This disclosure is related to devices and methods for securing surgical sutures.
Surgically placed sutures are frequently used in many different surgical procedures. Exemplary procedures include implantation of a prosthetic device within the heart and closing an open section of blood vessel to secure placement of tubes for cardiopulmonary bypass. In such procedures, different suture types and suture patterns are often used, such as purse string sutures, mattress sutures, running sutures, and others. Conventionally, at the end of such a procedure, the two free ends of each suture are tied together in a knot to secure the suture in place.
Described herein are devices, systems, and methods for securing sutures that obviate the need for tying knots. For example, disclosed suture clips can comprise a first part and a second part that are attachable together to secure one or more sutures in a suture engagement region between the first and second parts. The first and second parts can include locking projections and corresponding slots at opposing ends of the suture engagement region to align the two parts, contain sutures, and/or secure the clip onto sutures. When the first and second parts are attached together, first engagement features of the first part inter-engage with second engagement features of the second part to grip and secure sutures within the suture engagement region. Exemplary delivery devices are also disclosed, such as embodiments that can hold a plurality of such suture clips in an elongated shaft portion and deploy the clips successively to sutures via actuation of a handle portion.
In some suture clip embodiments, a first locking projection in a first part of the clip comprises a first plurality of teeth and a corresponding locking slot in the second part of the clip comprises a second plurality of teeth, and first and second pluralities of teeth engage with each other as the first locking projection moves into the corresponding locking slot to prevent the first and second parts from separating.
In some suture clip embodiments, a first projection in the first clip part comprises a first alignment feature and a corresponding slot in the second clip part comprises a second alignment feature, such that the first and second alignment features engage with each other as the first projection enters the corresponding slot. The first and second alignment features align the first and second parts of the clip in a thickness direction parallel to sutures passing through the suture engagement region, such that the first part is prevented from moving relative to the second part in the thickness direction when the first and second parts are attached together.
In some embodiments, the first engagement features are offset from the second engagement features, in the thickness direction, in a width direction extending between the first and second projections, or in both the thickness and width directions. The engagement first features can comprise first ledges and the second engagement features comprise second ledges, and the first ledges can be offset from the second ledges in the thickness direction such that the first ledges and the second ledges overlap each other to form a tortuous suture pathway through the suture engagement region. In some embodiments, the suture engagement region is configured to cut off free ends of sutures.
In some embodiments, the first part and the second part each include holes or other features for securing the first and second parts to a larger prosthetic device, such as a prosthetic heart valve or annuloplasty ring, such that the suture clip can be used to secure the larger prosthetic device to sutures extending from the native tissue.
In some embodiments, the first part and the second part of the suture clip include recesses located on opposing sides of the suture clip for engagement with a suture clip gripping device, wherein compression applied by the gripping device to the recesses causes the projections to move into the corresponding slots.
In some embodiments, the first and second parts lock together via a ratcheting locking engagement between the projections and the corresponding slots, such that the suture clip can be locked together at different positions.
An exemplary multi-clip delivery device comprises a handle having a trigger and an elongated shaft portion configured to hold a plurality of suture clips. The device is configured to attach each of the held suture clips one-at-a-time to sutures by compressing two opposing parts of the suture clip together and causing the two opposing parts of the suture clip to lock together and clamp onto one or more sutures passing between the two parts of the suture clip. The delivery device can include two compression members that are configured to apply compression on the two parts of a suture clip upon actuation of the trigger in order to deploy the distal-most one of the suture clips, and after deployment of a suture clip, the delivery device is configured to advance the remaining suture clips held in the shaft portion such that a next most distal suture clip can be deployed by actuating the trigger again.
In some embodiments, for each suture clip held by the delivery device, the two parts of the suture clip are held in an un-engaged configuration, and compression applied by the compression members causes the two parts of the suture clip to engage with each other and become locked together around one or more sutures. In some embodiments, the two compression members are joined at a pivot joint within the shaft portion. In some embodiments, the two compression members comprise jaws at their distal ends that fit within recesses in the two parts of a suture clip being deployed. Some embodiments comprise rods within the shaft portion that are configured to advance the remaining held suture clips after each suture clip has been deployed.
