128 and the transmitters 102 (or a component thereof, such as the processor 104) use the received orientation information to determine whether electronic device 122 is flat on a table, in motion, and/or in use (e.g., next to a user's head).


Non-limiting examples of the transmitter sensor 114 and/or the receiver sensor 128 include, e.g., infrared, pyroelectric, ultrasonic, laser, optical, Doppler, gyro, accelerometer, microwave, millimeter, RF standing-wave sensors, resonant LC sensors, capacitive sensors, and/or inductive sensors. In some embodiments, technologies for the transmitter sensor 114 and/or the receiver sensor 128 include binary sensors that acquire stereoscopic sensor data, such as the location of a human or other sensitive object.


In some embodiments, the transmitter sensor 114 and/or receiver sensor 128 is configured for human recognition (e.g., capable of distinguishing between a person and other objects, such as furniture). Examples of sensor data output by human recognition-enabled sensors include: body temperature data, infrared range-finder data, motion data, activity recognition data, silhouette detection and recognition data, gesture data, heart rate data, portable devices data, and wearable device data (e.g., biometric readings and output, accelerometer data).



FIG. 2 illustrates an example working environment 200 in accordance with some embodiments. The example working environment 200 includes an electronic device 122 (e.g., a peripheral device, such as a computer mouse) coupled with a receiver 120 (not shown). The example working environment 200 also includes a transmitter 102 that is configured to transmit wireless power waves (e.g., power waves 116) to the receiver 120 coupled in the electronic device 122. The working environment 200 also shows the electronic device 122 positioned on a working surface 202. The electronic device 122 is configured to traverse (e.g., slide) on the working surface 202 (e.g., computer mouse traversing a mouse pad). The working environment 200 also includes a human arm/hand 204 positioned on the electronic device 122 (e.g., a human hand operates a personal computer using a computer mouse).


Various embodiments of the antenna 124 are illustrated and described below. For example, a first embodiment of the antenna 124 is illustrated and described with reference to FIGS. 3A to 5C. A second embodiment of the antenna 124 is illustrated and described with reference to FIGS. 6A to 7C. A third embodiment of the antenna 124 is illustrated and described with reference to FIGS. 8A to 9B. The first, second, and third embodiments of the antenna 124 are designed to be integrated with (e.g., embedded in or attached to) existing electronic devices, such as a computer mouse. Furthermore, the first, second, and third embodiments of the antenna 124 are designed to maintain a satisfactory operating efficiency even in the presence of the human body (e.g., when a human hand is in contact with a housing of an electronic device in which the antenna 124 is integrated). While not shown, the other components (e.g., power converters 126, receiver sensors 128, communications component 144, etc.) of the receiver 120 can also be integrated with (e.g., embedded in or attached to) the electronic device 122.


First Embodiment—Loop Antenna


FIG. 3A shows an isometric view of a loop antenna 300 that is minimally affected by the presence of the human body (e.g., a human hand that is in contact with a housing of an electronic device with which the loop antenna 300 is integrated) in accordance with some embodiments. Put another way, the loop antenna 300 maintains a satisfactory level of efficiency (e.g., greater than 50%) when, e.g., a human hand is in contact with the electronic device 122 (i.e., in close proximity of the loop antenna 300). As shown, the loop antenna 300 includes a plurality of segments 302-A, 302-B, etc. (also referred to herein as “antenna segments,” “antenna elements,” “radiating elements,” and “radiators”) forming a loop. The segments 302 can be attached to a substrate 303, and the substrate 303 is configured for integration with an electronic device 122, such as a computer mouse, remote control, etc. For example, a computer mouse, as shown in FIG. 2, has a housing with a first surface (e.g., a top surface) shaped for a palmar surface of a user's hand 204 and a second surface (e.g., a bottom surface), opposite the first surface, to translate on the working surface 202. The substrate 303 can form at least a part of the second surface, and thus, the loop antenna 300 is located as far as possible from the human hand 204. A primary advantage of this arrangement is that a human hand does not substantially detune the antenna (i.e., the electromagnetic waves 116 transmitted by the transmitter 102 are minimally affected by the human hand).


Each segment 302 (e.g., antenna element) includes a segment body 304 with first and second opposing ends, a slot 306 (also referred to herein as a “female component”) extending from the first end into the segment body 304 (i.e., the segment body 304 defines the slot 306), and a protrusion 308 (also referred to herein as a “male component”) extending from the second end away from the segment body 304. Furthermore, the protrusion 308 of a first segment (e.g., segment 302-A) of the plurality of segments is positioned within the slot 306 defined by a second segment (e.g., segment 302-B) of the plurality of segments (and the same is true for the other segments). Put plainly, each protrusion is mated with a corresponding slot of a neighboring segment. The interlocking arrangement of the segments 302 creates the “loop” of the loop antenna 300. Notably, a respective protrusion 308 does not contact the neighboring segment when mated with the corresponding slot 306 of the neighboring segment. The non-contiguous design of the loop antenna 300 allows for the loop antenna 300 to be omnidirectional and radiate at the desired frequency, as explained below. In some embodiments, the loop antenna has a total length of about a half wavelength (e.g., if the loop antenna is operating at 900 MHz, then the loop antenna has a total length of approximately 166.5 millimeters).


By using these specifically shaped segments (e.g., the slot-protrusion configuration in an oval-planar design), the loop antenna 300 is configured to operate as an omnidirectional antenna (e.g., the loop antenna 300 can receive RF power waves coming from any direction). In contrast, typical loop antennas operate as boresight antennas (e.g., a directional antenna where maximum gain is along a certain axis). However, a boresight antenna would not perform well on the electronic device 122 of FIG. 2 as it rotates during usage (e.g., user turns his or her computer mouse left and right during use), and therefore, the electronic device 122 is not always positioned or pointing along the “boresight” (i.e., the axis of maximum gain). Thus, an omnidirectional antenna is desired for working environments such as that depicted in FIG. 2, in which the omnidirectional antenna disclosed here is integrated with an electronic device, such as a computer mouse. The omnidirectional capabilities of the loop antenna 300 are at least two-fold: (i) distinct conductive loads are formed at each segment as a result of the plurality of segments being adjacent yet separate, and (ii) the specifically shaped segments create a uniform current around the entire loop antenna 300.


As noted above, the loop antenna 300 is configured to receive electromagnetic waves that are polarized in a direction that is substantially parallel (within +/−25 to 35 degrees of parallel) to a plane of the loop antenna 300 (e.g., horizontally-polarized waves for the loop antenna 300 integrated with the electronic device 122 depicted in FIG. 2). A current on a wire creates an electromagnetic field around it with its polarization in the direction of the wire. Given the reciprocity theorem, an electromagnetic field polarized along the direction of a wire will excite a current along the wire. The loop can be seen as a circular/oval wire that will be excited by electromagnetic waves that are polarized in any direction along the plane of the loop. If the polarization is perpendicular to the plane of the loop, however, then no current will be excited on the metallic loop and therefore no energy is received by the antenna.


Each of the antenna elements 302 has a similar shape (e.g., each antenna element/segment has (i) a segment body, (ii) a female component, and (iii) a male component), but sizes of the antenna segments 302 are not necessarily the same. For example, with reference to FIG. 3A, each of the segments 302 has the same shape (e.g., segment 302-A has the same shape as segment 302-B), except for segment 302-K. Segment 302-K is positioned at a “nose” of the electronic device 122, and thus, segment 302-K is intended to be the closest segment to the transmitter 102. As shown, segment 302-K's shape is similar to the other segments, but it is substantially smaller relative to the other segments (e.g., a body 304 of the segment 302-K is smaller relative to respective bodies 304 of other segments 302 shown in FIG. 3A). As such, the segment closest to the transmitter 102 has the least amount of material, and in this way, the loop antenna 300 increases its gain in the direction of the transmitter 102 (i.e., the loop antenna is biased in the direction of the transmitter 102). “Nose” refers to a forward-facing portion of the electronic device that is pointing towards the wireless-power-transmitting device depicted in FIG. 2. An example of the “nose” 205 is shown in FIG. 2.


In contrast, designers of conventional loop antennas used in wireless telecommunications systems are not typically concerned with increasing antenna gain in the direction of a transmitting device. In some instances, this is because wireless communication signals are low power signals (relative to the higher-power signals used in wireless charging applications) and, importantly, a general location of the transmitting device is not predetermined. Therefore, antennas (e.g., some conventional loop antennas) used in wireless telecommunications systems are designed to receive communication signals (e.g., cellular signals, BLUETOOTH signals, etc.) in an omnidirectional fashion and without having an increased gain in any particular direction. The loop antenna 300 described herein is designed to have this feature, namely an increased gain in the direction of the transmitter 102. In addition, as detailed below, the loop antenna 300 includes tuning elements allowing the loop antenna 300 to account for a mismatch of the antenna 300 introduced by a human hand contacting the housing of the electronic device in which the loop antenna 300 is integrated. By designing the loop antenna 300 with these advantageous characteristics specific to wireless-power-transfer applications (e.g., incorporating tuning elements and ensuring that increased gain is in the direction of the transmitter), the inventors have designed the loop antenna 300 to help enable the safe transmission of wireless power in the working environment 200 described herein.


The loop antenna 300 has an added advantage of not obstructing existing/common components of the electronic device 122. In embodiments in which the electronic device 122 is a computer mouse, such a computer mouse has a light source (e.g., a light-emitting diode, LED) to detect movement of the mouse relative to a surface (e.g., the working surface 202). The light source is thus critical to the mouse's operation, and therefore, any component attached to a computer mouse cannot obstruct the light source. The loop antenna 300 is advantageous because the segments 302 are positioned along the substrate 303's perimeter, and thus, a light source (not shown) of the computer mouse 122 positioned in a central portion of the substrate 303 is not obstructed by the loop antenna 300. As such, the computer mouse's basic design and operation is unhindered by the disclosed loop antenna 300.


In some embodiments, one or more of the segments 302 include tuning elements (shown in magnified view 309) configured to adjust an operating frequency of the antenna 300. In the illustrated embodiment, each segment 302 includes one or more respective tuning elements 310 positioned at the end of the segment's protrusion 308. The tuning elements 310 (e.g., metallic portions/strips) can be used to adjust the operating frequency of the loop antenna 300 by connecting a respective tuning element to the respective protrusion 308, either directly, as is the case with the tuning element 310-1, or indirectly via one or more other tuning elements 310, thereby creating an electrical short across the respective tuning element(s), and modifying an overall length of the respective protrusion 308, and in turn, an area of the loop antenna 300.


The magnified view 309 of FIG. 3A illustrates connections 312 between tuning elements 310 and the respective protrusion 308. For ease of discussion below, connections 312-A-312-D are electrical switches that may include one or more transistors or diodes that selectively couple one or more of the tuning elements to the respective protrusion 308. The connections could also be metal deposits, such as solder. For example, the tuning elements may be manufactured without a connection to an antenna segment and one or more of the tuning elements may be connected to (e.g., or disconnected from) by soldering a connection (e.g., or removing a soldered connection) to connect (e.g., or disconnect) the tuning element to the antenna element.


With reference to magnified view 309, electrical switches 312-A-312-D are disposed between the respective protrusion 308 and tuning elements 310-A-310-D. In some embodiments, each electrical switch 312 is switchably coupled to one of the tuning elements 310-A-310-D. In some embodiments, the switches 312-A-312-D are controlled by a controller (e.g., processor 140) of the receiver 120, and the controller may adjust an operating frequency of the antenna 300 by connecting one of the tuning elements 310-A-310-D with the respective protrusion 308 through corresponding switches. For example, the loop antenna 300 has a first operating frequency when the first tuning element 310-A is connected with the respective protrusion 308 through switch 312-A, the antenna 300 has a second operating frequency, different from the first operating frequency, when the first and second tuning elements 310-A, 310-B are connected with the respective protrusion 308 through switches 312-A and 312-B, and so on. Although not shown, the tuning elements associated with the other antenna segments 302 may also include the same arrangement shown in the magnified view 309.


In light of the above, in some embodiments, the receiver 120 can adjust the operating frequency of the loop antenna 300 using one or more sets of tuning elements shown in FIG. 3A. In this way, the antenna 300's operating frequency and/or bandwidth can be adjusted in response to, e.g., detecting the presence of the hand 204 near the antenna 300 (e.g., when the hand is placed in contact with a housing of the electronic device 122) introducing a slight miss-match and de-tuning of the antenna 300. In some embodiments, the level of adjustment is approximately +/−15 MHz (although greater and lesser ranges are possible). For example, increasing a length of the respective protrusion 308 by connecting one or more of the tuning elements 310 to the respective protrusion 308 down tunes the loop antenna 300 (i.e., lowers the operating frequency).



FIG. 3B illustrates a backside of the substrate 303 in accordance with some embodiments. As shown, the backside of the substrate 303 includes a radio frequency (RF) port 320 and a transmission line 322. The transmission line 322 is coupled to a portion of the loop antenna 300. Specifically, in the illustrated embodiment, the transmission line 322 is coupled to the segment 302-K of the loop antenna 300. As discussed above, the segment 302-K is the smaller segment of the loop antenna 300. Smaller antenna segments support stronger currents and therefore, connecting the transmission line 322 to segment 302-K increases the collected power. The transmission line 322 could be potentially connected to any of the segments, and oriented in any direction, but orienting it towards the nose of the electronic device 122 and the transmitter 102 enhances the received power. Thus, because the transmission line 322 is at the nose of the electronic device 122, the loop antenna 300's current is the highest at the nose of the electronic device 122 and in the direction of the transmitter 102. Such an arrangement further increases the loop antenna 300's gain in the direction of the transmitter 102.



FIG. 4A illustrates a radiation pattern 400 produced by an embodiment of loop antenna 300 shown in FIGS. 3A-3B without the human body present. As shown, the radiation pattern 400 is substantially omnidirectional, as discussed above. The loop antenna 300 is able to achieve, without the human body present near the loop antenna 300, an efficiency of approximately 94%. FIG. 4B illustrates a cross-sectional view 410 of the radiation pattern 400 (taken along the X-Y plane shown in FIG. 4A). The cross-sectional view 410 includes gain along the X-axis and gain along the Y-axis, and shows the substantially omnidirectional shape of the radiation pattern 400. Importantly, the loop antenna 300 radiates more energy forwards than backwards (e.g., towards a nose of the electronic device 122), and thus, the loop antenna 300 has a positive front-to-back ratio. FIG. 4C illustrates a return loss graph 420 for the loop antenna 300 depicted in FIGS. 3A-33, where the resonance frequency is about 1.05 GHz.



