The present invention relates generally to wearable devices, and more particularly to wearable biometric sensor technology for physiological monitoring for medical, health, and fitness applications.
Noninvasive continuous real-time blood pressure (BP) estimation technology exists in today's marketplace in the form of the “volume clamp” method, a technology in which a photoplethysmography (PPG) sensor and clamp are placed around a subject's finger to actively monitor the blood flow and the clamp pressure is adjusted to maintain a constant blood flow through the finger during each pulse. This clamp pressure is directly related to the subject's blood pressure and, following a series of calibrations against an automated upper arm (brachial artery) cuff-based BP monitor, the volume clamp method can (in some limited circumstances) be applied towards roughly estimating subject blood pressure continuously without requiring that an arterial line pressure sensor be invasively inserted within the subject. Examples of BP monitoring systems utilizing the volume clamp method are those provided by CNSystems, Edwards Lifesciences and Finapres.
Although the volume clamp method is currently the commercial workhorse of noninvasive continuous blood pressure monitoring, the inventors have discovered that this method suffers from several limitations: 1) a mechanical finger cuff is required, making the method unsuitable for ambulatory use in everyday life activities, 2) the transfer function between the finger blood flow, clamp pressure, and brachial artery pressure can change over a short time, leading to unpredictable calibration drift, 3) physiological extrema, such as fat fingers or hardened arteries, can pose an inherent limit on the ability to accurately calibrate the clamp pressure to the brachial artery pressure, 4) the system is quite sensitive to motion artifacts, reducing the utility to stationary use cases only, 5) because continuously active mechanical parts are required, the solution is not suitable for truly wearable, free-living use cases where battery life is a precious resource, 6) BP estimations are insufficiently accurate in periods when the brachial arterial blood pressure rapidly increases or decreases, and 7) numerous other limitations that continue to prevent the method from serving as a viable alternative to the arterial line for continuous BP measurements.
It should be appreciated that this Summary is provided to introduce a selection of concepts in a simplified form, the concepts being further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of this disclosure, nor is it intended to limit the scope of the invention.
According to some embodiments of the present invention, a blood pressure monitoring system includes a blood pressure monitoring device configured to obtain a blood pressure measurement from a subject, an arterial pulse wave sensor configured to obtain arterial pulse wave data from the subject, and at least one processor configured to generate a blood pressure estimation for the subject via an adaptive predictive model (e.g., a regression model, a machine learning model, a classifier model, etc.) using real-time arterial pulse wave data from the arterial pulse wave sensor. The at least one processor is further configured to receive a real-time blood pressure measurement from the blood pressure monitoring device, and in response to receiving the real-time blood pressure measurement, update one or more parameters of the adaptive predictive model in real-time to improve blood pressure estimation accuracy of the adaptive predictive model. The at least one processor may also be configured to determine whether the generated blood pressure estimation is above or below one or more thresholds, and in response to determining that the generated blood pressure estimation is above or below one or more thresholds, update the one or more parameters of the adaptive predictive model in real-time. The at least one processor is configured to receive subsequent real-time blood pressure measurements from the blood pressure monitoring device, and in response to receiving the real-time blood pressure measurements, update one or more parameters of the adaptive predictive model in real-time. The at least one processor may also be configured to send an alert to a remote device in response to determining that the generated blood pressure estimation is above or below a threshold. The at least one processor may also be configured to request a blood pressure measurement from the blood pressure monitoring device in response to determining that the generated blood pressure estimation is above or below one or more thresholds.
In some embodiments, the arterial pulse wave sensor is a PPG sensor. In some embodiments the blood pressure monitoring device is an inflatable cuff configured to be attached to a limb or digit of a subject.
According to other embodiments of the present invention, a wearable device includes an automated inflatable cuff configured to be attached to a limb or digit of a subject, an arterial pulse wave sensor, and at least one processor. The at least one processor is configured to generate a blood pressure estimation for the subject via an adaptive predictive model (e.g., a regression model, a machine learning model, a classifier model, etc.) using real-time arterial pulse wave data from the arterial pulse wave sensor, receive a real-time blood pressure measurement from the cuff, and in response to receiving the real-time blood pressure measurement, update one or more parameters of the adaptive predictive model in real-time to improve blood pressure estimation accuracy of the adaptive predictive model. The at least one processor may also be configured to determine whether the generated blood pressure estimation is above or below one or more thresholds, and in response to determining that the generated blood pressure estimation is above or below one or more thresholds, update the one or more parameters of the adaptive predictive model in real-time. The at least one processor is further configured to, in response to receiving one or more subsequent real-time blood pressure measurements, update the one or more parameters of the adaptive predictive model in real-time. The at least one processor may also be configured to send an alert to a remote device in response to determining that the generated blood pressure estimation is above or below a threshold. The at least one processor may also be configured to request a blood pressure measurement from the cuff in response to determining that the generated blood pressure estimation is above or below one or more thresholds.