The foregoing and other objects, features, and advantages of this disclosure will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
Described herein are systems and methods for securing sutures that obviate the need for tying knots. Instead of tying two ends of a suture or two or more sutures together with a knot, the suture portions can be secured using the disclosed clips and/or other securement devices. A suture securement device can be applied to a single suture portion, or to two or more adjacent suture portions, that extend from tissue and/or from implanted objects. Disclosed suture clips and other devices can be used anywhere in a patient's body, including at or adjacent the heart, blood vessels, or other organs.
While this disclosure primarily describes securing individual suture portions or securing two suture portions together, embodiments of the disclosed devices, systems, and methods can also be used to secure three or more suture portions together in a similar matter. The suture portions being secured together can be two portions of the same suture (e.g., opposite ends) or portions of different sutures. Furthermore, the suture portions secured together can be any portion along a length of a suture, such as an end of the suture or a portion of the suture between its ends.
The disclosed devices, systems, and methods can be used with various types of sutures, threads, cords, wires, cables, lines, filaments, or similar objects (which are collectively referred to herein as “sutures” for ease of description). Exemplary suture materials can include biological tissues (e.g., collagen-based tissue), polyglycolide, polydioxanone, polyester, nylon, polypropylene, and other polymeric materials. Some sutures comprise several strands of fibers braided or woven together.
The disclosed suture clips can generally be used individually or as part of another device, unless specifically described otherwise. For example, any of the clips disclosed herein can be applied to sutures as a free-floating clip that secures one or more sutures adjacent a location where the suture(s) exit tissue or another implanted device. In embodiments wherein the clip is placed against or adjacent to tissue, pledget material can be bonded or coupled to the tissue facing side of the clip parts in order to protect the tissue, improve healing of the tissue, and/or reduce leakage.
In other embodiments, the disclosed suture clips can be incorporated into a larger prosthetic device, such as a prosthetic heart valve or annuloplasty ring, optionally along with a plurality of other similar suture clips, in order to secure the prosthetic device in the body via sutures grasped by the clips.
The terms “left” and “right” are used herein merely as a convenient way to describe parts of suture clips, though these terms do not limit the referenced parts as requiring usage or placement on a left or right side of anything.
As shown at the top of
In some embodiments, the locking mechanism may be releasable such that the clip parts can be unlocked, separated, and/or re-deployed. In such embodiments, the clip can be closed onto a suture without cutting the suture. If the placement on the suture is undesirable, the clip can be unlocked and opened and removed from the suture, and optionally re-deployed in a more desirable position or disposed of. Manual cutting of the sutures may be performed when using such suture clips.
In the embodiment shown in
In other embodiments, the suture clip can include only one projection included in one of the two parts and corresponding slot included in the other part. In such embodiments, the projection and slot can be located at one end of the suture engagement region and can include a locking mechanism. At the opposite end of the suture engagement region, the two clip parts can have any suitable interface.
As the left and right parts 102, 104 are brought together, their mutual alignment can be controlled in part by one or more horizontal ridges 116 (see bottom of
As further shown in
When the left and right parts 102, 104 are compressed together, a sharp interface between the uppermost ledges 130 and 136 (or other pairs of ledges) can cut the sutures, such that free ends of the sutures can be removed from the upper end 144 of the passageway while tensioned portions of the sutures remain extending from the lower end 146 of the passageway into the adjacent tissue or other object. The gaps between adjacent ledges can be sized based on the thickness and type of sutures such that a desired degree of compression and friction is applied to the sutures to retain them. The presence of the projections 106 on either end of the suture engagement region 120 (see
In some embodiments, some or all of the ledges 130, 132, 134, 136, 138, 140 can include sand-blasted surfaces to make those surfaces rougher and create more friction to improve suture retention. The surfaces that engage to shear the sutures may not be sand-blasted to provide a sharp interface.