FIG. 5A illustrates a resulting radiation pattern 500 produced by an instance of the loop antenna 300 of FIGS. 3A-3B in the presence of the human body (e.g., when a user's hand is in contact with a housing of the electronic device 122 with which the loop antenna 300 is integrated). In this example, the radiation pattern 500 is influenced by the presence of the human hand 204. The radiation pattern 500 is still substantially omnidirectional, albeit less symmetrical relative to the radiation pattern 400. FIG. 5B illustrates a cross-sectional view 510 of the radiation pattern 500 (taken along the X-Y plane shown in FIG. 5A). The cross-sectional view 510 includes gain along the X-axis and gain along the Y-axis, and shows the substantially omnidirectional shape of the radiation pattern 500. Importantly, the loop antenna 300 radiates more energy forwards than backwards (e.g., towards a nose of the electronic device 122) in the presence of the human body, and thus, the loop antenna 300 maintains its positive front-to-back ratio. FIG. 5C illustrates a return loss graph 520 for the loop antenna 300 depicted in FIGS. 3A-3B in the presence of the human body. The curve S11 shows the antenna return loss, indicating that the antenna 300 is down-tuned (relative to the return loss graph 420) due the presence of the human body and now working at the desired frequency. The presence of the hand (e.g., when a human hand is in contact with the electronic device) also enhances the bandwidth and provides better matching at the expenses of lower radiation efficiency since there is resistive matching.


Second Embodiment—Stack Antenna


FIG. 6A shows an isometric view of a stack antenna 600 that is minimally affected by the presence of the human body in accordance with some embodiments. Put another way, the stack antenna 600 maintains a satisfactory level of efficiency (e.g., greater than 50%) when, e.g., a human hand is in contact with the electronic device. The stack antenna 600 is designed to be miniaturized so that it can be integrated with (e.g., embedded in), if desired, an electronic device, such as a computer mouse, remote control, etc. In the illustrated embodiment, the stack antenna 600 includes a plurality of substrates 602-A-602-E that form a pyramidal frustum (substrates 602 are transparent for ease of discussion and illustration). The pyramidal-frustum shape allows the stack antenna 600 to fit inside various electronic devices 122. For example, a computer mouse may include a cavity defined in a bottom-half of the mouse, and the stack antenna 600 may fit inside said cavity (whereas a rectangular cuboid may not fit). In this way, the stack antenna 600 can be concealed inside the electronic device 122, and also located as far as possible from the human hand 204. Like the loop antenna 300, a primary advantage of this arrangement is that a human hand does not substantially detune the antenna (i.e., the electromagnetic waves 116 transmitted by the transmitter 102 are minimally affected by the human hand).


Each substrate 602 includes a respective antenna element 604 that is configured to receive RF power waves 116 transmitted from the transmitter 102. In particular, due to the stacked design of the antenna 600 (and the interconnecting of antenna elements between substrate layers by metal rods 610), the antenna elements 604 are configured to receive RF power waves having a particular polarization. Specifically, the antenna 600 is designed to received waves that are polarized in a direction that is substantially perpendicular to a plane of each of the substrates 602. Thus, when the substrates 602 are horizontally oriented (e.g., aligned along a horizontal plane, as shown in FIG. 6A), the antenna elements 604, in combination with the metal rods 610, are configured to receive vertically polarized RF power waves.


As shown in FIG. 6A, the antenna element 604-E has a four-prong (e.g., four-arm) design, where each prong meanders away from a central patch 615. It is noted, however, that a surface area (and design) of respective antenna elements 604 may differ depending on a position of the antenna element within the stack. For example, antenna elements 604 higher in the stack have smaller surface areas relative to surface areas of antenna elements 604 lower in the stack (e.g., lower antenna elements 604 have longer prongs relative to prongs of higher up antenna elements). By using these specifically shaped antenna elements 604, the stack antenna 600 is an omnidirectional antenna. As explained above with reference to the loop antenna 300, an omnidirectional antenna is desired for the disclosed application because the electronic device 122 moves and rotates left and right during usage. Example designs of each antenna element 604-A-604-E are shown in FIGS. 6D-6H.


The stack antenna 600 further includes a feeding mechanism 607 (e.g., a coaxial cable or any other type of connector, microstrip line, coplanar line, or any other feed line). A feed line of the feeding mechanism 607 may be connected to one of the antenna elements 604 (e.g., antenna element 604-A of the substrate 602-A). Furthermore, the feed line can be isolated from the ground plane 606 by a dielectric included in the feeding mechanism 607.


As explained below with reference to FIG. 6B, each antenna element 604 includes a plurality of prongs (or arms) 609 (e.g., at least two prongs 609). For example, each antenna element 604 illustrated in FIGS. 6A and 6B has four prongs 609 (greater or lesser number of prongs can also be used). In some embodiments, for each antenna element 604: (i) a first prong of the plurality of prongs 609 is connected, either directly or indirectly, to the feed line of the feeding mechanism 607, and (ii) the one or more other prongs of the plurality of prongs 609 are connected, either directly or indirectly, to the ground plane 606. Alternatively, in some embodiments, for each antenna element 604: (i) a first set of prongs of the plurality of prongs 609 is connected, either directly or indirectly, to the feed line of the feeding mechanism 607, and (ii) a second set of prongs, different from the first set of prongs, of the plurality of prongs 609 is connected, either directly or indirectly, to the ground plane 606.



FIG. 6B shows a top view of the stack antenna 600 in accordance with some embodiments. For ease of illustration, borders/perimeters of individual substrates 602 are not shown in FIG. 6B, except for the border of substrate 602-A. As shown, the antenna element 604-E, which is attached to the substrate 602-E, includes four prongs 609-A-609-D that extend and meander away from a central patch 615 (e.g., a metal patch). Various meandering paths can be used, and the meandering paths shown in FIGS. 6A and 6B with perpendicularly-oriented segments are merely one set of possible paths. For example, the four prongs 609-A-609-D may also follow meandering paths with additional perpendicular segments, and/or the meandering paths may be curved. The meandering paths are used, among other things, to increase an effective length the antenna element 604, thus resulting in a lower resonant frequency of the antenna 600 while reducing an overall size of the antenna 600. In doing so, the antenna 600 can be sufficiently miniaturized (e.g., the stack antenna 600, when operating at approximately 915 MHz can have the following example dimensions (approximately): D1=36 mm, D2=27 mm, D3=17 mm, D4=15 mm (FIG. 6C), and D5=3 mm (FIG. 6C)). Further, each substrate 602 may have a thickness of approximately 0.025 mm. It is also noted that a surface area of the central patch 615 can be adjusted to tune an impedance of the antenna 600. In some embodiments, the other antenna elements 604 do not follow a meandering path per se, as shown with reference to FIGS. 6E-6H. Nevertheless, a path followed by the other antenna elements 604 still increases an effective length of the antenna element 604.


In some embodiments, each substrate 602 has a rectangular shape. However, in some other embodiments, each substrate 602 has a circular, hexagonal, triangular, etc. shape. Additionally, in some embodiments, at least one substrate 602 has a shape that differs from the shapes of the other substrates 602. The central patch 615 may also have a circular, hexagonal, triangular, etc. shape.


In some embodiments, each substrate 602 includes a plurality of vias 608 positioned at respective ends (or end portions) of the antenna element 604. For example, the substrate 602-E in FIG. 6B includes four vias 608 positioned at respective ends (or end portions) of its four-pronged antenna element 604. In some embodiments, one or more of the vias 608 of a first substrate 602 is/are vertically aligned with one or more of the vias 608 of a second substrate 602, where the first substrate 602 is the substrate directly above the second substrate 602 (e.g., dotted box in FIG. 6C showing vertical alignment of vias defined by neighboring substrates). Due to this alignment, FIG. 6B does not show all the vias 608 included in the antenna 600. Vias are discussed in further detail below with reference to FIG. 6C.



FIG. 6C shows a side view of the stack antenna 600 in accordance with some embodiments. While not shown in FIG. 6C, each antenna element 604 is positioned on a first surface 612 of its associated substrate 602. The stack antenna 600 includes metal rods 610 positioned between neighboring substrates (or substrate 602-A and the ground plane 606). Specifically, a set of metal rods 610 is used to separate and support neighboring substrates 602. For example, the substrate 602-E is separated from the substrate 602-D by a first set of metal rods, the substrate 602-D is separated from the substrate 602-C by a second set of metal rods, and so on. The metal rods 610 of the stack antenna 600 help to impart desired polarization to the antenna 600 (e.g., a vertical polarization when the antenna is oriented within a housing of a computer mouse that is positioned on a flat surface, such as the electronic device 122 of FIG. 2). The operating frequency of the antenna 600 can also be tuned by changing the length of the metal rods 610 (i.e., the distance between adjacent substrates).


The number of metal rods 610 in a set corresponds to the number of prongs 609 included in a respective antenna element 604. In the illustrated embodiments, each antenna element 604 has four prongs 609, and therefore, each set of metal rods 610 has four rods. It is noted that greater (or lesser) number of prongs may be defined by a respective antenna element 604. In such instances, the number of rods 610 in the set would change accordingly. The metal rods 610 can be considered part of the antenna elements 604 (e.g., the metal rods 610 can also receive electromagnetic waves transmitted by the transmitter 102).


As shown in FIG. 6C, each via 608 extends through its associated substrate 602 (e.g., via 608 labeled in FIG. 6C extends from the first surface 612 of the substrate 602-E to (and through) a second surface 614 of the substrate 602-E). In this way, a first end of each via 608 (at least in some instances) is connected to an end portion of a respective antenna prong 609, and a second end of each via 608 is connected to a metal rod 610, which is in turn connected to an end portion of another antenna prong 609 on a neighboring substrate 602. In this configuration, the antenna elements 604 are interconnected, and thus, RF power waves 116 received by, say, antenna element 604-E can travel through each of the other antenna elements 604 to be collected by the feed mechanism 607's feed line.


To provide some clarity, a “via” as used herein is a metal deposit filling an opening defined by a substrate. The disclosed vias facilitate electrical connections at both surfaces 612, 614 of a substrate. In contrast, a metal rod is distinct from the substrate. It is noted, however, that two vias and a metal rod can form a unitary component, at least in some embodiments.


As noted above, a first prong of the plurality of prongs 609 for each antenna element 604 is connected, either directly or indirectly, to the feed mechanism 607's feed line. To expand on this, each antenna element 604 has a respective first prong 609 (along with at least a second respective prong 609), and the respective first prongs 609 are interconnected with each other (e.g., by way of vias 608 and rods 610). For example, the first prong 609 of a first antenna element 604 of a first substrate 602 is connected to the first prong 609 of a second antenna element 604 of a second substrate 602 (and so on if additional substrates are included in the antenna 600). Thus, the respective first prongs 609 and the interconnecting metal rods 610 in the antenna 600 form a meandering path with first segments (e.g., the first prongs 609) defined in a first dimension (e.g., defined in a horizontal plane) and second segments (e.g., the metal rods 610) defined in a second dimension (e.g., defined in a vertical plane). As such, the antenna 600 includes multiple, continuous conductive paths (i.e., antenna elements) that extend from the bottom to the top of the antenna 600. This arrangement allows the antenna 600 to receive electromagnetic waves using a small electrical volume.


In some embodiments, an operating frequency of the antenna 600 corresponds, at least in part, to a magnitude of D5 (e.g., a separation distance between neighboring substrates 602 of the antenna 600). As such, in order to adjust the operating frequency of the antenna 600, a length of the metal rods 610 can be increased or decreased as needed.


In some embodiments, antenna 600 is designed as a printed antenna (e.g., metal deposited/printed on a substrate). In other embodiments, the antenna 600 can also be a stamped metal design, where the antenna elements 604 are on air (i.e., the substrates 602 are optional).



FIGS. 6D-6H show the individual antenna elements 604 of the stack antenna 600 shown in FIG. 6A. These individual antenna elements 604 are provided for additional context and for explanatory purposes only (other antenna element designs would be appreciated by one of skill in the art upon reading this disclosure). The antenna elements 604 are illustrated sequentially in FIGS. 6D-6H from top to bottom of the stack antenna 600 (e.g., antenna element 604-E is at a top of the stack antenna 600 and antenna element 604-A is at a bottom of the stack antenna 600). Stated another way, FIGS. 6D-6H illustrate antenna elements 604 respectively included on each of the substrates 602 of the stack antenna 600, and FIGS. 6D-6H depict these antenna elements beginning from substrate 602-E and down to substrate 602-A.



FIG. 7A illustrates a radiation pattern 700 produced by an embodiment of stack antenna 600 shown in FIGS. 6A-6C when no human hand is in contact with an electronic device with which the stack antenna 600 is integrated (e.g., the stack antenna 600 is operating without presence of the human body). As shown, the radiation pattern 700 is substantially omnidirectional. FIG. 7B illustrates a cross-sectional view 710 of the radiation pattern 700 (taken along the XY plane shown in FIG. 7A). The cross-sectional view 710 includes gain along the X-axis and gain along the Y-axis, and shows the substantially omnidirectional shape of the radiation pattern 700. From FIG. 7B, it can be seen that the co-polarization (vertical) component is approximately 10 dB higher the cross-polarization (horizontal) component. FIG. 7C illustrates a return loss graph 720 for the stack antenna 600 depicted in FIGS. 6A-6C.


Third Embodiment—Loop-Slot Antenna


FIG. 8A shows a top view of a loop-slot antenna 800 that is able to maintain a satisfactory level of efficiency (e.g., greater than 50%) when, e.g., a human hand is in contact with the electronic device. The loop-slot antenna 800 can be integrated with a planar surface of the electronic device 122. For example, a computer mouse can include a surface that contacts and traverses along the working surface 202 (i.e., a bottom of the electronic device 122), and the loop-slot antenna 800 may be attached to that surface. In this way, the loop-slot antenna 800 can be located as far as possible from the human hand 204. Thus, like the loop antenna 300, a primary advantage of this arrangement is that a human hand does not substantially detune the antenna (i.e., the electromagnetic waves 116 transmitted by the transmitter 102 are minimally affected by the human hand).


The loop-slot antenna 800 includes an inner antenna element 802, coupled to a transmission line, configured to receive horizontally polarized (polarization parallel to the plane of the antenna) electromagnetic power waves (e.g., RF power waves 116) from a wireless-power-transmitting device 102. As shown, the inner antenna element 802 forms an open loop (e.g., the inner antenna element 802 is not continuous). Ends of the inner antenna element 802 form a connection area 808 for connecting a transmission/feed line (not shown) with the antenna 800.


The loop-slot antenna 800 also includes an outer antenna element 804, separated from the inner antenna element 802, configured to receive horizontally polarized electromagnetic power waves (e.g., RF power waves 116) from the wireless-power-transmitting device 102. The outer antenna element 804 forms an open-loop and surrounds the inner antenna element 802. The outer antenna element 804 is an “open-loop” because ends 814, 816 of the outer antenna element 804 are separated by a slot 812. The coupling between the outer antenna element 804 and the inner antenna element 802 can be adjusted by changing a width of the slot 812 and lengths of the first and second ends 814, 816.


