Systems for sensitive detection of G-protein coupled receptor and orphan receptor function using reporter enzyme mutant complementation

Information

  • Patent Grant
  • 6800445
  • Patent Number
    6,800,445
  • Date Filed
    Tuesday, January 16, 2001
    23 years ago
  • Date Issued
    Tuesday, October 5, 2004
    20 years ago
Abstract
Methods for detecting G-protein coupled receptor (GPCR) activity; methods for assaying GPCR activity; and methods for screening for GPCR ligands, G-protein-coupled receptor kinase (GRK) activity, and compounds that interact with components of the GPCR regulatory process are described. Included are methods for expanding ICAST technologies for assaying GPCR activity with applications for ligand fishing, and agonist or antagonist screening. These methods include: engineering seronine/threonine phosphorylation sites into known or orphan GPCR open reading frames in order to increase the affinity of arrestin for the activated form of the GPCR or to increase the reside time of arrestin on the activated GPCR; engineering mutant arrestin proteins that bind to activated GPCRs in the absence of G-protein coupled receptor kinases which may be limiting; and engineering mutant super arrestin proteins that have an increased affinity for activated GPCRs with or without phosphorylation. These methods are intended to increase the robustness of the GPCR/ICAST technology in situations in which G-protein coupled receptor kinases are absent or limiting, or in which the GPCR is not efficiently down-regulated or is rapidly resensitized (thus having a labile interaction with arrestin). Included are also more specific methods for using ICAST complementary enzyme fragments to monitor GPCR homo- and hetero-dimerization with applications for drug lead discovery and ligand and function discovery for orphan GPCRs.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to methods of detecting G-protein-coupled receptor (GPCR) activity, and provides methods of assaying GPCR activity, methods for screening for GPCR ligands, agonists and/or antagonists, methods for screening natural and surrogate ligands for orphan GPCRs, and methods for screening compounds that interact with components of the GPCR regulatory process.




2. Background of the Technology




The actions of many extracellular signals are mediated by the interaction of G-protein-coupled receptors (GPCRs) and guanine nucleotide-binding regulatory proteins (G-proteins). G-protein-mediated signaling systems have been identified in many divergent organisms, such as mammals and yeast. The GPCRs represent a large super family of proteins which have divergent amino acid sequences, but share common structural features, in particular, the presence of seven transmembrane helical domains. GPCRs respond to, among other extracellular signals, neurotransmitters, hormones, odorants and light. Individual GPCR types activate a particular signal transduction pathway; at least ten different signal transduction pathways are known to be activated via GPCRs. For example, the beta 2-adrenergic receptor (β2AR) is a prototype mammalian GPCR. In response to agonist binding, β2AR receptors activate a G-protein (Gs) which in turn stimulates adenylate cyclase activity and results in increased cyclic adenosine monophosphate (cAMP) production in the cell.




The signaling pathway and final cellular response that result from GPCR stimulation depends on the specific class of G-protein with which the particular receptor is coupled (Hamm, “The Many Faces of G-Protein Signaling.” J. Biol. Chem., 273:669-672 (1998)). For instance, coupling to the Gs class of G-proteins stimulates cAMP production and activation of the Protein Kinase A and C pathways, whereas coupling to the Gi class of G-proteins down regulates cAMP. Other second messenger systems such as calcium, phospholipase C, and phosphatidylinositol 3 may also be utilized. As a consequence, GPCR signaling events have predominantly been measured via quantification of these second messenger products.




The decrease of a response to a persistent stimulus is a widespread biological phenomenon. Signaling by diverse GPCRs is believed to be terminated by a uniform two-step mechanism. Activated receptor is first phosphorylated by a GPCR kinase (GRK). An arrestin protein binds to the activated and phosphorylated receptor, thus blocking G-protein interaction. This process is commonly referred to as desensitization, a general mechanism that has been demonstrated in a variety of functionally diverse GPCRs. Arrestin also plays a part in regulating GPCR internalization and resensitization, processes that are heterogenous among different GPCRs (Oakley, et al., J. Biol. Chem., 274:32248-32257 (1999)). The interaction between an arrestin and GPCR in processes of internalization and resensitization is dictated by the specific sequence motif in the carboxyl terminus of a given GPCR. Only a subset of GPCRs, which possess clusters of three serine or threonine residues at the carboxyl termini, were found to co-traffick with the arrestins into the endocytic vesicles after ligand stimulation. The number of receptor kinases and arrestins involved in desensitization of GPCRs is rather limited.




A common feature of GPCR physiology is desensitization and recycling of the receptor through the processes of receptor phosphorylation, endocytosis and dephosphorylation (Ferguson, et al., “G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins.” Can. J. Physiol. Pharmacol., 74:1095-1110 (1996)). Ligand-occupied GPCRs can be phosphorylated by two families of serine/threonine kinases, the G-protein-coupled receptor kinases (GRKs) and the second messenger-dependent protein kinases such as protein kinase A and protein kinase C. Phosphorylation by either class of kinases serves to down-regulate the receptor by uncoupling it from its corresponding G-protein. GRK-phosphorylation also serves to down-regulate the receptor by recruitment of a class of proteins known as the arrestins that bind the cytoplasmic domain of the receptor and promote clustering of the receptor into endocytic vescicles. Once the receptor is endocytosed, it will either be degraded in lysosomes or dephosphorylated and recycled back to the plasma membrane as a fully-functional receptor.




Binding of an arrestin protein to an activated receptor has been documented as a common phenomenon of a variety of GPCRs ranging from rhodopsin to β2AR to the neurotensin receptor (Barak, et al., “A β-arrestin/Green Fluorescent Fusion Protein Biosensor for Detecting G-Protein-Coupled Receptor Activation,” J. Biol. Chem., 272:27497-500 (1997)). Consequently, monitoring arrestin interaction with a specific GPCR can be utilized as a generic tool for measuring GPCR activation. Similarly, a single G-protein and GRK also partner with a variety of receptors (Hamm, et al. (1998) and Pitcher et al., “G-Protein-Coupled Receptor Kinases,” Annu. Rev. Biochem., 67:653-92 (1998)), such that these protein/protein interactions may also be monitored to determine receptor activity.




Many therapeutic drugs in use today target GPCRs, as they regulate vital physiological responses, including vasodilation, heart rate, bronchodilation, endocrine secretion and gut peristalsis. See, e.g., Lefkowitz et al., Annu. Rev. Biochem., 52:159 (1983). Some of these drugs mimic the ligand for this receptor. Other drugs act to antagonize the receptor in cases when disease arises from spontaneous activity of the receptor.




Efforts such as the Human Genome Project are identifying new GPCRs (“orphan” receptors) whose physiological roles and ligands are unknown. It is estimated that several thousand GPCRs exist in the human genome.




Various approaches have been used to monitor intracellular activity in response to a stimulant, e.g., enzyme-linked immunosorbent assay (ELISA); Fluorescense Imaging Plate Reader assay (FLIPR™, Molecular Devices Corp., Sunnyvale, Calif.); EVOscreen™, EVOTEC™, Evotec Biosystems Gmbh, Hamburg, Germany; and techniques developed by CELLOMICS™, Cellomics, Inc., Pittsburgh, Pa.




Germino et al., “Screening for in vivo protein-protein interactions.” Proc. Natl. Acad. Sci., 90(3):933-937 (1993), discloses an in vivo approach for the isolation of proteins interacting with a protein of interest.




Phizicky et al., “Protein-protein interactions: methods for detection and analysis.” Microbiol. Rev., 59(1): 94-123 (1995), discloses a review of biochemical, molecular biological and genetic methods used to study protein-protein interactions.




Offermanns et al., “Gα


15


and Gα


16


Couple a Wide Variety of Receptors to Phospholipase C.” J. Biol. Chem., 270(25):15175-15180 (1995), discloses that Gα


15


and Gα


16


can be activated by a wide variety of G-protein-coupled receptors. The selective coupling of an activated receptor to a distinct pattern of G-proteins is regarded as an important requirement to achieve accurate signal transduction. Id.




Barak et al., “A β-arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-coupled Receptor Activation.” J. Biol. Chem., 272(44):27497-27500 (1997) and U.S. Pat. Nos. 5,891,646 and 6,110,693 disclose the use of a β-arrestin/green fluorescent fusion protein (GFP) for imaging protein translocation upon stimulation of GPCR with optical devices.




Each of the references described above has drawbacks. For example,




The prior art methodologies require over-expression of the proteins, which could cause artifact and tip the balance of cellular regulatory machineries.




The prior art visualization or imaging assays are low throughput and lack thorough quantification. Therefore, they are not suitable for high throughput pharmacological and kinetic assays.




In addition, many of the prior art assays require isolation of the GPCR rather than observation of the GPCR in a cell. There thus exists a need for improved methods for monitoring GPCR function.




SUMMARY OF THE INVENTION




The present invention provides modifications to the disclosure in U.S. application Ser. No. 09/654,499. In particular, the present invention is directed to modifications of the below aspects of the invention to further enhance assay sensitivity. The modifications include the use of genetically modified arrestins that exhibit enhanced binding to activated GPCR regardless of whether the GPCR is phosphorylated or non-phosphorylated; the use of a serine/threonine cluster strategy to facilitate screening assays for orphan receptors that do not possess this structural motif on their own; and the use of a combination of the above modifications to achieve even more enhanced detection.




A first aspect of the present invention is a method that monitors GPCR function proximally at the site of receptor activation, thus providing more information for drug discovery purposes due to fewer competing mechanisms. Activation of the GPCR is measured by a read-out for interaction of the receptor with a regulatory component such as arrestin, G-protein, GRK or other kinases, the binding of which to the receptor is dependent upon agonist occupation of the receptor. The present invention involves the detection of protein/protein interaction by complementation of mutant reporter enzymes.




Binding of arrestin to activated GPCR is a common process in the first step of desensitization that has been demonstrated for most, if not all, GPCRs studied so far. Measurement of GPCR interaction with arrestin via mutant enzyme complementation (i.e., ICAST) provides a more generic assay technology applicable for a wide variety of GPCRs and orphan receptors.




A further aspect of the present invention is a method of assessing GPCR pathway activity under test conditions by providing a test cell that expresses a GPCR, e.g., muscarinic, adrenergic, dopamine, angiotensin or endothelin, as a fusion protein to a mutant reporter enzyme and interacting a protein in the GPCR pathway, e.g., G-protein, arrestin or GRK, as a fusion protein with a complementing mutant reporter enzyme. When test cells are exposed to a known agonist to the target GPCR under test conditions, activation of the GPCR will be monitored by complementation of the reporter enzyme. Increased reporter enzyme activity reflects interaction of the GPCR with its interacting protein partner.




A further aspect of the present invention is a method of assessing GPCR pathway activity in the presence of a test arrestin, e.g., β-arrestin.




A further aspect of the present invention is a method of assessing GPCR pathway activity in the presence of a test G-protein.




A further aspect of the present invention is a method of assessing GPCR pathway activity upon exposure of the test cell to a test ligand.




A further aspect of the present invention is a method of assessing GPCR activity upon co-expression in the test cell of a second receptor. The second receptor could be the same GPCR or orphan receptor (i.e., homo-dimerization), a different GPCR or orphan receptor (i.e., hetero-dimerization) or could be a receptor of another type.




A further aspect of the present invention is a method for screening for a ligand or agonist to an orphan GPCR. The ligand or agonist could be contained in natural or synthetic libraries or mixtures or could be a physical stimulus. A test cell is provided that expresses the orphan GPCR as a fusion protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and, for example, an arrestin or mutant form of arrestin as a fusion protein with a complementing mutant reporter enzyme, e.g., another β-galactosidase mutant. The interaction of the arrestin with the orphan GPCR upon receptor activation is measured by enzymatic activity of the complemented reporter enzyme. The test cell is exposed to a test compound, and an increase in reporter enzyme activity indicates the presence of a ligand or agonist.




A further aspect of the present invention is a method for screening a protein of interest, for example, an arrestin protein (or mutant form of the arrestin protein) for the ability to bind to a phosphorylated, or activated, GPCR. A test cell is provided that expresses a GPCR as a fusion protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and contains arrestin (or a mutant form of arrestin) as a fusion protein with a complementing mutant reporter enzyme, e.g., another β-galactosidase mutant. The interaction of arrestin with the GPCR upon receptor activation is measured by enzymatic activity of the complemented reporter enzyme. The test cell is exposed to a known GPCR agonist and then reporter enzyme activity is detected. Increased reporter enzyme activity indicates that the β-arrestin molecule can bind to phosphorylated, or activated, GPCR in the test cell.




A further aspect of the present invention is a method to screen for an agonist to a specific GPCR. The agonist could be contained in natural or synthetic libraries or could be a physical stimulus. A test cell is provided that expresses a GPCR as a fusion protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and, for example, an arrestin as a fusion protein with a complementing mutant reporter enzyme, e.g., another β-galactosidase mutant. The interaction of arrestin with the GPCR upon receptor activation is measured by enzymatic activity of the complemented reporter enzyme. The test cell is exposed to a test compound, and an increase in reporter enzyme activity indicates the presence of an agonist. The test cell may express a known GPCR or a variety of known GPCRs, or may express an unknown GPCR or a variety of unknown GPCRs. The GPCR may be, for example, an odorant GPCR or a βAR GPCR.




A further aspect of the present invention is a method for screening a test compound for GPCR antagonist activity. A test cell is provided that expresses a GPCR as a fusion protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and, for example, an arrestin as a fusion protein with a complementing mutant reporter enzyme, e.g., another β-galactosidase mutant. The interaction of arrestin with the GPCR upon receptor activation is measured by enzymatic activity of the complemented reporter enzyme. The test cell is exposed to a test compound, and an increase in reporter enzyme activity indicates the presence of an agonist. The cell is exposed to a test compound and to a GPCR agonist, and reporter enzyme activity is detected. When exposure to the agonist occurs at the same time as or subsequent to exposure to the test compound, a decrease in reporter enzyme activity after exposure to the test compound indicates that the test compound has antagonist activity to the GPCR.




A further aspect of the present invention is a method of screening a sample solution for the presence of an agonist, antagonist or ligand to a GPCR. A test cell is provided that expresses GPCR as a fusion protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and contains, for example, a β-arrestin as a fusion protein with a complementing reporter, e.g., another β-galactosidase mutant. The test cell is exposed to a sample solution, and reporter enzyme activity is assessed. Changed reporter enzyme activity after exposure to the sample solution indicates the sample solution contains an agonist, antagonist or ligand for a GPCR expressed in the cell.




A further aspect of the present invention is a method of screening a cell for the presence of a GPCR. According to this aspect, an arrestin fusion protein with a mutant reporter enzyme and a GPCR downstream signaling fusion protein with a mutant reporter enzyme are employed to detect GPCR action. A modification of this aspect of the invention can be employed to provide a method of screening a plurality of cells for those cells which contain a GPCR. According to this aspect, a plurality of cells containing a conjugate comprising a β-arrestin protein as a fusion protein with a reporter enzyme are provided; the plurality of cells are exposed to a GPCR agonist; and activity of reporter enzyme activity is detected. An increase in reporter enzymatic activity after exposure to the GPCR agonist indicates β-arrestin protein binding to a GPCR, thereby indicating that the cell contains a GPCR responsive to the GPCR agonist.




A further aspect of the invention is a method for mapping GPCR-mediated signaling pathways. For instance, the system could be utilized to monitor interaction of c-src with β-arrestin-1 upon GPCR activation. Additionally, the system could be used to monitor protein/protein interactions involved in cross-talk between GPCR signaling pathways and other pathways such as that of the receptor tyrosine kinases or Ras/Raf. According to this aspect, a test cell is provided that expresses a GPCR or other related protein with a mutant reporter enzyme, e.g., a β-galactosidase mutant, and contains a protein from another pathway as a fusion protein with a complementing mutant reporter enzyme, e.g., another β-galactosidase mutant. Increased reporter enzymatic activity indicates protein/protein interaction.




A further aspect of the invention is a method for monitoring homo- or hetero-dimerization of GPCRs upon agonist or antagonist stimulation. Increasing evidence indicates that GPCR dimerization is important for biological activity (AbdAlla, et al., “AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration.” Nature, 407:94-98 (2000); Bockaert, et al., “Molecular tinkering of G protein-coupled receptors: an evolutionary success.” EMBO J. 18:1723-29 (1999)). Jordan, et al., “G-protein-coupled receptor heterodimerization modulates receptor function.” Nature, 399:697-700 (1999), demonstrated that two non-functional opioid receptors, κ and δ, heterodimerize to form a functional receptor. Gordon et al., “Dopamine D2 receptor dimers and receptor blocking peptides.” Bioch. Biophys. Res. Commun. 227:200-204 (1996), showed different pharmacological properties associated with the monomeric and dimeric forms of Dopamine receptor D2. The D2 receptors exist either as monomers that are selective targets for spiperone or as dimer forms that are targets for nemonapride. Herbert, et al., “A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation.” J.B.C. 271:16384-92 (1996), demonstrated that the agonist stimulation was found to stabilize the dimeric state of the receptor, whereas inverse agonists favored the monomeric form. Indeed, the same study showed that a peptide corresponding to the sixth transmembrane domain of the β2-adrenergic receptor inhibited both receptor dimerization and activation. Further, Angers et al., Detection of beta-2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer, Proc. Natl. Acad. Sci. USA, 97(7):3684-3689, discloses the use of β2-adrenergic receptor fusion proteins (i.e., β2-adrenergic receptor fused to luciferase and β2-adrenergic receptor fused to an enhanced red-shifted green fluorescent protein) to study β2-adrenergic receptor dimerization.




GPCR dimerization in the context of cellular physiology and pharmacology can be monitored in accordance with the invention. For example, β-galactosidase complementation can be measured in test cells that co-express GPCR fusion proteins of β-galactosidase mutant enzymes, e.g., GPCR


1


Δα and GPCR


2


Δω (FIG.


27


). According to this aspect, the interconversion between monomeric to dimeric forms of the GPCRs or orphan receptors can be measured by mutant reporter enzyme complementation.

FIG. 27

illustrates a test cell co-expressing GPCR or an orphan receptor as a fusion protein with Δα form of β-galactosidase mutant (e.g., GPCR


1


Δα), and the same GPCR or orphan receptor as a fusion protein with Δω form of β-galactosidase mutant (e.g. GPCR


1


Δω). Formation of the GPCR homodimer is reflected by formation of an active enzyme, which can be measured by enzyme activity assays, such as the Gal-Screen™ assay. Similarly, hetero-dimerization between two distinct GPCRs, or two distinct orphan receptors, or between one known GPCR and one orphan receptor can be analyzed in test cells co-expressing two fusion proteins, e.g., GPCR


1


Δα and GPCR


2


Δω. The increased β-galactosidase activity indicates that the two receptors can form a heterodimer.




A further aspect of the invention is a method of monitoring the interconversion between the monomeric and dimeric form of GPCRs under the influence of agonist or antagonist treatment. The test receptor(s) can be between the same GPCR or orphan receptor (homodimer), or between two distinct GPCRs or orphan receptors (heterodimer). The increased β-galactosidase activity after treatment with a compound means that the compound binds to and/or stabilizes the dimeric form of the receptor. The decreased β-galactosidase activity after treatment with a compound means that the compound binds to and/or stabilizes the monomeric form of the receptor.




A further aspect of the invention is a method of screening a cell for the presence of a GPCR responsive to a GPCR agonist. A cell is provided that contains protein partners that interact downstream in the GPCR's pathway. The protein partners are expressed as fusion proteins to the mutant, complementing enzyme and are used to monitor activation of the GPCR. The cell is exposed to a GPCR agonist and then enzymatic activity of the reporter enzyme is detected. Increased reporter enzyme activity indicates that the cell contains a GPCR responsive to the agonist.




The present invention involves the use of a combination of proprietary technologies (including ICAST™, Intercistronic Complementation Analysis Screening Technology, Gal-Screen™, etc.) to monitor protein/protein interactions in GPCR signaling. As disclosed in U.S. application Ser. No. 09/654,499, the method of the invention in part involves using ICAST™, which in turn involves the use of two inactive β-galactosidase mutants, each of which is fused with one of two interacting target protein pairs, such as a GPCR and an arrestin. The formation of an active β-galactosidase complex is driven by interaction of the target proteins. In this system, β-galactosidase activity can be detected using, e.g., the Gal-Screen™ assay system, wherein direct cell lysis is combined with rapid ultrasensitive chemiluminescent detection of β-galactosidase reporter enzyme. This system uses, e.g., a Galacton-Star® chemiluminescent substrate for measurement in a luminometer as a read out of GPCR activity.





FIG. 23

is a schematic depicting the use of the complementation technology in the method of the present invention.

FIG. 23

shows two inactive β-galactosidase mutants that become active when they are forced together by specific interactions between the fusion partners of an arrestin molecule and an activated GPCR or orphan receptor. This assay technology will be especially useful in high throughput screening assays for ligand fishing for orphan receptors, a process called de-orphaning. As illustrated in

FIG. 28

, a β-galactosidase fusion protein of an orphan receptor (e.g., GPCR


orphan


Δα) is co-expressed in the test cell with a fusion protein of β-arrestin (e.g., β-ArrΔω). When the test cell is subjected to compounds, which could be natural or synthetic, the increased β-galactosidase activity means the compound is either a natural or surrogate ligand for this GPCR. The same assay system can be used to find drug leads for the new GPCRs. The increased β-galactosidase activity in the test cell after treatment indicates the agonist activity of the compound. The decreased β-galactosidase activity in the test cell indicates antagonist activity or inverse agonist activity of the compound. In addition, the method of the invention could be used to monitor GPCR-mediated signaling pathways via other downstream signaling components such as G-proteins, GRKs or the proto-oncogene c-Src.




The invention is achieved in part by using ICAST™ protein/protein interaction screening to map signaling pathways. This technology is applicable to a variety of known and unknown GPCRs with diverse functions. They include, but are not limited to, the following sub-families of GPCRs:




(a) receptors that bind to amine-like ligands-Acetylcholine muscarinic receptor (M1 to M5), alpha and beta Adrenoceptors, Dopamine receptors (D1, D2, D3 and D4), Histamine receptors (H1 and H2), Octopamine receptor and Serotonin receptors (5HT1, 5HT2, 5HT4, 5HT5, 5HT6, 5HT7);




(b) receptors that bind to a peptide ligand-Angiotensin receptor, Bombesin receptor, Bradykinin receptor, C—C chemokine receptors (CCR1 to CCR8, and CCR10), C-X-C type Chemokine receptors (CXC-R5), Cholecystokinin type A receptor, CCK type receptors, Endothelin receptor, Neurotesin receptor, FMLP-related receptors, Somatostatin receptors (type 1 to type 5) and Opioid receptors (type D, K, M, X);




(c) receptors that bind to hormone proteins-Follic stimulating hormone receptor, Thyrotrophin receptor and Lutropin-choriogonadotropic hormone receptor;




(d) receptors that bind to neurotransmitters-substance P receptor, Substance K receptor and neuropeptide Y receptor;




(e) Olfactory receptors-Olfactory type 1 to type 11, Gustatory and odorant receptors;




(f) Prostanoid receptors-Prostaglandin E2 (EP1 to EP4 subtypes), Prostacyclin and Thromboxane;




(g) receptors that bind to metabotropic substances-Metabotropic glutamate group I to group III receptors;




(h) receptors that respond to physical stimuli, such as light, or to chemical stimuli, such as taste and smell; and




(i) orphan GPCRs-the natural ligand to the receptor is undefined.




Use of the ICAST™ technology in combination with the invention provides many benefits to the GPCR screening process, including the ability to monitor protein interactions in any sub-cellular compartment-membrane, cytosol and nucleus; the ability to achieve a more physiologically relevant model without requiring protein overexpression; and the ability to achieve a functional assay for receptor binding allowing high information content.











BRIEF DESCRIPTION OF THE DRAWINGS




FIG.


