1. Field
This disclosure relates to audio signal processing.
2. Background
Many music applications on portable devices (e.g., smartphones, netbooks, laptops, tablet computers) or video game consoles are available for single-user cases. In these cases, the user of the device hums a melody, sings a song, or plays an instrument while the device records the resulting audio signal. The recorded signal may then be analyzed by the application for its pitch/note contour, and the user can select processing operations, such as correcting or otherwise altering the contour, upmixing the signal with different pitches or instrument timbres, etc. Examples of such applications include the QUSIC application (QUALCOMM Incorporated, San Diego, Calif.); video games such as Guitar Hero and Rock Band (Harmonix Music Systems, Cambridge, Mass.); and karaoke, one-man-band, and other recording applications.
Many video games (e.g., Guitar Hero, Rock Band) and concert music scenes may involve multiple instruments and vocalists playing at the same time. Current commercial game and music production systems require these scenarios to be played sequentially or with closely positioned microphones to be able to analyze, post-process and upmix them separately. These constraints may limit the ability to control interference and/or to record spatial effects in the case of music production and may result in a limited user experience in the case of video games.
A method of decomposing an audio signal according to a general configuration includes calculating, for each of a plurality of frequency components of a segment in time of the multichannel audio signal, a corresponding indication of a direction of arrival. This method also includes selecting a subset of the plurality of frequency components, based on the calculated direction indications. This method also includes calculating a vector of activation coefficients, based on the selected subset and on a plurality of basis functions. In this method, each activation coefficient of the vector corresponds to a different basis function of the plurality of basis functions. Computer-readable storage media (e.g., non-transitory media) having tangible features that cause a machine reading the features to perform such a method are also disclosed.
An apparatus for decomposing an audio signal according to a general configuration includes means for calculating, for each of a plurality of frequency components of a segment in time of the multichannel audio signal, a corresponding indication of a direction of arrival; means for selecting a subset of the plurality of frequency components, based on the calculated direction indications; and means for calculating a vector of activation coefficients, based on the selected subset and on a plurality of basis functions. In this apparatus, each activation coefficient of the vector corresponds to a different basis function of the plurality of basis functions.
An apparatus for decomposing an audio signal according to another general configuration includes a direction estimator configured to calculate, for each of a plurality of frequency components of a segment in time of the multichannel audio signal, a corresponding indication of a direction of arrival; a filter configured to select a subset of the plurality of frequency components, based on the calculated direction indications; and a coefficient vector calculator configured to calculate a vector of activation coefficients, based on the selected subset and on a plurality of basis functions. In this apparatus, each activation coefficient of the vector corresponds to a different basis function of the plurality of basis functions.
Decomposition of an audio signal using a basis function inventory and a sparse recovery technique is disclosed, wherein the basis function inventory includes information relating to the changes in the spectrum of a musical note over the pendency of the note. Such decomposition may be used to support analysis, encoding, reproduction, and/or synthesis of the signal. Examples of quantitative analyses of audio signals that include mixtures of sounds from harmonic (i.e., non-percussive) and percussive instruments are shown herein.
Unless expressly limited by its context, the term “signal” is used herein to indicate any of its ordinary meanings, including a state of a memory location (or set of memory locations) as expressed on a wire, bus, or other transmission medium. Unless expressly limited by its context, the term “generating” is used herein to indicate any of its ordinary meanings, such as computing or otherwise producing. Unless expressly limited by its context, the term “calculating” is used herein to indicate any of its ordinary meanings, such as computing, evaluating, smoothing, and/or selecting from a plurality of values. Unless expressly limited by its context, the term “obtaining” is used to indicate any of its ordinary meanings, such as calculating, deriving, receiving (e.g., from an external device), and/or retrieving (e.g., from an array of storage elements). Unless expressly limited by its context, the term “selecting” is used to indicate any of its ordinary meanings, such as identifying, indicating, applying, and/or using at least one, and fewer than all, of a set of two or more. Where the term “comprising” is used in the present description and claims, it does not exclude other elements or operations. The term “based on” (as in “A is based on B”) is used to indicate any of its ordinary meanings, including the cases (i) “derived from” (e.g., “B is a precursor of A”), (ii) “based on at least” (e.g., “A is based on at least B”) and, if appropriate in the particular context, (iii) “equal to” (e.g., “A is equal to B”). Similarly, the term “in response to” is used to indicate any of its ordinary meanings, including “in response to at least.”
References to a “location” of a microphone of a multi-microphone audio sensing device indicate the location of the center of an acoustically sensitive face of the microphone, unless otherwise indicated by the context. The term “channel” is used at times to indicate a signal path and at other times to indicate a signal carried by such a path, according to the particular context. Unless otherwise indicated, the term “series” is used to indicate a sequence of two or more items. The term “logarithm” is used to indicate the base-ten logarithm, although extensions of such an operation to other bases (e.g., base two) are within the scope of this disclosure. The term “frequency component” is used to indicate one among a set of frequencies or frequency bands of a signal, such as a sample of a frequency domain representation of the signal (e.g., as produced by a fast Fourier transform) or a subband of the signal (e.g., a Bark scale or mel scale subband).
Unless indicated otherwise, any disclosure of an operation of an apparatus having a particular feature is also expressly intended to disclose a method having an analogous feature (and vice versa), and any disclosure of an operation of an apparatus according to a particular configuration is also expressly intended to disclose a method according to an analogous configuration (and vice versa). The term “configuration” may be used in reference to a method, apparatus, and/or system as indicated by its particular context. The terms “method,” “process,” “procedure,” and “technique” are used generically and interchangeably unless otherwise indicated by the particular context. The terms “apparatus” and “device” are also used generically and interchangeably unless otherwise indicated by the particular context. The terms “element” and “module” are typically used to indicate a portion of a greater configuration. Unless expressly limited by its context, the term “system” is used herein to indicate any of its ordinary meanings, including “a group of elements that interact to serve a common purpose.” Any incorporation by reference of a portion of a document shall also be understood to incorporate definitions of terms or variables that are referenced within the portion, where such definitions appear elsewhere in the document, as well as any figures referenced in the incorporated portion. Unless initially introduced by a definite article, an ordinal term (e.g., “first,” “second,” “third,” etc.) used to modify a claim element does not by itself indicate any priority or order of the claim element with respect to another, but rather merely distinguishes the claim element from another claim element having a same name (but for use of the ordinal term). Unless expressly limited by its context, the term “plurality” is used herein to indicate an integer quantity that is greater than one.
