Systems, methods, and apparatus to control weld current in a preheating system

Information

  • Patent Grant
  • 11524354
  • Patent Number
    11,524,354
  • Date Filed
    Friday, June 8, 2018
    6 years ago
  • Date Issued
    Tuesday, December 13, 2022
    2 years ago
Abstract
Systems, methods, and apparatus to control weld current in a preheating system are disclosed. An example preheating power supply includes power conversion circuitry configured to output welding-type power via a first output power connector and a second output power connector, and a bypass path prevention circuit configured to prevent less than a threshold voltage applied to the first output power connector and the second output power connector from a different power supply from causing current to flow between the first output power connector and the second output power connector.
Description
BACKGROUND

Welding is a process that has increasingly become ubiquitous in all industries. Welding is, at its core, simply a way of bonding two pieces of metal. A wide range of welding systems and welding control regimes have been implemented for various purposes. In continuous welding operations, metal inert gas (MIG) welding and submerged arc welding (SAW) techniques allow for formation of a continuing weld bead by feeding welding wire, shielded by inert gas or granular flux, from a welding torch. Such wire feeding systems are available for other welding systems, such as tungsten inert gas (TIG) welding. Electrical power is applied to the welding wire and a circuit is completed through the workpiece to sustain a welding arc that melts the electrode wire and the workpiece to form the desired weld.


BRIEF SUMMARY

This disclosure relates generally to welding and, more particularly, to systems, methods, and apparatus to control weld current in a preheating system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an example robotic welding system, in accordance with aspects of this disclosure.



FIG. 2A is a block diagram illustrating preheating and welding current paths in a conventional welding system using resistive preheating.



FIG. 2B is a block diagram illustrating an alternative welding current path that may occur during weld start conditions in the conventional welding system of FIG. 2A.



FIG. 3 is a block diagram of an example welding system using resistive preheating and including a forward voltage increase circuit that reduces or prevents weld current flow through a preheating power source, in accordance with aspects of this disclosure.



FIG. 4 is an example implementation of the forward voltage increase circuit of FIG. 3.



FIG. 5 is an example implementation of the preheating power supply of FIG. 3 including a bypass path prevention circuit, in accordance with aspects of this disclosure.





The figures are not necessarily to scale. Where appropriate, the same or similar reference numerals are used in the figures to refer to similar or identical elements.


DETAILED DESCRIPTION

As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” The embodiments described herein are not limiting, but rather are exemplary only. It should be understood that the described embodiments are not necessarily to be construed as preferred or advantageous over other embodiments. Moreover, the term “embodiments” does not require that all embodiments of the disclosure include the discussed feature, advantage, or mode of operation.


As used herein, a wire-fed welding-type system refers to a system capable of performing welding (e.g., gas metal arc welding (GMAW), gas tungsten arc welding (GTAW), submerged arc welding (SAW), etc.), brazing, cladding, hardfacing, and/or other processes, in which a filler metal is provided by a wire that is fed to a work location, such as an arc or weld puddle.


As used herein, a welding-type power source refers to any device capable of, when power is applied thereto, supplying welding, cladding, plasma cutting, electrode preheating, induction heating, laser (including laser welding, laser hybrid, and laser cladding), carbon arc cutting or gouging and/or resistive preheating, including but not limited to transformer-rectifiers, inverters, converters, resonant power supplies, quasi-resonant power supplies, switch-mode power supplies, etc., as well as control circuitry and other ancillary circuitry associated therewith.


As used herein, preheating refers to heating the electrode wire prior to a welding arc and/or deposition in the travel path of the electrode wire. As used herein, the term “preheat voltage” refers to a measured voltage representative of the voltage across a section of electrode conducting preheating current, but not necessarily the exact voltage across that section.


Some disclosed examples describe electric currents being conducted “from” and/or “to” locations in circuits and/or power supplies. Similarly, some disclosed examples describe “providing” electric current via one or more paths, which may include one or more conductive or partially conductive elements. The terms “from,” “to,” and “providing,” as used to describe conduction of electric current, do not necessitate the direction or polarity of the current. Instead, these electric currents may be conducted in either direction or have either polarity for a given circuit, even if an example current polarity or direction is provided or illustrated.


Disclosed example preheating power supplies include: power conversion circuitry configured to output welding-type power via a first output power connector and a second output power connector; and a bypass path prevention circuit configured to prevent less than a threshold voltage applied to the first output power connector and the second output power connector from a different power supply from causing current to flow between the first output power connector and the second output power connector.