The loop-slot antenna 800 also includes first and second sets of tuning elements 810-A, 810-B positioned adjacent to the first and second ends 814, 816 of the outer antenna element 804, respectively. The first and second sets of tuning elements are configured to adjust the operating frequency of the antenna. In some embodiments, the first and second sets of tuning elements 810-A, 810-B provide a level of adjustment of up to 130 MHz (although greater and lesser values are possible depending on the number and size of the tuning elements). To provide some context, the presence of the hand 204 near the antenna 800 (e.g., when a human hand is in contact with the electronic device) can introduce a slight miss-match and de-tuning of the antenna 800. The antenna 800, however, can keep operating effectively at the design frequency by connecting one or more tuning elements, from the first and/or second sets of tuning elements, to the outer antenna element 804.


In the illustrated embodiment, the first and second ends 814, 816 of the outer antenna element 804 are adjacent to the first and second sets of tuning element 810-A, 810-B, respectively. The tuning elements 810 (e.g., metallic strips) can adjust the operating frequency of the antenna 800 by directly connecting a respective tuning element to a respective end 814, 816 of the outer antenna element 804, or indirectly via one or more other tuning elements, thereby creating an electrical short across the respective tuning element(s), and modifying an overall length of the outer antenna element 804, and in turn, an area of the outer antenna element 804. In some embodiments, one or more transistors or diodes (e.g., instances of connections 312-A-312-D, FIG. 3A) are positioned between each respective tuning element 810, and the one or more transistors or diodes are configured to selectively couple one or more of the tuning elements 810 to the outer antenna element 804. In other embodiments, one or more of the tuning elements 810 are connected to each other (and the outer antenna element 810) by metal deposits, such as solder. For example, the tuning elements 810 may be manufactured without any connections and one or more of the tuning elements may be connected (e.g., or disconnected from) by soldering a connection (e.g., or removing a soldered connection) to connect (e.g., or disconnect) the tuning element to the antenna outer element 810. Connections between tuning elements are discussed in further detail above with reference to FIG. 3A.


In some embodiments, the inner antenna element 802, the outer antenna element 804, and the one or more tuning elements 810 are coupled to a substrate 801. To provide some context, the substrate 801, when the antenna 800 is operating at approximately 915 MHz, can have the following dimensions (approximately): D1=40 mm and D2=30 mm. Further, the substrate 801 may have a thickness of approximately 0.5 mm.



FIG. 8B illustrates a radiation pattern 820 produced by an instance of the antenna 800 shown in FIG. 8A without the human body present (but in the presence of a mouse mat and table). As shown, the radiation pattern 820 is substantially omnidirectional (perfect omnidirectionality is achieved when the mat and table are not present). Accordingly, the radiation pattern 820 illustrates that the antenna 800 is mainly immune to the effects of the mat and table. FIG. 8C illustrates a return loss graph for the antenna 800 shown in FIG. 8A without the human body present.



FIG. 9A illustrates a radiation pattern 900 produced by an embodiment of the antenna 800 shown in FIG. 8A with a human hand present. As shown, the hand prevents backwards radiation towards the human, but does not prevent forward radiation, which establishes the link with the transmitter 102. FIG. 9B illustrates a return loss graph 910 for the antenna 800 shown in FIG. 8A with a human hand present. It can be observed that given the bandwidth of the antenna 800 (depicted in FIG. 8C), despite the human hand presence, the antenna 800 is still tuned at the frequency of interest.


The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.


It will also be understood that, although the terms “first,” “second,” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first antenna element could be termed a second antenna element, and, similarly, a second antenna element could be termed a first antenna element, without changing the meaning of the description, so long as all occurrences of the “first antenna element” are renamed consistently and all occurrences of the “second antenna element” are renamed consistently. The first antenna element and the second antenna element are both antenna elements, but they are not the same antenna element.


The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.

Claims
  • 1. An antenna for receiving wireless power from a wireless-power-transmitting device, the antenna comprising: a plurality of substrates, arranged in a stack, forming a pyramidal frustum;a plurality of antenna elements configured to receive vertically polarized electromagnetic power waves transmitted by a wireless-power-transmitting device, wherein: each antenna element of the plurality of antenna elements is attached to one of the plurality of substrates; andone of the plurality of antenna elements is coupled to a transmission line,wherein conversion circuitry, coupled to the transmission line, is configured to: (i) convert energy from the received electromagnetic power waves into usable power, and (ii) provide the usable power to an electronic device for powering or charging of the electronic device.
  • 2. The antenna of claim 1, wherein substrates in the plurality of substrates do not directly contact one another.
  • 3. The antenna of claim 1, further comprising multiple sets of metal rods, wherein each of the plurality of substrates is supported by one set of metal rods from the multiple sets of metal rods.
  • 4. The antenna of claim 3, wherein each substrate includes a set of vias defined through the substrate and connected to: (i) predefined portions of one of the plurality of antenna elements at one end, and (ii) one of the sets of metal rods at the other end.
  • 5. The antenna of claim 3, wherein each set of metal rods separates two neighboring substrates by a predefined distance.
  • 6. The antenna of claim 1, wherein: the plurality of substrates includes first and second substrates;the first substrate includes: a first of the plurality of antenna elements, the first antenna element being a first four-pronged antenna element; andfour vias positioned at respective ends of the first four-pronged antenna element;the second substrate, which is positioned above the first substrate in the stack, includes: a second of the plurality of antenna elements, the second antenna element being a second four-pronged antenna element; andfour vias, vertically aligned with the four vias of the first substrate, positioned at respective ends of the second four-pronged antenna element.
  • 7. The antenna of claim 6, further comprising four metal rods that each have a first length, wherein: each of the four metal rods connects one of the four vias of the second substrate with one of the four vias of the first substrate, andthe second substrate is vertically offset from the first substrate by the first length.
  • 8. The antenna of claim 7, wherein the first and second substrates are parallel.
  • 9. The antenna of claim 7, wherein an operating frequency of the antenna corresponds, at least in part, to a magnitude of the first length.
  • 10. The antenna of claim 6, wherein: the first and second substrates are rectangular; anda largest cross-sectional dimension of the second substrate is less than a largest cross-sectional dimension of the first substrate.
  • 11. The antenna of claim 6, wherein: the first four-pronged antenna element has a first surface area;the second four-pronged antenna element has a second surface area; andthe second surface area is less than the first surface area.
  • 12. The antenna of claim 1, further comprising a ground plane, wherein: the ground plane forms a bottom of the stack;a first respective antenna element of the plurality of antenna elements is coupled to the ground plane; andthe first respective antenna element is nearest the ground plane, relative to the other antenna elements in the stack.
  • 13. The antenna of claim 12, wherein the transmission line is coupled to the first respective antenna element.
  • 14. The antenna of claim 1, wherein at least one respective antenna of the plurality of antenna elements follows a meandered path to increase an effective length of the antenna element, thereby lowering a resonant frequency of the at least one respective antenna and reducing an overall size of the at least one respective antenna.
  • 15. An electronic device comprising: electronics to track movement of the electronic device;a housing with a first surface shaped for a palmar surface of a user's hand and a second surface, opposite the first surface, to translate on a planar surface;an antenna, embedded in the housing, including multiple substrates that are spaced apart and arranged in a stack, wherein: each substrate includes a respective antenna element;the multiple substrates arranged in the stack form a pyramidal frustum;the antenna is configured to receive vertically polarized radio frequency (RF) power waves transmitted from a wireless-power-transmitting device; andconversion circuitry, coupled to the antenna and the electronics, configured to (i) convert energy from the received RF power waves into usable power and (ii) provide the usable power to the electronics.
  • 16. The electronic device of claim 15, further comprising multiple sets of metal rods, wherein each of the multiple substrates is supported by one set of metal rods from the multiple sets of metal rods.
  • 17. The electronic device of claim 16, wherein: each substrate includes a set of vias defined through the substrate and connected to: (i) predefined portions of the respective antenna element at one end, and (ii) one of the sets of metal rods at the other end.
  • 18. The electronic device of claim 16, wherein each set of metal rods separates two neighboring substrates by a predefined distance.
  • 19. The electronic device of claim 15, wherein: the multiple substrates include first and second substrates;the first substrate includes: a first four-pronged antenna element; andfour vias positioned at respective ends of the first four-pronged radiating element;the second substrate, which is positioned above the first substrate in the stack, includes: a second four-pronged antenna element; andfour vias, vertically aligned with the four vias of the first substrate, positioned at respective ends of the second four-pronged meandering antenna element.
  • 20. The electronic device of claim 19, further comprising four metal rods that each have a first length, wherein: each of the four metal rods connects one of the four vias of the second substrate with one of the four vias of the first substrate, andthe second substrate is vertically offset from the first substrate by the first length.
  • 21. The electronic device of claim 20, wherein the first and second substrates are parallel.
  • 22. The electronic device of claim 20, wherein an operating frequency of the antenna corresponds, at least in part, to a magnitude of the first length.
  • 23. The electronic device of claim 19, wherein: the first and second substrates are rectangular; anda largest cross-sectional dimension of the second substrate is less than a largest cross-sectional dimension of the first substrate.
  • 24. The electronic device of claim 19, wherein: the first four-pronged antenna element has a first surface area;the second four-pronged antenna element has a second surface area; andthe second surface area is less than the first surface area.
  • 25. The electronic device of claim 15, further comprising a ground plane, wherein: the ground plane forms a bottom of the stack;a first respective antenna element is partially coupled to the ground plane; andthe first respective antenna element is nearest the ground plane, relative to other antenna elements in the stack.
  • 26. The electronic device of claim 25, further comprising a coaxial cable coupled to the first respective antenna element, wherein the coaxial cable delivers the received RF power waves to the conversion circuitry.
RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 16/683,167, filed on Nov. 13, 2019, entitled “Systems For Receiving Electromagnetic Energy Using Antennas That Are Minimally Affected By The Presence Of The Human Body,” which claims the benefit of U.S. Provisional Patent Application No. 62/767,365, filed Nov. 14, 2018, entitled “Miniaturized, Tunable, Omnidirectional Antennas Minimally Affected by Presence of Human Body,” each of which is herein fully incorporated by reference in its respective entirety.