1


. Cellular expression levels of β2 adrenergic receptor (β2AR) and β-arrestin-2 (βArr2) in C2 clones. Quantification of β-galactosidase (β-gal) fusion protein was performed using antibodies against β-gal and purified β-gal protein in a titration curve by a standardized ELISA assay.





FIG. 1A

shows expression levels of β2AR-βgalΔα clones (in expression vector pICAST ALC).





FIG. 1B

shows expression levels of 3Arr2-βgalΔω in expression vector pICAST OMC4 for clones 9-3,-7,-9,-10,-19 and -24, or in expression vector pICAST OMN4 for clones 12-4,-9,-16,-18,-22 and -24.




FIG.


2


. Receptor β2AR activation was measured by agonist-stimulated cAMP production. C2 cells expressing pICAST ALC β2AR (clone 5) or parental cells were treated with increasing concentrations of (−)isoproterenol and 0.1 mM IBMX. The quantification of cAMP level was expressed as pmol/well.




FIG.


3


. Interaction of activated receptor β2AR and arrestin can be measured by β-galactosidase complementation.





FIG. 3A

shows a time course of β-galactosidase activity in response to agonist (−)isoproterenol stimulation in C2 expressing β2AR-βgalΔα (β2AR alone, in expression vector pICAST ALC), or a pool of doubly transduced C2 co-expressing β2AR-βgalΔα and βArr2-βgalΔω (in expression vectors pICAST ALC and pICAST OMC and clones isolated from the same pod (43-1, 43-2, 43-7 and 43-8)).





FIG. 3B

shows a time course of β-galactosidase activity in response to agonist (−)isoproterenol stimulation in C2 cells expressing β2AR-βgalΔα alone (in expression vector pICAST ALC) and C2 clones co-expressing β2AR-βgalΔα and βArr1-βgalΔω (in expression vectors ICAST ALC and pICAST OMC).




FIG.


4


. Agonist dose response for interaction of β2AR and arrestin can be measured by β-galactosidase complementation.





FIG. 4A

shows a dose response to agonists (−)isoproterenol and procaterol in C2 cells co-expressing β2AR-βgalΔα and βArr2-βgalΔω fusion constructs.





FIG. 4B

shows a dose response to agonists (−)isoproterenol and procaterol in C2 cells co-expressing β2AR-βgalΔα and βArr1-βgalΔω fusion constructs.




FIG.


5


. Antagonist mediated inhibition of receptor activity can be measured by β-galactosidase complementation in cells co-expressing β2AR-βgalΔα and βArr-βgalΔω.





FIG. 5A

shows specific inhibition with adrenergic antagonists ICI-118,551 and propranolol of β-galactosidase activity in C2 clones co-expressing β2AR-βgalΔα and βArr2-βgalΔω fusion constructs after incubation with agonist (−)isoproterenol.





FIG. 5B

shows specific inhibition of β-galactosidase activity with adrenergic antagonists ICI-118,551 and propranolol in C2 clones co-expressing β2AR-βgalΔα and βArr1-βgalΔω fusion constructs in the presence of agonist (−)isoproterenol.





FIG. 6. C

2 cells expressing adenosine receptor A2a show cAMP induction in response to agonist (CGS-21680) treatment. C2 parental cells and C2 cells co-expressing A2aR-βgalΔα and βArr1-βgalΔω as a pool or as selected clones (47-2 and 47-13) were measured for agonist-induced cAMP response (pmol/well).




FIG.


7


. Agonist stimulated cAMP response in C2 cells co-expressing Dopamine receptor D1 (D1-βgalΔα) and β-arrestin-2 (βArr2-βgalΔω). The clone expressing βArr2-βgalΔω (Arr2 alone) was used as a negative control in the assay. Cells expressing D1-βgalΔα in addition to βArr2-βgalΔω responded agonist treatment (3-hydroxytyramine hydrochloride at 3 μM). D1(PIC2) or D1(PIC3) designate D1 in expression vector pICAST ALC2 or pICAST ALC4, respectively.




FIG.


8


. Variety of mammalian cell lines can be used to generate stable cells for monitoring GPCR and arrestin interactions.





FIG. 8A

, FIG.


8


B and

FIG. 8C

show the examples of HEK 293, CHO and CHW cell lines co-expressing adrenergic receptor β2AR and arrestin fusion proteins of β-galactosidase mutants. The β-galactosidase activity was used to monitor agonist-induced interaction of β2AR and arrestin proteins.




FIG.


9


. Beta-gal complementation can be used to monitor β2 adrenergic receptor homo-dimerization.





FIG. 9A

shows β-galactosidase activity in HEK 293 clones co-expressing β2AR-βgalΔα and β2AR-βgalΔω.





FIG. 9B

shows a cAMP response to agonist (−)isoproterenol in HEK 293 clones co-expressing β2AR-βgalΔα and β2AR-βgalΔω. HEK293 parental cells were included in the assays as negative controls.




FIG.


10


A. pICAST ALC: Vector for expression of β-galΔα as a C-terminal fusion to the target protein. This construct contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔα; GS Linker, (GGGGS)n (SEQ ID NO:10); NeoR, neomycin resistance gene; IRES, internal ribosome entry site; ColE1ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promoter and polyadenylation signals from the Moloney Murine leukemia virus.





FIGS. 10B-10P

. Nucleotide sequence for pICAST ALC (SEQ ID NO:01).




FIG.


11


A. pICAST ALN: Vector for expression of β-galΔα as an N-terminal fusion to the target protein. This construct contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔα; GS Linker, (GGGGS)n (SEQ ID NO:10); NeoR, neomycin resistance gene; IRES, internal ribosome entry site; ColE1ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promoter and polyadenylation signals from the Moloney Murine leukemia virus.





FIGS. 11B-11L

. Nucleotide sequence for pICAST ALN (SEQ ID NO:02).




FIG.


12


A. pICAST OMC: Vector for expression of β-galΔω as a C-terminal fusion to the target protein. This construct contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔω; GS Linker, (GGGGS)n (SEQ ID NO:10); Hygro, hygromycin resistance gene; IRES, internal ribosome entry site; ColE1ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promoter and polyadenylation signals from the Moloney Murine leukemia virus.





FIGS. 12B-12L

. Nucleotide sequence for pICAST OMC (SEQ ID NO:03).




FIG.


13


A. pICAST OMN: Vector for expression of β-galΔω as an N-terminal fusion to the target protein. This construct contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔω; GS Linker, (GGGGS)n (SEQ ID NO:10); Hygro, hygromycin resistance gene; IRES, internal ribosome entry site; ColE1ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promoter and polyadenylation signals from the Moloney Murine leukemia virus.





FIGS. 13B-13L

. Nucleotide sequence for pICAST OMN (SEQ ID NO:04).




FIG.


14


. pICAST ALC βArr2: Vector for expression of β-galΔα as a C-terminal fusion to β-arrestin-2. The coding sequence of human β-arrestin-2 (Genebank Accession Number: NM





004313) was cloned in frame to β-galΔα in a pICAST ALC vector.




FIG.


15


. pICAST OMC βArr2: Vector for expression of β-galΔω as a C-terminal fusion to β-arrestin-2. The coding sequence of human β-arrestin-2 (Genebank Accession Number: NM





004313) was cloned in frame to β-galΔω in a pICAST OMC vector.




FIG.


16


. pICAST ALC βArr1: Vector for expression of β-galΔα as a C-terminal fusion to β-arrestin-1. The coding sequence of human β-arrestin-1 (Genebank Accession Number: NM





004041) was cloned in frame to β-galΔα in a pICAST ALC vector.




FIG.


17


. pICAST OMC βArr1: Vector for expression of β-galΔω as a C-terminal fusion to β-arrestin-1. The coding sequence of human β-arrestin-1 (Genebank Accession Number: NM





004041) was cloned in frame to β-galΔω in a pICAST OMC vector.




FIG.


18


. pICAST ALC β2AR: Vector for expression of β-galΔ(α as a C-terminal fusion to β2 Adrenergic Receptor. The coding sequence of human β2 Adrenergic Receptor (Genebank Accession Number: NM





000024) was cloned in frame to β-galΔα in a pICAST ALC vector.




FIG.


19


. pICAST OMC β2AR: Vector for expression of β-galΔω as a C-terminal fusion β2 Adrenergic Receptor. The coding sequence of human β2 Adrenergic Receptor (Genebank Accession Number: NM





000024) was cloned in frame to β-galΔω in a pICAST OMC vector.




FIG.


20


. pICAST ALC A2aR: Vector for expression of β-galΔα as a C-terminal fusion to Adenosine 2a Receptor. The coding sequence of human Adenosine 2a Receptor (Genebank Accession Number: NM





000675) was cloned in frame to β-galΔα in a pICAST ALC vector.




FIG.


21


. pICAST OMC A2aR: Vector for expression of β-galΔω as a C-terminal fusion to Adenosine 2a Receptor. The coding sequence of human Adenosine 2a Receptor (Genebank Accession Number: NM





000675) was cloned in frame to β-galΔω in a pICAST OMC vector.




FIG.


22


. pICAST ALC D1: Vector for expression of β-galΔα as a C-terminal fusion to Dopamine D


1


Receptor. The coding sequence of human Dopamine D1 Receptor (Genebank Accession Number: X58987) was cloned in frame to β-galΔα in a pICAST ALC vector.





FIG. 23. A

schematic depicting use of the complementation technology in the method of the invention.

FIG. 23

shows two inactive mutant reporter enzymes that become active when the corresponding fusion partners, GPCR and β-arrestin interact.




FIG.


24


. Vector for expression of a GPCR with inserted seronine/threonine amino acid sequences as a fusion with β-galΔα. The open reading frame of a known or orphan GPCR is engineered to contain additional seronine/threonine sequences, such as SSS (seronine, seronine, seronine), within the C-terminal tail. The engineered GPCR is cloned in frame with β-galΔα in a pICAST ALC vector. The pICAST ALC vector contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔα; GS Linker, (GGGGS)n (SEQ ID NO:10); NeoR, neomycin resistance gene; IRES, internal ribosome entry site; ColE1ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promotor and polyadenylation signals from the Moloney Murine leukemia virus.




FIG.


25


. Vector for expression of mutant (R170E) β-arrestin2 as a fusion with β-galΔω. The open reading frame of β-arrestin2 is engineered to contain a point mutation that converts arginine 170 to a glutamate. The mutant β-arrestin2 is cloned in frame with β-galΔω in a pICAST OMC vector. The pICAST OMC vector contains the following features: MCS, multiple cloning site for cloning the target protein in frame with the β-galΔα; GS Linker, (GGGGS)n (SEQ ID NO:10); Hygro, hygromycin resistance gene; IRES, internal ribosome entry site; ColE1 ori, origin of replication for growth in


E. coli;


5′MoMuLV LTR and 3′MoMuLV LTR, viral promotor and polyadenylation signals from the Moloney Murine leukemia virus.




FIG.


26


. Phosphorylation insensitive Mutant R170E β-Arrestin2Δω binds to β2ARΔα in Response to Agonist Activation. A parental β2ARΔα C2 cell line was tranduced with the Mutant R170E β-Arrestin2Δω construct. Clonal populations co-expressing the two constructions were plated at 10,000 cells/well in 96 well plates and treated with 10 μM (−)isoproterenol, 0.3 mM ascorbic acid for the indicated time period. β-galactosidase activity was measured by addition of Tropix Gal-Screen™ assay system substrate (Applied Biosystems) and luminescence was measured using a Tropix TR717™ luminometer (Applied Biosystems). Treatments were performed in triplicate. For comparison, a clonal cell line (43-8) co-expressing β2ARΔα and wild-type β-Arrestin2Δω was also plated at 10,000 cells/well and given the same agonist treatment regimen. Minutes of (−)isoproterenol treatment is shown on the X-axis and β-galactosidase activity indicated by relative light units (RLU) is shown on the Y-axis.




FIG.


27


. GPCR dimerization measured by β-galactosidase complementation. A schematic depicting the utilization of the invention for monitoring GPCR homo- or hetero-dimerization. One GPCR is fused to one complement enzyme fragment, while the second GPCR is fused to the second complement enzyme fragment. Interaction of the two GPCRs is monitored by complementation of the enzyme fragments to produce an active enzyme complex (i.e., β-galactosidase activity). GPCR homo- or hetero-dimerization can be monitored in the absence or presence of ligand, agonists, inverse agonists or antagonists.




FIG.


28


. Ligand fishing for orphan receptors by β-galactosidase mutant complementation in ICAST™ system. A schematic depicting the utilization of the invention for ligand fishing and agonist/antagonist screening for orphan GPCRs. As an example, a test cell expressing two β-gal fission proteins, GPCR


orphan-


Δα and Arrestin-Δω, is subjected to treatments with samples from natural or synthetic compound libraries, or from tissue extracts, or from conditioned media of cultured cells. An increased β-gal activity after treatment indicates the activation of the orphan receptor by a ligand in the testing sample. The readout of increased β-gal activity reflects the interaction of an activated GPCR orphan receptor with a β-arrestin. Therefore, a cognate or a surrogate ligand for the testing receptor is identified.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




The present invention provides a method to interrogate GPCR function and pathways. The G-protein-coupled superfamily continues to expand rapidly as new receptors are discovered through automated sequencing of cDNA libraries or genomic DNA. It is estimated that several thousand GPCRs may exist in the human genome. Only a portion have been cloned and even fewer have been associated with ligands. The means by which these, or newly discovered orphan receptors, will be associated with their cognate ligands and physiological functions represents a major challenge to biological and biomedical research. The identification of an orphan receptor generally requires an individualized assay and a guess as to its function. The present invention involves the interrogation of GPCR function by monitoring the activation of the receptor using activation dependent protein-protein interactions between the test GPCR or orphan receptor and a β-arrestin. The specific protein-protein interactions are measured using the mutant enzyme complementation technology disclosed herein. This assay system eliminates the prerequisite guessing because it can be performed with and without prior knowledge of other signaling events. It is sensitive, rapid and easily performed and is applicable to nearly all GPCRs because the majority of these receptors desensitize by a common mechanism.




The present invention provides a complete assay system for monitoring protein-protein interactions in GPCR pathways. The invention employs the complementation technology, ICAST™ (Intercistronic Complementation Analysis Screening Technology as disclosed in pending U.S. patent application Ser. No. 053,614, filed Apr. 1, 1998, the entire contents of which are incorporated herein by reference). The ICAST™ technology involves the use of two mutant forms of a reporter enzyme fused to proteins of interest. When the proteins of interest do not interact, the reporter enzyme remains inactive. When the proteins of interest do interact, the reporter enzyme mutants come together and form an active enzyme. According to an embodiment of the invention, the activity of β-galactosidase may be detected with the Gal-Screen™ assay system developed by Advanced Discovery Sciences™, which involves the use of Galacton-Star®, an ultrasensitive chemiluminescent substrate. The Gal-Screen™ assay system and the Galacton-Star® chemiluminescent substrate are disclosed in U.S. Pat. Nos. 5,851,771; 5,538,847; 5,326,882; 5,145,772; 4,978,614; and 4,931,569, the contents of which are incorporated herein by reference in their entirety. The invention provides an array of assays, including GPCR binding assays, that can be achieved directly within the cellular environment in a rapid, non-radioactive assay format. The methods of the invention are an advancement over the invention disclosed in U.S. Pat. Nos. 5,891,646 and 6,110,693 and the method disclosed in Angers et al., supra., which rely on microscopic imaging or spectrometry of GPCR components as fusion with Green-fluorescent-protein. The imaging technique disclosed in U.S. Pat. Nos. 5,891,646 and 6,110,693 and spectrometry-based technique in Angers et al. are limited by low-throughput and lack of thorough quantification.




The assay system of the invention combined with Advanced Discovery Sciences™ technologies provide highly sensitive cell-based methods for interrogating GPCR pathways which are amenable to high-throughput screening (HTS). Among some of the technologies developed by Advanced Discovery Sciences™ that may be used with the present invention are the Gal-Screen™ assay system (discussed above) and the cAMP-Screen™ immunoassay system. The cAMP-Screen™ immunoassay system provides ultrasensitive determination of cAMP levels in cell lysates. The cAMP-Screen™ assay utilizes the high-sensitivity chemiluminescent alkaline phosphatase (AP) substrate CSPD® (disodium 3-(4-methoxyspiro {1,2-dioxetane-3,2′-(5′-chloro) tricyclo 3.3.1.1.


3,7


} decan-4-yl phenyl phosphate) with Sapphire-II™ luminescence enhancer.




Unlike yeast-based-two-hybrid assays used to monitor protein/protein interactions in high-throughput assays, the present invention (1) is applicable to a variety of cells including mammalian cells, plant cells, protozoa cells such as


E. coli


and cells of invertebrate origin such as yeast, slime mold (Dictyostelium) and insects; (2) detects interactions at the membrane at the site of the receptor target or in the cytosol at the site of downstream target proteins rather than a limited cellular localization, i.e., nucleus; and (3) does not rely on indirect read-outs such as transcriptional activation. The present invention thus provides assays with greater physiological relevance and fewer false positives.




The present inventors have developed modifications to the embodiment disclosed in U.S. patent application Ser. No. 053,614 described above in order to enhance the sensitivity of the inventive GPCR assay. According to an embodiment, the invention incorporates the use of serine/threonine clusters to enhance and prolong the interaction of GPCR with arrestin in order to make the detection more robust. The clusters can be utilized for orphan receptors or known GPCRs, which do not have this sequence motif. By adding this sequence to the C-terminal tail of the receptor, the activation of the receptor can be detected more readily by readouts of arrestin binding to GPCR, i.e., β-galactosidase complementation from fusion proteins of target proteins with β-galactosidase mutants.




According to another embodiment, the invention incorporates the use of arrestin point mutations to bypass the requirement of phosphorylation, by the action of specific GRK, on the C-terminal tail or intracellular loops of GPCR upon activation. The applications include i) wherein the cognate GRK for a particular GPCR or orphan receptor is unknown; and ii) wherein the specific GRK for the receptor of interest (or under test) may not be present or may have low activity in the host cell that is used for receptor activation assay.




According to another embodiment, the invention incorporates the use of a super arrestin to increase the binding efficiency of arrestin to an activated GPCR and to stabilize the GPCR/arrestin complex during GPCR desensitization. This application can be used to increase the robustness of ICAST/GPCR applications in cases where the GPCR is normally resensitized rapidly post desensitization.




Each of these methodologies is discussed below.




The invention will now be described in the following non-limiting examples.




EXAMPLE




According to an embodiment of the invention, GPCR activation is measured through monitoring the binding of arrestin to ligand-activated GPCR. In this assay system, a GPCR, e.g., β-adrenergic receptor (β2AR), and an arrestin, e.g., β-arrestin, are co-expressed in the same cell as fusion proteins with mutant forms of a reporter enzyme, e.g., β-galactosidase (β-gal). As illustrated in

FIG. 23

, the β2AR is expressed as a fusion protein with Δα form of β-gal mutant (β2ARΔα) and the β-arrestin as a fusion protein with the Δω form of β-gal mutant (β-ArrΔω). The two fusion proteins, which at first exist in a resting (or un-stimulated) cell in separate compartments, i.e., the membrane for GPCR and the cytosol for arrestin, cannot form an active β-galactosidase enzyme. When such a cell is treated with an agonist or a ligand, the ligand-occupied and activated receptor becomes a high affinity binding site for arrestin. The interaction between an activated GPCR, β2ARΔα, and arrestin, β-ArrΔω, drives the β-gal mutant complementation. The enzyme activity can be measured by using an enzyme substrate, which upon cleavage releases a product measurable by colorimetry, fluorescence, or chemiluminescence (e.g., the Gal-Screen™ assay system).




Experiment Protocol




1. In the first step, the expression vectors for β2ARΔα and βArr2Δω were engineered in selectable retroviral vectors pICAST ALC, as described in FIG.


18


and pICAST OMC, as described in FIG.


15


.




2. In the second step, the two expression constructs were transduced into either C2C12 myoblast cells, or other mammalian cell lines, such as COS-7, CHO, A431, HEK 293, and CHW. Following selection with antibiotic drugs, stable clones expressing both fusion proteins at appropriate levels were selected.




3. In the last step, the cells expressing both β2ARΔα and βArr2Δω were tested for response by agonist/ligand stimulated β-galactosidase activity. Triplicate samples of cells were plated at 10,000 cells in 100 microliter volume into a well of 96-well culture plate. Cells were cultured for 24 hours before assay. For agonist assay (FIGS.


3


and


4


), cells were treated with variable concentrations of agonist, for example, (−)isoproterenol, procaterol, dobutamine, terbutaline or L-L-phenylephrine for 60 min at 37° C. The induced β-galactosidase activity was measured by addition of Tropix Gal-Screen™ assay system substrate (Applied Biosystems) and luminescence measured in a Tropix TR717™ luminometer (Applied Biosystems). For antagonist assay (FIG.


5


), cells were pre-incubated for 10 min in fresh medium without serum in the presence of ICI-118,551 or propranolol followed by addition of 10 micro molar (−)isoproterenol.




Serine/Threonine Cluster Strategy




Background




Based on structure-function relationship studies on β-arrestins, a large region within the amino-terminal half of β-arrestins (termed the activation-recognition domain) recognizes the agonist-activated state of GPCRs. This region of β-arrestin also contains a small positively charged domain (approximately 20 amino acids with net charge +7) called the phosphorylation-recognition domain, which appears to interact with the GRK-phosphorylated carboxyl termini of GPCRs.




GPCRs can be divided into two classes based on their affinities for β-arrestins. Oakley et al., “Association of β-Arrestin with G Protein-Coupled Receptors During Clathrin-Mediated Endocytosis Dictates the Profile of Receptor Resensitization.” J. Biol. Chem., 274(45):32248-32257 (1999). The molecular determinants underlying this classification appear to reside in specific serine or threonine residues located in the carboxyl-terminal tail of the receptor. The receptor class that contains serine/threonine clusters (defined as serine or threonine residues occupying three consecutive or three out of four positions) in the carboxyl-termini binds β-arrestin with high affinity upon activation and phosphorylation and remains bound with β-arrestin even after receptor internalization, whereas the receptor class that contains only scattered serine and threonine residues in the carboxy-terminal tail binds β-arrestins with less affinity and disassociates from the β-arrestin upon internalization. Several known GPCRs, such as vasopressin V2 receptor (Oakley, et al.), neurotensin receptor 1 and angiotensin II receptor type 1A (Zhang, et al., “Cellular Trafficking of G Protein-Coupled Receptor/β-Arrestin Endocytic Complexes.” J. Biol. Chem., 274(16):10999-11006 (1999)), which possess one or more of such serine/threonine clusters in their carboxyl-termini, were shown to bind β-arrestins with high affinity.




EXAMPLE




According to an embodiment of the invention, a serine/threonine cluster strategy is used to facilitate screening assays for orphan receptors that do not possess this structural motif of their own. The orphan receptors are easily classified by sequence alignment. Orphan receptors lacking the serine/threonine clusters are each cloned into an expression vector that is modified to introduce one or more serine/threonine cluster(s) to the carboxyl-terminal tail of the receptor (FIG.


24


). The serine/threonine clusters enhance the receptor activation dependent interaction between the activated and phosphorylated receptor (negative charges) and β-arrestin (positive charges in the phosphorylation-recognition domain) through strong ionic interactions, thus prolonging interaction between the receptor and arrestin. The modification of the orphan receptor tail thus makes detection of receptor activation more robust.




Experiment Protocol




1. In a first step, the open-reading-frame (ORF) of an orphan receptor, which lacks the serine/threonine clusters, is cloned into a modified expression vector such as pICAST ALC described in FIG.


10


A. The modified pICAST ALC includes coding sequences for one or more sets of serine/threonine clusters (for example, SSS or SST) located downstream from the insert of the ORF of an orphan receptor (FIG.


24


).




2. In a second step, chimeric orphan receptor, ORF


orphan R


-(SSS)


n


-Δα, is co-expressed in a mammalian cell with a β-arrestin chimera, such as βArr2Δω described in FIG.