In some examples, the bypass path prevention circuit includes a diode configured to increase a forward voltage drop from the first output power connector to the second output power connector. Some example preheating power supplies further include a controller configured to control the power conversion circuitry to output an electrode preheating voltage based on the forward voltage drop.


Some example preheating power supplies further include a switching element configured to selectively couple the first output power connector to the second output power connector; and a switching control circuit configured to selectively control the switching element to decouple the first output power connector and the second output power connector. In some examples, the switching control circuit is configured to control the switching element to decouple the first output power connector and the second output power connector when the power conversion circuitry is not outputting current via the first output power connector and the second output power connector. In some examples, the switching control circuit is configured to control the switching element to couple the first output power connector and the second output power connector when the power conversion circuitry is outputting current via the first output power connector and the second output power connector.


In some examples, the bypass path prevention circuit includes a resistor. In some examples, the bypass path prevention circuit includes a load switch. In some examples, the bypass path prevention circuit includes a negative temperature coefficient thermistor. In some examples, the welding-type power comprises electrode preheating current.


Disclosed example welding power source interconnection cables include: a first termination configured to be coupled to a first welding-type power connector; a second termination configured to be coupled to a second welding-type power connector; and a forward voltage increase circuit configured to increase a voltage drop from the first termination to the second termination.


Some example welding power source interconnection further include a third welding-type power connector connected to the first termination and configured to receive a third termination such that the third termination is connected to the first termination. In some examples, the forward voltage increase circuit includes a diode configured to set a minimum voltage required to conduct current from the first termination to the second termination. In some examples, the forward voltage increase circuit includes two or more diodes connected in series and configured to set the minimum voltage required to conduct current from the first termination to the second termination. In some examples, the forward voltage increase circuit includes a resistor. In some examples, the forward voltage increase circuit includes a negative temperature coefficient thermistor.


Referring to FIG. 1, an example welding system 100 is shown in which a robot 102 is used to weld a workpiece 106 using a welding tool 108, such as the illustrated bent-neck (i.e., gooseneck design) welding torch (or, when under manual control, a handheld torch), to which power is delivered by welding equipment 110 via conduit 118 and returned by way of a ground conduit 120. The welding equipment 110 may comprise, inter alia, one or more power sources (each generally referred to herein as a “power supply”), a source of a shielding gas, a wire feeder, and other devices. Other devices may include, for example, water coolers, fume extraction devices, one or more controllers, sensors, user interfaces, communication devices (wired and/or wireless), etc.


The welding system 100 of FIG. 1 may form a weld (e.g., at weld joint 112) between two components in a weldment by any known electric welding techniques. Known electric welding techniques include, inter alia, shielded metal arc welding (SMAW), MIG, flux-cored arc welding (FCAW), TIG, laser (e.g., laser welding, laser cladding, laser hybrid), sub-arc welding (SAW), stud welding, friction stir welding, and resistance welding. MIG, TIG, hot wire cladding, hot wire TIG, hot wire brazing, multiple arc applications, and SAW welding techniques, inter alia, may involve automated or semi-automated external metal filler (e.g., via a wire feeder). In multiple arc applications (e.g., open arc or sub-arc), the preheater may preheat the wire into a pool with an arc between the wire and the pool. Optionally, in any embodiment, the welding equipment 110 may be arc welding equipment having one or more power supplies, and associated circuitry, that provides a direct current (DC), alternating current (AC), or a combination thereof to an electrode wire 114 of a welding tool (e.g., welding tool 108). The welding tool 108 may be, for example, a TIG torch, a MIG torch, or a flux cored torch (commonly called a MIG “gun”). The electrode wire 114 may be tubular-type electrode, a solid type wire, a flux-core wire, a seamless metal core wire, and/or any other type of electrode wire.


As will be discussed below, the welding tool 108 may employ a contact tip assembly that heats the electrode wire 114 prior to forming a welding arc using the electrode wire 114, which provides multiple benefits for certain welding applications. Some of these benefits are disclosed in U.S. patent application Ser. No. 15/343,992, filed Nov. 4, 2016, entitled “Systems, Methods, and Apparatus to Preheat Welding Wire.” The entirety of U.S. patent application Ser. No. 15/343,992 is incorporated herein by reference.