US Referenced Citations (1226)
Number Name Date Kind
787412 Tesla Apr 1905 A
2811624 Haagensen Oct 1957 A
2863148 Gammon et al. Dec 1958 A
3167775 Guertler Jan 1965 A
3434678 Brown et al. Mar 1969 A
3696384 Lester Oct 1972 A
3754269 Clavin Aug 1973 A
4101895 Jones, Jr. Jul 1978 A
4360741 Fitzsimmons et al. Nov 1982 A
4944036 Hyatt Jul 1990 A
4995010 Knight Feb 1991 A
5200759 McGinnis Apr 1993 A
5211471 Rohrs May 1993 A
5548292 Hirshfield et al. Aug 1996 A
5556749 Mitsuhashi et al. Sep 1996 A
5568088 Dent et al. Oct 1996 A
5646633 Dahlberg Jul 1997 A
5697063 Kishigami et al. Dec 1997 A
5712642 Hulderman Jan 1998 A
5936527 Isaacman et al. Aug 1999 A
5982139 Parise Nov 1999 A
6046708 MacDonald, Jr. et al. Apr 2000 A
6061025 Jackson et al. May 2000 A
6127799 Krishnan Oct 2000 A
6127942 Welle Oct 2000 A
6163296 Lier et al. Dec 2000 A
6271799 Rief Aug 2001 B1
6289237 Mickle et al. Sep 2001 B1
6329908 Frecska Dec 2001 B1
6400586 Raddi et al. Jun 2002 B2
6421235 Ditzik Jul 2002 B2
6437685 Hanaki Aug 2002 B2
6456253 Rummeli et al. Sep 2002 B1
6476795 Derocher et al. Nov 2002 B1
6501414 Amdt et al. Dec 2002 B2
6583723 Watanabe et al. Jun 2003 B2
6597897 Tang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6650376 Obitsu Nov 2003 B1
6664920 Mott et al. Dec 2003 B1
6680700 Hilgers Jan 2004 B2
6798716 Charych Sep 2004 B1
6803744 Sabo Oct 2004 B1
6853197 McFarland Feb 2005 B1
6856291 Mickle et al. Feb 2005 B2
6911945 Korva Jun 2005 B2
6960968 Odendaal et al. Nov 2005 B2
6967462 Landis Nov 2005 B1
6988026 Breed et al. Jan 2006 B2
7003350 Denker et al. Feb 2006 B2
7027311 Vanderelli et al. Apr 2006 B2
7068234 Sievenpiper Jun 2006 B2
7068991 Parise Jun 2006 B2
7079079 Jo et al. Jul 2006 B2
7183748 Unno et al. Feb 2007 B1
7191013 Miranda et al. Mar 2007 B1
7193644 Carter Mar 2007 B2
7196663 Bolzer et al. Mar 2007 B2
7205749 Hagen et al. Apr 2007 B2
7215296 Abramov et al. May 2007 B2
7222356 Yonezawa et al. May 2007 B1
7274334 O'Riordan et al. Sep 2007 B2
7274336 Carson Sep 2007 B2
7351975 Brady et al. Apr 2008 B2
7359730 Dennis et al. Apr 2008 B2
7372408 Gaucher May 2008 B2
7392068 Dayan Jun 2008 B2
7403803 Mickle et al. Jul 2008 B2
7443057 Nunally Oct 2008 B2
7451839 Perlman Nov 2008 B2
7463201 Chiang et al. Dec 2008 B2
7471247 Saily Dec 2008 B2
7535195 Horovitz et al. May 2009 B1
7614556 Overhultz et al. Nov 2009 B2
7639994 Greene et al. Dec 2009 B2
7643312 Vanderelli et al. Jan 2010 B2
7652577 Madhow et al. Jan 2010 B1
7679576 Riedel et al. Mar 2010 B2
7702771 Ewing et al. Apr 2010 B2
7786419 Hyde et al. Aug 2010 B2
7812771 Greene et al. Oct 2010 B2
7830312 Choudhury et al. Nov 2010 B2
7844306 Shearer et al. Nov 2010 B2
7868482 Greene et al. Jan 2011 B2
7898105 Greene et al. Mar 2011 B2
7904117 Doan et al. Mar 2011 B2
7911386 Ito et al. Mar 2011 B1
7925308 Greene et al. Apr 2011 B2
7948208 Partovi et al. May 2011 B2
8049676 Yoon et al. Nov 2011 B2
8055003 Mittleman et al. Nov 2011 B2
8070595 Alderucci et al. Dec 2011 B2
8072380 Crouch Dec 2011 B2
8092301 Alderucci et al. Jan 2012 B2
8099140 Arai Jan 2012 B2
8115448 John Feb 2012 B2
8159090 Greene et al. Apr 2012 B2
8159364 Zeine Apr 2012 B2
8180286 Yamasuge May 2012 B2
8228194 Mickle Jul 2012 B2
8234509 Gioscia et al. Jul 2012 B2
8264101 Hyde et al. Sep 2012 B2
8264291 Morita Sep 2012 B2
8276325 Clifton et al. Oct 2012 B2
8278784 Cook et al. Oct 2012 B2
8284101 Fusco Oct 2012 B2
8310201 Wright Nov 2012 B1
8338991 Von Novak et al. Dec 2012 B2
8362745 Tinaphong Jan 2013 B2
8380255 Shearer et al. Feb 2013 B2
8384600 Huang et al. Feb 2013 B2
8410953 Zeine Apr 2013 B2
8411963 Luff Apr 2013 B2
8432062 Greene et al. Apr 2013 B2
8432071 Huang et al. Apr 2013 B2
8446248 Zeine May 2013 B2
8447234 Cook et al. May 2013 B2
8451189 Fluhler May 2013 B1
8452235 Kirby et al. May 2013 B2
8457656 Perkins et al. Jun 2013 B2
8461817 Martin et al. Jun 2013 B2
8467733 Leabman Jun 2013 B2
8497601 Hall et al. Jul 2013 B2
8497658 Von Novak et al. Jul 2013 B2
8552597 Song et al. Aug 2013 B2
8558661 Zeine Oct 2013 B2
8560026 Chanterac Oct 2013 B2
8564485 Milosavljevic et al. Oct 2013 B2
8604746 Lee Dec 2013 B2
8614643 Leabman Dec 2013 B2
8621245 Shearer et al. Dec 2013 B2
8626249 Kuusilinna et al. Jan 2014 B2
8629576 Levine Jan 2014 B2
8653966 Rao et al. Feb 2014 B2
8674551 Low et al. Mar 2014 B2
8686685 Moshfeghi Apr 2014 B2
8686905 Shtrom Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8712485 Tam Apr 2014 B2
8718773 Wills et al. May 2014 B2
8729737 Schatz et al. May 2014 B2
8736228 Freed et al. May 2014 B1
8760113 Keating Jun 2014 B2
8770482 Ackermann et al. Jul 2014 B2
8772960 Yoshida Jul 2014 B2
8823319 Von Novak, III et al. Sep 2014 B2
8832646 Wendling Sep 2014 B1
8854176 Zeine Oct 2014 B2
8860364 Low et al. Oct 2014 B2
8897770 Frolov et al. Nov 2014 B1
8903456 Chu et al. Dec 2014 B2
8917057 Hui Dec 2014 B2
8923189 Leabman Dec 2014 B2
8928544 Massie et al. Jan 2015 B2
8937408 Ganem et al. Jan 2015 B2
8946940 Kim et al. Feb 2015 B2
8963486 Kirby et al. Feb 2015 B2
8970070 Sada et al. Mar 2015 B2
8989053 Skaaksrud et al. Mar 2015 B1
9000616 Greene et al. Apr 2015 B2
9001622 Perry Apr 2015 B2
9006934 Kozakai et al. Apr 2015 B2
9021277 Shearer et al. Apr 2015 B2
9030161 Lu et al. May 2015 B2
9059598 Kang et al. Jun 2015 B2
9059599 Won et al. Jun 2015 B2
9077188 Moshfeghi Jul 2015 B2
9083595 Rakib et al. Jul 2015 B2
9088216 Garrity et al. Jul 2015 B2
9124125 Leabman et al. Sep 2015 B2
9130397 Leabman et al. Sep 2015 B2
9130602 Cook Sep 2015 B2
9142998 Yu et al. Sep 2015 B2
9143000 Leabman et al. Sep 2015 B2
9143010 Urano Sep 2015 B2
9153074 Zhou et al. Oct 2015 B2
9178389 Hwang Nov 2015 B2
9225196 Huang et al. Dec 2015 B2
9240469 Sun et al. Jan 2016 B2
9242411 Kritchman et al. Jan 2016 B2
9244500 Cain et al. Jan 2016 B2
9252628 Leabman et al. Feb 2016 B2
9270344 Rosenberg Feb 2016 B2
9276329 Jones et al. Mar 2016 B2
9282582 Dunsbergen et al. Mar 2016 B1
9294840 Anderson et al. Mar 2016 B1
9297896 Andrews Mar 2016 B1
9318898 John Apr 2016 B2
9368020 Bell et al. Jun 2016 B1
9401977 Gaw Jul 2016 B1
9409490 Kawashima Aug 2016 B2
9419335 Pintos Aug 2016 B2
9419443 Leabman Aug 2016 B2
9438045 Leabman Sep 2016 B1
9438046 Leabman Sep 2016 B1
9444283 Son et al. Sep 2016 B2
9450449 Leabman et al. Sep 2016 B1
9461502 Lee et al. Oct 2016 B2
9520725 Masaoka et al. Dec 2016 B2
9520748 Hyde et al. Dec 2016 B2
9522270 Perryman et al. Dec 2016 B2
9537354 Bell et al. Jan 2017 B2
9537357 Leabman Jan 2017 B2
9537358 Leabman Jan 2017 B2
9538382 Bell et al. Jan 2017 B2
9544640 Lau Jan 2017 B2
9559553 Bae Jan 2017 B2
9564773 Pogorelik et al. Feb 2017 B2
9571974 Choi et al. Feb 2017 B2
9590317 Zimmerman et al. Mar 2017 B2
9590444 Walley Mar 2017 B2
9620996 Zeine Apr 2017 B2
9647328 Dobric May 2017 B2
9706137 Scanlon et al. Jul 2017 B2
9711999 Hietala et al. Jul 2017 B2
9723635 Nambord et al. Aug 2017 B2
9793758 Leabman Oct 2017 B2
9793764 Perry Oct 2017 B2
9800080 Leabman et al. Oct 2017 B2
9800172 Leabman Oct 2017 B1
9806564 Leabman Oct 2017 B2
9819230 Petras et al. Nov 2017 B2
9824815 Leabman et al. Nov 2017 B2
9825674 Leabman Nov 2017 B1
9831718 Leabman et al. Nov 2017 B2
9838083 Bell et al. Dec 2017 B2
9843213 Leabman et al. Dec 2017 B2
9843229 Leabman Dec 2017 B2
9843763 Leabman et al. Dec 2017 B2
9847669 Leabman Dec 2017 B2
9847677 Leabman Dec 2017 B1
9847679 Bell et al. Dec 2017 B2
9853361 Chen et al. Dec 2017 B2
9853692 Bell et al. Dec 2017 B1
9859756 Leabman et al. Jan 2018 B2
9859758 Leabman Jan 2018 B1
9866279 Bell et al. Jan 2018 B2
9867032 Verma et al. Jan 2018 B2
9867062 Bell et al. Jan 2018 B1
9871301 Contopanagos Jan 2018 B2
9876380 Leabman et al. Jan 2018 B1
9876394 Leabman Jan 2018 B1
9876536 Bell et al. Jan 2018 B1
9876648 Bell Jan 2018 B2
9882394 Bell et al. Jan 2018 B1
9882427 Leabman et al. Jan 2018 B2
9887584 Bell et al. Feb 2018 B1
9887739 Leabman et al. Feb 2018 B2
9891669 Bell Feb 2018 B2
9893554 Bell et al. Feb 2018 B2
9893555 Leabman et al. Feb 2018 B1
9893564 de Rochemont Feb 2018 B2
9899744 Contopanagos et al. Feb 2018 B1
9899844 Bell et al. Feb 2018 B1
9899861 Leabman et al. Feb 2018 B1
9899873 Bell et al. Feb 2018 B2
9906065 Leabman et al. Feb 2018 B2
9906275 Leabman Feb 2018 B2
9912199 Leabman et al. Mar 2018 B2
9916485 Lilly et al. Mar 2018 B1
9917477 Bell et al. Mar 2018 B1
9923386 Leabman et al. Mar 2018 B1
9939864 Bell et al. Apr 2018 B1
9941747 Bell et al. Apr 2018 B2
9941754 Leabman et al. Apr 2018 B2
9948135 Leabman et al. Apr 2018 B2
9965009 Bell et al. May 2018 B1
9966765 Leabman May 2018 B1
9966784 Leabman May 2018 B2
9967743 Bell et al. May 2018 B1
9973008 Leabman May 2018 B1
10003211 Leabman et al. Jun 2018 B1
10008777 Broyde et al. Jun 2018 B1
10008889 Bell et al. Jun 2018 B2
10014728 Leabman Jul 2018 B1
10027159 Hosseini Jul 2018 B2
10038337 Leabman et al. Jul 2018 B1
10050462 Leabman et al. Aug 2018 B1
10056782 Leabman Aug 2018 B1
10063064 Bell et al. Aug 2018 B1
10063105 Leabman Aug 2018 B2
10063106 Bell et al. Aug 2018 B2
10068703 Contopanagos Sep 2018 B1
10075008 Bell et al. Sep 2018 B1
10079515 Hosseini et al. Sep 2018 B2
10090699 Leabman Oct 2018 B1
10090886 Bell et al. Oct 2018 B1
10103552 Leabman et al. Oct 2018 B1
10103582 Leabman et al. Oct 2018 B2
10122219 Hosseini et al. Nov 2018 B1
10122415 Bell et al. Nov 2018 B2
10124754 Leabman Nov 2018 B1
10128686 Leabman et al. Nov 2018 B1
10128693 Bell et al. Nov 2018 B2
10128695 Leabman et al. Nov 2018 B2
10128699 Leabman Nov 2018 B2
10134260 Bell et al. Nov 2018 B1
10135112 Hosseini Nov 2018 B1
10135286 Hosseini et al. Nov 2018 B2
10135294 Leabman Nov 2018 B1
10135295 Leabman Nov 2018 B2
10141768 Leabman et al. Nov 2018 B2
10141771 Hosseini et al. Nov 2018 B1
10141791 Bell et al. Nov 2018 B2
10148097 Leabman et al. Dec 2018 B1
10153645 Bell et al. Dec 2018 B1
10153653 Bell et al. Dec 2018 B1
10153660 Leabman et al. Dec 2018 B1
10158257 Leabman Dec 2018 B2
10158259 Leabman Dec 2018 B1
10164478 Leabman Dec 2018 B2
10170917 Bell et al. Jan 2019 B1
10177594 Contopanagos Jan 2019 B2
10181756 Bae et al. Jan 2019 B2
10186892 Hosseini et al. Jan 2019 B2
10186893 Bell et al. Jan 2019 B2
10186911 Leabman Jan 2019 B2
10186913 Leabman et al. Jan 2019 B2
10193396 Bell et al. Jan 2019 B1
10199835 Bell Feb 2019 B2
10199849 Bell Feb 2019 B1
10199850 Leabman Feb 2019 B2
10205239 Contopanagos et al. Feb 2019 B1
10206185 Leabman et al. Feb 2019 B2
10211674 Leabman et al. Feb 2019 B1
10211680 Leabman et al. Feb 2019 B2
10211682 Bell et al. Feb 2019 B2
10211685 Bell et al. Feb 2019 B2
10218207 Hosseini et al. Feb 2019 B2
10218227 Leabman et al. Feb 2019 B2
10223717 Bell Mar 2019 B1
10224758 Leabman et al. Mar 2019 B2
10224982 Leabman Mar 2019 B1
10230266 Leabman et al. Mar 2019 B1
10243414 Leabman et al. Mar 2019 B1
10256657 Hosseini et al. Apr 2019 B2
10256677 Hosseini et al. Apr 2019 B2
10263432 Leabman et al. Apr 2019 B1
10263476 Leabman Apr 2019 B2
10270261 Bell et al. Apr 2019 B2
10277054 Hosseini Apr 2019 B2
10291055 Bell et al. May 2019 B1
10291056 Bell et al. May 2019 B2
10291066 Leabman May 2019 B1
10291294 Leabman May 2019 B2
10298024 Leabman May 2019 B2
10298133 Leabman May 2019 B2
10305315 Leabman et al. May 2019 B2
10312715 Leabman Jun 2019 B2
10320446 Hosseini Jun 2019 B2
10333332 Hosseini Jun 2019 B1
10355534 Johnston et al. Jul 2019 B2
10381880 Leabman et al. Aug 2019 B2
10389161 Hosseini et al. Aug 2019 B2
10396588 Leabman Aug 2019 B2
10396604 Bell et al. Aug 2019 B2
10439442 Hosseini et al. Oct 2019 B2
10439448 Bell et al. Oct 2019 B2
10447093 Hosseini Oct 2019 B2
10476312 Johnston et al. Nov 2019 B2
10483768 Bell et al. Nov 2019 B2
10490346 Contopanagos Nov 2019 B2
10491029 Hosseini Nov 2019 B2
10498144 Leabman et al. Dec 2019 B2
10511097 Kornaros et al. Dec 2019 B2
10511196 Hosseini Dec 2019 B2
10516289 Leabman et al. Dec 2019 B2
10516301 Leabman Dec 2019 B2
10523033 Leabman Dec 2019 B2
10523058 Leabman Dec 2019 B2