15


.




3. In a third step, the cell is treated with an agonist or a ligand and the activated receptor with phosphorylated serine cluster(s) binds the β-arrestin with high affinity producing strong signals in readouts of β-gal complementation.




This assay, which provides a means for sensitive measurement of functional activation of the orphan receptors, can be used to screen for natural or surrogate ligands for orphan receptors, a process called de-orphaning or target discovery for new GPCRs (FIG.


28


). Furthermore, this assay is also useful in screening for potential agonists and antagonists for lead discovery of GPCRs.




Enhanced Binding of Arrestin in the Presence and in the Absence of GPCR Phosphorylation




Background




Six different classes of G-protein coupled receptor kinases (GRKs) have been identified and each of these has been reported to be expressed as multiple splice variants. Krupnick et al., “The role of receptor kinases and arrestins in G protein-coupled receptor regulation.” Ann. Rev. Pharmacol. Toxicol., 38:289-319 (1998). Although many cell lines express a variety of GRKs, the specific GRK required for phosphorylation of a given GPCR may not always be present in the cell line used for recombinant GPCR and arrestin expression. This is particularly an issue for applications using orphan receptors, in which case the cognate GRK will likely be unknown. In other cases, the cell line used for recombinant expression work may have the required GRK, but may express the GRK at low levels. In order to bypass such caveats, genetically modified arrestins that bind specifically to activated GPCRs, but without the requirement of GRK phosphorylation are employed.




Mutagenesis studies on arrestins demonstrate that point mutations in the phosphorylation-recognition domain, particularly mutations converting Arg175 (of visual arrestin) to an oppositely charged residue such as glutamate (R175E mutation), result in an arrestin which specifically binds to activated GPCRs, but does so without the requirement for phosphorylation.




Numerous observations have led to the hypothesis that arrestin exists in an inactive state that has a low affinity for GPCRs. Once a GPCR is both activated and phosphorylated, the phosphorylated region of the GPCR C-terminus interacts with the phosphorylation-recognition domain of arrestin causing the arrestin to change conformations allowing the activation-recognition region to be exposed for binding to the activated/phosphorylated receptor. Vishnivetskiy et al., “How does arrestin respond to the phosphorylated state of rhodopsin?” J. Biol. Chem., 274(17):11451-11454 (1999); Gurevich et al., “Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild-type and mutant arrestins with rhodopsin, beta 2-adrenergic and m2 muscarinic cholinergic receptors.” J. Biol. Chem., 270(2):720-731, (1995); Gurevich et al., “Mechanism of phosphorylation-recognition by visual arrestin and the transition of arrestin into a high affinity binding site.” Mol. Pharnacol., 51(1):161-169 (1997); Kovoor et al., “Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells.” J. Biol. Chem., 274(11):6831-6834 (1999). In summary, binding studies of single mutation, double mutation, deletion, and chimerical arrestins with inactive, inactive and phosphorylated, activated but not phosphorylated, or activated and phosphorylated visual or non-visual GPCRs all support this model.




EXAMPLE




A phosphorylation insensitive mutant of arrestin fused to mutant reporter protein can be produced that will bind to activated GPCRs in a phosphorylation independent manner. As proof of concept, a point mutation for β-arrestin2, R170E β-arrestin2, has been produced and its interaction with β2AR has been analyzed in accordance with the invention.




Experimental Protocol:




1) In the first step, β-arrestin2 was mutated such that Arg170 was converted to Glu. This mutation is equivalent to the R175E mutation of visual arrestin. The mutant β-arrestin2 open reading frame was cloned in frame with Δω-β-galactosidase in the pICAST OMC expression vector to produce a modified expression vector R170E β-arrestin2 (FIG.


25


).




2) In the second step, the R170E β-arrestin2 expression construct was transduced into a C2C12 myoblast cell line that had been engineered to express β2AR as a fusion to Δα-β-galactosidase as described in FIG. 18 of U.S. application Ser. No. 09/654,499. Following selection with antibiotic drugs, a population of clones expressing both fusion proteins was obtained.




3) In the last step, this population of cells expressing both R170E β-arrestin2Δω and β2AR Δα were tested for response by agonist/ligand stimulated β-galactosidase activity as demonstrated in FIG.


26


. The C2C12 clone 43-8 co-expressing β2ARΔα and wild-type 1β-arrestin2Δω (

FIG. 26

) was used as reference control. Triplicate samples of cells were plated at 10,000 cells in 100 microliter volume into wells of a 96-well culture plate. Cells were cultured for 24 hours before assay. For agonist assay as in

FIG. 26

, cells were treated with 10 μm (−)isoproterenol stabilized with 0.3 mM ascorbic acid 37° C. for 0, 5, 10, 15, 30, 45 or 60 minutes. The induced β-galactosidase activity was measured by addition of Tropix Gal-Screen™ assay system substrate (Applied Biosystems) and luminescence measured in a Tropix TR717™ luminometer (Applied Biosystems). As shown in

FIG. 26

, the mutant arrestin interacts with β2AR in an agonist-dependent manner and was comparable with that of wild-type arrestin.




4) To expand the application of phosphorylation-insensitive arrestin, cell lines such as C2C12, CHO or HEK 293, are developed that express the R170E β-arrestin2Δω construction. These cell lines can be used to transduce orphan or known GPCRs as fusions with Δα-β-galactosidase in order to develop cell lines for agonist and antagonist screening and




Development of Super Arrestins:




Background




Attenuation of GPCR signaling by the arrestin pathway serves to ensure that a cell or organism does not over-react to a stimulus. At the same time, the arrestin pathway often serves to recycle the GPCR such that it can be temporarily inactivated but then quickly resensitized to allow for sensitivity to new stimuli. The down-regulation process involves phosphorylation of the receptor, binding to arrestin and endocytosis. Following endocytosis of the desensitized receptor, the receptor is either degraded in lysosomes or resensitized and sent back to the membrane. Resensitization involves release of arrestin from the receptor, dephosphorylation and cycling back to the membrane. The actual route a GPCR follows upon activation depends on its biological function and the needs of the organism. Because of these diverse pathways that may be required of the down-regulation pathway, arrestin affinities for activated GPCRs vary from receptor to receptor. It would thus be very advantageous to engineer super arrestins that have a higher affinity and avidity for activated GPCRs than what nature has provided.




Although mutational, deletion and chimerical studies of arrestins have focused on understanding regulatory switches in the molecule that respond to GPCR phosphorylation states, several of these altered recombinant forms of arrestin have resulted in molecules with enhanced binding to activated, phosphorylated GPCRs. Conversion of Arg175 to histidine, tyrosine, phenylalanine or threonine results in significantly higher amounts of binding to phosphorylated, activated rhodopsin than wild-type arrestin or R175E arrestin, although these mutations result in less binding to activated, non-phosphorylated receptor. Gurevich et al. (1997). In addition, conversion of Valine 170 to alanine increased the constitutive affect of the R175E mutation, but also nearly doubled the amount of interaction of wild-type arrestin with activated, phosphorylated rhodopsin. Gurevich et al. (1997).




Truncation of β-arrestin1 at amino acid 382 has been reported to enhance binding of both R169E (equivalent to arrestin R175E) and wild-type β-arrestin1 to activated or activated and phosphorylated receptor, respectively. Kovoor et al. Chimerical arrestins in which functional regions of visual arrestin were swapped with those of β-arrestin1 have been reported to be altered in binding affinity to activated, phosphorylated GPCRs. Gurevich et al. (1995). Several of these chimeras, such as β-arrestin1 containing the visual arrestin extreme N-terminus, show increased specific binding to phosphorylated activated GPCRs compared to wild-type β-arrestin1 (Gurevich et al. (1995)). Modifications that enhance arrestin affinity for the activated GPCR such as described above, whether phosphorylated or non-phosphorylated, could also enhance signal to noise of β-galactosidase activity since the arrestin/GPCR complex is stabilized and/or more long-lived. The use of mutant arrestins with higher activated-GPCR affinity would improve the inventive technology for GPCR targets, without compromising receptor/ligand biology.




In addition, this “super arrestin” approach can be combined with the use of arrestin point mutations to provide a stronger signal to noise with or without GRK requirements.




EXAMPLE




An arrestin mutant fused to mutant reporter protein can be produced to enhance binding of the arrestin to an activated GPCR to enhance sensitivity of detection.




Experiment Protocol




1) In the first step, mutant β-arrestin2 constructions will be generated which include R170E/T/Y/or H, V165A, substitution of a.a. 1-43 with a.a. 1-47 of visual arrestin, or deletion of the C-terminal and combinations of these alterations. The mutant β-arrestin2 open reading frames will be cloned in frame with Δω-β-galactosidase in the pICAST OMC expression vector similar to cloning of the R170E β-arrestin2 mutation shown in FIG.


25


.




2) In the second step, mutant expression constructs will be transduced into a C2C12 myoblast cell line that has been engineered to express β2AR as a fusion to Δα-β-galactosidase. Following selection with antibiotic drugs, a population of clones expressing both fusion proteins will be obtained. Wild type and R170E β-arrestin2 constructions will be transduced to generate control, reference clonal populations.




3) In the third step, populations of cells expressing both β-arrestin2Δω (mutant or wild type) and β2ARΔα will be tested for response by agonist/ligand stimulated β-galactosidase activity.




4) In the next step, mutant (super) β-arrestin2Δω constructions that show a significantly higher signal to noise ratio in the agonist assay compared with wild-type β-arrestin2Δω will be chosen. These constructions will be used to develop stable cell lines expressing the “super” β-arrestin2Δω that can be used for transducing in known or orphan GPCRs. Use of a super β-arrestin2Δω could increase the signal to noise of ICAST/GPCR applications allowing improved screening capabilities for lead and ligand discovery.




Super Arrestin is used to increase the binding efficiency of arrestin to an activated GPCR and to stabilize the GPCR/arrestin complex during GPCR desensitization. This application can be used to increase the robustness of ICAST/GPCR applications in cases where the GPCR is normally resensitized rapidly post desensitization.




The assays of this invention, and their application and preparation have been described both generically, and by specific example. The examples are not intended as limiting. Other substituent identities, characteristics and assays will occur to those of ordinary skill in the art, without the exercise of inventive faculty. Such modifications remain within the scope of the invention, unless excluded by the express recitation of the claims advanced below.







10




1


6700


DNA


Unknown




pICAST ALC.





1
ctgcagcctg aatatgggcc aaacaggata tctgtggtaa gcagttcctg ccccggctca 60
gggccaagaa cagatggaac agctgaatat gggccaaaca ggatatctgt ggtaagcagt 120
tcctgccccg gctcagggcc aagaacagat ggtccccaga tgcggtccag ccctcagcag 180
tttctagaga accatcagat gtttccaggg tgccccaagg acctgaaatg accctgtgcc 240
ttatttgaac taaccaatca gttcgcttct cgcttctgtt cgcgcgcttc tgctccccga 300
gctcaataaa agagcccaca acccctcact cggggcgcca gtcctccgat tgactgagtc 360
gcccgggtac ccgtgtatcc aataaaccct cttgcagttg catccgactt gtggtctcgc 420
tgttccttgg gagggtctcc tctgagtgat tgactacccg tcagcggggg tctttcattt 480
gggggctcgt ccgggatcgg gagacccctg cccagggacc accgacccac caccgggagg 540
caagctggcc agcaacttat ctgtgtctgt ccgattgtct agtgtctatg actgatttta 600
tgcgcctgcg tcggtactag ttagctaact agctctgtat ctggcggacc cgtggtggaa 660
ctgacgagtt ctgaacaccc ggccgcaacc ctgggagacg tcccagggac tttgggggcc 720
gtttttgtgg cccgacctga ggaagggagt cgatgtggaa tccgaccccg tcaggatatg 780
tggttctggt aggagacgag aacctaaaac agttcccgcc tccgtctgaa tttttgcttt 840
cggtttggaa ccgaagccgc gcgtcttgtc tgctgcagca tcgttctgtg ttgtctctgt 900
ccgactgtgt ttctgtattt gtctgaaaat tagggccaga ctgttaccac tcccttaagt 960
ttgaccttag gtaactggaa agatgtcgag cggctcgctc acaaccagtc ggtagatgtc 1020
aagaagagac gttgggttac cttctgctct gcagaatggc caacctttaa cgtcggatgg 1080
ccgcgagacg gcacctttaa ccgagacctc atcacccagg ttaagatcaa ggtcttttca 1140
cctggcccgc atggacaccc agaccaggtc ccctacatcg tgacctggga agccttggct 1200
tttgaccccc ctccctgggt caagcccttt gtacacccta agcctccgcc tcctcttcct 1260
ccatccgccc cgtctctccc ccttgaacct cctcgttcga ccccgcctcg atcctccctt 1320
tatccagccc tcactccttc tctaggcgcc ggccgctcta gcccattaat acgactcact 1380
atagggcgat tcgaatcagg ccttggcgcg ccggatcctt aattaagcgc aattgggagg 1440
tggcggtagc ctcgag atg ggc gtg att acg gat tca ctg gcc gtc gtg gcc 1492
Met Gly Val Ile Thr Asp Ser Leu Ala Val Val Ala
1 5 10
cgc acc gat cgc cct tcc caa cag tta cgc agc ctg aat ggc gaa tgg 1540
Arg Thr Asp Arg Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp
15 20 25
cgc ttt gcc tgg ttt ccg gca cca gaa gcg gtg ccg gaa agc tgg ctg 1588
Arg Phe Ala Trp Phe Pro Ala Pro Glu Ala Val Pro Glu Ser Trp Leu
30 35 40
gag tgc gat ctt cct gag gcc gat act gtc gtc gtc ccc tca aac tgg 1636
Glu Cys Asp Leu Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp
45 50 55 60
cag atg cac ggt tac gat gcg ccc atc tac acc aac gtg acc tat ccc 1684
Gln Met His Gly Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro
65 70 75
att acg gtc aat ccg ccg ttt gtt ccc acg gag aat ccg acg ggt tgt 1732
Ile Thr Val Asn Pro Pro Phe Val Pro Thr Glu Asn Pro Thr Gly Cys
80 85 90
tac tcg ctc aca ttt aat gtt gat gaa agc tgg cta cag gaa ggc cag 1780
Tyr Ser Leu Thr Phe Asn Val Asp Glu Ser Trp Leu Gln Glu Gly Gln
95 100 105
acg cga att att ttt gat ggc gtt aac tcg gcg ttt cat ctg tgg tgc 1828
Thr Arg Ile Ile Phe Asp Gly Val Asn Ser Ala Phe His Leu Trp Cys
110 115 120
aac ggg cgc tgg gtc ggt tac ggc cag gac agt cgt ttg ccg tct gaa 1876
Asn Gly Arg Trp Val Gly Tyr Gly Gln Asp Ser Arg Leu Pro Ser Glu
125 130 135 140
ttt gac ctg agc gca ttt tta cgc gcc gga gaa aac cgc ctc gcg gtg 1924
Phe Asp Leu Ser Ala Phe Leu Arg Ala Gly Glu Asn Arg Leu Ala Val
145 150 155
atg gtg ctg cgc tgg agt gac ggc agt tat ctg gaa gat cag gat atg 1972
Met Val Leu Arg Trp Ser Asp Gly Ser Tyr Leu Glu Asp Gln Asp Met
160 165 170
tgg cgg atg agc ggc att ttc cgt gac gtc tcg ttg ctg cat aaa ccg 2020
Trp Arg Met Ser Gly Ile Phe Arg Asp Val Ser Leu Leu His Lys Pro
175 180 185
act aca caa atc agc gat ttc cat gtt gcc act cgc ttt aat gat gat 2068
Thr Thr Gln Ile Ser Asp Phe His Val Ala Thr Arg Phe Asn Asp Asp
190 195 200
ttc agc cgc gct gta ctg gag gct gaa gtt cag atg tgc ggc gag ttg 2116
Phe Ser Arg Ala Val Leu Glu Ala Glu Val Gln Met Cys Gly Glu Leu
205 210 215 220
cgt gac tac cta cgg gta aca gtt tct tta tgg cag ggt gaa acg cag 2164
Arg Asp Tyr Leu Arg Val Thr Val Ser Leu Trp Gln Gly Glu Thr Gln
225 230 235
gtc gcc agc ggc acc gcg cct ttc ggc ggt gaa att atc gat gag cgt 2212
Val Ala Ser Gly Thr Ala Pro Phe Gly Gly Glu Ile Ile Asp Glu Arg
240 245 250
ggt ggt tat gcc gat cgc gtc aca cta cgt ctg aac gtc gaa aac ccg 2260
Gly Gly Tyr Ala Asp Arg Val Thr Leu Arg Leu Asn Val Glu Asn Pro
255 260 265
aaa ctg tgg agc gcc gaa atc ccg aat ctc tat cgt gcg gtg gtt gaa 2308
Lys Leu Trp Ser Ala Glu Ile Pro Asn Leu Tyr Arg Ala Val Val Glu
270 275 280
ctg cac acc gcc gac ggc acg ctg att gaa gca gaa gcc tgc gat gtc 2356
Leu His Thr Ala Asp Gly Thr Leu Ile Glu Ala Glu Ala Cys Asp Val
285 290 295 300
ggt ttc cgc gag gtg cgg att gaa aat ggt ctg ctg ctg ctg aac ggc 2404
Gly Phe Arg Glu Val Arg Ile Glu Asn Gly Leu Leu Leu Leu Asn Gly
305 310 315
aag ccg ttg ctg att cga ggc gtt aac cgt cac gag cat cat cct ctg 2452
Lys Pro Leu Leu Ile Arg Gly Val Asn Arg His Glu His His Pro Leu
320 325 330
cat ggt cag gtc atg gat gag cag acg atg gtg cag gat atc ctg ctg 2500
His Gly Gln Val Met Asp Glu Gln Thr Met Val Gln Asp Ile Leu Leu
335 340 345
atg aag cag aac aac ttt aac gcc gtg cgc tgt tcg cat tat ccg aac 2548
Met Lys Gln Asn Asn Phe Asn Ala Val Arg Cys Ser His Tyr Pro Asn
350 355 360
cat ccg ctg tgg tac acg ctg tgc gac cgc tac ggc ctg tat gtg gtg 2596
His Pro Leu Trp Tyr Thr Leu Cys Asp Arg Tyr Gly Leu Tyr Val Val
365 370 375 380
gat gaa gcc aat att gaa acc cac ggc atg gtg cca atg aat cgt ctg 2644
Asp Glu Ala Asn Ile Glu Thr His Gly Met Val Pro Met Asn Arg Leu
385 390 395
acc gat gat ccg cgc tgg cta ccg gcg atg agc gaa cgc gta acg cga 2692
Thr Asp Asp Pro Arg Trp Leu Pro Ala Met Ser Glu Arg Val Thr Arg
400 405 410
atg gtg cag cgc gat cgt aat cac ccg agt gtg atc atc tgg tcg ctg 2740
Met Val Gln Arg Asp Arg Asn His Pro Ser Val Ile Ile Trp Ser Leu
415 420 425
ggg aat gaa tca ggc cac ggc gct aat cac gac gcg ctg tat cgc tgg 2788
Gly Asn Glu Ser Gly His Gly Ala Asn His Asp Ala Leu Tyr Arg Trp
430 435 440
atc aaa tct gtc gat cct tcc cgc ccg gtg cag tat gaa ggc ggc gga 2836
Ile Lys Ser Val Asp Pro Ser Arg Pro Val Gln Tyr Glu Gly Gly Gly
445 450 455 460
gcc gac acc acg gcc acc gat att att tgc ccg atg tac gcg cgc gtg 2884
Ala Asp Thr Thr Ala Thr Asp Ile Ile Cys Pro Met Tyr Ala Arg Val
465 470 475
gat gaa gac cag ccc ttc ccg gct gtg ccg aaa tgg tcc atc aaa aaa 2932
Asp Glu Asp Gln Pro Phe Pro Ala Val Pro Lys Trp Ser Ile Lys Lys
480 485 490
tgg ctt tcg cta cct gga gag acg cgc ccg ctg atc ctt tgc gaa tac 2980
Trp Leu Ser Leu Pro Gly Glu Thr Arg Pro Leu Ile Leu Cys Glu Tyr
495 500 505
gcc cac gcg atg ggt aac agt ctt ggc ggt ttc gct aaa tac tgg cag 3028
Ala His Ala Met Gly Asn Ser Leu Gly Gly Phe Ala Lys Tyr Trp Gln
510 515 520
gcg ttt cgt cag tat ccc cgt tta cag ggc ggc ttc gtc tgg gac tgg 3076
Ala Phe Arg Gln Tyr Pro Arg Leu Gln Gly Gly Phe Val Trp Asp Trp
525 530 535 540
gtg gat cag tcg ctg att aaa tat gat gaa aac ggc aac ccg tgg tcg 3124
Val Asp Gln Ser Leu Ile Lys Tyr Asp Glu Asn Gly Asn Pro Trp Ser
545 550 555
gct tac ggc ggt gat ttt ggc gat acg ccg aac gat cgc cag ttc tgt 3172
Ala Tyr Gly Gly Asp Phe Gly Asp Thr Pro Asn Asp Arg Gln Phe Cys
560 565 570
atg aac ggt ctg gtc ttt gcc gac cgc acg ccg cat cca gcg ctg acg 3220
Met Asn Gly Leu Val Phe Ala Asp Arg Thr Pro His Pro Ala Leu Thr
575 580 585
gaa gca aaa cac cag cag cag ttt ttc cag ttc cgt tta tcc ggg caa 3268
Glu Ala Lys His Gln Gln Gln Phe Phe Gln Phe Arg Leu Ser Gly Gln
590 595 600
acc atc gaa gtg acc agc gaa tac ctg ttc cgt cat agc gat aac gag 3316
Thr Ile Glu Val Thr Ser Glu Tyr Leu Phe Arg His Ser Asp Asn Glu
605 610 615 620
ctc ctg cac tgg atg gtg gcg ctg gat ggt aag ccg ctg gca agc ggt 3364
Leu Leu His Trp Met Val Ala Leu Asp Gly Lys Pro Leu Ala Ser Gly
625 630 635
gaa gtg cct ctg gat gtc gct cca caa ggt aaa cag ttg att gaa ctg 3412
Glu Val Pro Leu Asp Val Ala Pro Gln Gly Lys Gln Leu Ile Glu Leu
640 645 650
cct gaa cta ccg cag ccg gag agc gcc ggg caa ctc tgg ctc aca gta 3460
Pro Glu Leu Pro Gln Pro Glu Ser Ala Gly Gln Leu Trp Leu Thr Val
655 660 665
cgc gta gtg caa ccg aac gcg acc gca tgg tca gaa gcc ggg cac atc 3508
Arg Val Val Gln Pro Asn Ala Thr Ala Trp Ser Glu Ala Gly His Ile
670 675 680
agc gcc tgg cag cag tgg cgt ctg gcg gaa aac ctc agt gtg acg ctc 3556
Ser Ala Trp Gln Gln Trp Arg Leu Ala Glu Asn Leu Ser Val Thr Leu
685 690 695 700
ccc gcc gcg tcc cac gcc atc ccg cat ctg acc acc agc gaa atg gat 3604
Pro Ala Ala Ser His Ala Ile Pro His Leu Thr Thr Ser Glu Met Asp
705 710 715
ttt tgc atc gag ctg ggt aat aag cgt tgg caa ttt aac cgc cag tca 3652
Phe Cys Ile Glu Leu Gly Asn Lys Arg Trp Gln Phe Asn Arg Gln Ser
720 725 730
ggc ttt ctt tca cag atg tgg att ggc gat aaa aaa caa ctg ctg acg 3700
Gly Phe Leu Ser Gln Met Trp Ile Gly Asp Lys Lys Gln Leu Leu Thr
735 740 745
ccg ctg cgc gat cag ttc acc cgt gca ccg ctg gat aac gac att ggc 3748
Pro Leu Arg Asp Gln Phe Thr Arg Ala Pro Leu Asp Asn Asp Ile Gly
750 755 760
gta agt gaa gcg acc cgc att gac cct aac gcc tgg gtc gaa cgc tgg 3796
Val Ser Glu Ala Thr Arg Ile Asp Pro Asn Ala Trp Val Glu Arg Trp
765 770 775 780
aag gcg gcg ggc cat tac cag gcc gaa gca gcg ttg ttg cag tgc acg 3844
Lys Ala Ala Gly His Tyr Gln Ala Glu Ala Ala Leu Leu Gln Cys Thr
785 790 795
gca gat aca ctt gct gat gcg gtg ctg att acg acc gct cac gcg tgg 3892
Ala Asp Thr Leu Ala Asp Ala Val Leu Ile Thr Thr Ala His Ala Trp
800 805 810
cag cat cag ggg aaa acc tta ttt atc agc cgg aaa acc tac cgg att 3940
Gln His Gln Gly Lys Thr Leu Phe Ile Ser Arg Lys Thr Tyr Arg Ile
815 820 825
gat ggt agt ggt caa atg gcg att acc gtt gat gtt gaa gtg gcg agc 3988
Asp Gly Ser Gly Gln Met Ala Ile Thr Val Asp Val Glu Val Ala Ser
830 835 840
gat aca ccg cat ccg gcg cgg att ggc ctg aac tgc cag ctg gcg cag 4036
Asp Thr Pro His Pro Ala Arg Ile Gly Leu Asn Cys Gln Leu Ala Gln
845 850 855 860
gta gca gag cgg gta aac tgg ctc gga tta ggg ccg caa gaa aac tat 4084
Val Ala Glu Arg Val Asn Trp Leu Gly Leu Gly Pro Gln Glu Asn Tyr
865 870 875
ccc gac cgc ctt act gcc gcc tgt ttt gac cgc tgg gat ctg cca ttg 4132
Pro Asp Arg Leu Thr Ala Ala Cys Phe Asp Arg Trp Asp Leu Pro Leu
880 885 890
tca gac atg tat acc ccg tac gtc ttc ccg agc gaa aac ggt ctg cgc 4180
Ser Asp Met Tyr Thr Pro Tyr Val Phe Pro Ser Glu Asn Gly Leu Arg
895 900 905
tgc ggg acg cgc gaa ttg aat tat ggc cca cac cag tgg cgc ggc gac 4228
Cys Gly Thr Arg Glu Leu Asn Tyr Gly Pro His Gln Trp Arg Gly Asp
910 915 920
ttc cag ttc aac atc agc cgc tac agt caa cag caa ctg atg gaa acc 4276
Phe Gln Phe Asn Ile Ser Arg Tyr Ser Gln Gln Gln Leu Met Glu Thr
925 930 935 940
agc cat cgc cat ctg ctg cac gcg gaa gaa ggc aca tgg ctg aat atc 4324
Ser His Arg His Leu Leu His Ala Glu Glu Gly Thr Trp Leu Asn Ile
945 950 955
gac ggt ttc cat atg ggg att ggt ggc gac gac tcc tgg agc ccg tca 4372
Asp Gly Phe His Met Gly Ile Gly Gly Asp Asp Ser Trp Ser Pro Ser
960 965 970
gta tcg gcg gaa ttc cag ctg agc gcc ggt cgc tac cat tac cag ttg 4420
Val Ser Ala Glu Phe Gln Leu Ser Ala Gly Arg Tyr His Tyr Gln Leu
975 980 985
gtc tgg tgt caa aaa aga tct gac tat aaa gat gag gac ctc gac cat 4468
Val Trp Cys Gln Lys Arg Ser Asp Tyr Lys Asp Glu Asp Leu Asp His
990 995 1000
cat cat cat cat cac cgg taataatagg tagataagtg actgattaga 4516
His His His His His Arg
1005 1010
tgcattgatc cctcgaccaa ttccggttat tttccaccat attgccgtct tttggcaatg 4576
tgagggcccg gaaacctggc cctgtcttct tgacgagcat tcctaggggt ctttcccctc 4636
tcgccaaagg aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt 4696
cttgaagaca aacaacgtct gtagcgaccc tttgcaggca gcggaacccc ccacctggcg 4756
acaggtgcct ctgcggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac 4816
cccagtgcca cgttgtgagt tggatagttg tggaaagagt caaatggctc tcctcaagcg 4876
tattcaacaa ggggctgaag gatgcccaga aggtacccca ttgtatggga tctgatctgg 4936
ggcctcggtg cacatgcttt acatgtgttt agtcgaggtt aaaaaacgtc taggcccccc 4996
gaaccacggg gacgtggttt tcctttgaaa aacacgatga taataccatg attgaacaag 5056
atggattgca cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg 5116
cacaacagac aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc 5176
cggttctttt tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag 5236
cgcggctatc gtggctggcc acgacgggcg ttccttgcgc agctgtgctc gacgttgtca 5296
ctgaagcggg aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat 5356
ctcaccttgc tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata 5416
cgcttgatcc ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcgagcac 5476
gtactcggat ggaagccggt cttgtcgatc aggatgatct ggacgaagag catcaggggc 5536
tcgcgccagc cgaactgttc gccaggctca aggcgcgcat gcccgacggc gaggatctcg 5596
tcgtgaccca tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg 5656
gattcatcga ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta 5716
cccgtgatat tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg 5776
gtatcgccgc tcccgattcg cagcgcatcg ccttctatcg ccttcttgac gagttcttct 5836
gagcgggact ctggggttcg catcgataaa ataaaagatt ttatttagtc tccagaaaaa 5896
ggggggaatg aaagacccca cctgtaggtt tggcaagcta gcttaagtaa cgccattttg 5956
caaggcatgg aaaaatacat aactgagaat agagaagttc agatcaaggt caggaacaga 6016
tggaacagct gaatatgggc caaacaggat atctgtggta agcagttcct gccccggctc 6076
agggccaaga acagatggaa cagctgaata tgggccaaac aggatatctg tggtaagcag 6136
ttcctgcccc ggctcagggc caagaacaga tggtccccag atgcggtcca gccctcagca 6196
gtttctagag aaccatcaga tgtttccagg gtgccccaag gacctgaaat gaccctgtgc 6256
cttatttgaa ctaaccaatc agttcgcttc tcgcttctgt tcgcgcgctt ctgctccccg 6316
agctcaataa aagagcccac aacccctcac tcggggcgcc agtcctccga ttgactgagt 6376
cgcccgggta cccgtgtatc caataaaccc tcttgcagtt gcatccgact tgtggtctcg 6436
ctgttccttg ggagggtctc ctctgagtga ttgactaccc gtcagcgggg gtctttcatt 6496
catgcagcat gtatcaaaat taatttggtt ttttttctta agtatttaca ttaaatggcc 6556
atagttgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta ttggcgctct 6616
tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca 6676
gctcactcaa aggcggtaat acgg 6700