In the welding system 100, the robot 102, which is operatively coupled to welding equipment 110 (e.g., welding and/or preheating equipment) via conduit 118 and ground conduit 120, controls the location of the welding tool 108 and operation of the electrode wire 114 (e.g., via a wire feeder) by manipulating the welding tool 108 and triggering the starting and stopping of the current flow (whether a preheating current and/or welding current) to the electrode wire 114 by sending, for example, a trigger signal to the welding equipment 110 (e.g., welding and/or preheating equipment). When welding current is flowing, a welding arc is developed between the electrode wire 114 and the workpiece 106, which ultimately produces a weldment. The conduit 118 and the electrode wire 114 thus deliver welding current and voltage sufficient to create the welding arc between the electrode wire 114 and the workpiece 106.



FIG. 2A is a block diagram illustrating preheating and welding current paths in a conventional welding system 200 using resistive preheating. The conventional welding system 200 includes a weld torch 201 having a first contact tip 202 and a second contact tip 204. The system 200 further includes an electrode wire 114 fed from a wire spool 206, a preheating power supply 208, and a welding power supply 210. The system 200 is illustrated in operation as producing a welding arc 212 between the electrode wire 114 and a workpiece 106.


In operation, the electrode wire 114 passes from the wire spool 206 through the second contact tip 204 and the first contact tip 202, between which the preheating power supply 208 generates a preheating current to heat the electrode wire 114. Specifically, in the configuration shown in FIG. 2A, the preheating current enters the electrode wire 114 via the second contact tip 204 and exits via the first contact tip 202. At the first contact tip 202, a welding current may also enter the electrode wire 114. The welding current is generated, or otherwise provided by, the welding power supply 210. The welding current exits the electrode wire 114 and returns via the workpiece 106. When the electrode wire 114 makes contact with a target metal workpiece 106, an electrical circuit is completed and the welding current flows through the electrode wire 114, across the metal work piece(s) 106, and returns to the welding power supply 210. The welding current causes the electrode wire 114 and the parent metal of the work piece(s) 106 in contact with the electrode wire 114 to melt, thereby joining the work pieces as the melt solidifies. By preheating the electrode wire 114, a welding arc 212 may be generated with reduced arc energy. Generally speaking, the preheating current is proportional to the distance between the contact tips 202, 204 and the electrode wire 114 size.


The welding current is generated, or otherwise provided by, a welding power supply 210, while the preheating current is generated, or otherwise provided by, the preheating power supply 208. The preheating power supply 208 and the welding power supply 210 may ultimately share a common power source (e.g., a common generator or line current connection), but the current from the common power source is converted, inverted, and/or regulated to yield the two separate currents—the preheating current and the welding current. For instance, the preheat operation may be facilitated with a single power source and associated converter circuitry, in which case three leads may extend from a single power source.


During operation, the system 200 establishes a welding circuit 214 to conduct welding current, which is illustrated by a weld current path 216. The weld current path 216 flows from the welding power supply 210 to the first contact tip 202 and returns to the welding power supply 210 via the welding arc 212, the workpiece 106, and a work lead 218. To enable connection between the welding power supply 210 and the first contact tip 202 and the workpiece 106, the welding power supply 210 includes terminals 220, 222 (e.g., a positive terminal and a negative terminal).


During operation, the preheating power supply establishes a preheating circuit to conduct preheating current, which is represented by a preheat current path 224 through a section 226 of the electrode wire 114. To enable connection between the preheating power supply 208 and the contact tips 202, 204, the preheating power supply 208 includes terminals 228, 230. The preheating current path 224 flows from the welding power supply 210 to the second contact tip 204, the section 226 of the electrode wire 114, the first contact tip 202, and returns to the preheating power supply 208 via a cable 232 connecting the terminal 220 of the welding power supply 210 to the terminal 230 of the preheating power supply 208.


Because the preheating current path 224 is superimposed with the welding current path 216 over the connection between the first contact tip 202 and the power supplies 208, 210, the cable 232 may enable a more cost-effective single connection between the first contact tip 202 and the power supplies 208, 210 (e.g., a single cable) than providing separate connections for the welding current to the first contact tip 202 and for the preheating current to the first contact tip 202.


As illustrated in FIG. 2B, the weld current may flow through second current path 234, in which the current exits the terminal 220 of the welding power supply 210, flows through the cable 232 to the terminal 230 of the preheating power supply 208, exits the terminal 228 of the preheating power supply 208, flows to the second contact tip 204, through the electrode wire 114, through the welding arc 212, and through the workpiece 106, and returns via the work lead 218 to the terminal 222 of the welding power supply 210 to complete the current path.