As shown in
The left and right parts 402, 404 also include recesses 440 for engagement with a gripping device, such as the gripping devices shown in
In some embodiments, the left and right parts 402, 404 can be pre-attached to another larger prosthetic device (e.g., via holes 422) before a gripping/pinching device is applied. Optionally, the projections 406 can also be pre-inserted partially into the slots 408 before the gripping device is applied to ensure proper alignment. A surgeon can thread the sutures through the suture engagement regions 420 of how many ever suture clips 400 are included with the larger prosthetic device, parachute the larger prosthetic device down over the sutures to the desired placement against the native tissue, apply a desired degree of tension to the sutures, and then use a gripping device to clamp the left and right parts 402, 404 together to secure the sutures at the desired tension. Each individual suture clip 400 can be clamped in succession with a gripping device such as those shown in
In some embodiments, the suture clip 400 can be free-floating and not pre-attached to a larger prosthetic device. In such embodiments, the suture clip 400 can be held and delivered into the body and over sutures using a device that is capable of both holding onto the clip and clamping the clip. For example, the jaws 512, 514 of the device 500 in
As shown in
In an alternative gripping device, the device similarly includes two arms that pivot at a joint and the ends of the arms include inwardly projecting flanges that are configured to register with inwardly recessed notches in the left and right parts of a suture clip. The notches can be located just above outwardly projecting shelves that also help align the ends of the arms with the left and right parts. Such a registered engagement can prevent the left and right parts of the clip from disengaging from the gripping device until the arms are spread apart to release the clip after sutures have been secured within the clip.
As shown in
A gripping portion 814 can be included within the distal portion 808, such that the gripping portion 814 can grip the distal-most suture clip parts, allow the rods 812 to retract out of them, and then clamp the distal-most suture clip onto sutures extending through a central opening 822, which passes between the left and right clip parts. The gripping portion 814 can then release the clamped clip, allow the remaining clips to be advanced distally, and then grip the next most-distal clip to repeat the process. The gripping portion 814 can include two arms 830, 832 that pivot at joint 834 to cause jaws 836, 838 to actuate. The jaws 836, 838 can include inward projections that engage with recesses (e.g., recesses 440 in clips 400) in the outer sides of the clip parts.
The sutures, after being inserted through central opening 822, can be gripped proximal to the clips 810 by a tensioning device (not shown) that applies a desired tension to the sutures prior to clamping the clip.
Pulling the trigger 804 of the device 800 can cause the jaws 836, 838 to clamp a distal-most clip 810 onto the tensioned sutures. Releasing the trigger 804 then releases the jaws 836, 838 from the clamped clip 810 and causes the rods 812 and/or a proximal pusher to advance the remaining clips distally through the shaft portion 806 such that the next distal-most clip becomes gripped by the jaws and ready from deployment.
Before the deployment of each clip 810, the corresponding sutures are threaded through the opening 822 passing through the suture clips, or at least through the one suture clip being deployed. After the clip is clamped onto the corresponding sutures, the device 800 can be moved to another location, placed over other sutures, and the next suture clip can be clamped onto those sutures. The sutures can be manually threaded through the opening 822, such as with a needle, or in other embodiments, a suction device or other mechanism can be included in the device 800 that draws the sutures through the opening 822.
In some embodiments, the shaft portion 806 can include a lateral slot extending proximally from the distal end, wherein the lateral slot overlays a gap between the left and right parts of the clips 810 (e.g., the top and bottom in the example of
With any of the suture clip delivery devices and/or clamping devices disclosed herein, the device can include an elongated distal shaft that is malleable and/or made from malleable material, such that a user can bend the shaft to a desired shape and the shaft will remain in the bent shape while the device is used. For example, a the distal shaft can start out straight, and the user can impart one or more curves into the malleable shaft before inserting it into a patient's body. Such malleability can make it easier to access certain areas within the body with minimal intrusion and/or damage to other structures, and can also provide for a variety of different approach angles within the body that are not aligned with the proximal portion of the shaft.
In some embodiments, a delivery device similar to the device 800 can be used to deliver and deploy one or more suture clips via a transvascular approach. For example, percutaneous access can be made to provide access to the femoral artery and the delivery device can be inserted through femoral artery and the aorta into the heart. In such embodiments, the shaft portion of the delivery device can be flexible, steerable, and/or longer. The delivery device may also include additional features, such as an imaging device (e.g., a camera), a light source, proximally controllable actuators to control bending of the distal end of the device, a vacuum line for drawing sutures into the distal end of the device, etc. Such delivery devices may be used in conjunction with the implantation of transcatheter heart valves or similar devices that do not require surgical access into the heart.