2


1010


PRT


Unknown




pICAST ALC.





2
Met Gly Val Ile Thr Asp Ser Leu Ala Val Val Ala Arg Thr Asp Arg
1 5 10 15
Pro Ser Gln Gln Leu Arg Ser Leu Asn Gly Glu Trp Arg Phe Ala Trp
20 25 30
Phe Pro Ala Pro Glu Ala Val Pro Glu Ser Trp Leu Glu Cys Asp Leu
35 40 45
Pro Glu Ala Asp Thr Val Val Val Pro Ser Asn Trp Gln Met His Gly
50 55 60
Tyr Asp Ala Pro Ile Tyr Thr Asn Val Thr Tyr Pro Ile Thr Val Asn
65 70 75 80
Pro Pro Phe Val Pro Thr Glu Asn Pro Thr Gly Cys Tyr Ser Leu Thr
85 90 95
Phe Asn Val Asp Glu Ser Trp Leu Gln Glu Gly Gln Thr Arg Ile Ile
100 105 110
Phe Asp Gly Val Asn Ser Ala Phe His Leu Trp Cys Asn Gly Arg Trp
115 120 125
Val Gly Tyr Gly Gln Asp Ser Arg Leu Pro Ser Glu Phe Asp Leu Ser
130 135 140
Ala Phe Leu Arg Ala Gly Glu Asn Arg Leu Ala Val Met Val Leu Arg
145 150 155 160
Trp Ser Asp Gly Ser Tyr Leu Glu Asp Gln Asp Met Trp Arg Met Ser
165 170 175
Gly Ile Phe Arg Asp Val Ser Leu Leu His Lys Pro Thr Thr Gln Ile
180 185 190
Ser Asp Phe His Val Ala Thr Arg Phe Asn Asp Asp Phe Ser Arg Ala
195 200 205
Val Leu Glu Ala Glu Val Gln Met Cys Gly Glu Leu Arg Asp Tyr Leu
210 215 220
Arg Val Thr Val Ser Leu Trp Gln Gly Glu Thr Gln Val Ala Ser Gly
225 230 235 240
Thr Ala Pro Phe Gly Gly Glu Ile Ile Asp Glu Arg Gly Gly Tyr Ala
245 250 255
Asp Arg Val Thr Leu Arg Leu Asn Val Glu Asn Pro Lys Leu Trp Ser
260 265 270
Ala Glu Ile Pro Asn Leu Tyr Arg Ala Val Val Glu Leu His Thr Ala
275 280 285
Asp Gly Thr Leu Ile Glu Ala Glu Ala Cys Asp Val Gly Phe Arg Glu
290 295 300
Val Arg Ile Glu Asn Gly Leu Leu Leu Leu Asn Gly Lys Pro Leu Leu
305 310 315 320
Ile Arg Gly Val Asn Arg His Glu His His Pro Leu His Gly Gln Val
325 330 335
Met Asp Glu Gln Thr Met Val Gln Asp Ile Leu Leu Met Lys Gln Asn
340 345 350
Asn Phe Asn Ala Val Arg Cys Ser His Tyr Pro Asn His Pro Leu Trp
355 360 365
Tyr Thr Leu Cys Asp Arg Tyr Gly Leu Tyr Val Val Asp Glu Ala Asn
370 375 380
Ile Glu Thr His Gly Met Val Pro Met Asn Arg Leu Thr Asp Asp Pro
385 390 395 400
Arg Trp Leu Pro Ala Met Ser Glu Arg Val Thr Arg Met Val Gln Arg
405 410 415
Asp Arg Asn His Pro Ser Val Ile Ile Trp Ser Leu Gly Asn Glu Ser
420 425 430
Gly His Gly Ala Asn His Asp Ala Leu Tyr Arg Trp Ile Lys Ser Val
435 440 445
Asp Pro Ser Arg Pro Val Gln Tyr Glu Gly Gly Gly Ala Asp Thr Thr
450 455 460
Ala Thr Asp Ile Ile Cys Pro Met Tyr Ala Arg Val Asp Glu Asp Gln
465 470 475 480
Pro Phe Pro Ala Val Pro Lys Trp Ser Ile Lys Lys Trp Leu Ser Leu
485 490 495
Pro Gly Glu Thr Arg Pro Leu Ile Leu Cys Glu Tyr Ala His Ala Met
500 505 510
Gly Asn Ser Leu Gly Gly Phe Ala Lys Tyr Trp Gln Ala Phe Arg Gln
515 520 525
Tyr Pro Arg Leu Gln Gly Gly Phe Val Trp Asp Trp Val Asp Gln Ser
530 535 540
Leu Ile Lys Tyr Asp Glu Asn Gly Asn Pro Trp Ser Ala Tyr Gly Gly
545 550 555 560
Asp Phe Gly Asp Thr Pro Asn Asp Arg Gln Phe Cys Met Asn Gly Leu
565 570 575
Val Phe Ala Asp Arg Thr Pro His Pro Ala Leu Thr Glu Ala Lys His
580 585 590
Gln Gln Gln Phe Phe Gln Phe Arg Leu Ser Gly Gln Thr Ile Glu Val
595 600 605
Thr Ser Glu Tyr Leu Phe Arg His Ser Asp Asn Glu Leu Leu His Trp
610 615 620
Met Val Ala Leu Asp Gly Lys Pro Leu Ala Ser Gly Glu Val Pro Leu
625 630 635 640
Asp Val Ala Pro Gln Gly Lys Gln Leu Ile Glu Leu Pro Glu Leu Pro
645 650 655
Gln Pro Glu Ser Ala Gly Gln Leu Trp Leu Thr Val Arg Val Val Gln
660 665 670
Pro Asn Ala Thr Ala Trp Ser Glu Ala Gly His Ile Ser Ala Trp Gln
675 680 685
Gln Trp Arg Leu Ala Glu Asn Leu Ser Val Thr Leu Pro Ala Ala Ser
690 695 700
His Ala Ile Pro His Leu Thr Thr Ser Glu Met Asp Phe Cys Ile Glu
705 710 715 720
Leu Gly Asn Lys Arg Trp Gln Phe Asn Arg Gln Ser Gly Phe Leu Ser
725 730 735
Gln Met Trp Ile Gly Asp Lys Lys Gln Leu Leu Thr Pro Leu Arg Asp
740 745 750
Gln Phe Thr Arg Ala Pro Leu Asp Asn Asp Ile Gly Val Ser Glu Ala
755 760 765
Thr Arg Ile Asp Pro Asn Ala Trp Val Glu Arg Trp Lys Ala Ala Gly
770 775 780
His Tyr Gln Ala Glu Ala Ala Leu Leu Gln Cys Thr Ala Asp Thr Leu
785 790 795 800
Ala Asp Ala Val Leu Ile Thr Thr Ala His Ala Trp Gln His Gln Gly
805 810 815
Lys Thr Leu Phe Ile Ser Arg Lys Thr Tyr Arg Ile Asp Gly Ser Gly
820 825 830
Gln Met Ala Ile Thr Val Asp Val Glu Val Ala Ser Asp Thr Pro His
835 840 845
Pro Ala Arg Ile Gly Leu Asn Cys Gln Leu Ala Gln Val Ala Glu Arg
850 855 860
Val Asn Trp Leu Gly Leu Gly Pro Gln Glu Asn Tyr Pro Asp Arg Leu
865 870 875 880
Thr Ala Ala Cys Phe Asp Arg Trp Asp Leu Pro Leu Ser Asp Met Tyr
885 890 895
Thr Pro Tyr Val Phe Pro Ser Glu Asn Gly Leu Arg Cys Gly Thr Arg
900 905 910
Glu Leu Asn Tyr Gly Pro His Gln Trp Arg Gly Asp Phe Gln Phe Asn
915 920 925
Ile Ser Arg Tyr Ser Gln Gln Gln Leu Met Glu Thr Ser His Arg His
930 935 940
Leu Leu His Ala Glu Glu Gly Thr Trp Leu Asn Ile Asp Gly Phe His
945 950 955 960
Met Gly Ile Gly Gly Asp Asp Ser Trp Ser Pro Ser Val Ser Ala Glu
965 970 975
Phe Gln Leu Ser Ala Gly Arg Tyr His Tyr Gln Leu Val Trp Cys Gln
980 985 990
Lys Arg Ser Asp Tyr Lys Asp Glu Asp Leu Asp His His His His His
995 1000 1005
His Arg
1010




3


6700


DNA


Unknown




pICAST ALC.





3
gacgtcggac ttatacccgg tttgtcctat agacaccatt cgtcaaggac ggggccgagt 60
cccggttctt gtctaccttg tcgacttata cccggtttgt cctatagaca ccattcgtca 120
aggacggggc cgagtcccgg ttcttgtcta ccaggggtct acgccaggtc gggagtcgtc 180
aaagatctct tggtagtcta caaaggtccc acggggttcc tggactttac tgggacacgg 240
aataaacttg attggttagt caagcgaaga gcgaagacaa gcgcgcgaag acgaggggct 300
cgagttattt tctcgggtgt tggggagtga gccccgcggt caggaggcta actgactcag 360
cgggcccatg ggcacatagg ttatttggga gaacgtcaac gtaggctgaa caccagagcg 420
acaaggaacc ctcccagagg agactcacta actgatgggc agtcgccccc agaaagtaaa 480
cccccgagca ggccctagcc ctctggggac gggtccctgg tggctgggtg gtggccctcc 540
gttcgaccgg tcgttgaata gacacagaca ggctaacaga tcacagatac tgactaaaat 600
acgcggacgc agccatgatc aatcgattga tcgagacata gaccgcctgg gcaccacctt 660
gactgctcaa gacttgtggg ccggcgttgg gaccctctgc agggtccctg aaacccccgg 720
caaaaacacc gggctggact ccttccctca gctacacctt aggctggggc agtcctatac 780
accaagacca tcctctgctc ttggattttg tcaagggcgg aggcagactt aaaaacgaaa 840
gccaaacctt ggcttcggcg cgcagaacag acgacgtcgt agcaagacac aacagagaca 900
gactgacaca aagacataaa cagactttta atcccggtct gacaatggtg agggaattca 960
aactggaatc cattgacctt tctacagctc gccgagcgag tgttggtcag ccatctacag 1020
ttcttctctg caacccaatg gaagacgaga cgtcttaccg gttggaaatt gcagcctacc 1080
ggcgctctgc cgtggaaatt ggctctggag tagtgggtcc aattctagtt ccagaaaagt 1140
ggaccgggcg tacctgtggg tctggtccag gggatgtagc actggaccct tcggaaccga 1200
aaactggggg gagggaccca gttcgggaaa catgtgggat tcggaggcgg aggagaagga 1260
ggtaggcggg gcagagaggg ggaacttgga ggagcaagct ggggcggagc taggagggaa 1320
ataggtcggg agtgaggaag agatccgcgg ccggcgagat cgggtaatta tgctgagtga 1380
tatcccgcta agcttagtcc ggaaccgcgc ggcctaggaa ttaattcgcg ttaaccctcc 1440
accgccatcg gagctctacc cgcactaatg cctaagtgac cggcagcacc gggcgtggct 1500
agcgggaagg gttgtcaatg cgtcggactt accgcttacc gcgaaacgga ccaaaggccg 1560
tggtcttcgc cacggccttt cgaccgacct cacgctagaa ggactccggc tatgacagca 1620
gcaggggagt ttgaccgtct acgtgccaat gctacgcggg tagatgtggt tgcactggat 1680
agggtaatgc cagttaggcg gcaaacaagg gtgcctctta ggctgcccaa caatgagcga 1740
gtgtaaatta caactacttt cgaccgatgt ccttccggtc tgcgcttaat aaaaactacc 1800
gcaattgagc cgcaaagtag acaccacgtt gcccgcgacc cagccaatgc cggtcctgtc 1860
agcaaacggc agacttaaac tggactcgcg taaaaatgcg cggcctcttt tggcggagcg 1920
ccactaccac gacgcgacct cactgccgtc aatagacctt ctagtcctat acaccgccta 1980
ctcgccgtaa aaggcactgc agagcaacga cgtatttggc tgatgtgttt agtcgctaaa 2040
ggtacaacgg tgagcgaaat tactactaaa gtcggcgcga catgacctcc gacttcaagt 2100
ctacacgccg ctcaacgcac tgatggatgc ccattgtcaa agaaataccg tcccactttg 2160
cgtccagcgg tcgccgtggc gcggaaagcc gccactttaa tagctactcg caccaccaat 2220
acggctagcg cagtgtgatg cagacttgca gcttttgggc tttgacacct cgcggcttta 2280
gggcttagag atagcacgcc accaacttga cgtgtggcgg ctgccgtgcg actaacttcg 2340
tcttcggacg ctacagccaa aggcgctcca cgcctaactt ttaccagacg acgacgactt 2400
gccgttcggc aacgactaag ctccgcaatt ggcagtgctc gtagtaggag acgtaccagt 2460
ccagtaccta ctcgtctgct accacgtcct ataggacgac tacttcgtct tgttgaaatt 2520
gcggcacgcg acaagcgtaa taggcttggt aggcgacacc atgtgcgaca cgctggcgat 2580
gccggacata caccacctac ttcggttata actttgggtg ccgtaccacg gttacttagc 2640
agactggcta ctaggcgcga ccgatggccg ctactcgctt gcgcattgcg cttaccacgt 2700
cgcgctagca ttagtgggct cacactagta gaccagcgac cccttactta gtccggtgcc 2760
gcgattagtg ctgcgcgaca tagcgaccta gtttagacag ctaggaaggg cgggccacgt 2820
catacttccg ccgcctcggc tgtggtgccg gtggctataa taaacgggct acatgcgcgc 2880
gcacctactt ctggtcggga agggccgaca cggctttacc aggtagtttt ttaccgaaag 2940
cgatggacct ctctgcgcgg gcgactagga aacgcttatg cgggtgcgct acccattgtc 3000
agaaccgcca aagcgattta tgaccgtccg caaagcagtc ataggggcaa atgtcccgcc 3060
gaagcagacc ctgacccacc tagtcagcga ctaatttata ctacttttgc cgttgggcac 3120
cagccgaatg ccgccactaa aaccgctatg cggcttgcta gcggtcaaga catacttgcc 3180
agaccagaaa cggctggcgt gcggcgtagg tcgcgactgc cttcgttttg tggtcgtcgt 3240
caaaaaggtc aaggcaaata ggcccgtttg gtagcttcac tggtcgctta tggacaaggc 3300
agtatcgcta ttgctcgagg acgtgaccta ccaccgcgac ctaccattcg gcgaccgttc 3360
gccacttcac ggagacctac agcgaggtgt tccatttgtc aactaacttg acggacttga 3420
tggcgtcggc ctctcgcggc ccgttgagac cgagtgtcat gcgcatcacg ttggcttgcg 3480
ctggcgtacc agtcttcggc ccgtgtagtc gcggaccgtc gtcaccgcag accgcctttt 3540
ggagtcacac tgcgaggggc ggcgcagggt gcggtagggc gtagactggt ggtcgcttta 3600
cctaaaaacg tagctcgacc cattattcgc aaccgttaaa ttggcggtca gtccgaaaga 3660
aagtgtctac acctaaccgc tattttttgt tgacgactgc ggcgacgcgc tagtcaagtg 3720
ggcacgtggc gacctattgc tgtaaccgca ttcacttcgc tgggcgtaac tgggattgcg 3780
gacccagctt gcgaccttcc gccgcccggt aatggtccgg cttcgtcgca acaacgtcac 3840
gtgccgtcta tgtgaacgac tacgccacga ctaatgctgg cgagtgcgca ccgtcgtagt 3900
ccccttttgg aataaatagt cggccttttg gatggcctaa ctaccatcac cagtttaccg 3960
ctaatggcaa ctacaacttc accgctcgct atgtggcgta ggccgcgcct aaccggactt 4020
gacggtcgac cgcgtccatc gtctcgccca tttgaccgag cctaatcccg gcgttctttt 4080
gatagggctg gcggaatgac ggcggacaaa actggcgacc ctagacggta acagtctgta 4140
catatggggc atgcagaagg gctcgctttt gccagacgcg acgccctgcg cgcttaactt 4200
aataccgggt gtggtcaccg cgccgctgaa ggtcaagttg tagtcggcga tgtcagttgt 4260
cgttgactac ctttggtcgg tagcggtaga cgacgtgcgc cttcttccgt gtaccgactt 4320
atagctggca aaggtatacc cctaaccacc gctgctgagg acctcgggca gtcatagccg 4380
ccttaaggtc gactcgcggc cagcgatggt aatggtcaac cagaccacag ttttttctag 4440
actgatattt ctactcctgg agctggtagt agtagtagta gtggccatta ttatccatct 4500
attcactgac taatctacgt aactagggag ctggttaagg ccaataaaag gtggtataac 4560
ggcagaaaac cgttacactc ccgggccttt ggaccgggac agaagaactg ctcgtaagga 4620
tccccagaaa ggggagagcg gtttccttac gttccagaca acttacagca cttccttcgt 4680
caaggagacc ttcgaagaac ttctgtttgt tgcagacatc gctgggaaac gtccgtcgcc 4740
ttggggggtg gaccgctgtc cacggagacg ccggttttcg gtgcacatat tctatgtgga 4800
cgtttccgcc gtgttggggt cacggtgcaa cactcaacct atcaacacct ttctcagttt 4860
accgagagga gttcgcataa gttgttcccc gacttcctac gggtcttcca tggggtaaca 4920
taccctagac tagaccccgg agccacgtgt acgaaatgta cacaaatcag ctccaatttt 4980
ttgcagatcc ggggggcttg gtgcccctgc accaaaagga aactttttgt gctactatta 5040
tggtactaac ttgttctacc taacgtgcgt ccaagaggcc ggcgaaccca cctctccgat 5100
aagccgatac tgacccgtgt tgtctgttag ccgacgagac tacggcggca caaggccgac 5160
agtcgcgtcc ccgcgggcca agaaaaacag ttctggctgg acaggccacg ggacttactt 5220
gacgtcctgc tccgtcgcgc cgatagcacc gaccggtgct gcccgcaagg aacgcgtcga 5280
cacgagctgc aacagtgact tcgcccttcc ctgaccgacg ataacccgct tcacggcccc 5340
gtcctagagg acagtagagt ggaacgagga cggctctttc ataggtagta ccgactacgt 5400
tacgccgccg acgtatgcga actaggccga tggacgggta agctggtggt tcgctttgta 5460
gcgtagctcg ctcgtgcatg agcctacctt cggccagaac agctagtcct actagacctg 5520
cttctcgtag tccccgagcg cggtcggctt gacaagcggt ccgagttccg cgcgtacggg 5580
ctgccgctcc tagagcagca ctgggtaccg ctacggacga acggcttata gtaccacctt 5640
ttaccggcga aaagacctaa gtagctgaca ccggccgacc cacaccgcct ggcgatagtc 5700
ctgtatcgca accgatgggc actataacga cttctcgaac cgccgcttac ccgactggcg 5760
aaggagcacg aaatgccata gcggcgaggg ctaagcgtcg cgtagcggaa gatagcggaa 5820
gaactgctca agaagactcg ccctgagacc ccaagcgtag ctattttatt ttctaaaata 5880
aatcagaggt ctttttcccc ccttactttc tggggtggac atccaaaccg ttcgatcgaa 5940
ttcattgcgg taaaacgttc cgtacctttt tatgtattga ctcttatctc ttcaagtcta 6000
gttccagtcc ttgtctacct tgtcgactta tacccggttt gtcctataga caccattcgt 6060
caaggacggg gccgagtccc ggttcttgtc taccttgtcg acttataccc ggtttgtcct 6120
atagacacca ttcgtcaagg acggggccga gtcccggttc ttgtctacca ggggtctacg 6180
ccaggtcggg agtcgtcaaa gatctcttgg tagtctacaa aggtcccacg gggttcctgg 6240
actttactgg gacacggaat aaacttgatt ggttagtcaa gcgaagagcg aagacaagcg 6300
cgcgaagacg aggggctcga gttattttct cgggtgttgg ggagtgagcc ccgcggtcag 6360
gaggctaact gactcagcgg gcccatgggc acataggtta tttgggagaa cgtcaacgta 6420
ggctgaacac cagagcgaca aggaaccctc ccagaggaga ctcactaact gatgggcagt 6480
cgcccccaga aagtaagtac gtcgtacata gttttaatta aaccaaaaaa aagaattcat 6540
aaatgtaatt taccggtatc aacgtaatta cttagccggt tgcgcgcccc tctccgccaa 6600
acgcataacc gcgagaaggc gaaggagcga gtgactgagc gacgcgagcc agcaagccga 6660
cgccgctcgc catagtcgag tgagtttccg ccattatgcc 6700




4


8518


DNA


Unknown




pICAST ALN.