Because there are two paths 216, 234 for the welding power source current, the welding current will split between the paths 216, 234 in an inverse relationship to the resistance. The ratio of current in the paths 216, 234 will be such that the current takes the path of least resistance and the total energy dissipated is minimized. Therefore, the current in the preheat current path 224 can vary substantially and cause inconsistency with arc starts.


Stated another way, a voltage between the terminal 220 and the first contact tip 202 provides a driving voltage 236 for current to flow through the preheating power supply 208. The driving voltage 236 increases when the length of conductor between the terminal 220 and the first contact tip increases 202.



FIG. 3 is a block diagram of an example welding system 300 using resistive preheating and including a forward voltage increase circuit 302 that reduces or prevents weld current flow through the preheating power supply 208. The example welding system 300 of FIG. 3 includes the weld torch 201, the first contact tip 202, the second contact tip 204, the electrode wire 114, the wire spool 206, the preheating power supply 208, and the welding power supply 210. In the example of FIG. 3, the terminal 230 of the preheating power supply 208 is connected to the terminal 220 of the welding power supply 210, and both terminals 220, 230 are connected to the first contact tip 202.


The example forward voltage increase circuit 302 reduces or prevents the weld current from traversing the current path 234 (illustrated in FIG. 2B) through the terminals 228, 230 of the preheating power supply 208 by increasing a forward voltage 310 from the terminal 220 of the welding power supply 210 to the terminals 228 and 230 to a sufficiently high forward voltage (e.g., a higher voltage than the driving voltage 236). The forward voltage may be configured based on the expected welding voltage range output by the welding power supply 210. By increasing the forward voltage drop from the terminal 220 to the terminal 230, the weld current flows through the current path 216 instead of to the preheating power supply 208.


The forward voltage increase circuit 302 is part of a welding power source interconnection cable 304 connected between the terminals 220, 230 of the power supplies 208, 210. The example interconnection cable 304 includes a first termination 306 that can be coupled to the terminal 220 of the welding power supply 210 and a second termination 308 that can be coupled to the terminal 230 of the preheating power supply 208. The forward voltage increase circuit 302 increases a forward voltage 310 from the termination 306 to the termination 308.


As illustrated in FIG. 3, the terminal 228 of the preheating power supply 228 may be coupled to the electrode wire 114 via a contact point in a wire feeder 312 supplying the electrode wire 114. An example contact point is a conductive roller of a wire drive motor 314 (e.g., an idle roller of the wire drive motor 314).


The example wire feeder 312 may include a preheat controller 316 configured to provide preheating commands 318 (e.g., target current, target voltage, etc.) to the preheating power supply 208 based on voltage feedback 320, 322 from the contact tips 202, 204 and/or based on welding information 324 from the welding power supply 210.


While example polarities are illustrated in FIGS. 2A, 2B, and 3, other polarities may be used where the preheating current at least partially cancels the welding current between the first contact tip 202 and the terminals 220, 222, 228, 230 of the power supplies 208, 210.



FIG. 4 illustrates an example implementation of the welding power source interconnection cable 304 of FIG. 3, including an example implementation of the forward voltage increase circuit 302 of FIG. 3.


The example forward voltage increase circuit 302 includes one or more diodes 402 in series with the preheat current flow path such that the forward voltage drop of the diode(s) 402 is higher than that of the driving voltage 236 of FIG. 2B. Because the driving voltage 236 cannot overcome the forward voltage drop required by the diodes 402, the added voltage drop provided by the diodes 402 may prevent the weld current from flowing to the preheating power supply 208 and cause the weld current to flow instead to the first contact tip 202 to follow the weld current path 216.


The example forward voltage increase circuit 302 includes diodes 402 for either direction of current flow such that there is a current path regardless of polarity of the voltage across the forward voltage increase circuit 302. In some other examples, the forward voltage increase circuit 302 only includes the diodes 402 in one direction, such that the forward voltage increase circuit 302 enables current flow in only one direction (e.g., polarity-dependent).


Additionally or alternatively, the forward voltage increase circuit 302 may include a resistance to divert more of the weld current to the first contact tip 202 away from the preheating power supply. Other circuits and/or circuit elements may also be used to reduce or prevent the flow of weld current through the cable 304.


To enable connection of the weld cable 304 to the preheating power supply 208 and the welding power supply 210, the example terminations 306, 308 of FIG. 4 include standard welding connectors configured to be connected to welding studs, Euro-style connectors, and/or any other type of connector that may be found on a welding-type power supply. Additionally or alternatively, one or both of the terminations 306, 308 may include a connector to be hard wired to a power bus of the power supplies 208, 210.