In some embodiments, a device configured for clamping suture clips already present at the implantation site can be introduced into the heart through a transvascular approach, such as via a percutaneous access point and through the aorta. For example, a prosthetic heart valve that includes built-in suture clips can be threaded over sutures extending from the implantation site and parachuted over the sutures into contact with the tissue. Then to close the suture clips, a transvascularly delivered device can be used to apply a clamping force to the two parts of each suture clip to close the suture clip and lock the suture clip onto the sutures passing through the suture clip. The device can include an elongated, flexible, steerable shaft portion that extends through the vasculature, and handle portion with a trigger positioned outside the percutaneous access point, and actuating claws or compression members at the distal end that are configured to be placed over the two clip parts and exert a clamping force when the trigger is actuated. The device may also include additional features, such as an imaging device (e.g., a camera), a light source, proximally controllable actuators to control bending of the distal end of the device, etc. Such clamping devices may be used in conjunction with the implantation of transcatheter heart valves or similar devices that do not require surgical access into the heart.
For suture securement devices including a threaded engagement such as the devices 900 and 920, the nut or other portion having an internally threaded aperture can be part of, or attached to, a larger prosthetic device, such as a prosthetic heart valve. For example, an outer ring of a prosthetic heart valve can include a plurality of internally threaded openings and sutures pre-threaded through the native tissue can be inserted through the plurality of threaded openings. The externally threaded screw portion can then be inserted into the openings and screwed in to secure the sutures to the prosthetic heart valve. The screw portions can be delivered using a separate delivery device that can place each screw portion into one of the threaded openings and rotate the screw portion to drive it into the threaded opening. In other embodiments, the screw portions can be manually inserted and tightened by turning a head portion, like head 922 in
In still other embodiments, the externally threaded screw portions can be part of, or attached to, a larger prosthetic device and the internally threaded nut portions can be placed over the sutures and then rotated (e.g., manually or with a delivery device) over the screw portions to secure the sutures to the prosthetic device. In embodiments using a delivery device, the delivery device can be configured to hold a plurality of nut portions or screw portions and configured to apply several of them in succession to secure sutures around the prosthetic device without having to reload the delivery device.
Some embodiments of devices disclosed herein can be used to secure sutures extending from opposite directions through the device, rather than sutures that extend in the same direction. For example, one or more sutures can extend from a first exit point in the tissue or a prosthetic device into the suture engagement region of a suture clip from one side, while one or more other suture ends extend from another exit point in the tissue or prosthetic device into the suture engagement region from the opposite side. In such an arrangement, the oppositely extending sutures can be secured together with the suture clip with their free ends projecting in opposite directions.
Any suitable materials can be used in the construction of the devices disclosed herein. For example, the suture clips and/or the clip delivery devices can comprise stainless steel, titanium, other metals or alloys, polymeric materials, and/or other suitable materials.
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, devices, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, devices, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods.
As used herein, the term “and/or” used in a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A,” “B,” “C,” “A and B,” “A and C,” “B and C” or “A, B and C.” As used herein, the term “coupled” generally means physically or electrically linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
In view of the many possible embodiments to which the principles disclosed herein may be applied, it should be recognized that the illustrated embodiments are only preferred examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims. We therefore claim all that comes within the scope of these claims.