According to other embodiments of the present invention, a blood pressure monitoring system includes a blood pressure monitoring device configured to obtain a blood pressure measurement from a subject, a PPG sensor configured to obtain PPG data from the subject, and at least one processor configured to generate a blood pressure estimation for the subject via an adaptive predictive model (e.g., a regression model, a machine learning model, a classifier model, etc.) using real-time PPG data from the PPG sensor, determine whether the generated blood pressure estimation is above or below one or more thresholds, and send an alert to a remote device in response to determining that the generated blood pressure estimation is above or below a threshold. The at least one processor may also be configured to request a blood pressure measurement from the blood pressure monitoring device in response to determining that the generated blood pressure estimation is above or below one or more thresholds, and update the one or more parameters of the adaptive predictive model in real-time.
According to other embodiments of the present invention, a method of determining blood pressure variability for a subject includes the following steps performed by at least one processor: receiving, from a blood pressure monitoring device attached to the subject (e.g., an inflatable cuff configured to be attached to a limb or digit of a subject, etc.), a blood pressure measurement at a first time; receiving, from the blood pressure monitoring device, a blood pressure measurement at a second time; receiving, from a photoplethysmography (PPG) sensor attached to the subject, PPG waveform data during a time period between the first time and the second time; and generating an estimation of blood pressure variability during the time period based on PPG waveform fluctuations identified during the time period. The estimation of blood pressure variability may include an estimation of systolic blood pressure variation and/or an estimation of diastolic blood pressure variation. In some embodiments, the estimation of blood pressure variability may include an estimation of mean blood pressure variation.
According to other embodiments of the present invention, a blood pressure monitoring system includes a blood pressure monitoring device configured to obtain a blood pressure measurement from a subject (e.g., an inflatable cuff configured to be attached to a limb or digit of a subject, etc.), a photoplethysmography (PPG) sensor configured to obtain PPG waveform data from the subject, and at least one processor. The at least one processor is configured to receive a blood pressure measurement at a first time from the blood pressure monitoring device, receive a blood pressure measurement at a second time from the blood pressure monitoring device, receive PPG waveform data from the PPG sensor during a time period between the first time and the second time, and generate an estimation of blood pressure variability during the time period based on PPG waveform fluctuations identified during the time period. The estimation of blood pressure variability may include an estimation of systolic blood pressure variation and/or an estimation of diastolic blood pressure variation. In some embodiments, the estimation of blood pressure variability may include an estimation of mean blood pressure variation.
According to other embodiments of the present invention, a method of determining blood pressure variability for a subject includes the following steps performed by at least one processor: receiving a blood pressure measurement from a blood pressure monitoring device attached to the subject (e.g., an inflatable cuff configured to be attached to a limb or digit of a subject, etc.) and photoplethysmography (PPG) waveform data from a PPG sensor attached to the subject; receiving PPG waveform data from the PPG sensor during a time period after the first time; and generating an estimation of blood pressure variability during the time period based on PPG waveform fluctuations identified during the time period. The estimation of blood pressure variability may include an estimation of systolic blood pressure variation and/or an estimation of diastolic blood pressure variation. In some embodiments, the estimation of blood pressure variability may include an estimation of mean blood pressure variation.
According to other embodiments of the present invention, a blood pressure monitoring system includes a blood pressure monitoring device configured to obtain a blood pressure measurement from a subject (e.g., an inflatable cuff configured to be attached to a limb or digit of a subject, etc.), a photoplethysmography (PPG) sensor configured to obtain PPG waveform data from the subject, and at least one processor. The at least one processor is configured to receive a blood pressure measurement from the blood pressure monitoring device and photoplethysmography (PPG) waveform data from the PPG sensor, receive PPG waveform data from the PPG sensor during a time period after the first time, and generate an estimation of blood pressure variability during the time period based on PPG waveform fluctuations identified during the time period. The estimation of blood pressure variability may include an estimation of systolic blood pressure variation and/or an estimation of diastolic blood pressure variation. In some embodiments, the estimation of blood pressure variability may include an estimation of mean blood pressure variation.