The example termination 306 of FIG. 4 includes a third connector 404, such as a weld stud coupled to the termination 306. The third connector 404 enables a second connection to be made (e.g., via a connector 406) between the termination 306 and the first contact tip 202. The third connector 404 provides the pathway for the welding current to flow between the terminal 220 and the first contact tip 202 (e.g., without traversing the preheating power supply 208).


Instead of providing an interconnection cable as illustrated in FIGS. 3 and 4, in other examples the preheating power supply 208 is configured to reduce or prevent flow of welding current between the terminals 228, 230 (e.g., from the terminal 230 to the terminal 228). FIG. 5 is an example power supply 500 that may be used to implement the preheating power supply 208 of FIGS. 2A, 2B, and/or 3, in which a bypass path prevention circuit 502 prevents the flow of weld current from the terminal 230 to the terminal 228, while permitting preheating current to be output by the preheating power supply 208. The bypass path prevention circuit 502 may be internal or external to a housing of the power supply 500.


The example power supply 500 powers, controls, and supplies consumables to a welding application. In some examples, the power supply 500 directly supplies input power to the welding torch 201. In the illustrated example, the welding power supply 500 is configured to supply welding power to welding operations and/or preheating power to preheating operations. The example power supply 500 may also provide power to a wire feeder to supply the electrode wire 114 to the welding torch 201 (e.g., for GMAW welding and/or flux core arc welding (FCAW)).


The power supply 500 receives primary power 508 (e.g., from the AC power grid, an engine/generator set, a battery, or other energy generating or storage devices, or a combination thereof), conditions the primary power, and provides an output power to one or more welding devices and/or preheating devices in accordance with demands of the system. The primary power 508 may be supplied from an offsite location (e.g., the primary power may originate from the power grid). The welding power supply 500 includes a power converter 510, which may include transformers, rectifiers, switches, and so forth, capable of converting the AC input power to AC and/or DC output power as dictated by the demands of the system (e.g., particular welding processes and regimes). The power converter 510 converts input power (e.g., the primary power 508) to welding-type power based on a weld voltage setpoint and outputs the welding-type power via a weld circuit.


In some examples, the power converter 510 is configured to convert the primary power 508 to both welding-type power and auxiliary power outputs. However, in other examples, the power converter 510 is adapted to convert primary power only to a weld power output, and a separate auxiliary converter is provided to convert primary power to auxiliary power. In some other examples, the power supply 500 receives a converted auxiliary power output directly from a wall outlet. Any suitable power conversion system or mechanism may be employed by the power supply 500 to generate and supply both weld and auxiliary power.


The power supply 500 includes a controller 512 to control the operation of the power supply 500. The welding power supply 500 also includes a user interface 514. The controller 512 receives input from the user interface 514, through which a user may choose a process and/or input desired parameters (e.g., voltages, currents, particular pulsed or non-pulsed welding regimes, and so forth). The user interface 514 may receive inputs using any input device, such as via a keypad, keyboard, buttons, touch screen, voice activation system, wireless device, etc. Furthermore, the controller 512 controls operating parameters based on input by the user as well as based on other current operating parameters. Specifically, the user interface 514 may include a display 516 for presenting, showing, or indicating, information to an operator. The controller 512 may also include interface circuitry for communicating data to other devices in the system, such as the wire feeder. For example, in some situations, the power supply 500 wirelessly communicates with other welding devices within the welding system. Further, in some situations, the power supply 500 communicates with other welding devices using a wired connection, such as by using a network interface controller (NIC) to communicate data via a network (e.g., ETHERNET, 10BASE2, 10BASE-T, 100BASE-TX, etc.). In the example of FIG. 1, the controller 512 communicates with the wire feeder via the weld circuit via a communications transceiver 518.


The controller 512 includes at least one controller or processor 520 that controls the operations of the welding power supply 500. The controller 512 receives and processes multiple inputs associated with the performance and demands of the system. The processor 520 may include one or more microprocessors, such as one or more “general-purpose” microprocessors, one or more special-purpose microprocessors and/or ASICS, and/or any other type of processing device. For example, the processor 520 may include one or more digital signal processors (DSPs).