10615647 Johnston et al. Apr 2020 B2
10680319 Hosseini et al. Jun 2020 B2
10714984 Hosseini et al. Jul 2020 B2
10734717 Hosseini Aug 2020 B2
10778041 Leabman Sep 2020 B2
10790674 Bell et al. Sep 2020 B2
10848853 Leabman et al. Nov 2020 B2
10923954 Leabman Feb 2021 B2
10958095 Leabman et al. Mar 2021 B2
10965164 Leabman et al. Mar 2021 B2
10992185 Leabman Apr 2021 B2
10992187 Leabman Apr 2021 B2
11011942 Liu May 2021 B2
11114885 Hosseini et al. Sep 2021 B2
11159057 Kabiri et al. Oct 2021 B2
11233425 Leabman Jan 2022 B2
11251654 Sauterel et al. Feb 2022 B2
11342798 Johnston et al. May 2022 B2
11437735 Papio-Toda et al. Sep 2022 B2
20010027876 Tsukamoto et al. Oct 2001 A1
20020001307 Nguyen et al. Jan 2002 A1
20020024471 Ishitobi Feb 2002 A1
20020028655 Rosener et al. Mar 2002 A1
20020034958 Oberschmidt et al. Mar 2002 A1
20020054330 Jinbo et al. May 2002 A1
20020065052 Pande et al. May 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020095980 Breed et al. Jul 2002 A1
20020103447 Terry Aug 2002 A1
20020123776 Von Arx Sep 2002 A1
20020133592 Matsuda Sep 2002 A1
20020171594 Fang Nov 2002 A1
20020172223 Stilp Nov 2002 A1
20030005759 Breed et al. Jan 2003 A1
20030038750 Chen Feb 2003 A1
20030048254 Huang Mar 2003 A1
20030058187 Billiet et al. Mar 2003 A1
20030076274 Phelan et al. Apr 2003 A1
20030179152 Watada et al. Sep 2003 A1
20030179573 Chun Sep 2003 A1
20030192053 Sheppard et al. Oct 2003 A1
20040019624 Sukegawa Jan 2004 A1
20040020100 O'Brian et al. Feb 2004 A1
20040036657 Forster et al. Feb 2004 A1
20040066251 Eleftheriades et al. Apr 2004 A1
20040107641 Walton et al. Jun 2004 A1
20040113543 Daniels Jun 2004 A1
20040119675 Washio et al. Jun 2004 A1
20040130425 Dayan et al. Jul 2004 A1
20040130442 Breed Jul 2004 A1
20040142733 Parise Jul 2004 A1
20040145342 Lyon Jul 2004 A1
20040155832 Yuanzhu Aug 2004 A1
20040196190 Mendolia et al. Oct 2004 A1
20040203979 Attar et al. Oct 2004 A1
20040207559 Milosavljevic Oct 2004 A1
20040218759 Yacobi Nov 2004 A1
20040259604 Mickle et al. Dec 2004 A1
20040263124 Wieck et al. Dec 2004 A1
20050007276 Barrick et al. Jan 2005 A1
20050030118 Wang Feb 2005 A1
20050046584 Breed Mar 2005 A1
20050055316 Williams Mar 2005 A1
20050077872 Single Apr 2005 A1
20050093766 Turner May 2005 A1
20050116683 Cheng Jun 2005 A1
20050117660 Vialle et al. Jun 2005 A1
20050134517 Gottl Jun 2005 A1
20050171411 KenKnight Aug 2005 A1
20050198673 Kit et al. Sep 2005 A1
20050227619 Lee et al. Oct 2005 A1
20050232469 Schofield Oct 2005 A1
20050237249 Nagel Oct 2005 A1
20050237258 Abramov et al. Oct 2005 A1
20050282591 Shaff Dec 2005 A1
20060013335 Leabman Jan 2006 A1
20060019712 Choi Jan 2006 A1
20060030279 Leabman et al. Feb 2006 A1
20060033674 Essig, Jr. et al. Feb 2006 A1
20060071308 Tang et al. Apr 2006 A1
20060092079 de Rochemont May 2006 A1
20060094425 Mickle et al. May 2006 A1
20060113955 Nunally Jun 2006 A1
20060119532 Yun et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060160517 Yoon Jul 2006 A1
20060183473 Ukon Aug 2006 A1
20060190063 Kanzius Aug 2006 A1
20060192913 Shutou et al. Aug 2006 A1
20060199620 Greene et al. Sep 2006 A1
20060238365 Vecchione et al. Oct 2006 A1
20060266564 Perlman et al. Nov 2006 A1
20060266917 Baldis et al. Nov 2006 A1
20060278706 Hatakayama et al. Dec 2006 A1
20060284593 Nagy et al. Dec 2006 A1
20060287094 Mahaffey et al. Dec 2006 A1
20070007821 Rossetti Jan 2007 A1
20070019693 Graham Jan 2007 A1
20070021140 Keyes Jan 2007 A1
20070060185 Simon et al. Mar 2007 A1
20070070490 Tsunoda et al. Mar 2007 A1
20070090997 Brown et al. Apr 2007 A1
20070093269 Leabman et al. Apr 2007 A1
20070097653 Gilliland et al. May 2007 A1
20070103110 Sagoo May 2007 A1
20070106894 Zhang May 2007 A1
20070109121 Cohen May 2007 A1
20070139000 Kozuma Jun 2007 A1
20070149162 Greene et al. Jun 2007 A1
20070164868 Deavours et al. Jul 2007 A1
20070173196 Gallic Jul 2007 A1
20070173214 Mickle et al. Jul 2007 A1
20070178857 Greene et al. Aug 2007 A1
20070178945 Cook et al. Aug 2007 A1
20070182367 Partovi Aug 2007 A1
20070191074 Harrist et al. Aug 2007 A1
20070191075 Greene et al. Aug 2007 A1
20070197281 Stronach Aug 2007 A1
20070210960 Rofougaran et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070228833 Stevens et al. Oct 2007 A1
20070229261 Zimmerman et al. Oct 2007 A1
20070240297 Yang et al. Oct 2007 A1
20070257634 Leschin et al. Nov 2007 A1
20070273486 Shiotsu Nov 2007 A1
20070291165 Wang Dec 2007 A1
20070296639 Hook et al. Dec 2007 A1
20070298846 Greene et al. Dec 2007 A1
20080014897 Cook et al. Jan 2008 A1
20080024376 Norris et al. Jan 2008 A1
20080048917 Achour et al. Feb 2008 A1
20080062062 Borau et al. Mar 2008 A1
20080062255 Gal Mar 2008 A1
20080067874 Tseng Mar 2008 A1
20080074324 Puzella et al. Mar 2008 A1
20080089277 Alexander et al. Apr 2008 A1
20080110263 Klessel et al. May 2008 A1
20080113816 Mahaffey et al. May 2008 A1
20080122297 Arai May 2008 A1
20080123383 Shionoiri May 2008 A1
20080129536 Randall et al. Jun 2008 A1
20080140278 Breed Jun 2008 A1
20080169910 Greene et al. Jul 2008 A1
20080197802 Onishi Aug 2008 A1
20080204342 Kharadly Aug 2008 A1
20080204350 Tam et al. Aug 2008 A1
20080210762 Osada et al. Sep 2008 A1
20080211458 Lawther et al. Sep 2008 A1
20080233890 Baker Sep 2008 A1
20080248758 Schedelbeck et al. Oct 2008 A1
20080248846 Stronach et al. Oct 2008 A1
20080258993 Gummalla et al. Oct 2008 A1
20080266191 Hilgers Oct 2008 A1
20080278378 Chang et al. Nov 2008 A1
20080309452 Zeine Dec 2008 A1
20090002493 Kates Jan 2009 A1
20090010316 Rofougaran et al. Jan 2009 A1
20090019183 Wu et al. Jan 2009 A1
20090036065 Siu Feb 2009 A1
20090039828 Jakubowski Feb 2009 A1
20090047998 Alberth, Jr. Feb 2009 A1
20090058354 Harrison Mar 2009 A1
20090058361 John Mar 2009 A1
20090058731 Geary et al. Mar 2009 A1
20090060012 Gresset et al. Mar 2009 A1
20090067198 Graham et al. Mar 2009 A1
20090067208 Martin et al. Mar 2009 A1
20090073066 Jordon et al. Mar 2009 A1
20090096412 Huang Apr 2009 A1
20090096413 Partovi Apr 2009 A1
20090102292 Cook et al. Apr 2009 A1
20090102296 Greene et al. Apr 2009 A1
20090108679 Porwal Apr 2009 A1
20090122847 Nysen et al. May 2009 A1
20090128262 Lee et al. May 2009 A1
20090157911 Aihara Jun 2009 A1
20090174604 Keskitalo Jul 2009 A1
20090180653 Sjursen et al. Jul 2009 A1
20090200985 Zane et al. Aug 2009 A1
20090206791 Jung Aug 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090207092 Nysen et al. Aug 2009 A1
20090218884 Soar Sep 2009 A1
20090218891 McCollough Sep 2009 A1
20090219903 Alamouti et al. Sep 2009 A1
20090243397 Cook et al. Oct 2009 A1
20090256752 Akkermans et al. Oct 2009 A1
20090264069 Yamasuge Oct 2009 A1
20090271048 Wakamatsu Oct 2009 A1
20090280866 Lo et al. Nov 2009 A1
20090281678 Wakamatsu Nov 2009 A1
20090284082 Mohammadian Nov 2009 A1
20090284083 Karalis et al. Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090284227 Mohammadian et al. Nov 2009 A1
20090284325 Rossiter et al. Nov 2009 A1
20090286475 Toncich et al. Nov 2009 A1
20090286476 Toncich et al. Nov 2009 A1
20090291634 Saarisalo Nov 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312046 Clevenger et al. Dec 2009 A1
20090315412 Yamamoto et al. Dec 2009 A1
20090322281 Kamijo et al. Dec 2009 A1
20100001683 Huang et al. Jan 2010 A1
20100007307 Baarman et al. Jan 2010 A1
20100007569 Sim et al. Jan 2010 A1
20100019686 Gutierrez, Jr. Jan 2010 A1
20100019908 Cho et al. Jan 2010 A1
20100026605 Yang et al. Feb 2010 A1
20100027379 Saulnier et al. Feb 2010 A1
20100029383 Dai Feb 2010 A1
20100033021 Bennett Feb 2010 A1
20100033390 Alamouti et al. Feb 2010 A1
20100034238 Bennett Feb 2010 A1
20100041453 Grimm, Jr. Feb 2010 A1
20100044123 Perlman et al. Feb 2010 A1
20100054200 Tsai Mar 2010 A1
20100060534 Oodachi Mar 2010 A1
20100066631 Puzella et al. Mar 2010 A1
20100075607 Hosoya Mar 2010 A1
20100079005 Hyde et al. Apr 2010 A1
20100079011 Hyde et al. Apr 2010 A1
20100082193 Chiappetta Apr 2010 A1
20100087227 Francos et al. Apr 2010 A1
20100090524 Obayashi Apr 2010 A1
20100090656 Shearer et al. Apr 2010 A1
20100109443 Cook et al. May 2010 A1
20100117596 Cook et al. May 2010 A1
20100117926 DeJean, II May 2010 A1
20100119234 Suematsu et al. May 2010 A1
20100123618 Martin et al. May 2010 A1
20100123624 Minear et al. May 2010 A1
20100124040 Diebel et al. May 2010 A1
20100127660 Cook et al. May 2010 A1
20100142418 Nishioka et al. Jun 2010 A1
20100142509 Zhu et al. Jun 2010 A1
20100148723 Cook et al. Jun 2010 A1
20100151808 Toncich et al. Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100156741 Vazquez et al. Jun 2010 A1
20100164296 Kurs et al. Jul 2010 A1
20100164433 Janefalker et al. Jul 2010 A1
20100167664 Szini Jul 2010 A1
20100171461 Baarman et al. Jul 2010 A1
20100171676 Tani et al. Jul 2010 A1
20100174629 Taylor et al. Jul 2010 A1
20100176934 Chou et al. Jul 2010 A1
20100181961 Novak et al. Jul 2010 A1
20100181964 Huggins et al. Jul 2010 A1
20100194206 Burdo et al. Aug 2010 A1
20100201189 Kirby et al. Aug 2010 A1
20100201201 Mobarhan et al. Aug 2010 A1
20100201314 Toncich et al. Aug 2010 A1
20100207572 Kirby et al. Aug 2010 A1
20100210233 Cook et al. Aug 2010 A1
20100213895 Keating et al. Aug 2010 A1
20100214177 Parsche Aug 2010 A1
20100222010 Ozaki et al. Sep 2010 A1
20100225270 Jacobs et al. Sep 2010 A1
20100227570 Hendin Sep 2010 A1
20100231470 Lee et al. Sep 2010 A1
20100237709 Hall et al. Sep 2010 A1
20100244576 Hillan et al. Sep 2010 A1
20100253281 Li Oct 2010 A1
20100256831 Abramo et al. Oct 2010 A1
20100259110 Kurs et al. Oct 2010 A1
20100259447 Crouch Oct 2010 A1
20100264747 Hall et al. Oct 2010 A1
20100277003 Von Novak et al. Nov 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100279606 Hillan et al. Nov 2010 A1
20100289341 Ozaki et al. Nov 2010 A1
20100295372 Hyde et al. Nov 2010 A1
20100308767 Rofougaran et al. Dec 2010 A1
20100309079 Rofougaran et al. Dec 2010 A1
20100309088 Hyvonen et al. Dec 2010 A1
20100315045 Zeine Dec 2010 A1
20100316163 Forenza et al. Dec 2010 A1
20100327766 Recker et al. Dec 2010 A1
20100328044 Waffenschmidt et al. Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110013198 Shirley Jan 2011 A1
20110018360 Baarman et al. Jan 2011 A1
20110028114 Kerselaers Feb 2011 A1
20110031928 Soar Feb 2011 A1
20110032149 Leabman Feb 2011 A1
20110032866 Leabman Feb 2011 A1
20110034190 Leabman Feb 2011 A1
20110034191 Leabman Feb 2011 A1
20110043047 Karalis et al. Feb 2011 A1
20110043163 Baarman et al. Feb 2011 A1
20110043327 Baarman et al. Feb 2011 A1
20110050166 Cook et al. Mar 2011 A1
20110055037 Hayashigawa et al. Mar 2011 A1
20110056215 Ham Mar 2011 A1
20110057607 Carobolante Mar 2011 A1
20110057853 Kim et al. Mar 2011 A1
20110062788 Chen et al. Mar 2011 A1
20110074342 MacLaughlin Mar 2011 A1
20110074349 Ghovanloo Mar 2011 A1
20110074620 Wintermantel Mar 2011 A1
20110078092 Kim et al. Mar 2011 A1
20110090126 Szini et al. Apr 2011 A1
20110109167 Park et al. May 2011 A1
20110114401 Kanno May 2011 A1
20110115303 Baarman et al. May 2011 A1
20110115432 El-Maleh May 2011 A1
20110115605 Dimig et al. May 2011 A1
20110121660 Azancot et al. May 2011 A1
20110122018 Tarng et al. May 2011 A1
20110122026 DeLaquil et al. May 2011 A1
20110127845 Walley et al. Jun 2011 A1
20110127952 Walley et al. Jun 2011 A1
20110133655 Recker et al. Jun 2011 A1
20110133691 Hautanen Jun 2011 A1
20110148578 Aloi et al. Jun 2011 A1
20110148595 Miller et al. Jun 2011 A1
20110151789 Viglione et al. Jun 2011 A1
20110154429 Stantchev Jun 2011 A1
20110156494 Mashinsky Jun 2011 A1
20110156640 Moshfeghi Jun 2011 A1
20110163128 Taguchi et al. Jul 2011 A1
20110175455 Hashiguchi Jul 2011 A1
20110175461 Tinaphong Jul 2011 A1
20110175812 Hsien et al. Jul 2011 A1
20110181120 Liu et al. Jul 2011 A1
20110182245 Malkamaki et al. Jul 2011 A1
20110184842 Melen Jul 2011 A1
20110188207 Won et al. Aug 2011 A1
20110193688 Forsell Aug 2011 A1
20110194543 Zhao et al. Aug 2011 A1
20110195722 Walter et al. Aug 2011 A1