According to other embodiments of the present invention, a method of determining blood pressure variability for a subject, the method comprising the following steps performed by at least one processor: receiving and storing blood pressure measurements from a blood pressure monitoring device attached to the subject over a period of time; receiving and storing photoplethysmography (PPG) data from a PPG sensor attached to the subject over the period of time; and processing the stored blood pressure measurements and the stored PPG data to generate an estimation of blood pressure variability during the time period. In some embodiments, the PPG data includes PPG waveform data, and the at least one processor is further configured to process the stored blood pressure measurements and the stored PPG data to generate an estimation of blood pressure variability during the time period based on PPG waveform fluctuations identified during the time period.
According to other embodiments of the present invention, a blood pressure monitoring method comprises the following steps performed by at least one processor: receiving real-time arterial pulse wave data from an arterial pulse sensor attached to a subject over a period of time; generating blood pressure estimations for the subject via an adaptive predictive model using the arterial pulse wave data; and generating an estimation of blood pressure variability during the period of time. The method may further include the following steps performed by at least one processor: receiving real-time blood pressure measurements from a blood pressure monitoring device attached to the subject over the period of time; and using the real-time blood pressure measurements to update one or more parameters of the adaptive predictive model in real-time to improve blood pressure estimation accuracy of the adaptive predictive model.
It is noted that aspects of the invention described with respect to one embodiment may be incorporated in a different embodiment although not specifically described relative thereto. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination. Applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to be able to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner. These and other objects and/or aspects of the present invention are explained in detail below.
The accompanying drawings, which form a part of the specification, illustrate various embodiments of the present invention. The drawings and description together serve to fully explain embodiments of the present invention.
The term “subject”, as used herein, typically refers to a human being in context of the invention description. However, in context of the invention, a subject may also be a living creature that is not a human being.
The term “biometric” generally refers to a metric for a subject generated by processing physiological (i.e., biological) information from the subject. Nonlimiting examples of biometrics may include: heart rate (HR), heart rate variability (HRV), RR-interval, respiration rate, weight, height, sex, physiological status, overall health status, disease conditions, injury status, blood pressure, arterial stiffness, cardiovascular fitness, VO2max, gas exchange analysis metrics, blood analyte levels fluid metabolite levels, and the like.
The terms “biometric” and “physiological metric”, as used herein are interchangeable.
The term “real-time” is used herein to describe a process that requires a period of time that appears substantially real-time to a human individual. Thus, the term “real-time” is used interchangeably to mean “near real-time” or “quasi-real-time”. Namely, a “real-time” process may refer to an “instantaneous process” but may also refer to a process that generates an output within a short enough processing time to (in effect) be as useful as an instantaneous process (in context of a particular use case). For example, in practicality, a process that requires several seconds or minutes to generate a blood pressure metric for a subject may be considered to be a real time process, as used herein, even though blood pressure may be changing each second, as the use case may involve a sedentary state for the subject where subtle changes in blood pressure may be insignificant and averaged out.
The terms “respiration rate” and “breathing rate”, as used herein, are interchangeable.
The terms “heart rate” and “pulse rate”, as used herein, are interchangeable.
The term “system”, as used herein, refers to a collection of physical and/or computational materials that may be unified by a common function.
The terms “motion sensor”, as used herein, refers to a sensor configured to sense motion information (e.g., from a subject). Nonlimiting examples of motion sensors may comprise: single- or multi-axis inertial sensors (such as accelerometers, gyroscopes, MEMS motion sensors, and the like), optical scatter sensors, blocked channel sensors, and the like.
The term “photoplethysmography” (PPG), as used herein, refers to a method of generating physiological information from PPG waveforms collected via a PPG sensor.
The term “PPG waveform”, as used herein, refers to physiological waveform data resulting from a temporal modulation of photon flux through physiological material.