4
ctgcagcctg aatatgggcc aaacaggata tctgtggtaa gcagttcctg ccccggctca 60
gggccaagaa cagatggaac agctgaatat gggccaaaca ggatatctgt ggtaagcagt 120
tcctgccccg gctcagggcc aagaacagat ggtccccaga tgcggtccag ccctcagcag 180
tttctagaga accatcagat gtttccaggg tgccccaagg acctgaaatg accctgtgcc 240
ttatttgaac taaccaatca gttcgcttct cgcttctgtt cgcgcgcttc tgctccccga 300
gctcaataaa agagcccaca acccgtcact cggggcgcca gtcctccgat tgactgagtc 360
gcccgggtac ccgtgtatcc aataaaccct cttgcagttg catccgactt gtggtctcgc 420
tgttccttgg gagggtctcc tctgagtgat tgactacccg tcagcggggg tctttcattt 480
gggggctcgt ccgggatcgg gagacccctg cccagggacc accgacccac caccgggagg 540
caagctggcc agcaacttat ctgtgtctgt ccgattgtct agtgtctatg actgatttta 600
tgcgcctgcg tcggtactag ttagctaact agctctgtat ctggcggacc cgtggtggaa 660
ctgacgagtt ctgaacaccc ggccgcaacc ctgggagacg tcccagggac tttgggggcc 720
gtttttgtgg cccgacctga ggaagggagt cgatgtggaa tccgaccccg tcaggatatg 780
tggttctggt aggagacgag aacctaaaac agttcccgcc tccgtctgaa tttttgcttt 840
cggtttggaa ccgaagccgc gcgtcttgtc tgctgcagca tcgttctgtg ttgtctctgt 900
ctgactgtgt ttctgtattt gtctgaaaat tagggccaga ctgttaccac tcccttaagt 960
ttgaccttag gtaactggaa agatgtcgag cggctcgctc acaaccagtc ggtagatgtc 1020
aagaagagac gttgggttac cttctgctct gcagaatggc caacctttaa cgtcggatgg 1080
ccgcgagacg gcacctttaa ccgagacctc atcacccagg ttaagatcaa ggtcttttca 1140
cctggcccgc atggacaccc agaccaggtc ccctacatcg tgacctggga agccttggct 1200
tttgaccccc ctccctgggt caagcccttt gtacacccta agcctccgcc tcctcttcct 1260
ccatccgccc cgtctctccc ccttgaacct cctcgttcga ccccgcctcg atcctccctt 1320
tatccagccc tcactccttc tctaggcgcc ggccgctcta gcccattaat acgactcact 1380
atagggcgat tcgaacacca tgcaccatca tcatcatcac gtcgactata aagatgagga 1440
cctcgagatg ggcgtgatta cggattcact ggccgtcgtg gcccgcaccg atcgcccttc 1500
ccaacagtta cgcagcctga atggcgaatg gcgctttgcc tggtttccgg caccagaagc 1560
ggtgccggaa agctggctgg agtgcgatct tcctgaggcc gatactgtcg tcgtcccctc 1620
aaactggcag atgcacggtt acgatgcgcc catctacacc aacgtgacct atcccattac 1680
ggtcaatccg ccgtttgttc ccacggagaa tccgacgggt tgttactcgc tcacatttaa 1740
tgttgatgaa agctggctac aggaaggcca gacgcgaatt atttttgatg gcgttaactc 1800
ggcgtttcat ctgtggtgca acgggcgctg ggtcggttac ggccaggaca gtcgtttgcc 1860
gtctgaattt gacctgagcg catttttacg cgccggagaa aaccgcctcg cggtgatggt 1920
gctgggctgg agtgacggca gttatctgga agatcaggat atgtggcgga tgagcggcat 1980
tttccgtgac gtctcgttgc tgcataaacc gactacacaa atcagcgatt tccatgttgc 2040
cactcgcttt aatgatgatt rcagccgcgc tgtactggag gctgaagttc agatgtgcgg 2100
cgagttgcgt gactacctac gggtaacagt ttctttatgg cagggtgaaa cgcaggtcgc 2160
cagcggcacc gcgcctttcg gcggtgaaat tatcgatgag cgtggtggtt atgccgatcg 2220
cgtcacacta cgtctgaacg tcgaaaaccc gaaactgtgg agcgccgaaa tcccgaatct 2280
ctatcgtgcg gtggttgaac tgcacaccgc cgacggcacg ctgattgaag cagaagcctg 2340
cgatgtcggt ttccgcgagg tgcggattga aaatggtctg ctgctgctga acggcaagcc 2400
gttgctgatt cgaggcgtta accgtcacga gcatcatcct ctgcatggtc aggtcatgga 2460
tgagcagacg atggtgcagg atatcctgct gatgaagcag aacaacttta acgccgtgcg 2520
ctgttcgcat tatccgaacc atccgctgtg gtacacgctg tgcgaccgct acggcctgta 2580
tgtggtggat gaagccaata ttgaaaccca cggcatggtg ccaatgaatc gtctgaccga 2640
tgatccgcgc tggctaccgg cgatgagcga acgcgtaacg cgaatggtgc agcgcgatcg 2700
taatcacccg agtgtgatca tctggtcgct ggggaatgaa tcaggccacg gcgctaatca 2760
cgacgcgctg tatcgctgga tcaaatctgt cgatccttcc cgcccggtgc agtatgaagg 2820
cggcggagcc gacaccacgg ccaccgatat tatttgcccg atgtacgcgc gcgtggatga 2880
agaccagccc ttcccggctg tgccgaaatg gtccatcaaa aaatggcttt cgctacctgg 2940
agagacgcgc ccgctgatcc tttgcgaata cgcccacgcg atgggtaaca gtcttggcgg 3000
tttcgctaaa tactggcagg cgtttcgtca gtatccccgt ttacagggcg gcttcgtctg 3060
ggactgggtg gatcagtcgc tgattaaata tgatgaaaac ggcaacccgt ggtcggctta 3120
cggcggtgat tttggcgata cgccgaacga tcgccagttc tgtatgaacg gtctggtctt 3180
tgccgaccgc acgccgcatc cagcgctgac ggaagcaaaa caccagcagc agtttttcca 3240
gttccgttta tccgggcaaa ccatcgaagt gaccagcgaa tacctgttcc gtcatagcga 3300
taacgagctc ctgcactgga tggtggcgct ggatggtaag ccgctggcaa gcggtgaagt 3360
gcctctggat gtcgctccac aaggtaaaca gttgattgaa ctgcctgaac taccgcagcc 3420
ggagagcgcc gggcaactct ggctcacagt acgcgtagtg caaccgaacg cgaccgcatg 3480
gtcagaagcc gggcacatca gcgcctggca gcagtggcgt ctggcggaaa acctcagtgt 3540
gacgctcccc gccgcgtccc acgccatccc gcatctgacc accagcgaaa tggatttttg 3600
catcgagctg ggtaataagc gttggcaatt taaccgccag tcaggctttc tttcacagat 3660
gtggattggc gataaaaaac aactgctgac gccgctgcgc gatcagttca cccgtgcacc 3720
gctggataac gacattggcg taagtgaagc gacccgcatt gaccctaacg cctgggtcga 3780
acgctggaag gcggcgggcc attaccaggc cgaagcagcg ttgttgcagt gcacggcaga 3840
tacacttgct gatgcggtgc tgattacgac cgctcacgcg tggcagcatc aggggaaaac 3900
cttatttatc agccggaaaa cctaccggat tgatggtagt ggtcaaatgg cgattaccgt 3960
tgatgttgaa gtggcgagcg atacaccgca tccggcgcgg attggcctga actgccagct 4020
ggcgcaggta gcagagcggg taaactggct cggattaggg ccgcaagaaa actatcccga 4080
ccgccttact gccgcctgtt ttgaccgctg ggatctgcca ttgtcagaca tgtatacccc 4140
gtacgtcttc ccgagcgaaa acggtctgcg ctgcgggacg cgcgaattga attatggccc 4200
acaccagtgg cgcggcgact tccagttcaa catcagccgc tacagtcaac agcaactgat 4260
ggaaaccagc catcgccatc tgctgcacgc ggaagaaggc acatggctga atatcgacgg 4320
tttccatatg gggattggtg gcgacgactc ctggagcccg tcagtatcgg cggaattcca 4380
gctgagcgcc ggtcgctacc attaccagtt ggtctggtgt caaaaaagat ctggaggtgg 4440
tggcagcagg ccttggcgcg ccggatcctt aattaacaat tgaccggtaa taataggtag 4500
ataagtgact gattagatgc attgatccct cgaccaattc cggttatttt ccaccatatt 4560
gccgtctttt ggcaatgtga gggcccggaa acctggccct gtcttcttga cgagcattcc 4620
taggggtctt tcccctctcg ccaaaggaat gcaaggtctg ttgaatgtcg tgaaggaagc 4680
agttcctctg gaagcttctt gaagacaaac aacgtctgta gcgacccttt gcaggcagcg 4740
gaacccccca cctggcgaca ggtgcctctg cggccaaaag ccacgtgtat aagatacacc 4800
tgcaaaggcg gcacaacccc agtgccacgt tgtgagttgg atagttgtgg aaagagtcaa 4860
atggctctcc tcaagcgtat tcaacaaggg gctgaaggat gcccagaagg taccccattg 4920
tatgggatct gatctggggc ctcggtgcac atgctttaca tgtgtttagt cgaggttaaa 4980
aaacgtctag gccccccgaa ccacggggac gtggttttcc tttgaaaaac acgatgataa 5040
taccatgatt gaacaagatg gattgcacgc aggttctccg gccgcttggg tggagaggct 5100
attcggctat gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct 5160
gtcagcgcag gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga 5220
actgcaggac gaggcagcgc ggctatcgtg gctggccacg acgggcgttc cttgcgcagc 5280
tgtgctcgac gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg 5340
gcaggatctc ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc 5400
aatgcggcgg ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca 5460
tcgcatcgag cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga 5520
cgaagagcat caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc 5580
cgacggcgag gatctcgtcg tgacccatgg cgatgcctgc ttgccgaata tcatggtgga 5640
aaatggccgc ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca 5700
ggacatagcg ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg 5760
cttcctcgtg ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct 5820
tcttgacgag ttcttctgag cgggactctg gggttcgcat cgataaaata aaagatttta 5880
tttagtctcc agaaaaaggg gggaatgaaa gaccccacct gtaggtttgg caagctagct 5940
taagtaacgc cattttgcaa ggcatggaaa aatacataac tgagaataga gaagttcaga 6000
tcaaggtcag gaacagatgg aacagctgaa tatgggccaa acaggatatc tgtggtaagc 6060
agttcctgcc ccggctcagg gccaagaaca gatggaacag ctgaatatgg gccaaacagg 6120
atatctgtgg taagcagttc ctgccccggc tcagggccaa gaacagatgg tccccagatg 6180
cggtccagcc ctcagcagtt tctagagaac catcagatgt ttccagggtg ccccaaggac 6240
ctgaaatgac cctgtgcctt atttgaacta accaatcagt tcgcttctcg cttctgttcg 6300
cgcgcttctg ctccccgagc tcaataaaag agcccacaac ccctcactcg gggcgccagt 6360
cctccgattg actgagtcgc ccgggtaccc gtgtatccaa taaaccctct tgcagttgca 6420
tccgacttgt ggtctcgctg ttccttggga gggtctcctc tgagtgattg actacccgtc 6480
agcgggggtc tttcattcat gcagcatgta tcaaaattaa tttggttttt tttcttaagt 6540
atttacatta aatggccata gttgcattaa tgaatcggcc aacgcgcggg gagaggcggt 6600
ttgcgtattg gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc 6660
tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg 6720
ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg 6780
ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac 6840
gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg 6900
gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct 6960
ttctcccttc gggaagcgtg gcgctttctc atagctcacg ctgtaggtat ctcagttcgg 7020
tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct 7080
gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac 7140
tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt 7200
tcttgaagtg gtggcctaac tacggctaca ctagaagaac agtatttggt atctgcgctc 7260
tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca 7320
ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat 7380
ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac 7440
gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc cttttgcggc 7500
cgcaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc 7560
agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc 7620
gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata 7680
ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg 7740
gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc 7800
cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct 7860
acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa 7920
cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt 7980
cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca 8040
ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac 8100
tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca 8160
atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt 8220
tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc 8280
actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca 8340
aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata 8400
ctcatactct tcctttttca atattattga agcatttatc agggttattg tctcatgagc 8460
ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttc 8518




5


8518


DNA


Unknown




pICAST ALN.





5
gacgtcggac ttatacccgg tttgtcctat agacaccatt cgtcaaggac ggggccgagt 60
cccggttctt gtctaccttg tcgacttata cccggtttgt cctatagaca ccattcgtca 120
aggacggggc cgagtcccgg ttcttgtcta ccaggggtct acgccaggtc gggagtcgtc 180
aaagatctct tggtagtcta caaaggtccc acggggttcc tggactttac tgggacacgg 240
aataaacttg attggttagt caagcgaaga gcgaagacaa gcgcgcgaag acgaggggct 300
cgagttattt tctcgggtgt tggggagtga gccccgcggt caggaggcta actgactcag 360
cgggcccatg ggcacatagg ttatttggga gaacgtcaac gtaggctgaa caccagagcg 420
acaaggaacc ctcccagagg agactcacta actgatgggc agtcgccccc agaaagtaaa 480
cccccgagca ggccctagcc ctctggggac gggtccctgg tggctgggtg gtggccctcc 540
gttcgaccgg tcgttgaata gacacagaca ggctaacaga tcacagatac tgactaaaat 600
acgcggacgc agccatgatc aatcgattga tcgagacata gaccgcctgg gcaccacctt 660
gactgctcaa gacttgtggg ccggcgttgg gaccctctgc agggtccctg aaacccccgg 720
caaaaacacc gggctggact ccttccctca gctacacctt aggctggggc agtcctatac 780
accaagacca tcctctgctc ttggattttg tcaagggcgg aggcagactt aaaaacgaaa 840
gccaaacctt ggcttcggcg cgcagaacag acgacgtcgt agcaagacac aacagagaca 900
gactgacaca aagacataaa cagactttta atcccggtct gacaatggtg agggaattca 960
aactggaatc cattgacctt tctacagctc gccgagcgag tgttggtcag ccatctacag 1020
ttcttctctg caacccaatg gaagacgaga cgtcttaccg gttggaaatt gcagcctacc 1080
ggcgctctgc cgtggaaatt ggctctggag tagtgggtcc aattctagtt ccagaaaagt 1140
ggaccgggcg tacctgtggg tctggtccag gggatgtagc actggaccct tcggaaccga 1200
aaactggggg gagggaccca gttcgggaaa catgtgggat tcggaggcgg aggagaagga 1260
ggtaggcggg gcagagaggg ggaacttgga ggagcaagct ggggcggagc taggagggaa 1320
ataggtcggg agtgaggaag agatccgcgg ccggcgagat cgggtaatta tgctgagtga 1380
tatcccgcta agcttgtggt acgtggtagt agtagtagtg cagctgatat ttctactcct 1440
ggagctctac ccgcactaat gcctaagtga ccggcagcac cgggcgtggc tagcgggaag 1500
ggttgtcaat gcgtcggact taccgcttac cgcgaaacgg accaaaggcc gtggtcttcg 1560
ccacggcctt tcgaccgacc tcacgctaga aggactccgg ctatgacagc agcaggggag 1620
tttgaccgtc tacgtgccaa tgctacgcgg gtagatgtgg ttgcactgga tagggtaatg 1680
ccagttaggc ggcaaacaag ggtgcctctt aggctgccca acaatgagcg agtgtaaatt 1740
acaactactt tcgaccgatg tccttccggt ctgcgcttaa taaaaactac cgcaattgag 1800
ccgcaaagta gacaccacgt tgcccgcgac ccagccaatg ccggtcctgt cagcaaacgg 1860
cagacttaaa ctggactcgc gtaaaaatgc gcggcctctt ttggcggagc gccactacca 1920
cgacgcgacc tcactgccgt caatagacct tctagtccta tacaccgcct actcgccgta 1980
aaaggcactg cagagcaacg acgtatttgg ctgatgtgtt tagtcgctaa aggtacaacg 2040
gtgagcgaaa ttactactaa agtcggcgcg acatgacctc cgacttcaag tctacacgcc 2100
gctcaacgca ctgatggatg cccattgtca aagaaatacc gtcccacttt gcgtccagcg 2160
gtcgccgtgg cgcggaaagc cgccacttta atagctactc gcaccaccaa tacggctagc 2220
gcagtgtgat gcagacttgc agcttttggg ctttgacacc tcgcggcttt agggcttaga 2280
gatagcacgc caccaacttg acgtgtggcg gctgccgtgc gactaacttc gtcttcggac 2340
gctacagcca aaggcgctcc acgcctaact tttaccagac gacgacgact tgccgttcgg 2400
caacgactaa gctccgcaat tggcagtgct cgtagtagga gacgtaccag tccagtacct 2460
actcgtctgc taccacgtcc tataggacga ctacttcgtc ttgttgaaat tgcggcacgc 2520
gacaagcgta ataggcttgg taggcgacac catgtgcgac acgctggcga tgccggacat 2580
acaccaccta cttcggttat aactttgggt gccgtaccac ggttacttag cagactggct 2640
actaggcgcg accgatggcc gctactcgct tgcgcattgc gcttaccacg tcgcgctagc 2700
attagtgggc tcacactagt agaccagcga ccccttactt agtccggtgc cgcgattagt 2760
gctgcgcgac atagcgacct agtttagaca gctaggaagg gcgggccacg tcatacttcc 2820
gccgcctcgg ctgtggtgcc ggtggctata ataaacgggc tacatgcgcg cgcacctact 2880
tctggtcggg aagggccgac acggctttac caggtagttt tttaccgaaa gcgatggacc 2940
tctctgcgcg ggcgactagg aaacgcttat gcgggtgcgc tacccattgt cagaaccgcc 3000
aaagcgattt atgaccgtcc gcaaagcagt cataggggca aatgtcccgc cgaagcagac 3060
cctgacccac ctagtcagcg actaatttat actacttttg ccgttgggca ccagccgaat 3120
gccgccacta aaaccgctat gcggcttgct agcggtcaag acatacttgc cagaccagaa 3180
acggctggcg tgcggcgtag gtcgcgactg ccttcgtttt gtggtcgtcg tcaaaaaggt 3240
caaggcaaat aggcccgttt ggtagcttca ctggtcgctt atggacaagg cagtatcgct 3300
attgctcgag gacgtgacct accaccgcga cctaccattc ggcgaccgtt cgccacttca 3360
cggagaccta cagcgaggtg ttccatttgt caactaactt gacggacttg atggcgtcgg 3420
cctctcgcgg cccgttgaga ccgagtgtca tgcgcatcac gttggcttgc gctggcgtac 3480
cagtcttcgg cccgtgtagt cgcggaccgt cgtcaccgca gaccgccttt tggagtcaca 3540
ctgcgagggg cggcgcaggg tgcggtaggg cgtagactgg tggtcgcttt acctaaaaac 3600
gtagctcgac ccattattcg caaccgttaa attggcggtc agtccgaaag aaagtgtcta 3660
cacctaaccg ctattttttg ttgacgactg cggcgacgcg ctagtcaagt gggcacgtgg 3720
cgacctattg ctgtaaccgc attcacttcg ctgggcgtaa ctgggattgc ggacccagct 3780
tgcgaccttc cgccgcccgg taatggtccg gcttcgtcgc aacaacgtca cgtgccgtct 3840
atgtgaacga ctacgccacg actaatgctg gcgagtgcgc accgtcgtag tccccttttg 3900
gaataaatag tcggcctttt ggatggccta actaccatca ccagtttacc gctaatggca 3960
actacaactt caccgctcgc tatgtggcgt aggccgcgcc taaccggact tgacggtcga 4020
ccgcgtccat cgtctcgccc atttgaccga gcctaatccc ggcgttcttt tgatagggct 4080
ggcggaatga cggcggacaa aactggcgac cctagacggt aacagtctgt acatatgggg 4140
catgcagaag ggctcgcttt tgccagacgc gacgccctgc gcgcttaact taataccggg 4200
tgtggtcacc gcgccgctga aggtcaagtt gtagtcggcg atgtcagttg tcgttgacta 4260
cctttggtcg gtagcggtag acgacgtgcg ccttcttccg tgtaccgact tatagctgcc 4320
aaaggtatac ccctaaccac cgctgctgag gacctcgggc agtcatagcc gccttaaggt 4380
cgactcgcgg ccagcgatgg taatggtcaa ccagaccaca gttttttcta gacctccacc 4440
accgtcgtcc ggaaccgcgc ggcctaggaa ttaattgtta actggccatt attatccatc 4500
tattcactga ctaatctacg taactaggga gctggttaag gccaataaaa ggtggtataa 4560
cggcagaaaa ccgttacact cccgggcctt tggaccggga cagaagaact gctcgtaagg 4620
atccccagaa aggggagagc ggtttcctta cgttccagac aacttacagc acttccttcg 4680
tcaaggagac cttcgaagaa cttctgtttg ttgcagacat cgctgggaaa cgtccgtcgc 4740
cttggggggt ggaccgctgt ccacggagac gccggttttc ggtgcacata ttctatgtgg 4800
acgtttccgc cgtgttgggg tcacggtgca acactcaacc tatcaacacc tttctcagtt 4860
taccgagagg agttcgcata agttgttccc cgacttccta cgggtcttcc atggggtaac 4920
ataccctaga ctagaccccg gagccacgtg tacgaaatgt acacaaatca gctccaattt 4980
tttgcagatc cggggggctt ggtgcccctg caccaaaagg aaactttttg tgctactatt 5040
atggtactaa cttgttctac ctaacgtgcg tccaagaggc cggcgaaccc acctctccga 5100
taagccgata ctgacccgtg ttgtctgtta gccgacgaga ctacggcggc acaaggccga 5160
cagtcgcgtc cccgcgggcc aagaaaaaca gttctggctg gacaggccac gggacttact 5220
tgacgtcctg ctccgtcgcg ccgatagcac cgaccggtgc tgcccgcaag gaacgcgtcg 5280
acacgagctg caacagtgac ttcgcccttc cctgaccgac gataacccgc ttcacggccc 5340
cgtcctagag gacagtagag tggaacgagg acggctcttt cataggtagt accgactacg 5400
ttacgccgcc gacgtatgcg aactaggccg atggacgggt aagctggtgg ttcgctttgt 5460
agcgtagctc gctcgtgcat gagcctacct tcggccagaa cagctagtcc tactagacct 5520
gcttctcgta gtccccgagc gcggtcggct tgacaagcgg tccgagttcc gcgcgtacgg 5580
gctgccgctc ctagagcagc actgggtacc gctacggacg aacggcttat agtaccacct 5640
tttaccggcg aaaagaccta agtagctgac accggccgac ccacaccgcc tggcgatagt 5700
cctgtatcgc aaccgatggg cactataacg acttctcgaa ccgccgctta cccgactggc 5760
gaaggagcac gaaatgccat agcggcgagg gctaagcgtc gcgtagcgga agatagcgga 5820
agaactgctc aagaagactc gccctgagac cccaagcgta gctattttat tttctaaaat 5880
aaatcagagg tctttttccc cccttacttt ctggggtgga catccaaacc gttcgatcga 5940
attcattgcg gtaaaacgtt ccgtaccttt ttatgtattg actcttatct cttcaagtct 6000
agttccagtc cttgtctacc ttgtcgactt atacccggtt tgtcctatag acaccattcg 6060
tcaaggacgg ggccgagtcc cggttcttgt ctaccttgtc gacttatacc cggtttgtcc 6120
tatagacacc attcgtcaag gacggggccg agtcccggtt cttgtctacc aggggtctac 6180
gccaggtcgg gagtcgtcaa agatctcttg gtagtctaca aaggtcccac ggggttcctg 6240
gactttactg ggacacggaa taaacttgat tggttagtca agcgaagagc gaagacaagc 6300
gcgcgaagac gaggggctcg agttattttc tcgggtgttg gggagtgagc cccgcggtca 6360
ggaggctaac tgactcagcg ggcccatggg cacataggtt atttgggaga acgtcaacgt 6420
aggctgaaca ccagagcgac aaggaaccct cccagaggag actcactaac tgatgggcag 6480
tcgcccccag aaagtaagta cgtcgtacat agttttaatt aaaccaaaaa aaagaattca 6540
taaatgtaat ttaccggtat caacgtaatt acttagccgg ttgcgcgccc ctctccgcca 6600
aacgcataac cgcgagaagg cgaaggagcg agtgactgag cgacgcgagc cagcaagccg 6660
acgccgctcg ccatagtcga gtgagtttcc gccattatgc caataggtgt cttagtcccc 6720
tattgcgtcc tttcttgtac actcgttttc cggtcgtttt ccggtccttg gcatttttcc 6780
ggcgcaacga ccgcaaaaag gtatccgagg cggggggact gctcgtagtg tttttagctg 6840
cgagttcagt ctccaccgct ttgggctgtc ctgatatttc tatggtccgc aaagggggac 6900
cttcgaggga gcacgcgaga ggacaaggct gggacggcga atggcctatg gacaggcgga 6960
aagagggaag cccttcgcac cgcgaaagag tatcgagtgc gacatccata gagtcaagcc 7020
acatccagca agcgaggttc gacccgacac acgtgcttgg ggggcaagtc gggctggcga 7080
cgcggaatag gccattgata gcagaactca ggttgggcca ttctgtgctg aatagcggtg 7140
accgtcgtcg gtgaccattg tcctaatcgt ctcgctccat acatccgcca cgatgtctca 7200
agaacttcac caccggattg atgccgatgt gatcttcttg tcataaacca tagacgcgag 7260
acgacttcgg tcaatggaag cctttttctc aaccatcgag aactaggccg tttgtttggt 7320
ggcgaccatc gccaccaaaa aaacaaacgt tcgtcgtcta atgcgcgtct ttttttccta 7380
gagttcttct aggaaactag aaaagatgcc ccagactgcg agtcaccttg cttttgagtg 7440
caattcccta aaaccagtac tctaatagtt tttcctagaa gtggatctag gaaaacgccg 7500
gcgtttagtt agatttcata tatactcatt tgaaccagac tgtcaatggt tacgaattag 7560
tcactccgtg gatagagtcg ctagacagat aaagcaagta ggtatcaacg gactgagggg 7620
cagcacatct attgatgcta tgccctcccg aatggtagac cggggtcacg acgttactat 7680
ggcgctctgg gtgcgagtgg ccgaggtcta aatagtcgtt atttggtcgg tcggccttcc 7740
cggctcgcgt cttcaccagg acgttgaaat aggcggaggt aggtcagata attaacaacg 7800
gcccttcgat ctcattcatc aagcggtcaa ttatcaaacg cgttgcaaca acggtaacga 7860
tgtccgtagc accacagtgc gagcagcaaa ccataccgaa gtaagtcgag gccaagggtt 7920
gctagttccg ctcaatgtac tagggggtac aacacgtttt ttcgccaatc gaggaagcca 7980
ggaggctagc aacagtcttc attcaaccgg cgtcacaata gtgagtacca ataccgtcgt 8040
gacgtattaa gagaatgaca gtacggtagg cattctacga aaagacactg accactcatg 8100
agttggttca gtaagactct tatcacatac gccgctggct caacgagaac gggccgcagt 8160
tatgccctat tatggcgcgg tgtatcgtct tgaaattttc acgagtagta accttttgca 8220
agaagccccg cttttgagag ttcctagaat ggcgacaact ctaggtcaag ctacattggg 8280
tgagcacgtg ggttgactag aagtcgtaga aaatgaaagt ggtcgcaaag acccactcgt 8340
ttttgtcctt ccgttttacg gcgttttttc ccttattccc gctgtgcctt tacaacttat 8400
gagtatgaga aggaaaaagt tataataact tcgtaaatag tcccaataac agagtactcg 8460
cctatgtata aacttacata aatcttttta tttgtttatc cccaaggcgc gtgtaaag 8518