20110199046 Tsai et al. Aug 2011 A1
20110215086 Yeh Sep 2011 A1
20110217923 Ma Sep 2011 A1
20110220634 Yeh Sep 2011 A1
20110221389 Won et al. Sep 2011 A1
20110222272 Yeh Sep 2011 A1
20110243040 Khan et al. Oct 2011 A1
20110243050 Yanover Oct 2011 A1
20110244913 Kim et al. Oct 2011 A1
20110248573 Kanno et al. Oct 2011 A1
20110248575 Kim et al. Oct 2011 A1
20110249678 Bonicatto Oct 2011 A1
20110254377 Widmer et al. Oct 2011 A1
20110254503 Widmer et al. Oct 2011 A1
20110259953 Baarman et al. Oct 2011 A1
20110273977 Shapira et al. Nov 2011 A1
20110278941 Krishna et al. Nov 2011 A1
20110279226 Chen et al. Nov 2011 A1
20110281535 Low et al. Nov 2011 A1
20110282415 Eckhoff et al. Nov 2011 A1
20110285213 Kowalewski Nov 2011 A1
20110286374 Shin et al. Nov 2011 A1
20110291489 Tsai et al. Dec 2011 A1
20110302078 Failing Dec 2011 A1
20110304216 Baarman Dec 2011 A1
20110304437 Beeler Dec 2011 A1
20110304521 Ando et al. Dec 2011 A1
20120007441 John Jan 2012 A1
20120013196 Kim et al. Jan 2012 A1
20120013198 Uramoto et al. Jan 2012 A1
20120013296 Heydari et al. Jan 2012 A1
20120019419 Prat et al. Jan 2012 A1
20120043887 Mesibov Feb 2012 A1
20120051109 Kim et al. Mar 2012 A1
20120051294 Guillouard Mar 2012 A1
20120056486 Endo et al. Mar 2012 A1
20120056741 Zhu et al. Mar 2012 A1
20120068906 Asher et al. Mar 2012 A1
20120074891 Anderson et al. Mar 2012 A1
20120075072 Pappu Mar 2012 A1
20120080944 Recker et al. Apr 2012 A1
20120080957 Cooper et al. Apr 2012 A1
20120086284 Capanella et al. Apr 2012 A1
20120086615 Norair Apr 2012 A1
20120095617 Martin et al. Apr 2012 A1
20120098350 Campanella et al. Apr 2012 A1
20120098485 Kang et al. Apr 2012 A1
20120099675 Kitamura et al. Apr 2012 A1
20120103562 Clayton May 2012 A1
20120104849 Jackson May 2012 A1
20120105252 Wang May 2012 A1
20120112532 Kesler et al. May 2012 A1
20120119914 Uchida May 2012 A1
20120126743 Rivers, Jr. May 2012 A1
20120132647 Beverly et al. May 2012 A1
20120133214 Yun et al. May 2012 A1
20120142291 Rath et al. Jun 2012 A1
20120146426 Sabo Jun 2012 A1
20120146576 Partovi Jun 2012 A1
20120146577 Tanabe Jun 2012 A1
20120147802 Ukita et al. Jun 2012 A1
20120149307 Terada et al. Jun 2012 A1
20120150670 Taylor et al. Jun 2012 A1
20120153894 Widmer et al. Jun 2012 A1
20120157019 Li Jun 2012 A1
20120161531 Kim et al. Jun 2012 A1
20120161544 Kashiwagi et al. Jun 2012 A1
20120169276 Wang Jul 2012 A1
20120169278 Choi Jul 2012 A1
20120173418 Beardsmore et al. Jul 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120181973 Lyden Jul 2012 A1
20120182427 Marshall Jul 2012 A1
20120188142 Shashi et al. Jul 2012 A1
20120187851 Huggins et al. Aug 2012 A1
20120193999 Zeine Aug 2012 A1
20120200399 Chae Aug 2012 A1
20120201153 Bharadia et al. Aug 2012 A1
20120201173 Jian et al. Aug 2012 A1
20120206299 Valdes-Garcia Aug 2012 A1
20120211214 Phan Aug 2012 A1
20120212071 Miyabayashi et al. Aug 2012 A1
20120212072 Miyabayashi et al. Aug 2012 A1
20120214462 Chu et al. Aug 2012 A1
20120214536 Kim et al. Aug 2012 A1
20120228392 Cameron et al. Sep 2012 A1
20120228956 Kamata Sep 2012 A1
20120231856 Lee et al. Sep 2012 A1
20120235636 Partovi Sep 2012 A1
20120242283 Kim et al. Sep 2012 A1
20120248886 Kesler et al. Oct 2012 A1
20120248888 Kesler et al. Oct 2012 A1
20120248891 Drennen Oct 2012 A1
20120249051 Son et al. Oct 2012 A1
20120262002 Widmer et al. Oct 2012 A1
20120265272 Judkins Oct 2012 A1
20120267900 Huffman et al. Oct 2012 A1
20120268238 Park et al. Oct 2012 A1
20120274154 DeLuca Nov 2012 A1
20120280650 Kim et al. Nov 2012 A1
20120286582 Kim et al. Nov 2012 A1
20120292993 Mettler et al. Nov 2012 A1
20120293021 Teggatz et al. Nov 2012 A1
20120293119 Park et al. Nov 2012 A1
20120299389 Lee et al. Nov 2012 A1
20120299540 Perry Nov 2012 A1
20120299541 Perry Nov 2012 A1
20120299542 Perry Nov 2012 A1
20120300588 Perry Nov 2012 A1
20120300592 Perry Nov 2012 A1
20120300593 Perry Nov 2012 A1
20120306433 Kim et al. Dec 2012 A1
20120306705 Sakurai et al. Dec 2012 A1
20120306707 Yang et al. Dec 2012 A1
20120306720 Tanmi et al. Dec 2012 A1
20120307873 Kim et al. Dec 2012 A1
20120309295 Maguire Dec 2012 A1
20120309308 Kim et al. Dec 2012 A1
20120309332 Liao Dec 2012 A1
20120313446 Park et al. Dec 2012 A1
20120313449 Kurs Dec 2012 A1
20120313835 Gebretnsae Dec 2012 A1
20120326660 Lu et al. Dec 2012 A1
20130002550 Zalewski Jan 2013 A1
20130018439 Chow et al. Jan 2013 A1
20130024059 Miller et al. Jan 2013 A1
20130026981 Van Der Lee Jan 2013 A1
20130026982 Rothenbaum Jan 2013 A1
20130032589 Chung Feb 2013 A1
20130033571 Steen Feb 2013 A1
20130038124 Newdoll et al. Feb 2013 A1
20130038402 Karalis et al. Feb 2013 A1
20130043738 Park et al. Feb 2013 A1
20130044035 Zhuang Feb 2013 A1
20130049471 Oleynik Feb 2013 A1
20130049475 Kim et al. Feb 2013 A1
20130049484 Weissentern et al. Feb 2013 A1
20130057078 Lee Mar 2013 A1
20130057205 Lee et al. Mar 2013 A1
20130057210 Negaard et al. Mar 2013 A1
20130057364 Kesler et al. Mar 2013 A1
20130058379 Kim et al. Mar 2013 A1
20130062959 Lee et al. Mar 2013 A1
20130063082 Lee et al. Mar 2013 A1
20130063143 Adalsteinsson et al. Mar 2013 A1
20130063266 Yunker et al. Mar 2013 A1
20130069444 Waffenschmidt et al. Mar 2013 A1
20130076308 Niskala et al. Mar 2013 A1
20130077650 Traxler et al. Mar 2013 A1
20130078918 Crowley et al. Mar 2013 A1
20130082651 Park et al. Apr 2013 A1
20130082653 Lee et al. Apr 2013 A1
20130083774 Son et al. Apr 2013 A1
20130088082 Kang et al. Apr 2013 A1
20130088090 Wu Apr 2013 A1
20130088192 Eaton Apr 2013 A1
20130088331 Cho Apr 2013 A1
20130093388 Partovi Apr 2013 A1
20130099389 Hong et al. Apr 2013 A1
20130099586 Kato Apr 2013 A1
20130106197 Bae et al. May 2013 A1
20130107023 Tanaka et al. May 2013 A1
20130119777 Rees May 2013 A1
20130119778 Jung May 2013 A1
20130119929 Partovi May 2013 A1
20130120052 Siska May 2013 A1
20130120205 Thomson et al. May 2013 A1
20130120206 Biancotto et al. May 2013 A1
20130120217 Ueda et al. May 2013 A1
20130130621 Kim et al. May 2013 A1
20130132010 Winger et al. May 2013 A1
20130134923 Smith May 2013 A1
20130137455 Xia May 2013 A1
20130141037 Jenwatanavet et al. Jun 2013 A1
20130148341 Williams Jun 2013 A1
20130149975 Yu et al. Jun 2013 A1
20130154387 Lee et al. Jun 2013 A1
20130155748 Sundstrom Jun 2013 A1
20130157729 Tabe Jun 2013 A1
20130162335 Kim et al. Jun 2013 A1
20130169061 Microshnichenko et al. Jul 2013 A1
20130169219 Gray Jul 2013 A1
20130169348 Shi Jul 2013 A1
20130171939 Tian et al. Jul 2013 A1
20130175877 Abe et al. Jul 2013 A1
20130178253 Karaoguz Jul 2013 A1
20130181881 Christie et al. Jul 2013 A1
20130187475 Vendik Jul 2013 A1
20130190031 Persson et al. Jul 2013 A1
20130193769 Mehta et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130200064 Alexander Aug 2013 A1
20130207477 Nam et al. Aug 2013 A1
20130207604 Zeine Aug 2013 A1
20130207879 Rada et al. Aug 2013 A1
20130210357 Qin et al. Aug 2013 A1
20130221757 Cho et al. Aug 2013 A1
20130222201 Ma et al. Aug 2013 A1
20130234530 Miyauchi Sep 2013 A1
20130234536 Chemishkian et al. Sep 2013 A1
20130234658 Endo et al. Sep 2013 A1
20130241306 Aber et al. Sep 2013 A1
20130241468 Moshfeghi Sep 2013 A1
20130241474 Moshfeghi Sep 2013 A1
20130249478 Hirano Sep 2013 A1
20130249479 Partovi Sep 2013 A1
20130250102 Scanlon et al. Sep 2013 A1
20130254578 Huang et al. Sep 2013 A1
20130264997 Lee et al. Oct 2013 A1
20130268782 Tam et al. Oct 2013 A1
20130270923 Cook et al. Oct 2013 A1
20130278076 Proud Oct 2013 A1
20130278209 Von Novak et al. Oct 2013 A1
20130285464 Miwa Oct 2013 A1
20130285477 Lo et al. Oct 2013 A1
20130285606 Ben-Shalom et al. Oct 2013 A1
20130288600 Kuusilinna et al. Oct 2013 A1
20130288617 Kim et al. Oct 2013 A1
20130293423 Moshfeghi Nov 2013 A1
20130307751 Yu-Juin et al. Nov 2013 A1
20130310020 Kazuhiro Nov 2013 A1
20130311798 Sultenfuss Nov 2013 A1
20130328417 Takeuchi Dec 2013 A1
20130334883 Kim et al. Dec 2013 A1
20130339108 Ryder et al. Dec 2013 A1
20130343208 Sexton et al. Dec 2013 A1
20130343251 Zhang Dec 2013 A1
20140001846 Mosebrook Jan 2014 A1
20140001875 Nahidipour Jan 2014 A1
20140001876 Fujiwara et al. Jan 2014 A1
20140006017 Sen Jan 2014 A1
20140008993 Leabman Jan 2014 A1
20140009110 Lee Jan 2014 A1
20140011531 Burstrom et al. Jan 2014 A1
20140015336 Weber et al. Jan 2014 A1
20140015344 Mohamadi Jan 2014 A1
20140021907 Yu et al. Jan 2014 A1
20140021908 McCool Jan 2014 A1
20140035524 Zeine Feb 2014 A1
20140035526 Tripathi et al. Feb 2014 A1
20140035786 Ley Feb 2014 A1
20140043248 Yeh Feb 2014 A1
20140049422 Von Novak et al. Feb 2014 A1
20140054971 Kissin Feb 2014 A1
20140055098 Lee et al. Feb 2014 A1
20140057618 Zirwas et al. Feb 2014 A1
20140062395 Kwon et al. Mar 2014 A1
20140082435 Kitgawa Mar 2014 A1
20140086125 Polo et al. Mar 2014 A1
20140086592 Nakahara et al. Mar 2014 A1
20140091756 Ofstein et al. Apr 2014 A1
20140091968 Harel et al. Apr 2014 A1
20140091974 Desclos et al. Apr 2014 A1
20140103869 Radovic Apr 2014 A1
20140104157 Burns Apr 2014 A1
20140111147 Soar Apr 2014 A1
20140113689 Lee Apr 2014 A1
20140117946 Muller et al. May 2014 A1
20140118140 Amis May 2014 A1
20140128107 An May 2014 A1
20140132210 Partovi May 2014 A1
20140133279 Khuri-Yakub May 2014 A1
20140139034 Sankar et al. May 2014 A1
20140139039 Cook et al. May 2014 A1
20140139180 Kim et al. May 2014 A1
20140141838 Cai et al. May 2014 A1
20140142876 John et al. May 2014 A1
20140143933 Low et al. May 2014 A1
20140145879 Pan May 2014 A1
20140145884 Dang et al. May 2014 A1
20140152117 Sanker Jun 2014 A1
20140159651 Von Novak et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140159662 Furui Jun 2014 A1
20140159667 Kim et al. Jun 2014 A1
20140169385 Hadani et al. Jun 2014 A1
20140175893 Sengupta et al. Jun 2014 A1
20140176054 Porat et al. Jun 2014 A1
20140176061 Cheatham, III et al. Jun 2014 A1
20140176082 Visser Jun 2014 A1
20140177399 Teng et al. Jun 2014 A1
20140183964 Walley Jul 2014 A1
20140184148 Van Der Lee et al. Jul 2014 A1
20140184155 Cha Jul 2014 A1
20140184163 Das et al. Jul 2014 A1
20140184170 Jeong Jul 2014 A1
20140191568 Partovi Jul 2014 A1
20140191818 Waffenschmidt et al. Jul 2014 A1
20140194092 Wanstedt et al. Jul 2014 A1
20140194095 Wanstedt et al. Jul 2014 A1
20140197691 Wang Jul 2014 A1
20140203629 Hoffman et al. Jul 2014 A1
20140206384 Kim et al. Jul 2014 A1
20140210281 Ito et al. Jul 2014 A1
20140217955 Lin Aug 2014 A1
20140217967 Zeine et al. Aug 2014 A1
20140225805 Pan et al. Aug 2014 A1
20140232320 Ento July et al. Aug 2014 A1
20140232610 Shigemoto et al. Aug 2014 A1
20140239733 Mach et al. Aug 2014 A1
20140241231 Zeine Aug 2014 A1
20140245036 Oishi Aug 2014 A1
20140246416 White Sep 2014 A1
20140247152 Proud Sep 2014 A1
20140252813 Lee et al. Sep 2014 A1
20140252866 Walsh et al. Sep 2014 A1
20140265725 Angle et al. Sep 2014 A1
20140265727 Berte Sep 2014 A1
20140265943 Angle et al. Sep 2014 A1
20140266025 Jakubowski Sep 2014 A1
20140266946 Bily et al. Sep 2014 A1
20140273819 Nadakuduti et al. Sep 2014 A1
20140273892 Nourbakhsh Sep 2014 A1
20140281655 Angle et al. Sep 2014 A1
20140292090 Cordeiro et al. Oct 2014 A1
20140292451 Zimmerman Oct 2014 A1
20140300452 Rofe et al. Oct 2014 A1
20140312706 Fiorello et al. Oct 2014 A1
20140325218 Shimizu et al. Oct 2014 A1
20140327320 Muhs et al. Nov 2014 A1
20140327390 Park et al. Nov 2014 A1
20140333142 Desrosiers Nov 2014 A1
20140346860 Aubry et al. Nov 2014 A1
20140354063 Leabman et al. Dec 2014 A1
20140354221 Leabman et al. Dec 2014 A1
20140355718 Guan et al. Dec 2014 A1
20140368048 Leabman et al. Dec 2014 A1
20140368161 Leabman et al. Dec 2014 A1
20140368405 Ek et al. Dec 2014 A1
20140375139 Tsukamoto Dec 2014 A1
20140375253 Leabman et al. Dec 2014 A1
20140375258 Arkhipenkov Dec 2014 A1
20140375261 Manova-Elssibony et al. Dec 2014 A1
20150001949 Leabman et al. Jan 2015 A1
20150002086 Matos et al. Jan 2015 A1
20150003207 Lee et al. Jan 2015 A1
20150008980 Kim et al. Jan 2015 A1