A method as described herein may be configured to process the captured signal as a series of segments. Typical segment lengths range from about five or ten milliseconds to about forty or fifty milliseconds, and the segments may be overlapping (e.g., with adjacent segments overlapping by 25% or 50%) or nonoverlapping. In one particular example, the signal is divided into a series of nonoverlapping segments or “frames”, each having a length of ten milliseconds. A segment as processed by such a method may also be a segment (i.e., a “subframe”) of a larger segment as processed by a different operation, or vice versa.
It may be desirable to decompose music scenes to extract individual note/pitch profiles from a mixture of two or more instrument and/or vocal signals. Potential use cases include taping concert/video game scenes with multiple microphones, decomposing musical instruments and vocals with spatial/sparse recovery processing, extracting pitch/note profiles, partially or completely up-mixing individual sources with corrected pitch/note profiles. Such operations may be used to extend the capabilities of music applications (e.g., Qualcomm's QUSIC application, video games such as Rock Band or Guitar Hero) to multi-player/singer scenarios.
It may be desirable to enable a music application to process a scenario in which more than one vocalist is active and/or multiple instruments are played at the same time (e.g., as shown in FIG. A2/0). Such capability may be desirable to support a realistic music-taping scenario (multi-pitch scene). Although a user may want the ability to edit and resynthesize each source separately, producing the sound track may entail recording the sources at the same time.
This disclosure describes methods that may be used to enable a use case for a music application in which multiple sources may be active at the same time. Such a method may be configured to analyze an audio mixture signal using basis-function inventory-based sparse recovery (e.g., sparse decomposition) techniques.
It may be desirable to decompose mixture signal spectra into source components by finding the sparsest vector of activation coefficients (e.g., using efficient sparse recovery algorithms) for a set of basis functions. The activation coefficient vector may be used (e.g., with the set of basis functions) to reconstruct the mixture signal or to reconstruct a selected part (e.g., from one or more selected instruments) of the mixture signal. It may also be desirable to post-process the sparse coefficient vector (e.g., according to magnitude and time support).
Task T100 may be implemented to calculate the signal representation as a frequency-domain vector. Each element of such a vector may indicate the energy of a corresponding one of a set of subbands, which may be obtained according to a mel or Bark scale. However, such a vector is typically calculated using a discrete Fourier transform (DFT), such as a fast Fourier transform (FFT), or a short-time Fourier transform (STFT). Such a vector may have a length of, for example, 64, 128, 256, 512, or 1024 bins. In one example, the audio signal has a sampling rate of eight kHz, and the 0-4 kHz band is represented by a frequency-domain vector of 256 bins for each frame of length 32 milliseconds. In another example, the signal representation is calculated using a modified discrete cosine transform (MDCT) over overlapping segments of the audio signal.
In a further example, task T100 is implemented to calculate the signal representation as a vector of cepstral coefficients (e.g., mel-frequency cepstral coefficients or MFCCs) that represents the short-term power spectrum of the frame. In this case, task T100 may be implemented to calculate such a vector by applying a mel-scale filter bank to magnitude of a DFT frequency-domain vector of the frame, taking the logarithm of the filter outputs, and taking a DCT of the logarithmic values. Such a procedure is described, for example, in the Aurora standard described in ETSI document ES 201 108, entitled “STQ: DSR—Front-end feature extraction algorithm; compression algorithm” (European Telecommunications Standards Institute, 2000).
Musical instruments typically have well-defined timbres. The timbre of an instrument may be described by its spectral envelope (e.g., the distribution of energy over a range of frequencies), such that a range of timbres of different musical instruments may be modeled using an inventory of basis functions that encode the spectral envelopes of the individual instruments.
Each basis function comprises a corresponding signal representation over a range of frequencies. It may be desirable for each signal representation to have the same form as the signal representation calculated by task T100. For example, each basis function may be a frequency-domain vector of length 64, 128, 256, 512, or 1024 bins. Alternatively, each basis function may be a cepstral-domain vector, such as a vector of MFCCs. In a further example, each basis function is a wavelet-domain vector.
The basis function inventory A may include a set An of basis functions for each instrument n (e.g., piano, flute, guitar, drums, etc.). For example, the timbre of an instrument is generally pitch-dependent, such that the set An of basis functions for each instrument n will typically include at least one basis function for each pitch over some desired pitch range, which may vary from one instrument to another. A set of basis functions that corresponds to an instrument tuned to the chromatic scale, for example, may include a different basis function for each of the twelve pitches per octave. The set of basis functions for a piano may include a different basis function for each key of the piano, for a total of eighty-eight basis functions. In another example, the set of basis functions for each instrument includes a different basis function for each pitch in a desired pitch range, such as five octaves (e.g., 56 pitches) or six octaves (e.g., 67 pitches). These sets An of basis functions may be disjoint, or two or more sets may share one or more basis functions.
The inventory of basis functions may be based on a generic musical instrument pitch database, learned from an ad hoc recorded individual instrument recording, and/or based on separated streams of mixtures (e.g., using a separation scheme such as independent component analysis (ICA), expectation-maximization (EM), etc.).
Based on the signal representation calculated by task T100 and on a plurality B of basis functions from the inventory A, task T200 calculates a vector of activation coefficients. Each coefficient of this vector corresponds to a different one of the plurality B of basis functions. For example, task T200 may be configured to calculate the vector such that it indicates the most probable model for the signal representation, according to the plurality B of basis functions.
Task T200 may be configured to recover the activation coefficient vector for each frame of the audio signal by solving a linear programming problem. Examples of methods that may be used to solve such a problem include nonnegative matrix factorization (NNMF). A single-channel reference method that is based on NNMF may be configured to use expectation-maximization (EM) update rules (e.g., as described below) to compute basis functions and activation coefficients at the same time.
It may be desirable to decompose the audio mixture signal into individual instruments (which may include one or more human voices) by finding the sparsest activation coefficient vector in a known or partially known basis function space. For example, task T200 may be configured to use a set of known instrument basis functions to decompose mixture spectra into source components (e.g., one or more individual instruments) by finding the sparsest activation coefficient vector in the basis function inventory (e.g., using efficient sparse recovery algorithms).