This application is a divisional of U.S. patent application Ser. No. 14/773,129, filed Mar. 18, 2016, which is the U.S. National Stage of International Application No. PCT/US2015/32271, filed May 22, 2015, which claims the benefit of U.S. Patent Application No. 62/005,517, filed May 30, 2014, all of which are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1358477 | Stout | Nov 1920 | A |
2264679 | Ravel | Dec 1941 | A |
2516710 | Mascolo | Jul 1950 | A |
2715486 | Marcoff-Moghadam et al. | Aug 1955 | A |
2890519 | Storz, Jr. | Jun 1959 | A |
2981990 | Baiderree, Jr. | May 1961 | A |
3143742 | Cromie | Aug 1964 | A |
3249104 | Hohnstein | May 1966 | A |
3274658 | Pile | Sep 1966 | A |
3452742 | Muller | Jul 1969 | A |
3506012 | Brown | Apr 1970 | A |
3509882 | Blake | May 1970 | A |
3541591 | Hoegerman | Nov 1970 | A |
3547103 | Cook | Dec 1970 | A |
3570497 | Lemole | Mar 1971 | A |
3608095 | Barry | Sep 1971 | A |
3638654 | Akuba | Feb 1972 | A |
RE27391 | Merser | Jun 1972 | E |
3753438 | Wood et al. | Aug 1973 | A |
3859668 | Anderson | Jan 1975 | A |
3875648 | Bone | Apr 1975 | A |
3898999 | Haller | Aug 1975 | A |
3910281 | Kletschka et al. | Oct 1975 | A |
3954108 | Davis | May 1976 | A |
3954109 | Patel | May 1976 | A |
3958576 | Komiya | May 1976 | A |
3976079 | Samuels et al. | Aug 1976 | A |
3988810 | Emery | Nov 1976 | A |
3996623 | Kaster | Dec 1976 | A |
4038725 | Keefe | Aug 1977 | A |
4103690 | Harris | Aug 1978 | A |
4140125 | Smith | Feb 1979 | A |
4170990 | Baumgart et al. | Oct 1979 | A |
4192315 | Hilzinger et al. | Mar 1980 | A |
4217902 | March | Aug 1980 | A |
4324248 | Perlin | Apr 1982 | A |
4345601 | Fukuda | Aug 1982 | A |
4416266 | Baucom | Nov 1983 | A |
4456017 | Miles | Jun 1984 | A |
4485816 | Krumme | Dec 1984 | A |
4522207 | Klieman et al. | Jun 1985 | A |
4535764 | Ebert | Aug 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4549545 | Levy | Oct 1985 | A |
4570304 | Montreuil et al. | Feb 1986 | A |
4586502 | Bedi et al. | May 1986 | A |
4586503 | Kirsch et al. | May 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4612932 | Caspar et al. | Sep 1986 | A |
4637380 | Orejola | Jan 1987 | A |
4665906 | Jervis | May 1987 | A |
4683895 | Pohndorf | Aug 1987 | A |
4705040 | Mueller et al. | Nov 1987 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4741330 | Hayhurst | May 1988 | A |
4743253 | Magladry | May 1988 | A |
4750492 | Jacobs | Jun 1988 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4823794 | Pierce | Apr 1989 | A |
4863460 | Magladry | Sep 1989 | A |
4873975 | Walsh et al. | Oct 1989 | A |
4896668 | Popoff et al. | Jan 1990 | A |
4899744 | Fujitsuka et al. | Feb 1990 | A |
4901721 | Hakki | Feb 1990 | A |
4914789 | Pedersen | Apr 1990 | A |
4924866 | Yoon | May 1990 | A |
4926860 | Stice et al. | May 1990 | A |
4929240 | Kirsch et al. | May 1990 | A |
4932955 | Merz et al. | Jun 1990 | A |
4950283 | Dzubow et al. | Aug 1990 | A |
4950285 | Wilk | Aug 1990 | A |
4955913 | Robinson | Sep 1990 | A |
4976715 | Bays et al. | Dec 1990 | A |
4983176 | Cushman et al. | Jan 1991 | A |
4990152 | Yoon | Feb 1991 | A |
4997439 | Chen | Mar 1991 | A |
5002550 | Li | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5002563 | Pyka et al. | Mar 1991 | A |
5026379 | Yoon | Jun 1991 | A |
5047047 | Yoon | Sep 1991 | A |
5053047 | Yoon | Oct 1991 | A |
5070805 | Plante | Dec 1991 | A |
5071431 | Sauter et al. | Dec 1991 | A |
5074874 | Yoon et al. | Dec 1991 | A |
5078731 | Hayhurst | Jan 1992 | A |
5100418 | Yoon et al. | Mar 1992 | A |
5116840 | Ganguly et al. | May 1992 | A |