The example controller 512 includes one or more storage device(s) 523 and one or more memory device(s) 524. The storage device(s) 523 (e.g., nonvolatile storage) may include ROM, flash memory, a hard drive, and/or any other suitable optical, magnetic, and/or solid-state storage medium, and/or a combination thereof. The storage device 523 stores data (e.g., data corresponding to a welding application), instructions (e.g., software or firmware to perform welding processes), and/or any other appropriate data. Examples of stored data for a welding application include an attitude (e.g., orientation) of a welding torch, a distance between the contact tip and a workpiece, a voltage, a current, welding device settings, and so forth.


The memory device 524 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as read-only memory (ROM). The memory device 524 and/or the storage device(s) 523 may store a variety of information and may be used for various purposes. For example, the memory device 524 and/or the storage device(s) 523 may store processor executable instructions 525 (e.g., firmware or software) for the processor 520 to execute. In addition, one or more control regimes for various welding processes, along with associated settings and parameters, may be stored in the storage device 523 and/or memory device 524, along with code configured to provide a specific output (e.g., initiate wire feed, enable gas flow, capture welding data, detect short circuit parameters, determine amount of spatter) during operation.


In some examples, the welding power flows from the power converter 510 through a weld cable 526. The example weld cable 526 is attachable and detachable from the terminals 228, 230 at each of the welding power supply 500 (e.g., to enable ease of replacement of the weld cable 526 in case of wear or damage). Furthermore, in some examples, welding data is provided with the weld cable 526 such that welding power and weld data are provided and transmitted together over the weld cable 526. The communications transceiver 518 is communicatively coupled to the weld cable 526 to communicate (e.g., send/receive) data over the weld cable 526. The communications transceiver 518 may be implemented based on various types of power line communications methods and techniques. For example, the communications transceiver 518 may utilize IEEE standard P1901.2 to provide data communications over the weld cable 526. In this manner, the weld cable 526 may be utilized to provide welding power from the welding power supply 302a, 302b to the wire feeder and the welding tool 108. Additionally or alternatively, the weld cable 526 may be used to transmit and/or receive data communications to/from the wire feeder and the welding torch 201. The communications transceiver 518 is communicatively coupled to the weld cable 526, for example, via cable data couplers 527, to characterize the weld cable 526, as described in more detail below. The cable data coupler 527 may be, for example, a voltage or current sensor.


In some examples, the power supply 500 includes or is implemented in a wire feeder.


In some examples, a gas supply 528 provides shielding gases, such as argon, helium, carbon dioxide, mixed gases, and so forth, depending upon the welding application. The shielding gas flows to a valve 530, which controls the flow of gas, and if desired, may be selected to allow for modulating or regulating the amount of gas supplied to a welding application. The valve 530 may be opened, closed, or otherwise operated by the controller 512 to enable, inhibit, or control gas flow (e.g., shielding gas) through the valve 530. Shielding gas exits the valve 530 and flows through a cable 532 (which in some implementations may be packaged with the welding power output) to the wire feeder which provides the shielding gas to the welding application. In some examples, the power supply 500 does not include the gas supply 528, the valve 530, and/or the cable 532.


In some examples, the bypass path prevention circuit 502 includes one or more diodes, and/or other forward voltage increase device(s), similar to the forward voltage increase circuit 302 of FIGS. 3 and 4. In such examples, the bypass path prevention circuit 502 is passive and is configured to increase a forward voltage from terminal 230 to the terminal 228 (e.g., in the direction of current flow).


In some other examples, the bypass path convention circuit 502 includes one or more switching elements such as transistors or relays. The controller 512 may control the bypass path prevention circuit 502 to enable the switching elements to conduct current when the power supply 500 is outputting preheating power and/or when less than a threshold weld current is detected (e.g., via a current sensor, a voltage sensor, or another sensor) as flowing between the terminals 228, 230. Conversely, the example controller 512 may control the bypass path prevention circuit 502 when the power supply 500 is not outputting preheating power and/or when more than a threshold weld current is flowing between the terminals 228, 230. Weld current may be detected by comparing a commanded current or voltage to be output by the power converter 510 with a sensed voltage with a measured current and/or voltage.


In some examples in which a transistor is used to implement the bypass path prevention circuit 502, the controller 512 may control the transistor(s) in a linear mode, such that a voltage across the bypass path prevention circuit 502 is sufficient to reduce or prevent weld current from flowing through between the terminals 228, 230 (e.g., slightly more than the driving voltage 236.