It is known that the minimum L1-norm solution to an underdetermined system of linear equations (i.e., a system having more unknowns than equations) is often also the sparsest solution to that system. Sparse recovery via minimization of the L1-norm may be performed as follows.
We assume that our target vector f0 is a sparse vector of length N having K<N nonzero entries (i.e., is “K-sparse”) and that projection matrix (i.e., basis function matrix) A is incoherent (random-like) for a set of size ˜K. We observe the signal y=Afo. Then solving minf∥f∥l
One approach is to use sparse recovery algorithms from compressive sensing. In one example of compressive sensing (also called “compressed sensing”) signal recovery Φx=y, y is an observed signal vector of length M, x is a sparse vector of length N having K<N nonzero entries (i.e., a “K-sparse model”) that is a condensed representation of y, and Φ is a random projection matrix of size M×N. The random projection Φ is not full rank, but it is invertible for sparse/compressible signal models with high probability (i.e., it solves an ill-posed inverse problem).
The activation coefficient vector f may be considered to include a subvector fn for each instrument n that includes the activation coefficients for the corresponding basis function set An. These instrument-specific activation subvectors may be processed independently (e.g., in a post-processing operation). For example, it may be desirable to enforce one or more sparsity constraints (e.g., at least half of the vector elements are zero, the number of nonzero elements in an instrument-specific subvector does not exceed a maximum value, etc.). Processing of the activation coefficient vector may include encoding the index number of each non-zero activation coefficient for each frame, encoding the index and value of each non-zero activation coefficient, or encoding the entire sparse vector. Such information may be used (e.g., at another time and/or location) to reproduce the mixture signal using the indicated active basis functions, or to reproduce only a particular part of the mixture signal (e.g., only the notes played by a particular instrument).
An audio signal produced by a musical instrument may be modeled as a series of events called notes. The sound of a harmonic instrument playing a note may be divided into different regions over time: for example, an onset stage (also called attack), a stationary stage (also called sustain), and an offset stage (also called release). Another description of the temporal envelope of a note (ADSR) includes an additional decay stage between attack and sustain. In this context, the duration of a note may be defined as the interval from the start of the attack stage to the end of the release stage (or to another event that terminates the note, such as the start of another note on the same string). A note is assumed to have a single pitch, although the inventory may also be implemented to model notes having a single attack and multiple pitches (e.g., as produced by a pitch-bending effect, such as vibrato or portamento). Some instruments (e.g., a piano, guitar, or harp) may produce more than one note at a time in an event called a chord.
Notes produced by different instruments may have similar timbres during the sustain stage, such that it may be difficult to identify which instrument is playing during such a period. The timbre of a note may be expected to vary from one stage to another, however. For example, identifying an active instrument may be easier during an attack or release stage than during a sustain stage.
To increase the likelihood that the activation coefficient vector will indicate an appropriate basis function, it may be desirable to maximize differences between the basis functions. For example, it may be desirable for a basis function to include information relating to changes in the spectrum of a note over time.
It may be desirable to select a basis function based on a change in timbre over time. For example, it may be desirable to encode information relating to such time-domain evolution of the timbre of a note into the basis function inventory. For example, the set An of basis functions for a particular instrument n may include two or more corresponding signal representations at each pitch, such that each of these signal representations corresponds to a different time in the evolution of the note (e.g., one for attack stage, one for sustain stage, and one for release stage). These basis functions may be extracted from corresponding frames of a recording of the instrument playing the note.
Method M200 includes multiple instances of task T100 (in this example, tasks T100A and T100B), wherein each instance calculates, based on information from a corresponding different frame of the audio signal, a corresponding signal representation over a range of frequencies. The various signal representations may be concatenated, and likewise each basis function may be a concatenation of multiple signal representations. In this example, task T200 matches the concatenation of mixture frames against the concatenations of the signal representations at each pitch.
The inventory may be constructed such that the multiple signal representations at each pitch are taken from consecutive frames of a training signal. In other implementations, it may be desirable for the multiple signal representations at each pitch to span a larger window in time. For example, it may be desirable for the multiple signal representations at each pitch to include signal representations from at least two among an attack stage, a sustain stage, and a release stage. By including more information regarding the time-domain evolution of the note, the difference between the sets of basis functions for different notes may be increased.
On the left,
The actual timbre of a flute contains more high-frequency energy than that of a piano, although the basis functions shown in the left plot of
A musical note may include coloration effects, such as vibrato and/or tremolo. Vibrato is a frequency modulation, with a modulation rate that is typically in a range of from four or five to seven, eight, ten, or twelve Hertz. A pitch change due to vibrato may vary between 0.6 to two semitones for singers, and is generally less than +/−0.5 semitone for wind and string instruments (e.g., between 0.2 and 0.35 semitones for string instruments). Tremolo is an amplitude modulation typically having a similar modulation rate.
It may be difficult to model such effects in the basis function inventory. It may be desirable to detect the presence of such effects. For example, the presence of vibrato may be indicated by a frequency-domain peak in the range of 4-8 Hz. It may also be desirable to record a measure of the level of the detected effect (e.g., as the energy of this peak), as such a characteristic may be used to restore the effect during reproduction. Similar processing may be performed in the time domain for tremolo detection and quantification. Once the effect has been detected and possibly quantified, it may be desirable to remove the modulation by smoothing the frequency over time for vibrato or by smoothing the amplitude over time for tremolo.
This disclosure describes methods that may be used to enable a use case for a music application in which multiple sources may be active at the same time. In such case, it may be desirable to separate the sources, if possible, before calculating the activation coefficient vector. To achieve this goal, a combination of multi- and single-channel techniques is proposed.
Spatial separation methods may be insufficient to achieve a desired level of separation. For example, some sources may be too close or otherwise suboptimally arranged with respect to the microphone array (e.g. multiple violinists and/or harmonic instruments may be located in one corner; percussionists are usually located in the back). In a typical music-band scenario, sources may be located close together or even behind other sources (e.g., as shown in
To address multi-player use cases, a handset/netbook/laptop-mounted microphone array with a spatial and sparsity-based signal-processing scheme is proposed. One such approach includes a) using multiple microphones to record a multichannel mixture signal; b) analyzing the time-frequency (T-F) points of the mixture signal in a limited frequency range as to their DOA/TDOA (direction of arrival/time difference of arrival), to identify and extract a set of directionally coherent T-F points; c) using a sparse recovery algorithm to match the extracted, spatially coherent T-F amplitude points to a musical instrument/vocalist basis function inventory in the limited frequency range; d) subtracting the identified spatial basis functions from the original recorded amplitudes in the whole frequency range to obtain a residual signal, and then e) matching the residual signal amplitudes to the basis function inventory.