5123913 | Wilk | Jun 1992 | A |
RE34021 | Mueller et al. | Aug 1992 | E |
5152769 | Baber | Oct 1992 | A |
5154189 | Oberiander | Oct 1992 | A |
5158566 | Pianetti | Oct 1992 | A |
5163954 | Curcio et al. | Nov 1992 | A |
5171250 | Yoon | Dec 1992 | A |
5171251 | Bregen et al. | Dec 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5174087 | Bruno | Dec 1992 | A |
5196022 | Bilweis | Mar 1993 | A |
5219358 | Bendel et al. | Jun 1993 | A |
5222976 | Yoon | Jun 1993 | A |
5231735 | Paxton | Aug 1993 | A |
5234449 | Bruker et al. | Aug 1993 | A |
5236440 | Hlavacek | Aug 1993 | A |
5242456 | Nash et al. | Sep 1993 | A |
5246443 | Mai | Sep 1993 | A |
5258011 | Drews | Nov 1993 | A |
5258015 | Li et al. | Nov 1993 | A |
5269783 | Sander | Dec 1993 | A |
5269809 | Hayhurst et al. | Dec 1993 | A |
5282832 | Toso et al. | Feb 1994 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5304204 | Bregen | Apr 1994 | A |
5306290 | Martins et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5312423 | Rosenbluth et al. | May 1994 | A |
5312436 | Coffey et al. | May 1994 | A |
5330442 | Green et al. | Jul 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5374268 | Sander | Dec 1994 | A |
5381588 | Nelson | Jan 1995 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5383905 | Golds et al. | Jan 1995 | A |
5391173 | Wilk | Feb 1995 | A |
5403346 | Loeser | Apr 1995 | A |
5409499 | Yi | Apr 1995 | A |
5437680 | Yoon | Aug 1995 | A |
5437685 | Blasnik | Aug 1995 | A |
5439479 | Shichman et al. | Aug 1995 | A |
5445167 | Yoon et al. | Aug 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5456246 | Schmieding et al. | Oct 1995 | A |
5462561 | Voda | Oct 1995 | A |
5474557 | Mai | Dec 1995 | A |
5474572 | Hayhurst | Dec 1995 | A |
5480405 | Yoon | Jan 1996 | A |
5486197 | Le et al. | Jan 1996 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5499990 | Schulken et al. | Mar 1996 | A |
5500000 | Feagin et al. | Mar 1996 | A |
5520691 | Branch | May 1996 | A |
5520702 | Sauer et al. | May 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5531763 | Mastri et al. | Jul 1996 | A |
5545178 | Kensey et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5569274 | Rapacki et al. | Oct 1996 | A |
5569301 | Granger et al. | Oct 1996 | A |
5573543 | Akopov et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5582619 | Ken | Dec 1996 | A |
5586983 | Sanders et al. | Dec 1996 | A |
5591179 | Edelstein | Jan 1997 | A |
5593414 | Shipp et al. | Jan 1997 | A |
5593424 | Northrup, III | Jan 1997 | A |
5609608 | Benett et al. | Mar 1997 | A |
5626590 | Wilk | May 1997 | A |
5630824 | Hart | May 1997 | A |
5632752 | Buelna | May 1997 | A |
5632753 | Loeser | May 1997 | A |
5643289 | Sauer et al. | Jul 1997 | A |
5643295 | Yoon | Jul 1997 | A |
5645553 | Kolesa et al. | Jul 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5665109 | Yoon | Sep 1997 | A |
5669917 | Sauer et al. | Sep 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5681351 | Jamiolkowski et al. | Oct 1997 | A |
5683417 | Cooper | Nov 1997 | A |
5695505 | Yoon | Dec 1997 | A |
5697943 | Sauer et al. | Dec 1997 | A |
5700270 | Peyser et al. | Dec 1997 | A |
5700271 | Whitfield | Dec 1997 | A |
5707380 | Hinchliffe et al. | Jan 1998 | A |
5709693 | Taylor | Jan 1998 | A |
5709695 | Northrup, III | Jan 1998 | A |
5725539 | Matern | Mar 1998 | A |
5725542 | Yoon | Mar 1998 | A |
5725556 | Moser et al. | Mar 1998 | A |
5728135 | Bregen et al. | Mar 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5735877 | Pagedas | Apr 1998 | A |