20150011160 Uurgovan et al. Jan 2015 A1
20150015180 Miller et al. Jan 2015 A1
20150015182 Brandtman et al. Jan 2015 A1
20150015192 Leabman et al. Jan 2015 A1
20150021990 Myer et al. Jan 2015 A1
20150022008 Leabman et al. Jan 2015 A1
20150022010 Leabman et al. Jan 2015 A1
20150022194 Almalki et al. Jan 2015 A1
20150023204 Wil et al. Jan 2015 A1
20150028688 Masaoka Jan 2015 A1
20150028694 Leabman et al. Jan 2015 A1
20150028697 Leabman et al. Jan 2015 A1
20150028875 Irie et al. Jan 2015 A1
20150035378 Calhoun et al. Feb 2015 A1
20150035715 Kim et al. Feb 2015 A1
20150039482 Fuinaga Feb 2015 A1
20150041459 Leabman et al. Feb 2015 A1
20150042265 Leabman et al. Feb 2015 A1
20150044977 Ramasamy et al. Feb 2015 A1
20150046526 Bush et al. Feb 2015 A1
20150061404 Lamenza et al. Mar 2015 A1
20150076917 Leabman et al. Mar 2015 A1
20150076927 Leabman et al. Mar 2015 A1
20150077036 Leabman et al. Mar 2015 A1
20150077037 Leabman et al. Mar 2015 A1
20150091520 Blum et al. Apr 2015 A1
20150091706 Chemishkian et al. Apr 2015 A1
20150097442 Muurinen Apr 2015 A1
20150097663 Sloo et al. Apr 2015 A1
20150102764 Leabman et al. Apr 2015 A1
20150102769 Leabman et al. Apr 2015 A1
20150102942 Houser et al. Apr 2015 A1
20150102973 Hand et al. Apr 2015 A1
20150108848 Joehren Apr 2015 A1
20150109181 Hyde et al. Apr 2015 A1
20150115877 Aria et al. Apr 2015 A1
20150115878 Park Apr 2015 A1
20150116153 Chen et al. Apr 2015 A1
20150128733 Taylor et al. May 2015 A1
20150130285 Leabman et al. May 2015 A1
20150130293 Hajimiri et al. May 2015 A1
20150137612 Yamakawa et al. May 2015 A1
20150148664 Stolka et al. May 2015 A1
20150155737 Mayo Jun 2015 A1
20150155738 Leabman et al. Jun 2015 A1
20150162662 Chen et al. Jun 2015 A1
20150162751 Leabman et al. Jun 2015 A1
20150162779 Lee et al. Jun 2015 A1
20150171512 Chen et al. Jun 2015 A1
20150171513 Chen et al. Jun 2015 A1
20150171656 Leabman et al. Jun 2015 A1
20150171658 Manova-Elssibony et al. Jun 2015 A1
20150171931 Won et al. Jun 2015 A1
20150177326 Chakraborty et al. Jun 2015 A1
20150180133 Hunt Jun 2015 A1
20150180249 Jeon et al. Jun 2015 A1
20150181117 Park et al. Jun 2015 A1
20150187491 Yanagawa Jul 2015 A1
20150188352 Peek et al. Jul 2015 A1
20150199665 Chu Jul 2015 A1
20150201385 Mercer et al. Jul 2015 A1
20150207333 Baarman et al. Jul 2015 A1
20150207542 Zeine Jul 2015 A1
20150222126 Leabman et al. Aug 2015 A1
20150233987 Von Novak, III et al. Aug 2015 A1
20150234144 Cameron et al. Aug 2015 A1
20150236520 Baarman Aug 2015 A1
20150244070 Cheng et al. Aug 2015 A1
20150244080 Gregoire Aug 2015 A1
20150244187 Horie Aug 2015 A1
20150244201 Chu Aug 2015 A1
20150244341 Ritter et al. Aug 2015 A1
20150249484 Mach et al. Sep 2015 A1
20150255989 Walley et al. Sep 2015 A1
20150256097 Gudan et al. Sep 2015 A1
20150260835 Widmer et al. Sep 2015 A1
20150262465 Pritchett Sep 2015 A1
20150263534 Lee et al. Sep 2015 A1
20150263548 Cooper Sep 2015 A1
20150270618 Zhu et al. Sep 2015 A1
20150270622 Takasaki et al. Sep 2015 A1
20150270741 Leabman et al. Sep 2015 A1
20150278558 Priev et al. Oct 2015 A1
20150280484 Radziemski et al. Oct 2015 A1
20150288074 Harper et al. Oct 2015 A1
20150288438 Maltsev et al. Oct 2015 A1
20150311585 Church et al. Oct 2015 A1
20150312721 Singh Oct 2015 A1
20150318729 Leabman Nov 2015 A1
20150326024 Bell et al. Nov 2015 A1
20150326070 Petras et al. Nov 2015 A1
20150326072 Petras et al. Nov 2015 A1
20150326143 Petras et al. Nov 2015 A1
20150327085 Hadani Nov 2015 A1
20150333528 Leabman Nov 2015 A1
20150333573 Leabman Nov 2015 A1
20150333800 Perry et al. Nov 2015 A1
20150339497 Kurian Nov 2015 A1
20150340759 Bridgelall et al. Nov 2015 A1
20150340903 Bell et al. Nov 2015 A1
20150341087 Moore et al. Nov 2015 A1
20150358222 Berger et al. Dec 2015 A1
20150365137 Miller et al. Dec 2015 A1
20150365138 Miller et al. Dec 2015 A1
20160005068 Im et al. Jan 2016 A1
20160012695 Bell et al. Jan 2016 A1
20160013560 Daniels Jan 2016 A1
20160013677 Bell et al. Jan 2016 A1
20160013855 Campos Jan 2016 A1
20160020636 Khlat Jan 2016 A1
20160028403 McCaughan et al. Jan 2016 A1
20160042206 Pesavento et al. Feb 2016 A1
20160054440 Younis Feb 2016 A1
20160056635 Bell Feb 2016 A1
20160056640 Mao Feb 2016 A1
20160065005 Won et al. Mar 2016 A1
20160079799 Khlat Mar 2016 A1
20160087348 Ko Mar 2016 A1
20160087483 Hietala et al. Mar 2016 A1
20160087486 Pogorelik et al. Mar 2016 A1
20160094091 Shin et al. Mar 2016 A1
20160094092 Davlantes et al. Mar 2016 A1
20160099601 Leabman et al. Apr 2016 A1
20160099614 Leabman et al. Apr 2016 A1
20160099755 Leabman et al. Apr 2016 A1
20160099757 Leabman et al. Apr 2016 A1
20160112787 Rich Apr 2016 A1
20160126749 Shichino et al. May 2016 A1
20160126752 Vuori et al. May 2016 A1
20160126776 Kim et al. May 2016 A1
20160141908 Jakl et al. May 2016 A1
20160164563 Khawand et al. Jun 2016 A1
20160181849 Govindaraj Jun 2016 A1
20160181867 Daniel et al. Jun 2016 A1
20160181873 Mitcheson et al. Jun 2016 A1
20160197522 Zeine et al. Jul 2016 A1
20160202343 Okutsu Jul 2016 A1
20160204642 Oh Jul 2016 A1
20160233582 Piskun Aug 2016 A1
20160238365 Wixey et al. Aug 2016 A1
20160240908 Strong Aug 2016 A1
20160248276 Hong et al. Aug 2016 A1
20160294225 Blum et al. Oct 2016 A1
20160299210 Zeine Oct 2016 A1
20160301240 Zeine Oct 2016 A1
20160322868 Akuzawa et al. Nov 2016 A1
20160323000 Liu et al. Nov 2016 A1
20160336804 Son et al. Nov 2016 A1
20160339258 Perryman et al. Nov 2016 A1
20160344098 Ming Nov 2016 A1
20160359367 Rothschild Dec 2016 A1
20160380464 Chin et al. Dec 2016 A1
20160380466 Yang et al. Dec 2016 A1
20170005481 Von Novak, III Jan 2017 A1
20170005516 Leabman et al. Jan 2017 A9
20170005524 Akuzawa et al. Jan 2017 A1
20170005530 Zeine et al. Jan 2017 A1
20170012448 Miller et al. Jan 2017 A1
20170025887 Hyun et al. Jan 2017 A1
20170025903 Song et al. Jan 2017 A1
20170026087 Tanabe Jan 2017 A1
20170040700 Leung Feb 2017 A1
20170043675 Jones et al. Feb 2017 A1
20170047784 Jung et al. Feb 2017 A1
20170063168 Uchida Mar 2017 A1
20170077733 Jeong et al. Mar 2017 A1
20170077765 Bell et al. Mar 2017 A1
20170085437 Condeixa et al. Mar 2017 A1
20170092115 Sloo et al. Mar 2017 A1
20170110886 Reynolds et al. Apr 2017 A1
20170127196 Blum et al. May 2017 A1
20170134686 Leabman May 2017 A9
20170141582 Adolf et al. May 2017 A1
20170141583 Adolf et al. May 2017 A1
20170163076 Park et al. Jun 2017 A1
20170168595 Sakaguchi et al. Jun 2017 A1
20170179763 Leabman Jun 2017 A9
20170214422 Na et al. Jul 2017 A1
20170338695 Port Nov 2017 A1
20180040929 Chappelle Feb 2018 A1
20180048178 Leabman Feb 2018 A1
20180090992 Shrivastava et al. Mar 2018 A1
20180159208 Ameri Jun 2018 A1
20180309314 White et al. Oct 2018 A1
20180351631 Hamabe Dec 2018 A1
20200153117 Papio-Toda et al. May 2020 A1
Foreign Referenced Citations (74)
Number Date Country
201278367 Jul 2009 CN
102292896 Dec 2011 CN
102860037 Jan 2013 CN
103348563 Oct 2013 CN
203826555 Sep 2014 CN
104090265 Oct 2014 CN
106329116 Jan 2017 CN
103380561 Sep 2017 CN
20016655 Feb 2002 DE
102013216953 Feb 2015 DE
1028482 Aug 2000 EP
1081506 Mar 2001 EP
2346136 Jul 2011 EP
2397973 Feb 2012 EP
2545635 Jan 2013 EP
2747195 Jun 2014 EP
3067983 Sep 2016 EP
3118970 Jan 2017 EP
3145052 Mar 2017 EP
2404497 Feb 2005 GB
2556620 Jun 2018 GB
2002319816 Oct 2002 JP
2006157586 Jun 2006 JP
2007043432 Feb 2007 JP
2008167017 Jul 2008 JP
2013162624 Aug 2013 JP
2015128349 Jul 2015 JP
WO2015177859 Apr 2017 JP
20060061776 Jun 2006 KR
20070044302 Apr 2007 KR
100755144 Sep 2007 KR
20110132059 Dec 2011 KR
20110135540 Dec 2011 KR
20120009843 Feb 2012 KR
20120108759 Oct 2012 KR
20130026977 Mar 2013 KR
20140023409 Feb 2014 KR
20140023410 Mar 2014 KR
20140085200 Jul 2014 KR
20150077678 Jul 2015 KR
WO 199508125 Mar 1995 WO
WO 199831070 Jul 1998 WO
WO 199952173 Oct 1999 WO
WO 2000111716 Feb 2001 WO
WO 2003091943 Nov 2003 WO
WO 2004077550 Sep 2004 WO
WO 2006122783 Nov 2006 WO
WO 2007070571 Jun 2007 WO
WO 2008024993 Feb 2008 WO
WO 2008156571 Dec 2008 WO
WO 2010022181 Feb 2010 WO
WO 2010039246 Apr 2010 WO
WO 2010138994 Dec 2010 WO
WO 2011112022 Sep 2011 WO
WO 2012177283 Dec 2012 WO
WO 2013031988 Mar 2013 WO
WO 2013035190 Mar 2013 WO
WO 2013038074 Mar 2013 WO
WO 2013042399 Mar 2013 WO
WO 2013052950 Apr 2013 WO
WO 2013105920 Jul 2013 WO
WO 2014075103 May 2014 WO
WO 2014132258 Sep 2014 WO
WO 2014134996 Sep 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014182788 Nov 2014 WO
WO 2014197472 Dec 2014 WO
WO 2014209587 Dec 2014 WO
WO 2015038773 Mar 2015 WO
WO 2015097809 Jul 2015 WO
WO 2015161323 Oct 2015 WO
WO 2016024869 Feb 2016 WO
WO 2016048512 Mar 2016 WO
WO 2016187357 Nov 2016 WO
Non-Patent Literature Citations (190)
Entry
Energous Corp., IPRP, PCT/US2014/037072, Nov. 10, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/037109, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/037170, Nov. 10, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040648, Dec. 8, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/040697, Dec. 8, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/040705, Dec. 8, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/041323, Dec. 22, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041342, Dec. 15, 2015, 8 pgs.
Energous Corp., IPRP, PCT/US2014/041534, Dec. 29, 2015, 7 pgs.
Energous Corp., IPRP, PCT/US2014/041546, Dec. 29, 2015, 9 pgs.
Energous Corp., IPRP, PCT/US2014/041558, Dec. 29, 2015, 6 pgs.
Energous Corp., IPRP, PCT/US2014/044810, Jan. 5, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/045102, Jan. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/045119, Jan. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/045237, Jan. 12, 2016, 12 pgs.
Energous Corp., IPRP, PCT/US2014/046941, Jan. 19, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/046956, Jan. 19, 2016, 7 pgs.
Energous Corp., IPRP, PCT/US2014/046961, Jan. 19, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/047963, Jan. 26, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/048002, Feb. 12, 2015 8 pgs.
Energous Corp., IPRP, PCT/US2014/049666, Feb. 9, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/049669, Feb. 9, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/049673, Feb. 9, 2016, 6 pgs.
Energous Corp., IPRP, PCT/US2014/054891, Mar. 15, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/054897, Mar. 15, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/054953, Mar. 22, 2016, 5 pgs.
Energous Corp., IPRP, PCT/US2014/055195, Mar. 22, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/059317, Apr. 12, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/059340, Apr. 12, 2016, 11 pgs.
Energous Corp., IPRP, PCT/US2014/059871, Apr. 12, 2016, 9 pgs.
Energous Corp., IPRP, PCT/US2014/062661, May 3, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/062672, May 10, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/062682, May 3, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068282, Jun. 7, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2014/068568, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2014/068586, Jun. 14, 2016, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067242, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067243, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067245, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067246, Jun. 27, 2017, 9 pgs.
Energous Corp., IPRP, PCT/US2015/067249, Jun. 27, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067250, Mar. 30, 2016, 10 pgs.
Energous Corp., IPRP, PCT/US2015/067271, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2015/067275, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067279, Jul. 4, 2017, 7 pgs.
Energous Corp., IPRP, PCT/US2015/067282, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067287, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067291, Jul. 4, 2017, 4 pgs.
Energous Corp., IPRP, PCT/US2015/067294, Jul. 4, 2017, 6 pgs.