With an array of two or more microphones, it becomes possible to obtain information regarding the direction of arrival of a particular sound (i.e., the direction of the sound source relative to the array). While it may sometimes be possible to separate signal components from different sound sources based on their directions of arrival, in general spatial separation methods alone may be insufficient to achieve a desired level of separation. For example, some sources may be too close or otherwise suboptimally arranged with respect to the microphone array (e.g. multiple violinists and/or harmonic instruments may be located in one corner; percussionists are usually located in the back). In a typical music-band scenario, sources may be located close together or even behind other sources (e.g., as shown in
We begin by matching a particular limited frequency range of the observed mixture signal against a basis function inventory, to identify the basis functions that are activated by this range. Based on these identified basis functions, we then subtract corresponding source components from the original mixture signal over the complete frequency range. These subtracted regions are likely to be discontinuous in both time and frequency. It may also be desirable to continue by matching the resulting residual mixture signal to the basis function inventory (e.g., to identify the next most active instrument in the signal, or to identify one or more spatially distributed sources).
For a given microphone array, the range of frequencies of a signal captured by the array that can be used to provide unambiguous source localization information (e.g., DOA) is typically limited by factors relating to the dimensions of the array. For example, a lower end of this limited frequency range is related to the aperture of the array, which may be too small to provide reliable spatial information at low frequencies. A higher end of this limited frequency range is related to the smallest distance between adjacent microphones, which sets an upper frequency limit on unambiguous spatial information (due to spatial aliasing). For a given microphone array, we call the range of frequencies over which reliable spatial information may be obtained the “spatial frequency range” of the array.
Task U110 may be configured to estimate the source direction of each T-F point based on a difference between the phases of the T-F point in different channels of the multichannel signal (the ratio of phase difference to frequency is an indication of direction of arrival). Additionally or alternatively, task U110 may be configured to estimate the source direction of each T-F point based on a difference between the gain (i.e., the magnitude) of the T-F point in different channels of the multichannel signal.
Task U120 selects a set of the T-F points based on their estimated source directions. In one example, task U120 selects T-F points whose estimated source directions are similar to (e.g., within ten, twenty, or thirty degrees of) a specified source direction. The specified source direction may be a preset value, and task U120 may be repeated for different specified source directions (e.g., for different spatial sectors). Alternatively, such an implementation of task U120 may be configured to select one or more specified source directions according to the number and/or the total energy of T-F points that have similar estimated source directions. In such a case, task U120 may be configured to select, as a specified source direction, a direction that is similar to the estimated source directions of some specified number (e.g., twenty or thirty percent) of the T-F points.
In another example, task U120 selects T-F points that are related to other T-F points in the spatial frequency range in terms of both estimated source direction and frequency. In such a case, task U120 may be configured to select T-F points that have similar estimated source directions and frequencies that are harmonically related.
Task U130 matches one or more among an inventory of basis functions to the selected set of T-F points. Task U130 analyzes the selected T-F points using a single-channel sparse recovery technique. Task U130 finds the sparsest coefficients using only the “spatial frequency range” portion of basis function matrix A and the identified point sources in mixture signal vector y.
Due to the harmonic structure of the spectrogram of a musical instrument, frequency content in the high-frequency band can be inferred from frequency content in a low- and/or mid-frequency band, such that analyzing the “spatial frequency range” may be sufficient to identify relevant basis functions (e.g., the basis functions that are currently activated by the sources). As described above, task T130 uses information from the spatial frequency range to identify basis functions of an inventory that are currently activated by the point sources. Once the basis functions that are relevant to point sources in the spatial frequency range have been identified, these basis functions may be used to extrapolate the spatial information to another frequency range of the input signal where reliable spatial information may not be available. For example, the basis functions may be used to remove the corresponding music sources from the original mixture spectrum over the complete frequency range.
The bottom figure in
Task U140 uses the matched basis functions to select T-F points of the multichannel signal that are outside of the spatial frequency range. These points may be expected to arise from the same sound event or events that produced the selected set of T-F points. For example, if task U130 matches the selected set of T-F points to a basis function that corresponds to a flute playing the note C6 (1046.502 Hz), then the other T-F points that task U140 selects may be expected to arise from the same flute note.
It may be desirable to search the sparsest representation for instruments including location cues. For example, it may be desirable to perform a sparsity-driven multi-microphone source separation that jointly executes tasks of (1) isolating sources into differentiable spatial clusters and (2) looking up corresponding basis functions, based on a single criterion of “sparse decomposition.”
The approaches described above may be implemented using a basis function inventory that encodes the timbres of individual instruments. It may be desirable to perform an alternate method using a dimensionally expanded basis function matrix that also contains the phase information associated with a point source originating from certain sectors in space. Such a basis function inventory can then be used to solve the DOA mapping and instrument separation at the same time (i.e. jointly), by matching the recorded spectrograms' phase and amplitude information directly to the basis function inventory.
Such a method may be implemented as an extension of single-channel source separation, based on sparse decomposition, into a multi-microphone case. Such a method may have one or more advantages over an approach that performs spatial decomposition (e.g., beamforming) and single-channel spectral decomposition separately and sequentially. For example, such a joint method can maximally exploit the much more increased sparsity with additional spatial domain. With beamforming, the spatially separated signal is still likely to contain significant portions of unwanted signal from the non-look direction, which may limit the performance of correct extraction of the target source with single-channel sparse decomposition.
In this case, the single-channel input spectrograms y (e.g., indicating amplitudes of time-frequency points in the respective channels) are replaced by a multi-microphone complex spectrogram {right arrow over (y)}′ that includes phase information. The basis function inventory A is also expanded to A□ as described below. Reconstruction may now include spatial filtering based on the identified DOA of the point source. This sparsity-driven beamforming approach can also include additional spatial constraints that are included in the set of linear constraints defining the sparse recovery problem. This multi-microphone sparse decomposition method will enable multi-player scenarios and thereby greatly enhance the user's experience.