While the example bypass path prevention circuit 502 is shown between the terminal 230 and the power converter 510, in other examples the bypass path prevention circuit 502 is additionally or alternatively configured between the power converter and the terminal 228 to increase the forward voltage in the direction of current flow.


As utilized herein the terms “circuits” and “circuitry” refer to physical electronic components (i.e. hardware) and any software and/or firmware (“code”) which may configure the hardware, be executed by the hardware, and or otherwise be associated with the hardware. As used herein, for example, a particular processor and memory may comprise a first “circuit” when executing a first one or more lines of code and may comprise a second “circuit” when executing a second one or more lines of code. As utilized herein, “and/or” means any one or more of the items in the list joined by “and/or”. As an example, “x and/or y” means any element of the three-element set {(x), (y), (x, y)}. In other words, “x and/or y” means “one or both of x and y”. As another example, “x, y, and/or z” means any element of the seven-element set {(x), (y), (z), (x, y), (x, z), (y, z), (x, y, z)}. In other words, “x, y and/or z” means “one or more of x, y and z”. As utilized herein, the term “exemplary” means serving as a non-limiting example, instance, or illustration. As utilized herein, the terms “e.g.,” and “for example” set off lists of one or more non-limiting examples, instances, or illustrations. As utilized herein, circuitry is “operable” to perform a function whenever the circuitry comprises the necessary hardware and code (if any is necessary) to perform the function, regardless of whether performance of the function is disabled or not enabled (e.g., by a user-configurable setting, factory trim, etc.).


The present methods and/or systems may be realized in hardware, software, or a combination of hardware and software. The present methods and/or systems may be realized in a centralized fashion in at least one computing system, or in a distributed fashion where different elements are spread across several interconnected computing systems. Any kind of computing system or other apparatus adapted for carrying out the methods described herein is suited. A typical combination of hardware and software may be a general-purpose computing system with a program or other code that, when being loaded and executed, controls the computing system such that it carries out the methods described herein. Another typical implementation may comprise an application specific integrated circuit or chip. Some implementations may comprise a non-transitory machine-readable (e.g., computer readable) medium (e.g., FLASH drive, optical disk, magnetic storage disk, or the like) having stored thereon one or more lines of code executable by a machine, thereby causing the machine to perform processes as described herein.


While the present method and/or system has been described with reference to certain implementations, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the present method and/or system. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from its scope. For example, systems, blocks, and/or other components of disclosed examples may be combined, divided, re-arranged, and/or otherwise modified. Therefore, the present method and/or system are not limited to the particular implementations disclosed. Instead, the present method and/or system will include all implementations falling within the scope of the appended claims, both literally and under the doctrine of equivalents.


All documents cited herein, including journal articles or abstracts, published or corresponding U.S. or foreign patent applications, issued or foreign patents, or any other documents are each entirely incorporated by reference herein, including all data, tables, figures, and text presented in the cited documents.

Claims
  • 1. A welding system, comprising: a first welding-type power source configured to output welding-type power to a first contact point of a welding torch;a second welding-type power source configured to output preheating power to a second contact point of the welding torch; anda power source interconnection cable, comprising: a first termination at a first end of the interconnection cable and coupled to a first welding-type output power connector of the first welding-type power source, the first welding-type output power connector having a first output polarity;a second termination at a second end of the interconnection cable and coupled to a second welding-type output power connector of the second welding-type power source, the second welding-type output power connector having a second output polarity different than the first output polarity; anda forward voltage increase circuit coupled along the interconnection cable between the first termination and the second termination and configured to increase a voltage drop from the first termination to the second termination.
  • 2. The welding system as defined in claim 1, further comprising a third welding-type output power connector connected to the first termination and configured to receive a third termination such that the third termination is connected to the first termination.
  • 3. The welding system as defined in claim 1, wherein the forward voltage increase circuit comprises a diode configured to set a minimum voltage required to conduct current from the first termination to the second termination.
  • 4. The welding system as defined in claim 3, wherein the forward voltage increase circuit comprises two or more diodes connected in series and configured to set the minimum voltage required to conduct current from the first termination to the second termination.
  • 5. The welding system as defined in claim 1, wherein the forward voltage increase circuit comprises a resistor.
  • 6. The welding system as defined in claim 1, wherein the forward voltage increase circuit comprises a negative temperature coefficient thermistor.
  • 7. A welding-type system, comprising: a welding-type torch comprising a first contact tip configured to apply a welding-type current to an electrode wire;a first welding-type power supply having a first positive output terminal and a first negative output terminal, and configured to output welding-type power to the welding-type torch and the first contact tip via the first positive output terminal and the first negative output terminal;a second welding-type power supply having a second positive output terminal and a second negative output terminal, and configured to output preheating power to the electrode wire via the second contact tip via the second positive output terminal and the second negative output terminal; anda welding-type power source interconnection cable, comprising: a first termination coupled to one of the first positive output terminal or the first negative output terminal;a second termination coupled to one of the second positive output terminal or the second negative output terminal, wherein the first termination and the second termination are coupled to terminals of opposing polarity; anda forward voltage increase circuit coupled along the interconnection cable between the first termination and the second termination and configured to increase a voltage drop from the first termination to the second termination.
  • 8. The welding-type system as defined in claim 7, wherein the bypass path prevention circuit comprises a diode configured to increase a forward voltage drop from the first termination to the second termination.
  • 9. The welding-type system as defined in claim 7, further comprising a controller configured to control the second welding-type power supply to output an electrode preheating voltage based on the forward voltage drop.
  • 10. The welding-type system as defined in claim 7, wherein the forward voltage increase circuit comprises a diode configured to set a minimum voltage required to conduct current from the first termination to the second termination.
RELATED APPLICATIONS