The term “PPG sensor”, as used herein, refers to a sensor configured to sense photons and generate PPG waveform data. A typical PPG sensor may comprise an optical sensor configured to sense photons in the optical spectrum (i.e., an electromagnetic wavelength range of ˜10 nm to 103 μm, or electromagnetic frequencies in the range from ˜300 GHz to 3000 THz). Nonlimiting examples of optical sensors may comprise inorganic and/or organic photodetectors (such as photoconductors, photodiodes, phototransistors, phototransducers, and the like), reverse-biased light-emitting diodes (LEDs) or other reverse-biased optical emitters, imaging sensors, photodetector arrays, and the like. Additionally, a typical PPG sensor may also comprise a photon (photonic) emitter to generate a photon flux through a physiological pathway. However, in some cases, ambient photons or photons from another source (that is not part of the PPG sensor) may be used to generate photons. Typical PPG sensors may comprise photon emitters that are optical emitters, such as inorganic and/or organic light-emitting diodes (LEDs), laser diodes (LDs), microplasma sources, or the like. PPG sensors may also comprise a motion sensor for the purposes of generating subject activity data and/or providing a noise reference for attenuating motion artifacts in PPG waveform data.
The terms “sensor”, “sensing element”, and “sensor module”, as used herein, are interchangeable and refer to a sensor element or group of sensor elements that may be utilized to sense information, such as information (e.g., physiological information, body motion, etc.) from the body of a subject and/or environmental information in a vicinity of the subject. A sensor/sensing element/sensor module may comprise one or more of the following: a detector element, an emitter element, a processing element, optics, or optomechanics, sensor mechanics, mechanical support, supporting circuitry, and the like. Both a single sensor element and a collection of sensor elements may be considered a sensor, a sensing element, or a sensor module. A sensor/sensing element/sensor module may be configured to both sense information and process that information into one or more metrics.
As used herein, the term “processor” broadly refers to a signal processing circuit or computing system, or a computational method, which may be localized and/or distributed. For example, a localized signal processing circuit may comprise one or more signal processing circuits or processing methods localized to a general location, such as to a wearable blood pressure monitoring device. Examples of such devices may comprise, but are not limited to, an earpiece, a headpiece, a finger clip, a toe clip, a limb band (such as an arm band or leg band), an ankle band, a wrist band, a digit (e.g., finger or toe) band, a nose band, a sensor patch, jewelry, a patch, apparel (clothing) or the like. Examples of a distributed processing circuit include “the cloud,” the internet, a remote database, a remote processor computer, a plurality of remote processing circuits or computers in communication with each other, etc., or processing methods distributed among one or more of these elements. The difference between distributed and localized processing circuits is that a distributed processing circuit may include delocalized elements, whereas a localized processing circuit may work independently of a distributed processing system. Microprocessors, microcontrollers, or digital signal processing circuits represent a few non-limiting examples of signal processing circuits that may be found in a localized and/or distributed system.
The terms “mobile application”, “mobile app” and “app”, as used herein, are interchangeable and refer to a software program that can run on a computing apparatus, such as a mobile phone, digital computer, smartphone, database, cloud server, processor, wearable device, or the like.
The term “health”, as used herein, is broadly construed to relate to the physiological status of an organism or of a physiological element or process of an organism. For example, cardiovascular health may refer to the overall condition of the cardiovascular system, and a cardiovascular health assessment may refer to an estimate of blood pressure, VO2max, cardiac efficiency, heart rate recovery, arterial blockage, arrhythmia, atrial fibrillation, or the like. A “fitness” assessment is a subset of a health assessment, where the fitness assessment refers to how one's health affects one's performance at an activity. For example, a VO2max test can be used to provide a health assessment of one's mortality or a fitness assessment of one's ability to utilize oxygen during an exercise.
The term “blood pressure”, as used herein, refers to a measurement or estimate of the pressure associated with blood flow of a person, such as a diastolic blood pressure, a systolic blood pressure, a mean arterial pressure, or the like. The blood pressure may be with reference to any location on the body where blood vessels and blood flow exists (i.e., brachial, thoracic, subclavian, femoral, tibial, radial, carotid, and the like). The term “blood pressure” is abbreviated as “BP” throughout this document.
As used herein, any device or system is considered to be remote to another device or system as long as there is no physical connection between them. As a point of clarity, the term “remote” does not necessarily mean that a remote device is a wireless device or that it is a long distance away from a device in communication therewith. For example, in some cases, two devices may be considered remote devices with respect to each other even if there is a physical connection between them. In this case, the term “remote” is intended to reference a device or system that is distinct from another device or system or that is not substantially reliant on another device or system for core functionality. For example, a computer wired to a wearable device may be considered a remote device, as the two devices are distinct and/or not substantially reliant on each other for core functionality.