With a joint approach, we now try to find the most probable spectral magnitude basis appended with appropriate DOA. Instead of performing beamforming, we try to look for the DOA information. Therefore, multi-microphone processing (e.g., beamforming or ICA) may be postponed until after the appropriate basis function is identified.
We can obtain strong echo path information (DOA and time lag) with a joint approach as well. Once the echo path is strong enough, this path may be detected. Using inter-correlation with extracted consecutive frames, we may obtain the time-lag information of the correlated source (in other words, the echoed source).
With a joint approach, an EM-like basis update is still possible, such that any of the following are possible: modification of the spectral envelope as in the single-channel case; modification of inter-channel difference (e.g., gain mismatch and/or phase mismatch among the microphones can be resolved); modification of spatial resolution near the solution (e.g., we can adaptively change the possible direction search range in the spatial domain).
The bottom right figure in
Such an expansion also allows for additional spatial constraints. For example, the minimum ∥f∥l1 and ∥y′−A′f∥l2 may not guarantee all the inherent properties, such as the continuity of the spatial location. One spatial constraint that may be applied pertains to bases for the same note from the same instrument. In this case, the multiple basis functions that describe one note of the same instrument should reside in the same or similar spatial location when they are activated. For example, the attack, decay, sustain, and release parts of the note may be constrained to occur in the similar spatial location.
Another spatial constraint that may be applied pertains to bases for all notes produced by the same instrument. In this case, the locations of the activated basis functions that represent the same instrument should have continuity in time with high probability. Such spatial constraints may be applied to reduce the searching space dynamically and/or to give a penalty to a probability which implies a transition of location.
The top figure in
We begin by matching the “spatial frequency range” of the observed signal against the basis function inventory, to identify the basis functions that are activated by this range. The bottom figure in
Based on these identified basis functions, we may then subtract corresponding source components from the original mixture signal over the complete frequency range, as shown in
It may be desirable to perform a method as described above using a dimensionally expanded basis function matrix, to extract spatially localized point sources (e.g., such that the basis functions that are identified from the “spatial frequency range” are also spatially localized). Such a method may include computing the spatial origin of the mixture spectrogram (t,f) points in the “spatial frequency range.” Such localization may be based on differences between levels (e.g., gain or magnitude) and/or phases of the observed microphone signals. Such a method may also include extracting spatially consistent point sources from the mixture spectrogram and matching the extracted point-source spectrograms against the basis function inventory in the “spatial frequency range.” Such a method may include using the matched basis functions to remove the spatial point sources from the mixture spectrogram in the complete frequency range. Such a method may also include matching the residual mixture spectrogram to the basis function inventory to extract spatially distributed sources.
It may be desirable to search the sparsest representation for instruments including location cues. For example, it may be desirable to perform a sparsity-driven multi-microphone source separation that jointly executes tasks of (1) isolating sources into differentiable spatial clusters and (2) looking up corresponding basis functions, based on a single criterion of “sparse decomposition.”
For computational tractability, it may be desirable for the plurality B of basis functions to be considerably smaller than the inventory A of basis functions. It may be desirable to narrow down the inventory for a given separation task, starting from a large inventory. In one example, such a reduction may be performed by determining whether a segment includes sound from percussive instruments or sound from harmonic instruments, and selecting an appropriate plurality B of basis functions from the inventory for matching. Percussive instruments tend to have impulse-like spectrograms (e.g., vertical lines) as opposed to horizontal lines for harmonic sounds.
A harmonic instrument may typically be characterized in the spectrogram by a certain fundamental pitch and associated timbre, and a corresponding higher-frequency extension of this harmonic pattern. Consequently, in another example it may be desirable to reduce the computational task by only analyzing lower octaves of these spectra, as their higher frequency replica may be predicted based on the low-frequency ones. After matching, the active basis functions may be extrapolated to higher frequencies and subtracted from the mixture signal to obtain a residual signal that may be encoded and/or further decomposed.
Such a reduction may also be performed through user selection in a graphical user interface and/or by pre-classification of most likely instruments and/or pitches based on a first sparse recovery run or maximum likelihood fit. For example, a first run of the sparse recovery operation may be performed to obtain a first set of recovered sparse coefficients, and based on this first set, the applicable note basis functions may be narrowed down for another run of the sparse recovery operation.
One reduction approach includes detecting the presence of certain instrument notes by measuring sparsity scores in certain pitch intervals. Such an approach may include refining the spectral shape of one or more basis functions, based on initial pitch estimates, and using the refined basis functions as the plurality B in method M100.
A reduction approach may be configured to identify pitches by measuring sparsity scores of the music signal projected into corresponding basis functions. Given the best pitch scores, the amplitude shapes of basis functions may be optimized to identify instrument notes. The reduced set of active basis functions may then be used as the plurality B in method M100.
A general onset detection method may be based on spectral magnitude (e.g., energy difference). For example, such a method may include finding peaks based on spectral energy and/or peak slope.
It may be desirable also to detect an onset of each individual instrument. For example, a method of onset detection among harmonic instruments may be based on corresponding coefficient difference in time. In one such example, onset detection of a harmonic instrument n is triggered if the index of the highest-magnitude element of the coefficient vector for instrument n (subvector fn) for the current frame is not equal to the index of the highest-magnitude element of the coefficient vector for instrument n for the previous frame. Such an operation may be iterated for each instrument.
It may be desirable to perform post-processing of the sparse coefficient vector of a harmonic instrument. For example, for harmonic instruments it may be desirable to keep a coefficient of the corresponding subvector that has a high magnitude and/or an attack profile that meets a specified criterion (e.g., is sufficiently sharp), and/or to remove (e.g., to zero out) residual coefficients.
For each harmonic instrument, it may be desirable to post-process the coefficient vector at each onset frame (e.g., when onset detection is indicated) such that the coefficient that has the dominant magnitude and an acceptable attack time is kept and residual coefficients are zeroed. The attack time may be evaluated according to a criterion such as average magnitude over time. In one such example, each coefficient for the instrument for the current frame t is zeroed out (i.e., the attack time is not acceptable) if the current average value of the coefficient is less than a past average value of the coefficient (e.g., if the sum of the values of the coefficient over a current window, such as from frame (t−5) to frame (t+4)) is less than the sum of the values of the coefficient over a past window, such as from frame (t−15) to frame (t−6)). Such post-processing of the coefficient vector for a harmonic instrument at each onset frame may also include keeping the coefficient with the largest magnitude and zeroing out the other coefficients. For each harmonic instrument at each non-onset frame, it may be desirable to post-process the coefficient vector to keep only the coefficient whose value in the previous frame was nonzero, and to zero out the other coefficients of the vector.