6


8175


DNA


Unknown




pICAST OMC.





6
ctgcagcctg aatatgggcc aaacaggata tctgtggtaa gcagttcctg ccccggctca 60
gggccaagaa cagatggaac agctgaatat gggccaaaca ggatatctgt ggtaagcagt 120
tcctgccccg gctcagggcc aagaacagat ggtccccaga tgcggtccag ccctcagcag 180
tttctagaga accatcagat gtttccaggg tgccccaagg acctgaaatg accctgtgcc 240
ttatttgaac taaccaatca gttcgcttct cgcttctgtt cgcgcgcttc tgctccccga 300
gctcaataaa agagcccaca acccctcact cggggcgcca gtcctccgat tgactgagtc 360
gcccgggtac ccgtgtatcc aataaaccct cttgcagttg catccgactt gtggtctcgc 420
tgttccttgg gaggytctcc tctgagtgat tgactacccg tcagcggggg tctttcattt 480
gggggctcgt ccgggatcgg gagacccctg cccagggacc accgacccac caccgggagg 540
caagctggcc agcaacttat ctgtgtctgt ccgattgtct agtgtctatg actgatttta 600
tgcgcctgcg tcggtactag ttagctaact agctctgtat ctggcggacc cgtggtggaa 660
ctgacgagtt ctgaacaccc ggccgcaacc ctgggagacg tcccagggac tttgggggcc 720
gtttttgtgg cccgacctga ggaagggagt cgatgtggaa tccgaccccg tcaggatatg 780
tggttctggt aggagacgag aacctaaaac agttcccgcc tccgtctgaa tttttgcttt 840
cggtttggaa ccgaagccgc gcgtcttgtc tgctgcagca tcgttctgtg ttgtctctgt 900
ctgactgtgt ttctgtattt gtctgaaaat tagggccaga ctgttaccac tcccttaagt 960
ttgaccttag gtaactggaa agatgtcgag cggctcgctc acaaccagtc ggtagatgtc 1020
aagaagagac gttgggttac cttctgctct gcagaatggc caacctttaa cgtcggatgg 1080
ccgcgagacg gcacctttaa ccgagacctc atcacccagg ttaagatcaa ggtcttttca 1140
cctggcccgc atggacaccc agaccaggtc ccctacatcg tgacctggga agccttggct 1200
tttgaccccc ctccctgggt caagcccttt gtacacccta agcctccgcc tcctcttcct 1260
ccatccgccc cgtctctccc ccttgaacct cctcgttcga ccccgcctcg atcctccctt 1320
tatccagccc tcactccttc tctaggcgcc ggccgctcta gcccattaat acgactcact 1380
atagggcgat tcgaatcagg ccttggcgcg ccggatcctt aattaagcgc aattgggagg 1440
tggcggtagc ctcgagatgg gcgtgattac ggattcactg gccgtcgttt tacaacgtcg 1500
tgactgggaa aaccctggcg ttacccaact taatcgcctt gcagcacatc cccctttcgc 1560
cagctggcgt aatagcgaag aggcccgcac cgatcgccct tcccaacagt tacgcagcct 1620
gaatggcgaa tggcgctttg cctggtttcc ggcaccagaa gcggtgccgg aaagctggct 1680
ggagtgcgat cttcctgagg ccgatactgt cgtcgtcccc tcaaactggc agatgcacgg 1740
ttacgatgcg cccatctaca ccaacgtgac ctatcccatt acggtcaatc cgccgtttgt 1800
tcccacggag aatccgacgg gttgttactc gctcacattt aatgttgatg aaagctggct 1860
acaggaaggc cagacgcgaa ttatttttga tggcgttaac tcggcgtttc atctgtggtg 1920
caacgggcgc tgggtcggtt acggccagga cagtcgtttg ccgtctgaat ttgacctgag 1980
cgcattttta cgcgccggag aaaaccgcct cgcggtgatg gtgctgcgct ggagtgacgg 2040
cagttatctg gaagatcagg atatgtggcg gatgagcggc attttccgtg acgtctcgtt 2100
gctgcataaa ccgactacac aaatcagcga tttccatgtt gccactcgct ttaatgatga 2160
tttcagccgc gctgtactgg aggctgaagt tcagatgtgc ggcgagttgc gtgactacct 2220
acgggtaaca gtttctttat ggcagggtga aacgcaggtc gccagcggca ccgcgccttt 2280
cggcggtgaa attatcgatg agcgtggtgg ttatgccgat cgcgtcacac tacgtctgaa 2340
cgtcgaaaac ccgaaactgt ggagcgccga aatcccgaat ctctatcgtg cggtggttga 2400
actgcacacc gccgacggca cgctgattga agcagaagcc tgcgatgtcg gtttccgcga 2460
ggtgcggatt gaaaatggtc tgctgctgct gaacggcaag ccgttgctga ttcgaggcgt 2520
taaccgtcac gagcatcatc ctctgcatgg tcaggtcatg gatgagcaga cgatggtgca 2580
ggatatcctg ctgatgaagc agaacaactt taacgccgtg cgctgttcgc attatccgaa 2640
ccatccgctg tggtacacgc tgtgcgaccg ctacggcctg tatgtggtgg atgaagccaa 2700
tattgaaacc cacggcatgg tgccaatgaa tcgtctgacc gatgatccgc gctggctacc 2760
ggcgatgagc gaacgcgtaa cgcgaatggt gcagcgcgat cgtaatcacc cgagtgtgat 2820
catctggtcg ctggggaatg aatcaggcca cggcgctaat cacgacgcgc tgtatcgctg 2880
gatcaaatct gtcgatcctt cccgcccggt gcagtatgaa ggcggcggag ccgacaccac 2940
ggccaccgat attatttgcc cgatgtacgc gcgcgtggat gaagaccagc ccttcccggc 3000
tgtgccgaaa tggtccatca aaaaatggct ttcgctacct ggagagacgc gcccgctgat 3060
cctttgcgaa tacgcccacg cgatgggtaa cagtcttggc ggtttcgcta aatactggca 3120
ggcgtttcgt cagtatcccc gtttacaggg cggcttcgtc tgggactggg tggatcagtc 3180
gctgattaaa tatgatgaaa acggcaaccc gtggtcggct tacggcggtg attttggcga 3240
tacgccgaac gatcgccagt tctgtatgaa cggtctggtc tttgccgacc gcacgccgca 3300
tccagcgctg acggaagcaa aacaccagca gcagtttttc cagttccgtt tatccgggca 3360
aaccatcgaa gtgaccagcg aatacctgtt ccgtcatagc gataacgagc tcctgcactg 3420
gatggtggcg ctggatggta agccgctggc aagcggtgaa gtgcctctgg atgtcgctcc 3480
acaaggtaaa cagttgattg aactgcctga actaccgcag ccggagagcg ccgggcaact 3540
ctggctcaca gtacgcgtag tgcaaccgaa cgcgaccgca tggtcagaag ccgggcacat 3600
cagcgcctgg cagcagtggc gtctggcgga aaacctcagt gtgacgctcc ccgccgcgtc 3660
ccacgccatc ccgcatctga ccaccagcga aatggatttt tgcatcgagc tgggtaataa 3720
gcgttggcaa tttaaccgcc agtcaggctt tctttcacag atgtggattg gcgataaaaa 3780
acaactgctg acgccgctgc gcgatcagtt cacccgtgtc gatagatctg aacagaaact 3840
catttccgaa gaagacctag tcgaccatca tcatcatcat caccggtaat aataggtaga 3900
taagtgactg attagatgca tttcgactag atccctcgac caattccggt tattttccac 3960
catattgccg tcttttggca atgtgagggc ccggaaacct ggccctgtct tcttgacgag 4020
cattcctagg ggtctttccc ctctcgccaa aggaatgcaa ggtctgttga atgtcgtgaa 4080
ggaagcagtt cctctggaag cttcttgaag acaaacaacg tctgtagcga ccctttgcag 4140
gcagcggaac cccccacctg gcgacaggtg cctctgcggc caaaagccac gtgtataaga 4200
tacacctgca aaggcggcac aaccccagtg ccacgttgtg agttggatag ttgtggaaag 4260
agtcaaatgg ctctcctcaa gcgtattcaa caaggggctg aaggatgccc agaaggtacc 4320
ccattgtatg ggatctgatc tggggcctcg gtgcacatgc tttacatgtg tttagtcgag 4380
gttaaaaaac gtctaggccc cccgaaccac ggggacgtgg ttttcctttg aaaaacacga 4440
tgataatacc atgaaaaagc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga 4500
aaagttcgac agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt 4560
cagcttcgat gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt 4620
ctacaaagat cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt 4680
gcttgacatt ggggaattta gcgagagcct gacctattgc atctcccgcc gtgcacaggg 4740
tgtcacgttg caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga 4800
ggccatggat gcgatcgctg cggccgatct tagccagacg agcgggttcg gcccattcgg 4860
accgcaagga atcggtcaat acactacatg gcgtgatttc atatgcgcga ttgctgatcc 4920
ccatgtgtat cactggcaaa ctgtgatgga cgacaccgtc agtgcgtccg tcgcgcaggc 4980
tctcgatgag ctgatgcttt gggccgagga ctgccccgaa gtccggcacc tcgtgcacgc 5040
ggatttcggc tccaacaatg tcctgacgga caatggccgc ataacagcgg tcattgactg 5100
gagcgaggcg atgttcgggg attcccaata cgaggtcgcc aacatcttct tctggaggcc 5160
gtggttggct tgtatggagc agcagacgcg ctacttcgag cggaggcatc cggagcttgc 5220
aggatcgccg cggctccggg cgtatatgct ccgcattggt cttgaccaac tctatcagag 5280
cttggttgac ggcaatttcg atgatgcagc ttgggcgcag ggtcgatgcg acgcaatcgt 5340
ccgatccgga gccgggactg tcgggcgtac acaaatcgcc cgcagaagcg cggccgtctg 5400
gaccgatggc tgtgtagaag tactcgccga tagtggaaac cgacgcccca gcactcgtcc 5460
gagggcaaag gaatagagta gatgccgacc gggatctatc gataaaataa aagattttat 5520
ttagtctcca gaaaaagggg ggaatgaaag accccacctg taggtttggc aagctagctt 5580
aagtaacgcc attttgcaag gcatggaaaa atacataact gagaatagag aagttcagat 5640
caaggtcagg aacagatgga acagctgaat atgggccaaa caggatatct gtggtaagca 5700
gttcctgccc cggctcaggg ccaagaacag atggaacagc tgaatatggg ccaaacagga 5760
tatctgtggt aagcagttcc tgccccggct cagggccaag aacagatggt ccccagatgc 5820
ggtccagccc tcagcagttt ctagagaacc atcagatgtt tccagggtgc cccaaggacc 5880
tgaaatgacc ctgtgcctta tttgaactaa ccaatcagtt cgcttctcgc ttctgttcgc 5940
gcgcttctgc tccccgagct caataaaaga gcccacaacc cctcactcgg ggcgccagtc 6000
ctccgattga ctgagtcgcc cgggtacccg tgtatccaat aaaccctctt gcagttgcat 6060
ccgacttgtg gtctcgctgt tccttgggag ggtctcctct gagtgattga ctacccgtca 6120
gcgggggtct ttcattcatg cagcatgtat caaaattaat ttggtttttt ttcttaagta 6180
tttacattaa atggccatag ttgcattaat gaatcggcca acgcgcgggg agaggcggtt 6240
tgcgtattgg cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct 6300
gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga 6360
taacgcagga aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc 6420
cgcgttgctg gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg 6480
ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg 6540
aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt 6600
tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt 6660
gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg 6720
cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact 6780
ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt 6840
cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct 6900
gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac 6960
cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc 7020
tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg 7080
ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta 7140
aaaatgaagt ttgcggccgc aaatcaatct aaagtatata tgagtaaact tggtctgaca 7200
gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 7260
tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 7320
ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 7380
accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 7440
agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 7500
acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 7560
tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 7620
cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 7680
tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 7740
ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 7800
gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 7860
tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 7920
ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 7980
gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 8040
cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 8100
gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 8160
ttccgcgcac atttc 8175




7


8175


DNA


Unknown




pICAST OMC.