Energous Corp., IPRP, PCT/US2015/067325, Jul. 4, 2017, 8 pgs.
Energous Corp., IPRP, PCT/US2015/067334, Jul. 4, 2017, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068495, Jun. 26, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068498, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068504, Jun. 26, 2018, 5 pgs.
Energous Corp., IPRP, PCT/US2016/068551, Jun. 26, 2018, 6 pgs.
Energous Corp., IPRP, PCT/US2016/068565, Jun. 26, 2018, 9 pgs.
Energous Corp., IPRP, PCT/US2016/068987, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/068993, Jul. 3, 2018, 10 pgs.
Energous Corp., IPRP, PCT/US2016/069313, Jul. 3, 2018, 7 pgs.
Energous Corp., IPRP, PCT/US2016/069316, Jul. 3, 2018, 12 pgs.
Energous Corp., IPRP, PCT/US2017/046800, Feb. 12, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2017/065886, Jun. 18, 2019, 10 pgs.
Energous Corp., IPRP, PCT/US2018/012806, Jul. 9, 2019, 6 pgs.
Energous Corp., IPRP, PCT/US2018/025465, Oct. 1, 2019, 8 pgs.
Energous Corp., IPRP, PCT/US2018/031768, Nov. 12, 2019, 8 pgs.
Energous Corp., IPRP, PCT/US2019/061445, May 18, 2021, 14 pgs.
Energous Corp., ISRWO, PCT/US2014/037072, Sep. 12, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/037109, Apr. 8, 2016, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/037170, Sep. 15, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040648, Oct. 10, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/040697, Oct. 1, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/040705, Sep. 23, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/041323, Oct. 1, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041342, Jan. 27, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041534, Oct. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/041546, Oct. 16, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/041558, Oct. 10, 2014, 8 pgs.
Energous Corp., ISRWO, PCT/US2014/044810 Oct. 21, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/045102, Oct. 28, 2014, 14 pgs.
Energous Corp., ISRWO, PCT/US2014/045119, Oct. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/045237, Oct. 13, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/046941, Nov. 6, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/046956, Nov. 12, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/046961, Nov. 24, 2014, 16 pgs.
Energous Corp., ISRWO, PCT/US2014/047963, Nov. 7, 2014, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/048002, Nov. 13, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/049666, Nov. 10, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/049669, Nov. 13, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/049673, Nov. 18, 2014, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054891, Dec. 18, 2014, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/054897, Feb. 17, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/054953, Dec. 4, 2014, 7 pgs.
Energous Corp., ISRWO, PCT/US2014/055195, Dec. 22, 2014, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/059317, Feb. 24, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059340, Jan. 15, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/059871, Jan. 23, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062661, Jan. 27, 2015, 12 pgs.
Energous Corp., ISRWO, PCT/US2014/062672, Jan. 26, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2014/062682, Feb. 12, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068282, Mar. 19, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2014/068568, Mar. 20, 2015, 10 pgs.
Energous Corp., ISRWO, PCT/US2014/068586, Mar. 20, 2015, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067242, Mar. 16, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067243, Mar. 10, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067245, Mar. 17, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067246, May 11, 2016, 18 pgs.
Energous Corp., ISRWO, PCT/US2015/067249, Mar. 29, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067250, Mar. 30, 2016, 11 pgs.
Energous Corp., ISRWO, PCT/US2015/067271, Mar. 11, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2015/067275, Mar. 3, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067279, Mar. 11, 2015, 13 pgs.
Energous Corp., ISRWO, PCT/US2015/067282, Jul. 5, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067287, Feb. 2, 2016, 8 pgs.
Energous Corp., ISRWO, PCT/US2015/067291, Mar. 4, 2016, 10 pgs.
Energous Corp., ISRWO, PCT/US2015/067294, Mar. 26, 2016, 7 pgs.
Energous Corp., ISRWO, PCT/US2015/067325, Mar. 10, 2016, 9 pgs.
Energous Corp., ISRWO, PCT/US2015/067334, Mar. 3, 2016, 6 pgs.
Energous Corp., ISRWO, PCT/US2016/068495, Mar. 30, 2017, 9 pgs.
Energous Corp., ISRWO, PCT/US2016/068498, May 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068504, Mar. 30, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068551, Mar. 17, 2017, 8 pgs.
Energous Corp., ISRWO, PCT/US2016/068565, Mar. 8, 2017, 11 pgs.
Energous Corp., ISRWO, PCT/US2016/068987, May 8, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/068993, Mar. 13, 2017, 12 pgs.
Energous Corp., ISRWO, PCT/US2016/069313, Nov. 13, 2017, 10 pgs.
Energous Corp., ISRWO, PCT/US2016/069316, Mar. 16, 2017, 15 pgs.
Energous Corp., ISRWO, PCT/US2017/046800, Sep. 11, 2017, 13 pgs.
Energous Corp., ISRWO, PCT/US2017/065886, Apr. 6, 2018, 13 pgs.
Energous Corp., ISRWO, PCT/US2018/012806, Mar. 23, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/025465, Jun. 22, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031768, Jul. 3, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/031786, Aug. 8, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/039334, Sep. 11, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/051082, Dec. 12, 2018, 9 pgs.
Energous Corp., ISRWO, PCT/US2018/058178, Mar. 13, 2019, 10 pgs.
Energous Corp., ISRWO, PCT/US2019/015820, May 14, 2019, 9 pgs.
Energous Corp., ISRWO, PCT/US2019/021817, Apr. 6, 2019, 11 pgs.
Energous Corp., ISRWO, PCT/US2019/039014, Oct. 4, 2019, 15 pgs.
Energous Corp., ISRWO, PCT/US2019/061445, Jan. 7, 2020, 19 pgs.
Order Granting Reexamination Request, U.S. Appl. No. 90/013,793, filed Aug. 31, 2016, 23 pgs.
Notice of Intent to Issue Reexam Certificate: 90/013,793 Feb. 2, 2017, 8 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9124125, PGR2016-00023, May 31, 2016, 144 pgs.
Ossia Inc. vs Energous Corp., Declaration of Stephen B. Heppe in Support of Petition for Post-Grant Review of U.S. Pat. No. 9124125, PGR2016-00024, May 31, 2016, 122 pgs.
Ossia Inc. vs Energous Corp., Patent Owner Preliminary Response, Sep. 8, 2016, 95 pgs.
Ossia Inc. vs Energous Corp., Petition for Post Grant Review of U.S. Pat. No. 9124125, May 31, 2016, 86 pgs.
Ossia Inc. vs Energous Corp., Petition for Post-Grant Review of U.S. Pat. No. 9124125, May 31, 2016, 92 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00023-Institution Decision, Nov. 29, 2016, 29 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024-Institution Decision, Nov. 29, 2016, 50 pgs.
Ossia Inc. vs Energous Corp., PGR2016-00024-Judgement-Adverse, Jan. 20, 2017, 3 pgs.
Extended European Search Report, EP14818136.5, Jul. 21, 2016, 9 pgs.
Extended European Search Report, EP14822971.9, Feb. 10, 2017, 10 pgs.
Extended European Search Report, EP14868901.1, Jul. 17, 2017, 6 pgs.
Extended European Search Report, EP15874273.4, May 11, 2018, 7 pgs.
Extended European Search Report, EP15876033.0, Jun. 13, 2018, 10 pgs.
Extended European Search Report, EP15876036.3, May 3, 2018, 9 pgs.
Extended European Search Report, EP15876043.9, Aug. 9, 2018, 9 pgs.
Extended European Search Report, EP16189052.0, Feb. 10, 2017, 13 pgs.
Extended European Search Report, EP16189300.3, Mar. 24, 2017, 6 pgs.
Extended European Search Report, EP16189319.3, Feb. 10, 2017, 11 pgs.
Extended European Search Report, EP16189974.5, Mar. 13, 2017, 7 pgs.
Extended European Search Report, EP16189982.8, Feb. 7, 2017, 11 pgs.
Extended European Search Report, EP16189987.7, Feb. 9, 2017, 10 pgs.
Extended European Search Report, EP16189988.5, Mar. 13, 2017, 6 pgs.
Extended European Search Report, EP16193743.8, Feb. 8, 2017, 9 pgs.
Extended European Search Report, EP16196205.5, Apr. 7, 2017, 9 pgs.
Extended European Search Report, EP16880139.7, Jul. 12, 2019, 5 pgs.
Extended European Search Report, EP16880153.8, Jul. 2, 2019, 9 pgs.
Extended European Search Report, EP16880158.7, Jul. 15, 2019, 8 pgs.
Extended European Search Report, EP16882597.4, Aug. 7, 2019, 9 pgs.
Extended European Search Report, EP16882696.4, Jul. 3, 2019, 10 pgs.
Extended European Search Report, EP17840412.5, Jul. 15, 2019, 8 pgs.
Extended European Search Report, EP17882087.4, Sep. 17, 2019, 10 pgs.
Extended European Search Report, EP18204043.6, Feb. 14, 2019, 5 pgs.
Adamiuk et al., “Compact, Dual-Polarized UWB-Antanna, Embedded in a Dielectric,” IEEE Transactions on Antenna and Propagation, IEEE Service Center, Piscataway, NJ, US vol. 56, No. 2, Feb. 1, 2010, 8 pgs.
Gill et al., “A System for Change Detection and Human Recognition in Voxel Space using the Microsoft Kinect Sensor,” 2011 IEEE Applied Imagery Pattern Recognition Workshop. 8 pgs.
Han et al., Enhanced Computer Vision with Microsoft Kinect Sensor: A Review, IEEE Transactions on Cybernetics vol. 43, No. 5., pp. 1318-1334, Oct. 3, 2013.
Hsieh et al., “Development of a Retrodirective Wireless Microwave Power Transmission System”, IEEE, 2003, pp. 393-396.
Leabman, “Adaptive Band-partitioning for Interference Cancellation in Communication System,” Thesis Massachusetts Institute of Technology, Feb. 1997, pp. 1-70.
Li et al., “High-Efficiency Switching-Mode Charger System Design Considerations with Dynamic Power Path Management,” Mar./Apr. 2012 Issue, 8 pgs.
Mao et al., “BeamStar: An Edge-Based Approach to Routing in Wireless Sensors Networks”, IEEE Transactions on Mobile Computing, IEEE Service Center, Los Alamitos, CA, vol. 6, No. 11, Nov. 1, 2007, 13 pgs.
Mascarenas et al., “Experimental Studies of Using Wireless Energy Transmission for Powering Embedded Sensor Nodes,” Nov. 28, 2009, Journal of Sound and Vibration, 13 pgs.
Mishra et al., “SIW-based Slot Array Antenna and Power Management Circuit for Wireless Energy Harvesting Applications”, IEEE APSURSI, Jul. 2012, 2 pgs.
Nenzi et al., “U-Helix: On-Chip Short Conical Antenna”, 7th European Conference on Antennas and Propagation (EUCAP), ISBN: 978-1-4673-2187-7, IEEE, Apr. 8, 2013, 5 pgs.
Qing et al., “UHF Near-Field Segmented Loop Antennas with Enlarged Interrogation Zone,” 2012 IEEE International Workshop on Antenna Technology (iWAT), Mar. 1, 2012, pp. 132-135, XP055572059, ISBN: 978-1-4673-0035-3.
Singh, “Wireless Power Transfer Using Metamaterial Bonded Microstrip Antenna for Smart Grid WSN”, 4th International Conference on Advances in Computing and Communications (ICACC), Aug. 27-29, 2014, 1 pg.
Smolders, “Broadband Microstrip Array Antennas”, Institute of Electrical and Electronics Engineers, Digest of the Antennas and Propagation Society International Symposium, Seattle, WA, Jun. 19-24, 1994, 3 pgs.
Van Veen et al., “Beamforming: A Versatile Approach to Spatial Filtering”, IEEE, ASSP Magazine, Apr. 1988, pp. 4-24.
Wei et al., “Design of a Wideband Horizontally Polarized Omnidirectional Printed Loop Antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 11, Jan. 3, 2012, 4 pgs.
Zeng et al., “A Compact Fractal Loop Rectenna for RF Energy Harvesting,” IEEE Antennas And Wireless Propagation Letters, vol. 16, Jun. 26, 2017, 4 pgs.
Zhai et al., “A Practical Wireless Charging System Based on Ultra-Wideband Retro-Reflective Beamforming”, 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, 2010, 4 pgs.
Related Publications (1)
Number Date Country
20230076710 A1 Mar 2023 US
Provisional Applications (1)
Number Date Country
62767365 Nov 2018 US
Continuations (1)
Number Date Country
Parent 16683167 Nov 2019 US
Child 17903981 US