An EM algorithm may be used to generate an initial basis function matrix and/or to update the basis function matrix (e.g., based on the activation coefficient vectors). An example of update rules for an EM approach is now described. Given a spectrogram Vft, we wish to estimate spectral basis vectors P(f|z) and weight vectors Pt(z) for each time frame. These distributions give us a matrix decomposition.
We apply the EM algorithm as follows: First, randomly initialize weight vectors Pt(z) and spectral basis vectors P(f|z). Then iterate between the following steps until convergence: 1) Expectation (E) step—estimate the posterior distribution Pt(z|f), given the spectral basis vectors P(f|z) and the weight vectors Pt(z). This estimation may be expressed as follows:
Maximization (M) step—estimate the weight vectors Pt(z) and the spectral basis vectors P(f|z), given the posterior distribution Pt(z|f). Estimation of the weight vectors may be expressed as follows:
Estimation of the spectral basis vector may be expressed as follows:
During the operation of a multi-microphone audio sensing device, array R100 produces a multichannel signal in which each channel is based on the response of a corresponding one of the microphones to the acoustic environment. One microphone may receive a particular sound more directly than another microphone, such that the corresponding channels differ from one another to provide collectively a more complete representation of the acoustic environment than can be captured using a single microphone.
It may be desirable for array R100 to perform one or more processing operations on the signals produced by the microphones to produce the multichannel signal MCS that is processed by apparatus A100.
It may be desirable for array R100 to produce the multichannel signal as a digital signal, that is to say, as a sequence of samples. Array R210, for example, includes analog-to-digital converters (ADCs) C10a and C10b that are each arranged to sample the corresponding analog channel. Typical sampling rates for acoustic applications include 8 kHz, 12 kHz, 16 kHz, and other frequencies in the range of from about 8 to about 16 kHz, although sampling rates as high as about 44.1, 48, and 192 kHz may also be used. In this particular example, array R210 also includes digital preprocessing stages P20a and P20b that are each configured to perform one or more preprocessing operations (e.g., echo cancellation, noise reduction, and/or spectral shaping) on the corresponding digitized channel to produce the corresponding channels MCS-1, MCS-2 of multichannel signal MCS. Additionally or in the alternative, digital preprocessing stages P20a and P20b may be implemented to perform a frequency transform (e.g., an FFT or MDCT operation) on the corresponding digitized channel to produce the corresponding channels MCS10-1, MCS10-2 of multichannel signal MCS10 in the corresponding frequency domain. Although FIGS. 40A and 40B show two-channel implementations, it will be understood that the same principles may be extended to an arbitrary number of microphones and corresponding channels of multichannel signal MCS10 (e.g., a three-, four-, or five-channel implementation of array R100 as described herein).
Each microphone of array R100 may have a response that is omnidirectional, bidirectional, or unidirectional (e.g., cardioid). The various types of microphones that may be used in array R100 include (without limitation) piezoelectric microphones, dynamic microphones, and electret microphones. In a device for portable voice communications, such as a handset or headset, the center-to-center spacing between adjacent microphones of array R100 is typically in the range of from about 1.5 cm to about 4.5 cm, although a larger spacing (e.g., up to 10 or 15 cm) is also possible in a device such as a handset or smartphone, and even larger spacings (e.g., up to 20, 25 or 30 cm or more) are possible in a device such as a tablet computer. For a far-field application, the center-to-center spacing between adjacent microphones of array R100 is typically in the range of from about four to ten centimeters, although a larger spacing between at least some of the adjacent microphone pairs (e.g., up to 20, 30, or 40 centimeters or more) is also possible in a device such as a flat-panel television display. The microphones of array R100 may be arranged along a line (with uniform or non-uniform microphone spacing) or, alternatively, such that their centers lie at the vertices of a two-dimensional (e.g., triangular) or three-dimensional shape.
It is expressly noted that the microphones may be implemented more generally as transducers sensitive to radiations or emissions other than sound. In one such example, the microphone pair is implemented as a pair of ultrasonic transducers (e.g., transducers sensitive to acoustic frequencies greater than fifteen, twenty, twenty-five, thirty, forty, or fifty kilohertz or more).
It may be desirable to perform a method as described herein within a portable audio sensing device that has an array R100 of two or more microphones configured to receive acoustic signals. Examples of a portable audio sensing device that may be implemented to include such an array and may be used for audio recording and/or voice communications applications include a telephone handset (e.g., a cellular telephone handset); a wired or wireless headset (e.g., a Bluetooth headset); a handheld audio and/or video recorder; a personal media player configured to record audio and/or video content; a personal digital assistant (PDA) or other handheld computing device; and a notebook computer, laptop computer, netbook computer, tablet computer, or other portable computing device. The class of portable computing devices currently includes devices having names such as laptop computers, notebook computers, netbook computers, ultra-portable computers, tablet computers, mobile Internet devices, smartbooks, and smartphones. Such a device may have a top panel that includes a display screen and a bottom panel that may include a keyboard, wherein the two panels may be connected in a clamshell or other hinged relationship. Such a device may be similarly implemented as a tablet computer that includes a touchscreen display on a top surface. Other examples of audio sensing devices that may be constructed to perform such a method and to include instances of array R100 and may be used for audio recording and/or voice communications applications include television displays, set-top boxes, and audio- and/or video-conferencing devices.
Chip/chipset CS10 includes a receiver which is configured to receive a radio-frequency (RF) communications signal (e.g., via antenna C40) and to decode and reproduce (e.g., via loudspeaker SP10) an audio signal encoded within the RF signal. Chip/chipset CS10 also includes a transmitter which is configured to encode an audio signal that is based on an output signal produced by apparatus A100 and to transmit an RF communications signal (e.g., via antenna C40) that describes the encoded audio signal. For example, one or more processors of chip/chipset CS10 may be configured to perform a noise reduction operation as described above on one or more channels of the multichannel signal such that the encoded audio signal is based on the noise-reduced signal. In this example, device D20 also includes a keypad C10 and display C20 to support user control and interaction.