The terms “sampling frequency”, “signal analysis frequency”, and “signal sampling rate”, as used herein, are interchangeable and refer to the number of samples per second (or per other time unit) taken from a continuous sensor or sensing element (for example, the sampling rate of the thermopile output in a tympanic temperature sensor or the sampling rate of the PPG signal from a PPG sensor).
It should be noted that “algorithm” and “circuit” are referred to herein. An algorithm refers to a computational instruction set, such as an instruction set with sequential steps and logic, that may be in memory whereas a circuit refers to electronic components and/or traces that may implement such logic operations in the digital and/or analog domain.
To address these limitations, methods and apparatus according to the present invention provide for continuously generating blood pressure estimates via a real-time adaptive predictive model. These methods and apparatus leverage continuous PPG measurements from a subject, combined with at least one BP measurement from a subject, to update, in real-time, a predictive model for that subject that is more accurate in estimating BP for that subject (than prior to the update). The methods of the present invention may be implemented in a computational system that is configured to receive the PPG and BP data and process this data to improve estimation accuracy. Namely, the model may be configured to generate a BP estimate for a given set of PPG input features, such that the BP estimate is a function of the PPG features, and the parameters of the model may be updated over time as recurring BP measurements (e.g., from a cuff-based BP monitor) are processed to improve the error of the model. In some cases, the computational system may be worn as an ear-worn device (e.g., hearables/hearing aids) 10, as a limb-worn (e.g., wrist, arm, leg) device 12, as a patch 14, as a finger clip 16, as illustrated in
These wearable PPG devices 12-16 may be in communication (e.g., electrical, optical, or wireless) with a blood pressure monitoring device, such as a blood pressure cuff 18 (such as that shown on the arm of the subject wearing the PPG earpiece 12 in
In some embodiments of the present invention, referred to as an adaptation process, a plurality of BP measurements from a cuff-based BP monitor 18 or other BP monitoring device and PPG measurements are processed together to improve the accuracy of the BP estimation. Once the model has been autonomously optimized for the subject, via a computational system (e.g., 100,
Referring to
Then to decrease BP, the subject was asked to relax by terminating the isometric leg press. BP measurements from the cuff-based BP monitor (presented as a thick vertical line L1, with the top point of the line L1 representing the subject systolic BP and the bottom point of the line L1 representing the subject diastolic BP) were received every 60-to-90 seconds and processed (by a computational system). During an initial calibration phase of approximately 300 seconds, multiple values from the cuff-based BP monitor were processed along with multiple PPG readings to generate multiple PPG estimates (presented as a thin vertical line L2, in the same formalism as the cuff-based readings). However, these estimates were not reported to the user, as the parameters of the adaptive predictive model were updated during this calibration phase to increase model accuracy such that it would be equivalent to that of the cuff-based BP monitor by the end of the calibration phase.
Following the calibration phase, continuous BP estimates were generated without updating model parameters for each new BP measurement. Rather, the remaining cuff-based BP measurements are shown along with PPG estimations simply to note the excellent tracking between the PPG model estimates and the cuff-based measurements. It should be noted that although the PPG estimates shown in
The test sequence of
Referring to
Referring to
Referring to
It is to be understood that the steps illustrated in
Referring to
If the BP estimation is above or below a threshold (Block 224), a real-time measurement of blood pressure is received by the computational system from a monitoring device (e.g., a blood pressure cuff 18,
It should be noted that BP estimation does not have to fall outside of a range in order for a calibration cuff reading to be called for and then used to increase accuracy of the estimations. Estimated BP can be in a normal range and a subsequent cuff reading can still be used to refine the accuracy. The adaptive predictive model can be updated merely based on set timed cuff-based readings, without regard to BP values versus a threshold.