7
gacgtcggac ttatacccgg tttgtcctat agacaccatt cgtcaaggac ggggccgagt 60
cccggttctt gtctaccttg tcgacttata cccggtttgt cctatagaca ccattcgtca 120
aggacggggc cgagtcccgg ttcttgtcta ccaggggtct acgccaggtc gggagtcgtc 180
aaagatctct tggtagtcta caaaggtccc acggggttcc tggactttac tgggacacgg 240
aataaacttg attggttagt caagcgaaga gcgaagacaa gcgcgcgaag acgaggggct 300
cgagttattt tctcgggtgt tggggagtga gccccgcggt caggaggcta actgactcag 360
cgggcccatg ggcacatagg ttatttggga gaacgtcaac gtaggctgaa caccagagcg 420
acaaggaacc ctcccagagg agactcacta actgatgggc agtcgccccc agaaagtaaa 480
cccccgagca ggccctagcc ctctggggac gggtccctgg tggctgggtg gtggccctcc 540
gttcgaccgg tcgttgaata gacacagaca ggctaacaga tcacagatac tgactaaaat 600
acgcggacgc agccatgatc aatcgattga tcgagacata gaccgcctgg gcaccacctt 660
gactgctcaa gacttgtggg ccggcgttgg gaccctctgc agggtccctg aaacccccgg 720
caaaaacacc gggctggact ccttccctca gctacacctt aggctggggc agtcctatac 780
accaagacca tcctctgctc ttggattttg tcaagggcgg aggcagactt aaaaacgaaa 840
gccaaacctt ggcttcggcg cgcagaacag acgacgtcgt agcaagacac aacagagaca 900
gactgacaca aagacataaa cagactttta atcccggtct gacaatggtg agggaattca 960
aactggaatc cattgacctt tctacagctc gccgagcgag tgttggtcag ccatctacag 1020
ttcttctctg caacccaatg gaagacgaga cgtcttaccg gttggaaatt gcagcctacc 1080
ggcgctctgc cgtggaaatt ggctctggag tagtgggtcc aattctagtt ccagaaaagt 1140
ggaccgggcg tacctgtggg tctggtccag gggatgtagc actggaccct tcggaaccga 1200
aaactggggg gagggaccca gttcgggaaa catgtgggat tcggaggcgg aggagaagga 1260
ggtaggcggg gcagagaggg ggaacttgga ggagcaagct ggggcggagc taggagggaa 1320
ataggtcggg agtgaggaag agatccgcgg ccggcgagat cgggtaatta tgctgagtga 1380
tatcccgcta agcttagtcc ggaaccgcgc ggcctaggaa ttaattcgcg ttaaccctcc 1440
accgccatcg gagctctacc cgcactaatg cctaagtgac cggcagcaaa atgttgcagc 1500
actgaccctt ttgggaccgc aatgggttga attagcggaa cgtcgtgtag ggggaaagcg 1560
gtcgaccgca ttatcgcttc tccgggcgtg gctagcggga agggttgtca atgcgtcgga 1620
cttaccgctt accgcgaaac ggaccaaagg ccgtggtctt cgccacggcc tttcgaccga 1680
cctcacgcta gaaggactcc ggctatgaca gcagcagggg agtttgaccg tctacgtgcc 1740
aatgctacgc gggtagatgt ggttgcactg gatagggtaa tgccagttag gcggcaaaca 1800
agggtgcctc ttaggctgcc caacaatgag cgagtgtaaa ttacaactac tttcgaccga 1860
tgtccttccg gtctgcgctt aataaaaact accgcaattg agccgcaaag tagacaccac 1920
gttgcccgcg acccagccaa tgccggtcct gtcagcaaac ggcagactta aactggactc 1980
gcgtaaaaat gcgcggcctc ttttggcgga gcgccactac cacgacgcga cctcactgcc 2040
gtcaatagac cttctagtcc tatacaccgc ctactcgccg taaaaggcac tgcagagcaa 2100
cgacgtattt ggctgatgtg tttagtcgct aaaggtacaa cggtgagcga aattactact 2160
aaagtcggcg cgacatgacc tccgacttca agtctacacg ccgctcaacg cactgatgga 2220
tgcccattgt caaagaaata ccgtcccact ttgcgtccag cggtcgccgt ggcgcggaaa 2280
gccgccactt taatagctac tcgcaccacc aatacggcta gcgcagtgtg atgcagactt 2340
gcagcttttg ggctttgaca cctcgcggct ttagggctta gagatagcac gccaccaact 2400
tgacgtgtgg cggctgccgt gcgactaact tcgtcttcgg acgctacagc caaaggcgct 2460
ccacgcctaa cttttaccag acgacgacga cttgccgttc ggcaacgact aagctccgca 2520
attggcagtg ctcgtagtag gagacgtacc agtccagtac ctactcgtct gctaccacgt 2580
cctataggac gactacttcg tcttgttgaa attgcggcac gcgacaagcg taataggctt 2640
ggtaggcgac accatgtgcg acacgctggc gatgccggac atacaccacc tacttcggtt 2700
ataactttgg gtgccgtacc acggttactt agcagactgg ctactaggcg cgaccgatgg 2760
ccgctactcg cttgcgcatt gcgcttacca cgtcgcgcta gcattagtgg gctcacacta 2820
gtagaccagc gaccccttac ttagtccggt gccgcgatta gtgctgcgcg acatagcgac 2880
ctagtttaga cagctaggaa gggcgggcca cgtcatactt ccgccgcctc ggctgtggtg 2940
ccggtggcta taataaacgg gctacatgcg cgcgcaccta cttctggtcg ggaagggccg 3000
acacggcttt accaggtagt tttttaccga aagcgatgga cctctctgcg cgggcgacta 3060
ggaaacgctt atgcgggtgc gctacccatt gtcagaaccg ccaaagcgat ttatgaccgt 3120
ccgcaaagca gtcatagggg caaatgtccc gccgaagcag accctgaccc acctagtcag 3180
cgactaattt atactacttt tgccgttggg caccagccga atgccgccac taaaaccgct 3240
atgcggcttg ctagcggtca agacatactt gccagaccag aaacggctgg cgtgcggcgt 3300
aggtcgcgac tgccttcgtt ttgtggtcgt cgtcaaaaag gtcaaggcaa ataggcccgt 3360
ttggtagctt cactggtcgc ttatggacaa ggcagtatcg ctattgctcg aggacgtgac 3420
ctaccaccgc gacctaccat tcggcgaccg ttcgccactt cacggagacc tacagcgagg 3480
tgttccattt gtcaactaac ttgacggact tgatggcgtc ggcctctcgc ggcccgttga 3540
gaccgagtgt catgcgcatc acgttggctt gcgctggcgt accagtcttc ggcccgtgta 3600
gtcgcggacc gtcgtcaccg cagaccgcct tttggagtca cactgcgagg ggcggcgcag 3660
ggtgcggtag ggcgtagact ggtggtcgct ttacctaaaa acgtagctcg acccattatt 3720
cgcaaccgtt aaattggcgg tcagtccgaa agaaagtgtc tacacctaac cgctattttt 3780
tgttgacgac tgcggcgacg cgctagtcaa gtgggcacag ctatctagac ttgtctttga 3840
gtaaaggctt cttctggatc agctggtagt agtagtagta gtggccatta ttatccatct 3900
attcactgac taatctacgt aaagctgatc tagggagctg gttaaggcca ataaaaggtg 3960
gtataacggc agaaaaccgt tacactcccg ggcctttgga ccgggacaga agaactgctc 4020
gtaaggatcc ccagaaaggg gagagcggtt tccttacgtt ccagacaact tacagcactt 4080
ccttcgtcaa ggagaccttc gaagaacttc tgtttgttgc agacatcgct gggaaacgtc 4140
cgtcgccttg gggggtggac cgctgtccac ggagacgccg gttttcggtg cacatattct 4200
atgtggacgt ttccgccgtg ttggggtcac ggtgcaacac tcaacctatc aacacctttc 4260
tcagtttacc gagaggagtt cgcataagtt gttccccgac ttcctacggg tcttccatgg 4320
ggtaacatac cctagactag accccggagc cacgtgtacg aaatgtacac aaatcagctc 4380
caattttttg cagatccggg gggcttggtg cccctgcacc aaaaggaaac tttttgtgct 4440
actattatgg tactttttcg gacttgagtg gcgctgcaga cagctcttca aagactagct 4500
tttcaagctg tcgcagaggc tggactacgt cgagagcctc ccgcttctta gagcacgaaa 4560
gtcgaagcta catcctcccg cacctataca ggacgcccat ttatcgacgc ggctaccaaa 4620
gatgtttcta gcaatacaaa tagccgtgaa acgtagccgg cgcgagggct aaggccttca 4680
cgaactgtaa ccccttaaat cgcrctcgga ctggataacg tagagggcgg cacgtgtccc 4740
acagtgcaac gttctggacg gactttggct tgacgggcga caagacgtcg gccagcgcct 4800
ccggtaccta cgctagcgac gccggctaga atcggtctgc tcgcccaagc cgggtaagcc 4860
tggcgttcct tagccagtta tgtgatgtac cgcactaaag tatacgcgct aacgactagg 4920
ggtacacata gtgaccgttt gacactacct gctgtggcag tcacgcaggc agcgcgtccg 4980
agagctactc gactacgaaa cccggctcct gacggggctt caggccgtgg agcacgtgcg 5040
cctaaagccg aggttgttac aggactgcct gttaccggcg tattgtcgcc agtaactgac 5100
ctcgctccgc tacaagcccc taagggttat gctccagcgg ttgtagaaga agacctccgg 5160
caccaaccga acatacctcg tcgtctgcgc gatgaagctc gcctccgtag gcctcgaacg 5220
tcctagcggc gccgaggccc gcatatacga ggcgtaacca gaactgcttg agatagtctc 5280
gaaccaactg ccgttaaagc tactacgtcg aacccgcgtc ccagctacgc tgcgttagca 5340
ggctaggcct cggccctgac agcccgcatg tgtttagcgg gcgtcttcgc gccggcagac 5400
ctggctaccg acacatcttc atgagcggct atcacctttg gctgcggggt cgtgagcagg 5460
ctcccgtttc cttatctcat ctacggctgg ccctagatag ctattttatt ttctaaaata 5520
aatcagaggt ctttttcccc ccttactttc tggggtggac atccaaaccg ttcgatcgaa 5580
ttcattgcgg taaaacgttc cgtacctttt tatgtattga ctcttatctc ttcaagtcta 5640
gttccagtcc ttgtctacct tgtcgactta tacccggttt gtcctataga caccattcgt 5700
caaggacggg gccgagtccc ggttcttgtc taccttgtcg acttataccc ggtttgtcct 5760
atagacacca ttcgtcaagg acggggccga gtcccggttc ttgtctacca ggggtctacg 5820
ccaggtcggg agtcgtcaaa gatctcttgg tagtctacaa aggtcccacg gggttcctgg 5880
actttactgg gacacggaat aaacttgatt ggttagtcaa gcgaagagcg aagacaagcg 5940
cgcgaagacg aggggctcga gttattttct cgggtgttgg ggagtgagcc ccgcggtcag 6000
gaggctaact gactcagcgg gcccatgggc acataggtta tttgggagaa cgtcaacgta 6060
ggctgaacac cagagcgaca aggaaccctc ccagaggaga ctcactaact gatgggcagt 6120
cgcccccaga aagtaagtac gtcgtacata gttttaatta aaccaaaaaa aagaattcat 6180
aaatgtaatt taccggtatc aacgtaatta cttagccggt tgcgcgcccc tctccgccaa 6240
acgcataacc gcgagaaggc gaaggagcga gtgactgagc gacgcgagcc agcaagccga 6300
cgccgctcgc catagtcgag tgagtttccg ccattatgcc aataggtgtc ttagtcccct 6360
attgcgtcct ttcttgtaca ctcgttttcc ggtcgttttc cggtccttgg catttttccg 6420
gcgcaacgac cgcaaaaagg tatccgaggc ggggggactg ctcgtagtgt ttttagctgc 6480
gagttcagtc tccaccgctt tgggctgtcc tgatatttct atggtccgca aagggggacc 6540
ttcgagggag cacgcgagag gacaaggctg ggacggcgaa tggcctatgg acaggcggaa 6600
agagggaagc ccttcgcacc gcgaaagagt atcgagtgcg acatccatag agtcaagcca 6660
catccagcaa gcgaggttcg acccgacaca cgtgcttggg gggcaagtcg ggctggcgac 6720
gcggaatagg ccattgatag cagaactcag gttgggccat tctgtgctga atagcggtga 6780
ccgtcgtcgg tgaccattgt cctaatcgtc tcgctccata catccgccac gatgtctcaa 6840
gaacttcacc accggattga tgccgatgtg atcttcttgt cataaaccat agacgcgaga 6900
cgacttcggt caatggaagc ctttttctca accatcgaga actaggccgt ttgtttggtg 6960
gcgaccatcg ccaccaaaaa aacaaacgtt cgtcgtctaa tgcgcgtctt tttttcctag 7020
agttcttcta ggaaactaga aaagatgccc cagactgcga gtcaccttgc ttttgagtgc 7080
aattccctaa aaccagtact ctaatagttt ttcctagaag tggatctagg aaaatttaat 7140
ttttacttca aacgccggcg tttagttaga tttcatatat actcatttga accagactgt 7200
caatggttac gaattagtca ctccgtggat agagtcgcta gacagataaa gcaagtaggt 7260
atcaacggac tgaggggcag cacatctatt gatgctatgc cctcccgaat ggtagaccgg 7320
ggtcacgacg ttactatggc gctctgggtg cgagtggccg aggtctaaat agtcgttatt 7380
tggtcggtcg gccttcccgg ctcgcgtctt caccaggacg ttgaaatagg cggaggtagg 7440
tcagataatt aacaacggcc cttcgatctc attcatcaag cggtcaatta tcaaacgcgt 7500
tgcaacaacg gtaacgatgt ccgtagcacc acagtgcgag cagcaaacca taccgaagta 7560
agtcgaggcc aagggttgct agttccgctc aatgtactag ggggtacaac acgttttttc 7620
gccaatcgag gaagccagga ggctagcaac agtcttcatt caaccggcgt cacaatagtg 7680
agtaccaata ccgtcgtgac gtattaagag aatgacagta cggtaggcat tctacgaaaa 7740
gacactgacc actcatgagt tggttcagta agactcttat cacatacgcc gctggctcaa 7800
cgagaacggg ccgcagttat gccctattat ggcgcggtgt atcgtcttga aattttcacg 7860
agtagtaacc ttttgcaaga agccccgctt ttgagagttc ctagaatggc gacaactcta 7920
ggtcaagcta cattgggtga gcacgtgggt tgactagaag tcgtagaaaa tgaaagtggt 7980
cgcaaagacc cactcgtttt tgtccttccg ttttacggcg ttttttccct tattcccgct 8040
gtgcctttac aacttatgag tatgagaagg aaaaagttat aataacttcg taaatagtcc 8100
caataacaga gtactcgcct atgtataaac ttacataaat ctttttattt gtttatcccc 8160
aaggcgcgtg taaag 8175




8


8161


DNA


Unknown




pICAST OMN.





8
ctgcagcctg aatatgggcc aaacaggata tctgtggtaa gcagttcctg ccccggctca 60
gggccaagaa cagatggaac agctgaatat gggccaaaca ggatatctgt ggtaagcagt 120
tcctgccccg gctcagggcc aagaacagat ggtccccaga tgcggtccag ccctcagcag 180
tttctagaga accatcagat gtttccaggg tgccccaagg acctgaaatg accctgtgcc 240
ttatttgaac taaccaatca gttcgcttct cgcttctgtt cgcgcgcttc tgctccccga 300
gctcaataaa agagcccaca acccctcact cggggcgcca gtcctccgat tgactgagtc 360
gcccgggtac ccgtgtatcc aataaaccct cttgcagttg catccgactt gtggtctcgc 420
tgttccttgg gagggtctcc tctgagtgat tgactacccg tcagcggggg tctttcattt 480
gggggctcgt ccgggatcgg gagacccctg cccagggacc accgacccac caccgggagg 540
caagctggcc agcaacttat ctgtgtctgt ccgattgtct agtgtctatg actgatttta 600
tgcgcctgcg tcggtactag ttagctaact agctctgtat ctggcggacc cgtggtggaa 660
ctgacgagtt ctgaacaccc ggccgcaacc ctgggagacg tcccagggac tttgggggcc 720
gtttttgtgg cccgacctga ggaagggagt cgatgtggaa tccgaccccg tcaggatatg 780
tggttctggt aggagacgag aacctaaaac agttcccgcc tccgtctgaa tttttgcttt 840
cggtttggaa ccgaagccgc gcgtcttgtc tgctgcagca tcgttctgtg ttgtctctgt 900
ctgactgtgt ttctgtattt gtctgaaaat tagggccaga ctgttaccac tcccttaagt 960
ttgaccttag gtaactggaa agatgtcgag cggctcgctc acaaccagtc ggtagatgtc 1020
aagaagagac gttgggttac cttctgctct gcagaatggc caacctttaa cgtcggatgg 1080
ccgcgagacg gcacctttaa ccgagacctc atcacccagg ttaagatcaa ggtcttttca 1140
cctggcccgc atggacaccc agaccaggtc ccctacatcg tgacctggga agccttggct 1200
tttgaccccc ctccctgggt caagcccttt gtacacccta agcctccgcc tcctcttcct 1260
ccatccgccc cgtctctccc ccttgaacct cctcgttcga ccccgcctcg atcctccctt 1320
tatccagccc tcactccttc tctaggcgcc ggccgctcta gcccattaat acgactcact 1380
atagggcgat tcgaacacca tgcaccatca tcatcatcac gtcgacgaac agaaactcat 1440
ttccgaagaa gacctactcg agatgggcgt gattacggat tcactggccg tcgttttaca 1500
acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 1560
tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttacg 1620
cagcctgaat ggcgaatggc gctttgcctg gtttccggca ccagaagcgg tgccggaaag 1680
ctggctggag tgcgatcttc ctgaggccga tactgtcgtc gtcccctcaa actggcagat 1740
gcacggttac gatgcgccca tctacaccaa cgtgacctat cccattacgg tcaatccgcc 1800
gtttgttccc acggagaatc cgacgggttg ttactcgctc acatttaatg ttgatgaaag 1860
ctggctacag gaaggccaga cgcgaattat ttttgatggc gttaactcgg cgtttcatct 1920
gtggtgcaac gggcgctggg tcggttacgg ccaggacagt cgtttgccgt ctgaatttga 1980
cctgagcgca tttttacgcg ccggagaaaa ccgcctcgcg gtgatggtgc tgcgctggag 2040
tgacggcagt tatctggaag atcaggatat gtggcggatg agcggcattt tccgtgacgt 2100
ctcgttgctg cataaaccga ctacacaaat cagcgatttc catgttgcca ctcgctttaa 2160
tgatgatttc agccgcgctg tactggaggc tgaagttcag atgtgcggcg agttgcgtga 2220
ctacctacgg gtaacagttt ctttatggca gggtgaaacg caggtcgcca gcggcaccgc 2280
gcctttcggc ggtgaaatta tcgatgagcg tggtggttat gccgatcgcg tcacactacg 2340
tctgaacgtc gaaaacccga aactgtggag cgccgaaatc ccgaatctct atcgtgcggt 2400
ggttgaactg cacaccgccg acggcacgct gattgaagca gaagcctgcg atgtcggttt 2460
ccgcgaggtg cggattgaaa atggtctgct gctgctgaac ggcaagccgt tgctgattcg 2520
aggcgttaac cgtcacgagc atcatcctct gcatggtcag gtcatggatg agcagacgat 2580
ggtgcaggat atcctgctga tgaagcagaa caactttaac gccgtgcgct gttcgcatta 2640
tccgaaccat ccgctgtggt acacgctgtg cgaccgctac ggcctgtatg tggtggatga 2700
agccaatatt gaaacccacg gcatggtgcc aatgaatcgt ctgaccgatg atccgcgctg 2760
gctaccggcg atgagcgaac gcgtaacgcg aatggtgcag cgcgatcgta atcacccgag 2820
tgtgatcatc tggtcgctgg ggaatgaatc aggccacggc gctaatcacg acgcgctgta 2880
tcgctggatc aaatctgtcg atccttcccg cccggtgcag tatgaaggcg gcggagccga 2940
caccacggcc accgatatta tttgcccgat gtacgcgcgc gtggatgaag accagccctt 3000
cccggctgtg ccgaaatggt ccatcaaaaa atggctttcg ctacctggag agacgcgccc 3060
gctgatcctt tgcgaatacg cccacgcgat gggtaacagt cttggcggtt tcgctaaata 3120
ctggcaggcg tttcgtcagt atccccgttt acagggcggc ttcgtctggg actgggtgga 3180
tcagtcgctg attaaatatg atgaaaacgg caacccgtgg tcggcttacg gcggtgattt 3240
tggcgatacg ccgaacgatc gccagttctg tatgaacggt ctggtctttg ccgaccgcac 3300
gccgcatcca gcgctgacgg aagcaaaaca ccagcagcag tttttccagt tccgtttatc 3360
cgggcaaacc atcgaagtga ccagcgaata cctgttccgt catagcgata acgagctcct 3420
gcactggatg gtggcgctgg atggtaagcc gctggcaagc ggtgaagtgc ctctggatgt 3480
cgctccacaa ggtaaacagt tgattgaact gcctgaacta ccgcagccgg agagcgccgg 3540
gcaactctgg ctcacagtac gcgtagtgca accgaacgcg accgcatggt cagaagccgg 3600
gcacatcagc gcctggcagc agtggcgtct ggcggaaaac ctcagtgtga cgctccccgc 3660
cgcgtcccac gccatcccgc atctgaccac cagcgaaatg gatttttgca tcgagctggg 3720
taataagcgt tggcaattta accgccagtc aggctttctt tcacagatgt ggattggcga 3780
taaaaaacaa ctgctgacgc cgctgcgcga tcagttcacc cgtgtcgata gatctggagg 3840
tggtggcagc aggccttggc gcgccggatc cttaattaac aattgaccgg taataatagg 3900
tagataagtg actgattaga tgcatttcga ctagatccct cgaccaattc cggttatttt 3960
ccaccatatt gccgtctttt ggcaatgtga gggcccggaa acctggccct gtcttcttga 4020
cgagcattcc taggggtctt tcccctctcg ccaaaggaat gcaaggtctg ttgaatgtcg 4080
tgaaggaagc agttcctctg gaagcttctt gaagacaaac aacgtctgta gcgacccttt 4140
gcaggcagcg gaacccccca cctggcgaca ggtgcctctg cggccaaaag ccacgtgtat 4200
aagatacacc tgcaaaggcg gcacaacccc agtgccacgt tgtgagttgg atagttgtgg 4260
aaagagtcaa atggctctcc tcaagcgtat tcaacaaggg gctgaaggat gcccagaagg 4320
taccccattg tatgggatct gatctggggc ctcggtgcac atgctttaca tgtgtttagt 4380
cgaggttaaa aaacgtctag gccccccgaa ccacggggac gtggttttcc tttgaaaaac 4440
acgatgataa taccatgaaa aagcctgaac tcaccgcgac gtctgtcgag aagtttctga 4500
tcgaaaagtt cgacagcgtc tccgacctga tgcagctctc ggagggcgaa gaatctcgtg 4560
ctttcagctt cgatgtagga gggcgtggat atgtcctgcg ggtaaatagc tgcgccgatg 4620
gtttctacaa agatcgttat gtttatcggc actttgcatc ggccgcgctc ccgattccgg 4680
aagtgcttga cattggggaa tttagcgaga gcctgaccta ttgcatctcc cgccgtgcac 4740
agggtgtcac gttgcaagac ctgcctgaaa ccgaactgcc cgctgttctg cagccggtcg 4800
cggaggccat ggatgcgatc gctgcggccg atcttagcca gacgagcggg ttcggcccat 4860
tcggaccgca aggaatcggt caatacacta catggcgtga tttcatatgc gcgattgctg 4920
atccccatgt gtatcactgg caaactgtga tggacgacac cgtcagtgcg tccgtcgcgc 4980
aggctctcga tgagctgatg ctttgggccg aggactgccc cgaagtccgg cacctcgtgc 5040
acgcggattt cggctccaac aatgtcctga cggacaatgg ccgcataaca gcggtcattg 5100
actggagcga ggcgatgttc ggggattccc aatacgaggt cgccaacatc ttcttctgga 5160
ggccgtggtt ggcttgtatg gagcagcaga cgcgctactt cgagcggagg catccggagc 5220
ttgcaggatc gccgcggctc cgggcgtata tgctccgcat tggtcttgac caactctatc 5280
agagcttggt tgacggcaat ttcgatgatg cagcttgggc gcagggtcga tgcgacgcaa 5340
tcgtccgatc cggagccggg actgtcgggc gtacacaaat cgcccgcaga agcgcggccg 5400
tctggaccga tggctgtgta gaagtactcg ccgatagtgg aaaccgacgc cccagcactc 5460
gtccgagggc aaaggaatag agtagatgcc gaccgggatc tatcgataaa ataaaagatt 5520
ttatttagtc tccagaaaaa ggggggaatg aagaccccaa cctgtaggtt tggcaagcta 5580
gcttaagtaa cgccattttg caaggcatgg aaaaatacat aactgagaat agagaagttc 5640
agatcaaggt caggaacaga tggaacagct gaatatgggc caaacaggat atctgtggta 5700
agcagttcct gccccggctc agggccaaga acagatggaa cagctgaata tgggccaaac 5760
aggatatctg tggtaagcag ttcctgcccc ggctcagggc caagaacaga tggtccccag 5820
atgcggtcca gccctcagca gtttctagag aaccatcaga tgtttccagg gtgccccaag 5880
gacctgaaat gaccctgtgc cttatttgaa ctaaccaatc agttcgcttc tcgcttctgt 5940
tcgcgcgctt ctgctccccg agctcaataa aagagcccac aacccctcac tcggggcgcc 6000
agtcctccga ttgactgagt cgcccgggta cccgtgtatc caataaaccc tcttgcagtt 6060
gcatccgact tgtggtctcg ctgttccttg ggagggtctc ctctgagtga ttgactaccc 6120
gtcagcgggg gtctttcatt catgcagcat gtatcaaaat taatttggtt ttttttctta 6180
agtatttaca ttaaatggcc atagttgcat taatgaatcg gccaacgcgc ggggagaggc 6240
ggtttgcgta ttggcgctct tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc 6300
ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag 6360
gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa 6420
aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat cacaaaaatc 6480
gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc 6540
ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga tacctgtccg 6600
cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt 6660
cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt cagcccgacc 6720
gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac gacttatcgc 6780
cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 6840
agttcttgaa gtggtggcct aactacggct acactagaag aacagtattt ggtatctgcg 6900
ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 6960
ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 7020
gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg aacgaaaact 7080
cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag atccttttgc 7140
ggccgcaaat caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta 7200
atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc 7260
cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg 7320
ataccgcgag acccacgctc accggctcca gatttatcag caataaacca gccagccgga 7380
agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt 7440
tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt 7500
gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc 7560
caacgatcaa ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc 7620
ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca 7680
gcactgcata attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag 7740
tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg 7800
tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa 7860
cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa 7920
cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga 7980
gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga 8040
atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg 8100
agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt 8160
c 8161




9


8161


DNA


Unknown




pICAST OMN.