5766183 | Sauer | Jun 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5799661 | Boyd et al. | Sep 1998 | A |
5810851 | Yoon | Sep 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5820631 | Nobles | Oct 1998 | A |
5824008 | Bolduc et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5833696 | Whitfield et al. | Nov 1998 | A |
5845645 | Bonutti | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5852851 | Cooper | Dec 1998 | A |
5861004 | Kensey et al. | Jan 1999 | A |
5879371 | Gardiner et al. | Mar 1999 | A |
5891130 | Palermo et al. | Apr 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895393 | Pagedas | Apr 1999 | A |
5895394 | Kienzle et al. | Apr 1999 | A |
5919207 | Taheri | Jul 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5961481 | Sterman et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5964772 | Bolduc et al. | Oct 1999 | A |
5972024 | Northrup, III et al. | Oct 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
5984917 | Fleischman et al. | Nov 1999 | A |
5989242 | Saadat et al. | Nov 1999 | A |
5989268 | Pugsley, Jr. et al. | Nov 1999 | A |
5997556 | Tanner | Dec 1999 | A |
6001110 | Adams | Dec 1999 | A |
6013084 | Ken et al. | Jan 2000 | A |
6015428 | Pagedas | Jan 2000 | A |
6039176 | Wright | Mar 2000 | A |
6066160 | Colvin | May 2000 | A |
6074409 | Goldfarb | Jun 2000 | A |
6120524 | Taheri | Sep 2000 | A |
6132438 | Fleischman et al. | Oct 2000 | A |
6139540 | Rost et al. | Oct 2000 | A |
6143004 | Davis et al. | Nov 2000 | A |
6176413 | Heck et al. | Jan 2001 | B1 |
6190373 | Palermo et al. | Feb 2001 | B1 |
6193733 | Adams | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6231592 | Bonutti et al. | May 2001 | B1 |
6241765 | Griffin et al. | Jun 2001 | B1 |
6254615 | Bolduc et al. | Jul 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6346112 | Adams | Feb 2002 | B2 |
6368334 | Sauer | Apr 2002 | B1 |
6432123 | Schwartz et al. | Aug 2002 | B2 |
6475230 | Bonutti et al. | Nov 2002 | B1 |
6514265 | Ho et al. | Feb 2003 | B2 |
6533796 | Sauer et al. | Mar 2003 | B1 |
6537290 | Adams et al. | Mar 2003 | B2 |
6551332 | Nguyen et al. | Apr 2003 | B1 |
6589279 | Anderson et al. | Jul 2003 | B1 |
6607541 | Gardiner et al. | Aug 2003 | B1 |
6613059 | Schaller et al. | Sep 2003 | B2 |
6626930 | Allen et al. | Sep 2003 | B1 |
6641592 | Sauer et al. | Nov 2003 | B1 |
6641593 | Schaller et al. | Nov 2003 | B1 |
6682540 | Sancoff et al. | Jan 2004 | B1 |
6719767 | Kimblad | Apr 2004 | B1 |
6743239 | Kuehn | Jun 2004 | B1 |
6746457 | Dana et al. | Jun 2004 | B2 |
6749622 | McGuckin, Jr. et al. | Jun 2004 | B2 |
6776784 | Ginn | Aug 2004 | B2 |
6860890 | Bachman et al. | Mar 2005 | B2 |
6896686 | Weber | May 2005 | B2 |
6913607 | Ainsworth et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6945980 | Nguyen et al. | Sep 2005 | B2 |
6960221 | Ho et al. | Nov 2005 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7083628 | Bachman | Aug 2006 | B2 |
7094244 | Schreck | Aug 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7220266 | Gambale | May 2007 | B2 |
7235086 | Sauer et al. | Jun 2007 | B2 |
7264625 | Buncke | Sep 2007 | B1 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7628797 | Tieu et al. | Dec 2009 | B2 |
7677525 | Sanchez et al. | Mar 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7833237 | Sauer | Nov 2010 | B2 |
7842051 | Dana et al. | Nov 2010 | B2 |
7862548 | Javer et al. | Jan 2011 | B2 |
7862584 | Lyons et al. | Jan 2011 | B2 |
7875056 | Jervis et al. | Jan 2011 | B2 |
7959674 | Shu et al. | Jun 2011 | B2 |
7981139 | Martin et al. | Jul 2011 | B2 |
8021421 | Fogarty et al. | Sep 2011 | B2 |