A remote device may be a smartphone of a medical provider, a nurse's station in a medical facility, or any other device that can alert a medical person as to the condition of the subject. The alert may also be sent to the blood pressure monitoring device (e.g., the blood pressure cuff 18,
The methods illustrated in
Referring back to
The received PPG data is processed to generate a plurality of real-time PPG features (Block 202,
Generating features from the received PPG data may comprise generating features at feature generation intervals (time-points) t=ki within the receiving period via a sliding window of time Δtw (
It should also be noted that, prior to generating a BP estimate, the PPG features (characteristic features) may be actively normalized (e.g., weighted), to help ensure smooth temporal tracking of PPG-based BP estimations (or other BP estimations) with BP measurements. One normalization approach is to process the statistics of the stored features (e.g., the prior stored PPG features in memory) and to normalize by these statistics. Normalization may be performed by processing historical data over a plurality of feature generation time-points, by generating statistics for the historical data and normalizing by these statistics. This normalization process may be updated with each new feature generation time point (e.g., t=ki of
The aforementioned feature statistics themselves may also be employed as features to an adaptive predictive model, according to embodiments of the present invention. This may help provide smoother tracking (e.g., of BP estimations vs. BP measurements).
It should be noted that, as part of (or prior to) feature generation, preprocessing of the received sensor information (e.g., the PPG sensor data) and/or the received BP measurement data (e.g., the BP measurement data) may be required. Additionally, it may be important to qualify the received data to reject “bad” data, generate a confidence score for the data, identify “good” data, or to classify data for further processing. A variety of preprocessing methodologies for PPG data (including associated motion sensor data) have been previously published and are well known to those skilled in the art, including, but not limited to: U.S. Pat. Nos. 10,834,483, 10,798,471, 10,631,740, 10,542,893, 10,512,403, 10,448,840, 9,993,204, 10,413,250, and PCT Application No. US20/49229, all of which are incorporated herein by reference in their entireties. Both passive and active methodologies of removing subject motion noise may be employed. Moreover, it should be noted that the optimal preprocessing may be feature-dependent. For example, regarding PPG data, for spectral domain features it may be desirable to remove or attenuate the “DC component” (e.g., the non-pulsatile component) from the PPG signal before feature generation. However, the DC component may be important for other features (such as time-domain features), or the DC component may even be a feature in itself. It should also be noted that PPG sensor data may comprise subject motion data (as described earlier), and this motion data may be utilized to reduce motion artifacts from optical sensor readings. The motion sensor may be integral to, or collocated with, the PPG sensor. Motion sensor data may be processed as a feature as well.
Preprocessing of BP measurement data may also be useful. For example, in a preferred use case, a BP measurement from a cuff-based BP monitor may comprise a discrete value of systolic and diastolic BP measurements. In some use cases, this data may be available to the computational system through an API (application programming interface) or through an application-specific interface. However, in some use cases, the BP measurement data received by the computational system of
Referring to
Depending on the type of model used, the model parameters may be different. For example, in a regression model, the model parameters may comprise at least one coefficient to the regression model. Nonlimiting examples of suitable regression models may comprise: linear, SVM, random forest, neural network, decision trees, a combination of these models, and the like. Other types of models outside of regression models may also be utilized; as a nonlimiting example, a classifier may be utilized, or a combination of classification and regression (as may be utilized in a convolutional neural network (CNN)). Updating the model may comprise processing the characteristic features (e.g., normalized characteristic features) and a stored blood pressure measurement to generate updated model parameters that reduce the estimation error of the adaptive predictive model 300. For example, the regression model may be solved for the recent BP measurement and then the model coefficients may be updated. Alternatively, or additionally, a gradient-based optimization approach may be employed (such as classical gradient descent, Adam, Momentum, AdaGrad, RMSProp, AMSgrad, or the like) to update model coefficients with each new BP measurement.
Updating the adaptive predictive model in real-time may comprise processing a recent stored blood pressure measurement (associated with timepoint t=uj) and a prior stored blood pressure measurement (associated with time-point t=uj-1). In one embodiment, this may comprise generating an interpolation of expected blood pressure measurements (i.e., a temporal interpolation) between blood pressure measurements collected over time, such as an interpolation between the recent stored blood pressure measurement and the prior stored blood pressure measurement (or a plurality of prior stored blood pressure measurements). A specific example can be summarized in context of
As summarized above, there are many model constructs that may be used to generate the BP estimation, and the general formalism of the function used to generate the BP estimation is presented in
For implementing the methods of
The computational system 100 may be implemented as a plurality of discrete components, a fully integrated system, or a mixture of both. For example, the computational system 100 may comprise a fully integrated microprocessor, with computational instructions for executing the processing steps of
The memory M may hold various categories of software and data, such as computer readable program code PC and/or an operating system OS. The operating system OS controls operations of the processor P, a PPG sensor (e.g., 12-16,
Alternatively, the computational system 100 may comprise an analog circuit configured to process the steps through analog processes. As another example, the computational instructions may be executed as a software library executed via a processor. As another example, the system may comprise neural circuitry. Both traditional or neural processors may be utilized, or a combination of both.