The methods and apparatus disclosed herein may be applied generally in any transceiving and/or audio sensing application, including mobile or otherwise portable instances of such applications and/or sensing of signal components from far-field sources. For example, the range of configurations disclosed herein includes communications devices that reside in a wireless telephony communication system configured to employ a code-division multiple-access (CDMA) over-the-air interface. Nevertheless, it would be understood by those skilled in the art that a method and apparatus having features as described herein may reside in any of the various communication systems employing a wide range of technologies known to those of skill in the art, such as systems employing Voice over IP (VoIP) over wired and/or wireless (e.g., CDMA, TDMA, FDMA, and/or TD-SCDMA) transmission channels.
It is expressly contemplated and hereby disclosed that communications devices disclosed herein may be adapted for use in networks that are packet-switched (for example, wired and/or wireless networks arranged to carry audio transmissions according to protocols such as VoIP) and/or circuit-switched. It is also expressly contemplated and hereby disclosed that communications devices disclosed herein may be adapted for use in narrowband coding systems (e.g., systems that encode an audio frequency range of about four or five kilohertz) and/or for use in wideband coding systems (e.g., systems that encode audio frequencies greater than five kilohertz), including whole-band wideband coding systems and split-band wideband coding systems.
The foregoing presentation of the described configurations is provided to enable any person skilled in the art to make or use the methods and other structures disclosed herein. The flowcharts, block diagrams, and other structures shown and described herein are examples only, and other variants of these structures are also within the scope of the disclosure. Various modifications to these configurations are possible, and the generic principles presented herein may be applied to other configurations as well. Thus, the present disclosure is not intended to be limited to the configurations shown above but rather is to be accorded the widest scope consistent with the principles and novel features disclosed in any fashion herein, including in the attached claims as filed, which form a part of the original disclosure.
Those of skill in the art will understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, and symbols that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Important design requirements for implementation of a configuration as disclosed herein may include minimizing processing delay and/or computational complexity (typically measured in millions of instructions per second or MIPS), especially for computation-intensive applications, such as playback of compressed audio or audiovisual information (e.g., a file or stream encoded according to a compression format, such as one of the examples identified herein) or applications for wideband communications (e.g., voice communications at sampling rates higher than eight kilohertz, such as 12, 16, 44.1, 48, or 192 kHz).
Goals of a multi-microphone processing system may include achieving ten to twelve dB in overall noise reduction, preserving voice level and color during movement of a desired speaker, obtaining a perception that the noise has been moved into the background instead of an aggressive noise removal, dereverberation of speech, and/or enabling the option of post-processing for more aggressive noise reduction.
An apparatus as disclosed herein (e.g., apparatus A100 and MF100) may be implemented in any combination of hardware with software, and/or with firmware, that is deemed suitable for the intended application. For example, the elements of such an apparatus may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset. One example of such a device is a fixed or programmable array of logic elements, such as transistors or logic gates, and any of these elements may be implemented as one or more such arrays. Any two or more, or even all, of the elements of the apparatus may be implemented within the same array or arrays. Such an array or arrays may be implemented within one or more chips (for example, within a chipset including two or more chips).
One or more elements of the various implementations of the apparatus disclosed herein may also be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements, such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs (field-programmable gate arrays), ASSPs (application-specific standard products), and ASICs (application-specific integrated circuits). Any of the various elements of an implementation of an apparatus as disclosed herein may also be embodied as one or more computers (e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions, also called “processors”), and any two or more, or even all, of these elements may be implemented within the same such computer or computers.
A processor or other means for processing as disclosed herein may be fabricated as one or more electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset. One example of such a device is a fixed or programmable array of logic elements, such as transistors or logic gates, and any of these elements may be implemented as one or more such arrays. Such an array or arrays may be implemented within one or more chips (for example, within a chipset including two or more chips). Examples of such arrays include fixed or programmable arrays of logic elements, such as microprocessors, embedded processors, IP cores, DSPs, FPGAs, ASSPs, and ASICs. A processor or other means for processing as disclosed herein may also be embodied as one or more computers (e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions) or other processors. It is possible for a processor as described herein to be used to perform tasks or execute other sets of instructions that are not directly related to a music decomposition procedure as described herein, such as a task relating to another operation of a device or system in which the processor is embedded (e.g., an audio sensing device). It is also possible for part of a method as disclosed herein to be performed by a processor of the audio sensing device and for another part of the method to be performed under the control of one or more other processors.
Those of skill will appreciate that the various illustrative modules, logical blocks, circuits, and tests and other operations described in connection with the configurations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Such modules, logical blocks, circuits, and operations may be implemented or performed with a general-purpose processor, a digital signal processor (DSP), an ASIC or ASSP, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to produce the configuration as disclosed herein. For example, such a configuration may be implemented at least in part as a hard-wired circuit, as a circuit configuration fabricated into an application-specific integrated circuit, or as a firmware program loaded into nonvolatile storage or a software program loaded from or into a data storage medium as machine-readable code, such code being instructions executable by an array of logic elements such as a general purpose processor or other digital signal processing unit. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. A software module may reside in RAM (random-access memory), ROM (read-only memory), nonvolatile RAM (NVRAM) such as flash RAM, erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An illustrative storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
It is noted that the various methods disclosed herein (e.g., method M100 and other methods disclosed by way of description of the operation of the various apparatus described herein) may be performed by an array of logic elements such as a processor, and that the various elements of an apparatus as described herein may be implemented as modules designed to execute on such an array. As used herein, the term “module” or “sub-module” can refer to any method, apparatus, device, unit or computer-readable data storage medium that includes computer instructions (e.g., logical expressions) in software, hardware or firmware form. It is to be understood that multiple modules or systems can be combined into one module or system and one module or system can be separated into multiple modules or systems to perform the same functions. When implemented in software or other computer-executable instructions, the elements of a process are essentially the code segments to perform the related tasks, such as with routines, programs, objects, components, data structures, and the like. The term “software” should be understood to include source code, assembly language code, machine code, binary code, firmware, macrocode, microcode, any one or more sets or sequences of instructions executable by an array of logic elements, and any combination of such examples. The program or code segments can be stored in a processor-readable storage medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication link.