8100923 | Paraschac et al. | Jan 2012 | B2 |
8105355 | Page et al. | Jan 2012 | B2 |
8252005 | Findlay, III et al. | Aug 2012 | B2 |
8398657 | Sauer | Mar 2013 | B2 |
8398680 | Sauer et al. | Mar 2013 | B2 |
8425555 | Page et al. | Apr 2013 | B2 |
8465505 | Murillo et al. | Jun 2013 | B2 |
8480686 | Bakos et al. | Jul 2013 | B2 |
8753373 | Chau et al. | Jun 2014 | B2 |
9017347 | Oba et al. | Apr 2015 | B2 |
10786244 | Miraki | Sep 2020 | B2 |
20010025181 | Freedlan | Sep 2001 | A1 |
20020029060 | Hogendijk | Mar 2002 | A1 |
20030009196 | Peterson | Jan 2003 | A1 |
20030109922 | Peterson et al. | Jun 2003 | A1 |
20030167062 | Gambale | Sep 2003 | A1 |
20030195563 | Foerster | Oct 2003 | A1 |
20030233105 | Gayton | Dec 2003 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040204724 | Kissel et al. | Oct 2004 | A1 |
20040249414 | Kissel et al. | Dec 2004 | A1 |
20050096699 | Wixey | May 2005 | A1 |
20050251206 | Maahs et al. | Nov 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20060047314 | Green | Mar 2006 | A1 |
20060079913 | Whitfield et al. | Apr 2006 | A1 |
20060089571 | Gertner | Apr 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060265010 | Paraschac et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282119 | Perchik | Dec 2006 | A1 |
20070005079 | Zarbatany et al. | Jan 2007 | A1 |
20070005081 | Findlay et al. | Jan 2007 | A1 |
20070049952 | Weiss | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070088391 | McAlexander et al. | Apr 2007 | A1 |
20070179530 | Tieu et al. | Aug 2007 | A1 |
20070255296 | Sauer | Nov 2007 | A1 |
20070270907 | Stokes et al. | Nov 2007 | A1 |
20080154286 | Abbott et al. | Jun 2008 | A1 |
20080255591 | Harada et al. | Oct 2008 | A1 |
20080281356 | Chau et al. | Nov 2008 | A1 |
20090143821 | Stupak | Jun 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090281568 | Cendan et al. | Nov 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100076462 | Bakos et al. | Mar 2010 | A1 |
20100324597 | Shikhman | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110087241 | Nguyen | Apr 2011 | A1 |
20110087242 | Pribanic et al. | Apr 2011 | A1 |
20110224485 | Boulnois et al. | Sep 2011 | A1 |
20110224714 | Gertner | Sep 2011 | A1 |
20110283514 | Fogarty et al. | Nov 2011 | A1 |
20120080495 | Holcomb et al. | Apr 2012 | A1 |
20120089182 | Page et al. | Apr 2012 | A1 |
20120101526 | Bennett | Apr 2012 | A1 |
20120102526 | Lejeune | Apr 2012 | A1 |
20130110164 | Milazzo et al. | May 2013 | A1 |
20130158600 | Conklin et al. | Jun 2013 | A1 |
20130267998 | Vijay et al. | Oct 2013 | A1 |
20130282028 | Conklin et al. | Oct 2013 | A1 |
20140031864 | Jafari et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
2141911 | Apr 2002 | CA |
2141913 | Apr 2002 | CA |
2558335 | Jul 2003 | CN |
102400298 | Apr 2012 | CN |
69512446 | May 2000 | DE |
69612447 | Jul 2001 | DE |
0669101 | Aug 1995 | EP |
0669103 | Aug 1995 | EP |
1484023 | Dec 2004 | EP |
2260774 | Dec 2010 | EP |
0030550 | Jun 2000 | WO |
01049207 | Jul 2001 | WO |
0166001 | Sep 2001 | WO |
Entry |
---|
LSI Solutions T-Knot Device 2, LSI Solutions, Inc., 2009-2011, http://www.Isisolutions.com/tkoutsideofcannuia. |
LSI Solutions T-Knot Device, LSI Solutions, Inc., 2009-2011, http://www.Isisolutions.com/tkatscrubtable. |
TK Quick Load, LSI Solutions, http://www.Isisolutions.com/tkquickload. |
Number | Date | Country | |
---|---|---|---|
20200390439 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62005517 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14773129 | US | |
Child | 17008619 | US |