A variety of components for enabling the system 100 of
The system may comprise input/output lines (i.e., ports or buses) to communicate with other systems, for receiving and giving data from/to external systems. For example, the input/output lines may communicate with at least one external processor, computational system, or apparatus. In one specific embodiment, a BP estimation generated may be digitized and made available to an external computational system via a digital bus 106. In another embodiment, the input/output lines may communicate with one or more transceivers for communicating wirelessly with an external system. A variety of electronic communication configurations are well known to those skilled in the art.
In the case where a BP estimation is generated by the computational system of
It should be noted that one form of external system data may comprise meta data for the subject, and this meta data may be useful in processing BP estimations in accordance with embodiments of the present invention. Namely, the computational system 100 of
The variability of an individual's blood pressure is an important measure which can be used to predict other cardiovascular conditions. In the case of blood pressure variability (BPV) it is desirable to understand the fluctuations over time of how a person's systolic BP varies and how a person's diastolic BP varies. The difference may be that a person has a relatively normal measurement of systolic BP and diastolic BP at a given moment in time, but when BP is monitored from beat to beat, they may be experiencing large variations of systolic/diastolic above and below the momentary measure. Typically, BP is measured at intervals of 15 minutes or longer (although various other intervals may be utilized, also). BP variability can give valuable insight into what is happening to BP in between those momentary readings. Research indicates that higher blood pressure variability may be an indicator for other cardiovascular conditions and, thus, BPV has value in diagnosis.
According to the present invention, BP variability can be determined in various ways. For example, referring to
Referring to
In addition, blood pressure variation can be determined using stored data. Referring to
Referring to
BPV data can be generated (Block 510) in various ways. Blood pressure is typically measured as systolic and diastolic representing upper and lower measures of actual blood pressure in mmHg. In some embodiments, the systolic and diastolic blood pressure readings can be recorded for every heartbeat, and then a variation of those readings can be used to generate BP variability information.
In some embodiments, BPV data may be provided as an absolute measure such as “the standard deviation of your systolic BP was 12 mmHg during the measurement period”. In other embodiments, BPV may be represented as a relative index, or rating. It may be a dimensionless measure such as “your BPV index is +/−17%”. The measure may be based on variability of mean blood pressure (MAP), or variability of systolic, or variability of diastolic, or combinations of all three. However, even if BPV is represented as a dimensionless measure, the value provided is based off of a PPG sensor which is calibrated to periodic cuff measurements, as described above. BPV may be monitored and measured over long periods of time, for example weeks or months, to understand how a person's BPV responds to various treatments or medications, etc.
Example embodiments are described herein with reference to block diagrams and flow diagrams. It is understood that a block of the block diagrams and flow diagrams, and combinations of blocks in the block diagrams and flow diagrams, can be implemented by computer program instructions that are performed by one or more computer circuits, such as electrical circuits having analog and/or digital elements. These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and flow diagrams, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and flow diagrams.
These computer program instructions may also be stored in a tangible computer-readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and flow diagrams.
A tangible, non-transitory computer-readable medium may include an electronic, magnetic, optical, electromagnetic, or semiconductor data storage system, apparatus, or device. More specific examples of the computer-readable medium would include the following: a portable computer diskette, a random access memory (RAM) circuit, a read-only memory (ROM) circuit, an erasable programmable read-only memory (EPROM or Flash memory) circuit, a portable compact disc read-only memory (CD-ROM), and a portable digital video disc read-only memory (DVD/BlueRay).
The computer program instructions may also be loaded onto a computer and/or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer and/or other programmable apparatus to produce a computer-implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the block diagrams and flow diagrams. Accordingly, embodiments of the present invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as “logic”, “circuitry”, “a module”, “an engine” or variants thereof.
It should also be noted that the functionality of a given block of the block diagrams and flow diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the block diagrams and flow diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated. Moreover, although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 63/132,216 filed Dec. 30, 2020, the disclosure of which is incorporated herein by reference as if set forth in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/065113 | 12/23/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63132216 | Dec 2020 | US |