9
gacgtcggac ttatacccgg tttgtcctat agacaccatt cgtcaaggac ggggccgagt 60
cccggttctt gtctaccttg tcgacttata cccggtttgt cctatagaca ccattcgtca 120
aggacggggc cgagtcccgg ttcttgtcta ccaggggtct acgccaggtc gggagtcgtc 180
aaagatctct tggtagtcta caaaggtccc acggggttcc tggactttac tgggacacgg 240
aataaacttg attggttagt caagcgaaga gcgaagacaa gcgcgcgaag acgaggggct 300
cgagttattt tctcgggtgt tggggagtga gccccgcggt caggaggcta actgactcag 360
cgggcccatg ggcacatagg ttatttggga gaacgtcaac gtaggctgaa caccagagcg 420
acaaggaacc ctcccagagg agactcacta actgatgggc agtcgccccc agaaagtaaa 480
cccccgagca ggccctagcc ctctggggac gggtccctgg tggctgggtg gtggccctcc 540
gttcgaccgg tcgttgaata gacacagaca ggctaacaga tcacagatac tgactaaaat 600
acgcggacgc agccatgatc aatcgattga tcgagacata gaccgcctgg gcaccacctt 660
gactgctcaa gacttgtggg ccggcgttgg gaccctctgc agggtccctg aaacccccgg 720
caaaaacacc gggctggact ccttccctca gctacacctt aggctggggc agtcctatac 780
accaagacca tcctctgctc ttggattttg tcaagggcgg aggcagactt aaaaacgaaa 840
gccaaacctt ggcttcggcg cgcagaacag acgacgtcgt agcaagacac aacagagaca 900
gactgacaca aagacataaa cagactttta atcccggtct gacaatggtg agggaattca 960
aactggaatc cattgacctt tctacagctc gccgagcgag tgttggtcag ccatctacag 1020
ttcttctctg caacccaatg gaagacgaga cgtcttaccg gttggaaatt gcagcctacc 1080
ggcgctctgc cgtggaaatt ggctctggag tagtgggtcc aattctagtt ccagaaaagt 1140
ggaccgggcg tacctgtggg tctggtccag gggatgtagc actggaccct tcggaaccga 1200
aaactggggg gagggaccca gttcgggaaa catgtgggat tcggaggcgg aggagaagga 1260
ggtaggcggg gcagagaggg ggaacttgga ggagcaagct ggggcggagc taggagggaa 1320
ataggtcggg agtgaggaag agatccgcgg ccggcgagat cgggtaatta tgctgagtga 1380
tatcccgcta agcttgtggt acgtggtagt agtagtagtg cagctgcttg tctttgagta 1440
aaggcttctt ctggatgagc tctacccgca ctaatgccta agtgaccggc agcaaaatgt 1500
tgcagcactg acccttttgg gaccgcaatg ggttgaatta gcggaacgtc gtgtaggggg 1560
aaagcggtcg accgcattat cgcttctccg ggcgtggcta gcgggaaggg ttgtcaatgc 1620
gtcggactta ccgcttaccg cgaaacggac caaaggccgt ggtcttcgcc acggcctttc 1680
gaccgacctc acgctagaag gactccggct atgacagcag caggggagtt tgaccgtcta 1740
cgtgccaatg ctacgcgggt agatgtggtt gcactggata gggtaatgcc agttaggcgg 1800
caaacaaggg tgcctcttag gctgcccaac aatgagcgag tgtaaattac aactactttc 1860
gaccgatgtc cttccggtct gcgcttaata aaaactaccg caattgagcc gcaaagtaga 1920
caccacgttg cccgcgaccc agccaatgcc ggtcctgtca gcaaacggca gacttaaact 1980
ggactcgcgt aaaaatgcgc ggcctctttt ggcggagcgc cactaccacg acgcgacctc 2040
actgccgtca atagaccttc tagtcctata caccgcctac tcgccgtaaa aggcactgca 2100
gagcaacgac gtatttggct gatgtgttta gtcgctaaag gtacaacggt gagcgaaatt 2160
actactaaag tcggcgcgac atgacctccg acttcaagtc tacacgccgc tcaacgcact 2220
gatggatgcc cattgtcaaa gaaataccgt cccactttgc gtccagcggt cgccgtggcg 2280
cggaaagccg ccactttaat agctactcgc accaccaata cggctagcgc agtgtgatgc 2340
agacttgcag cttttgggct ttgacacctc gcggctttag ggcttagaga tagcacgcca 2400
ccaacttgac gtgtggcggc tgccgtgcga ctaacttcgt cttcggacgc tacagccaaa 2460
ggcgctccac gcctaacttt taccagacga cgacgacttg ccgttcggca acgactaagc 2520
tccgcaattg gcagtgctcg tagtaggaga cgtaccagtc cagtacctac tcgtctgcta 2580
ccacgtccta taggacgact acttcgtctt gttgaaattg cggcacgcga caagcgtaat 2640
aggcttggta ggcgacacca tgtgcgacac gctggcgatg ccggacatac accacctact 2700
tcggttataa ctttgggtgc cgtaccacgg ttacttagca gactggctac taggcgcgac 2760
cgatggccgc tactcgcttg cgcattgcgc ttaccacgtc gcgctagcat tagtgggctc 2820
acactagtag accagcgacc ccttacttag tccggtgccg cgattagtgc tgcgcgacat 2880
agcgacctag tttagacagc taggaagggc gggccacgtc atacttccgc cgcctcggct 2940
gtggtgccgg tggctataat aaacgggcta catgcgcgcg cacctacttc tggtcgggaa 3000
gggccgacac ggctttacca ggtagttttt taccgaaagc gatggacctc tctgcgcggg 3060
cgactaggaa acgcttatgc gggtgcgcta cccattgtca gaaccgccaa agcgatttat 3120
gaccgtccgc aaagcagtca taggggcaaa tgtcccgccg aagcagaccc tgacccacct 3180
agtcagcgac taatttatac tacttttgcc gttgggcacc agccgaatgc cgccactaaa 3240
accgctatgc ggcttgctag cggtcaagac atacttgcca gaccagaaac ggctggcgtg 3300
cggcgtaggt cgcgactgcc ttcgttttgt ggtcgtcgtc aaaaaggtca aggcaaatag 3360
gcccgtttgg tagcttcact ggtcgcttat ggacaaggca gtatcgctat tgctcgagga 3420
cgtgacctac caccgcgacc taccattcgg cgaccgttcg ccacttcacg gagacctaca 3480
gcgaggtgtt ccatttgtca actaacttga cggacttgat ggcgtcggcc tctcgcggcc 3540
cgttgagacc gagtgtcatg cgcatcacgt tggcttgcgc tggcgtacca gtcttcggcc 3600
cgtgtagtcg cggaccgtcg tcaccgcaga ccgccttttg gagtcacact gcgaggggcg 3660
gcgcagggtg cggtagggcg tagactggtg gtcgctttac ctaaaaacgt agctcgaccc 3720
attattcgca accgttaaat tggcggtcag tccgaaagaa agtgtctaca cctaaccgct 3780
attttttgtt gacgactgcg gcgacgcgct agtcaagtgg gcacagctat ctagacctcc 3840
accaccgtcg tccggaaccg cgcggcctag gaattaattg ttaactggcc attattatcc 3900
atctattcac tgactaatct acgtaaagct gatctaggga gctggttaag gccaataaaa 3960
ggtggtataa cggcagaaaa ccgttacact cccgggcctt tggaccggga cagaagaact 4020
gctcgtaagg atccccagaa aggggagagc ggtttcctta cgttccagac aacttacagc 4080
acttccttcg tcaaggagac cttcgaagaa cttctgtttg ttgcagacat cgctgggaaa 4140
cgtccgtcgc cttggggggt ggaccgctgt ccacggagac gccggttttc ggtgcacata 4200
ttctatgtgg acgtttccgc cgtgttgggg tcacggtgca acactcaacc tatcaacacc 4260
tttctcagtt taccgagagg agttcgcata agttgttccc cgacttccta cgggtcttcc 4320
atggggtaac ataccctaga ctagaccccg gagccacgtg tacgaaatgt acacaaatca 4380
gctccaattt tttgcagatc cggggggctt ggtgcccctg caccaaaagg aaactttttg 4440
tgctactatt atggtacttt ttcggacttg agtggcgctg cagacagctc ttcaaagact 4500
agcttttcaa gctgtcgcag aggctggact acgtcgagag cctcccgctt cttagagcac 4560
gaaagtcgaa gctacatcct cccgcaccta tacaggacgc ccatttatcg acgcggctac 4620
caaagatgtt tctagcaata caaatagccg tgaaacgtag ccggcgcgag ggctaaggcc 4680
ttcacgaact gtaacccctt aaatcgctct cggactggat aacgtagagg gcggcacgtg 4740
tcccacagtg caacgttctg gacggacttt ggcttgacgg gcgacaagac gtcggccagc 4800
gcctccggta cctacgctag cgacgccggc tagaatcggt ctgctcgccc aagccgggta 4860
agcctggcgt tccttagcca gttatgtgat gtaccgcact aaagtatacg cgctaacgac 4920
taggggtaca catagtgacc gtttgacact acctgctgtg gcagtcacgc aggcagcgcg 4980
tccgagagct actcgactac gaaacccggc tcctgacggg gcttcaggcc gtggagcacg 5040
tgcgcctaaa gccgaggttg ttacaggact gcctgttacc ggcgtattgt cgccagtaac 5100
tgacctcgct ccgctacaag cccctaaggg ttatgctcca gcggttgtag aagaagacct 5160
ccggcaccaa ccgaacatac ctcgtcgtct gcgcgatgaa gctcgcctcc gtaggcctcg 5220
aacgtcctag cggcgccgag gcccgcatat acgaggcgta accagaactg gttgagatag 5280
tctcgaacca actgccgtta aagctactac gtcgaacccg cgtcccagct acgctgcgtt 5340
agcaggctag gcctcggccc tgacagcccg catgtgttta gcgggcgtct tcgcgccggc 5400
agacctggct accgacacat cttcatgagc ggctatcacc tttggctgcg gggtcgtgag 5460
caggctcccg tttccttatc tcatctacgg ctggccctag atagctattt tattttctaa 5520
aataaatcag aggtcttttt ccccccttac tttctggggt ggacatccaa accgttcgat 5580
cgaattcatt gcggtaaaac gttccgtacc tttttatgta ttgactctta tctcttcaag 5640
tctagttcca gtccttgtct accttgtcga cttatacccg gtttgtccta tagacaccat 5700
tcgtcaagga cggggccgag tcccggttct tgtctacctt gtcgacttat acccggtttg 5760
tcctatagac accattcgtc aaggacgggg ccgagtcccg gttcttgtct accaggggtc 5820
tacgccaggt cgggagtcgt caaagatctc ttggtagtct acaaaggtcc cacggggttc 5880
ctggacttta ctgggacacg gaataaactt gattggttag tcaagcgaag agcgaagaca 5940
agcgcgcgaa gacgaggggc tcgagttatt ttctcgggtg ttggggagtg agccccgcgg 6000
tcaggaggct aactgactca gcgggcccat gggcacatag gttatttggg agaacgtcaa 6060
cgtaggctga acaccagagc gacaaggaac cctcccagag gagactcact aactgatggg 6120
cagtcgcccc cagaaagtaa gtacgtcgta catagtttta attaaaccaa aaaaaagaat 6180
tcataaatgt aatttaccgg tatcaacgta attacttagc cggttgcgcg cccctctccg 6240
ccaaacgcat aaccgcgaga aggcgaagga gcgagtgact gagcgacgcg agccagcaag 6300
ccgacgccgc tcgccatagt cgagtgagtt tccgccatta tgccaatagg tgtcttagtc 6360
ccctattgcg tcctttcttg tacactcgtt ttccggtcgt tttccggtcc ttggcatttt 6420
tccggcgcaa cgaccgcaaa aaggtatccg aggcgggggg actgctcgta gtgtttttag 6480
ctgcgagttc agtctccacc gctttgggct gtcctgatat ttctatggtc cgcaaagggg 6540
gaccttcgag ggagcacgcg agaggacaag gctgggacgg cgaatggcct atggacaggc 6600
ggaaagaggg aagcccttcg caccgcgaaa gagtatcgag tgcgacatcc atagagtcaa 6660
gccacatcca gcaagcgagg ttcgacccga cacacgtgct tggggggcaa gtcgggctgg 6720
cgacgcggaa taggccattg atagcagaac tcaggttggg ccattctgtg ctgaatagcg 6780
gtgaccgtcg tcggtgacca ttgtcctaat cgtctcgctc catacatccg ccacgatgtc 6840
tcaagaactt caccaccgga ttgatgccga tgtgatcttc ttgtcataaa ccatagacgc 6900
gagacgactt cggtcaatgg aagccttttt ctcaaccatc gagaactagg ccgtttgttt 6960
ggtggcgacc atcgccacca aaaaaacaaa cgttcgtcgt ctaatgcgcg tctttttttc 7020
ctagagttct tctaggaaac tagaaaagat gccccagact gcgagtcacc ttgcttttga 7080
gtgcaattcc ctaaaaccag tactctaata gtttttccta gaagtggatc taggaaaacg 7140
ccggcgttta gttagatttc atatatactc atttgaacca gactgtcaat ggttacgaat 7200
tagtcactcc gtggatagag tcgctagaca gataaagcaa gtaggtatca acggactgag 7260
gggcagcaca tctattgatg ctatgccctc ccgaatggta gaccggggtc acgacgttac 7320
tatggcgctc tgggtgcgag tggccgaggt ctaaatagtc gttatttggt cggtcggcct 7380
tcccggctcg cgtcttcacc aggacgttga aataggcgga ggtaggtcag ataattaaca 7440
acggcccttc gatctcattc atcaagcggt caattatcaa acgcgttgca acaacggtaa 7500
cgatgtccgt agcaccacag tgcgagcagc aaaccatacc gaagtaagtc gaggccaagg 7560
gttgctagtt ccgctcaatg tactaggggg tacaacacgt tttttcgcca atcgaggaag 7620
ccaggaggct agcaacagtc ttcattcaac cggcgtcaca atagtgagta ccaataccgt 7680
cgtgacgtat taagagaatg acagtacggt aggcattcta cgaaaagaca ctgaccactc 7740
atgagttggt tcagtaagac tcttatcaca tacgccgctg gctcaacgag aacgggccgc 7800
agttatgccc tattatggcg cggtgtatcg tcttgaaatt ttcacgagta gtaacctttt 7860
gcaagaagcc ccgcttttga gagttcctag aatggcgaca actctaggtc aagctacatt 7920
gggtgagcac gtgggttgac tagaagtcgt agaaaatgaa agtggtcgca aagacccact 7980
cgtttttgtc cttccgtttt acggcgtttt ttcccttatt cccgctgtgc ctttacaact 8040
tatgagtatg agaaggaaaa agttataata acttcgtaaa tagtcccaat aacagagtac 8100
tcgcctatgt ataaacttac ataaatcttt ttatttgttt atccccaagg cgcgtgtaaa 8160
g 8161




10


5


PRT


Artificial Sequence




GS Linker





10
Gly Gly Gly Gly Ser
1 5






Claims
  • 1. A method of assessing the effect of a test condition on G-protein-coupled receptor (GPCR) pathway activity, comprising:a) providing a cell that expresses a GPCR as a fusion protein to a first mutant form of a reporter enzyme and an arrestin as a fusion protein to a second mutant form of the reporter enzyme complementary to the first mutant form of the reporter enzyme, wherein the arrestin is modified to enhance binding of said arrestin to the GPCR, wherein said enhanced binding between said arrestin and the GPCR increases sensitivity of detection of said effect of the test condition; b) exposing the cell to a ligand for said GPCR under the test condition; and c) monitoring activation of said GPCR by complementation of the first and second mutant forms of the reporter enzyme; wherein increased reporter enzyme activity in the cell compared to that which occurs in the absence of the test condition indicates increased GPCR interaction with the modified arrestin compared to that which occurs in the absence of the test condition, and decreased reporter enzyme activity in the cell compared to that which occurs in the absence of the test condition indicates decreased GPCR interaction with the modified arrestin compared to that which occurs in the absence of the test condition; and wherein the GPCR and the first mutant form of reporter enzyme are linked together by a polypeptide linker represented by the formula —(GGGGS)n— (SEQ ID NO:10).
  • 2. The method of claim 1, wherein the modified arrestin exhibits enhanced binding to activated, phosphorylated GPCR.
  • 3. The method of claim 1, wherein the modified arrestin comprises conversion of Arg169 to an amino acid selected from the group consisting of histidine, tyrosine, phenylalanine and threonine.
  • 4. The method of claim 1, wherein the modified arrestin comprises conversion of Val170 to alanine.
  • 5. The method of claim 1, wherein the arrestin is selected from the group consisting of β-arrestin1 and β-arrestin2, and wherein the β-arrestin1 or the β-arrestin2 is truncated for all or part of a carboxyl-terminal half of the β-arrestin1 or the β-arrestin2.
  • 6. The method of claim wherein the 5, wherein the β-arrestin1 or the β-arrestin2 is truncated from amino acid 190 of the β-arrestin1 or the β-arrestin2 to the carboxyl-terminal end of the β-arrestin1 or the β-arrestin2.
  • 7. The method of claim 1, wherein the arrestin is a chimera of β-arrestin1, β-arrestin2 and/or visual arrestin.
  • 8. The method of claim 1, wherein the modified arrestin comprises conversion of Arg170 to an amino acid selected from the group consisting of histidine, tyrosine, phenylalanine and threonine.
  • 9. The method of claim 1, wherein n is 2 or more.
  • 10. The method of claim 1, wherein n is 4.
  • 11. The method of claim 1, wherein the second mutant form of the reporter enzyme is linked to the C-terminal of the arrestin.
  • 12. A method of assessing the effect of a test condition on G-protein-coupled receptor (GPCR) pathway activity, comprising:a) providing a cell that expresses a GPCR as a fusion protein to a first mutant form of a reporter enzyme and an arrestin as a fusion protein to a second mutant form of the reporter enzyme complementary to the first mutant form of the reporter enzyme, wherein the arrestin is modified by introducing a point mutation in a phosphorylation-recognition domain to remove a requirement for phosphorylation of the GPCR for arrestin binding to permit binding of the arrestin to said GPCR in the cell regardless of whether the GPCR is phosphorylated, b) exposing the cell to a ligand for said GPCR under the test condition; and c) monitoring activation of the GPCR by complementation of the first and second mutant forms of the reporter enzyme; wherein increased reporter enzyme activity in the cell compared to that which occurs in the absence of the test condition indicates increased GPCR interaction with the modified arrestin compared to that which occurs in the absence of the test condition, and decreased reporter enzyme activity in the cell compared to that which occurs in the absence of the test condition indicates decreased GPCR interaction with the modified arrestin compared to that which occurs in the absence of the test condition; and wherein the GPCR and the first mutant form of reporter enzyme are linked together by a polypeptide linker represented by the formula —(GGGGS)n—(SEQ ID NO:10).
  • 13. The method of claim 12, wherein the arrestin is mutated to increase a property selected from affinity and avidity for activated, non-phosphorylated GPCR.
  • 14. The method of claim 13, wherein the arrestin is β-arrestin2 and wherein the β-arrestin2 is mutated to convert Arg169 to an oppositely charged residue.
  • 15. The method of claim 14, wherein the oppositely charged residue is selected from the group consisting of histidine, tyrosine, phenylalanine and threonine.
  • 16. The method of claim 15, wherein the arrestin is a chimera of β-arrestin1, β-arrestin2 and/or visual arrestin.
  • 17. The method of claim 14, wherein the arrestin is a chimera of β-arrestin1, β-arrestin2 and/or visual arrestin.
  • 18. The method of claim 13, wherein the arrestin is a chimera of β-arrestin1, β-arrestin2 and/or visual arrestin.
  • 19. The method of claim 13, wherein the arrestin is β-arrestin2 and wherein the β-arrestin2 is mutated to convert Arg170 to an oppositely charged residue.
  • 20. The method of claim 12, wherein the arrestin is mutated to increase a property selected from affinity and avidity for activated and phosphorylated GPCR.
  • 21. The method of claim 12, wherein n is 2 or more.
  • 22. The method of claim 12, wherein n is 4.
Parent Case Info

This application is a continuation-in-part of U.S. application Ser. No. 09/654,499, filed Sep. 1, 2000, which claims the benefit from Provisional Application Ser. No. 60/180,669, filed Feb. 7, 2000. The entirety of U.S. application Ser. No. 09/654,499 and Provisional Application Ser. No. 60/180,669 are incorporated herein by reference.

US Referenced Citations (9)
Number Name Date Kind
4931569 Edwards et al. Jun 1990 A
4978614 Bronstein Dec 1990 A
5145772 Voyta et al. Sep 1992 A
5326882 Bronstein et al. Jul 1994 A
5538847 Bronstein et al. Jul 1996 A
5851771 Bronstein et al. Dec 1998 A
5891646 Barak et al. Apr 1999 A
6110693 Barak et al. Aug 2000 A
6342345 Blau et al. Jan 2002 B1
Foreign Referenced Citations (2)
Number Date Country
0035724 Jun 2000 WO
PCTUS0024043 Dec 2000 WO
Non-Patent Literature Citations (21)
Entry
Stephane Angers, et al., “Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET)”, Proc. Natl. Acad. Sci. USA, 97(7):3684-3689 (2000).
Gurevich, et al., “Arrestin Interactions with G Protein-coupled Receptors. Direct Binding Studies of Wild Type and Mutant Arrestins with Rhodopsin, β2-Adrenergic, and m2 Muscarinic Cholinergic Receptors”, J. Biol. Chem., 270 (2):720-731 (1995).
Gurevich, et al., “Mechanism of Phosphorylation-Recognition by Visual Arrestin and the Transition of Arrestin into a High Affinity Binding State”, Mol. Pharmacol., 51:161-169 (1997).
Rossi et al., “Monitoring Protein-Protein Interactions in Intact Eukaryotic Cells by β-galactosidase Complementation”, Proc. Natl. Acad. Sci., 94:8405-8410 (1997).
Barak et al., “A β-Arrestin/Green Fluorescent Protein Biosensor for Detecting G Protein-coupled Receptor Activation”, the Journal of Biological Chemistry, 272 (44):27497-27500 (1997).
Ferguson, et al., “G-protein-coupled receptor regulation: role of G-protein-coupled receptor kinases and arrestins”, Can. J. Physiol Pharmacol., 74:1095-1110 (1996).
Pitcher et al., “G-protein-coupled receptor kinases”, Annu. Rev. Biochem., 67:653-692(1998).
Lefkowitz, et al., “Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization”, Annul. Rev. Biochem., 52:159-186 (1983).
Germino, et al., “Screening for in vivo protein-protein interactions”, Proc. Natl. Acad. Sci., 90:933-937 (1993).
Phizicky, et al., “Protein-protein interactions: methods for detection and analysis”, Microbiol. Rev., 59(1):94-123 (1995).
Offermanns, et al., “Gα15 and Gα16 couple a wide variety of receptors to phospholipase C”, J. Biol. Chem., 270(25):15175-15180 (1995).
AbdAlla, et al., “AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration”, Nature, 407:94-98 (2000).
Bockaert, et al., “Molecular tinkering of G protein-coupled receptors: an evolutionary success”, The EMBO Journal, 18(7):1723-1729 (1999).
Jordan, et al., “G-protein-coupled receptor heterodimerization modulates receptor function”, Nature, 399:697-700 (1999).
Ng, et al., “Dopamine D2 receptor dimers and receptor-blocking peptides”, Bioch. Biophys. Res. Commun., 227:200-204 (1996).
Hebert, et al., “A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation”, J. Biol. Chem. 271(27):16384-16392 (1996).
Krupnick, et al., “The role of receptor kinases and arrestins in G protein-coupled receptor regulation”, Ann. Rev. Pharmacol. Toxicol., 38:289-319 (1998).
Hamm, “The many faces of G-protein signaling”, J. Biol. Chem., 273(2):669-672 (1998).
Oakley, et al., “Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization”, J. Biol. Chem., 274(45):32248-32257 (1999).
Zhang, et al., “Cellular trafficking of G protein-coupled receptor/β-arrestin endocytic complexes”, J. Biol. Chem., 274(16):10999-11006 (1999).
Kovoor, et al., “Targeted construction of phosphorylation-independent β-arrestin mutants with constitutive activity in cells”, J. Biol. Chem., 274(11):6831-6834 (1999).
Provisional Applications (1)
Number Date Country
60/180669 Feb 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09/654499 Sep 2000 US
Child 09/759152 US