The implementations of methods, schemes, and techniques disclosed herein may also be tangibly embodied (for example, in one or more computer-readable media as listed herein) as one or more sets of instructions readable and/or executable by a machine including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine). The term “computer-readable medium” may include any medium that can store or transfer information, including volatile, nonvolatile, removable and non-removable media. Examples of a computer-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette or other magnetic storage, a CD-ROM/DVD or other optical storage, a hard disk, a fiber optic medium, a radio frequency (RF) link, or any other medium which can be used to store the desired information and which can be accessed. The computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc. The code segments may be downloaded via computer networks such as the Internet or an intranet. In any case, the scope of the present disclosure should not be construed as limited by such embodiments.
Each of the tasks of the methods described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. In a typical application of an implementation of a method as disclosed herein, an array of logic elements (e.g., logic gates) is configured to perform one, more than one, or even all of the various tasks of the method. One or more (possibly all) of the tasks may also be implemented as code (e.g., one or more sets of instructions), embodied in a computer program product (e.g., one or more data storage media such as disks, flash or other nonvolatile memory cards, semiconductor memory chips, etc.), that is readable and/or executable by a machine (e.g., a computer) including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine). The tasks of an implementation of a method as disclosed herein may also be performed by more than one such array or machine. In these or other implementations, the tasks may be performed within a device for wireless communications such as a cellular telephone or other device having such communications capability. Such a device may be configured to communicate with circuit-switched and/or packet-switched networks (e.g., using one or more protocols such as VoIP). For example, such a device may include RF circuitry configured to receive and/or transmit encoded frames.
It is expressly disclosed that the various methods disclosed herein may be performed by a portable communications device such as a handset, headset, or portable digital assistant (PDA), and that the various apparatus described herein may be included within such a device. A typical real-time (e.g., online) application is a telephone conversation conducted using such a mobile device.
In one or more exemplary embodiments, the operations described herein may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, such operations may be stored on or transmitted over a computer-readable medium as one or more instructions or code. The term “computer-readable media” includes both computer-readable storage media and communication (e.g., transmission) media. By way of example, and not limitation, computer-readable storage media can comprise an array of storage elements, such as semiconductor memory (which may include without limitation dynamic or static RAM, ROM, EEPROM, and/or flash RAM), or ferroelectric, magnetoresistive, ovonic, polymeric, or phase-change memory; CD-ROM or other optical disk storage; and/or magnetic disk storage or other magnetic storage devices. Such storage media may store information in the form of instructions or data structures that can be accessed by a computer. Communication media can comprise any medium that can be used to carry desired program code in the form of instructions or data structures and that can be accessed by a computer, including any medium that facilitates transfer of a computer program from one place to another. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and/or microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technology such as infrared, radio, and/or microwave are included in the definition of medium. Disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray Disc™ (Blu-Ray Disc Association, Universal City, Calif.), where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
An acoustic signal processing apparatus as described herein (e.g., apparatus A100 or MF100) may be incorporated into an electronic device that accepts speech input in order to control certain operations, or may otherwise benefit from separation of desired noises from background noises, such as communications devices. Many applications may benefit from enhancing or separating clear desired sound from background sounds originating from multiple directions. Such applications may include human-machine interfaces in electronic or computing devices which incorporate capabilities such as voice recognition and detection, speech enhancement and separation, voice-activated control, and the like. It may be desirable to implement such an acoustic signal processing apparatus to be suitable in devices that only provide limited processing capabilities.
The elements of the various implementations of the modules, elements, and devices described herein may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset. One example of such a device is a fixed or programmable array of logic elements, such as transistors or gates. One or more elements of the various implementations of the apparatus described herein may also be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs, ASSPs, and ASICs.
It is possible for one or more elements of an implementation of an apparatus as described herein to be used to perform tasks or execute other sets of instructions that are not directly related to an operation of the apparatus, such as a task relating to another operation of a device or system in which the apparatus is embedded. It is also possible for one or more elements of an implementation of such an apparatus to have structure in common (e.g., a processor used to execute portions of code corresponding to different elements at different times, a set of instructions executed to perform tasks corresponding to different elements at different times, or an arrangement of electronic and/or optical devices performing operations for different elements at different times).
The present application for patent claims priority to Provisional Application No. 61/406,561, entitled “MULTI-MICROPHONE SPARSITY-BASED MUSIC SCENE ANALYSIS,” filed Oct. 25, 2010, and assigned to the assignee hereof.
Number | Name | Date | Kind |
---|---|---|---|
7464029 | Visser et al. | Dec 2008 | B2 |
7492908 | Griesinger | Feb 2009 | B2 |
7711127 | Suzuki et al. | May 2010 | B2 |
20040204924 | Beadle et al. | Oct 2004 | A1 |
20060277035 | Hiroe et al. | Dec 2006 | A1 |
20080040101 | Hayakawa | Feb 2008 | A1 |
20090116652 | Kirkeby et al. | May 2009 | A1 |
20090299742 | Toman et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
101086846 | Dec 2007 | CN |
2004325127 | Nov 2004 | JP |
2008145610 | Jun 2008 | JP |
2010161735 | Jul 2010 | JP |
2010193323 | Sep 2010 | JP |
WO-2007014136 | Feb 2007 | WO |
WO-2010005050 | Jan 2010 | WO |
WO-2010048620 | Apr 2010 | WO |
Entry |
---|
Vincent, E. et al “Blind Audio Source Separation.” Centre for Digital Music. Technical Report C4DM-TR-05-01. Nov. 24, 2005. pp. 1-26. |
Burred J., J., “Supervised Musical Source Separation from Mono and Stereo Mixtures based on Sinusoidal Modeling”, Jan. 1, 2008, pp. 1-25, XP55014917, Retrieved from the Internet: URL: http://www.jjburred.com/research/pdf/burred—talk08—web.pdf [retrieved on Dec. 15, 2011] pp. 14, 15 pp. 19-22. |
International Search Report and Written Opinion—PCT/US2011/057723—ISA/EPO—Dec. 29, 2011. |
Ozerov A., et al., “A General Modular Framework for Audio Source Separation”, Sep. 27, 2010, Latent Variable Analysis and Signal Separation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 33-40, XP019153406, ISBN: 978-3-642-15994-7, Sections 2,3. |
Number | Date | Country | |
---|---|---|---|
20120128165 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61406561 | Oct 2010 | US |