This patent application claims priority to U.S. Provisional Patent Application No. 62/617,505, filed Jun. 9, 2017, entitled “Systems, Methods, and Apparatus to Control Weld Current in a Preheating System.” The entirety of U.S. Provisional Patent Application No. 62/617,505 is incorporated herein by reference.

US Referenced Citations (282)
Number Name Date Kind
2365958 Holslag Dec 1944 A
2416047 Dolan Feb 1947 A
2976462 Miller Mar 1961 A
3030495 Anderson Apr 1962 A
3288982 Haruyoshi Nov 1966 A
3549857 Carter Dec 1970 A
3573550 Baker, Jr. Apr 1971 A
3725629 Vickers Apr 1973 A
3809853 Manz May 1974 A
3849871 Kaunitz Nov 1974 A
3912980 Crump Oct 1975 A
3946349 Haldeman Mar 1976 A
4160967 Beech Jul 1979 A
4188419 Detert Feb 1980 A
4222023 Beech Sep 1980 A
4329561 Schafer May 1982 A
4426565 Rueter Jan 1984 A
4447703 Stol May 1984 A
4467176 Mizuno Aug 1984 A
4493971 Nawa Jan 1985 A
4531040 Nawa Jul 1985 A
4536634 Nawa Aug 1985 A
4546234 Ogasawara Oct 1985 A
4547654 Stol Oct 1985 A
4580026 Stol Apr 1986 A
4590358 Stol May 1986 A
4614856 Hori Sep 1986 A
4628182 Hori Dec 1986 A
4631385 Rothermel Dec 1986 A
4667083 Stol May 1987 A
4675494 Dilay Jun 1987 A
4728761 Mucha Mar 1988 A
4897523 Parks Jan 1990 A
4950348 Larsen Aug 1990 A
4954691 Parks Sep 1990 A
4973821 Martin Nov 1990 A
5001326 Stava Mar 1991 A
5043557 Tabata Aug 1991 A
5086207 Deam Feb 1992 A
5101086 Dion Mar 1992 A
5118028 Ogawa Jun 1992 A
5140123 Mitani Aug 1992 A
5148001 Stava Sep 1992 A
5208433 Hellegouarc May 1993 A
5270516 Hamamoto Dec 1993 A
5278390 Blankenship Jan 1994 A
5315089 Hughes May 1994 A
5319179 Joecks Jun 1994 A
5343023 Geissler Aug 1994 A
5349156 Madigan Sep 1994 A
5352871 Ross Oct 1994 A
5367138 Moss Nov 1994 A
5412184 McGaffigan May 1995 A
5461215 Haldeman Oct 1995 A
5466916 Iguchi Nov 1995 A
5504309 Geissler Apr 1996 A
5521355 Lorentzen May 1996 A
5526561 McGaffigan Jun 1996 A
5644461 Miller Jul 1997 A
5710413 King Jan 1998 A
5714738 Hauschulz Feb 1998 A
5739506 Hanton Apr 1998 A
5742029 Stava Apr 1998 A
5756967 Quinn May 1998 A
5760373 Colling Jun 1998 A
5773799 Maxfield Jun 1998 A
5783799 Geissler Jul 1998 A
5844193 Nomura Dec 1998 A
5963022 Buda Oct 1999 A
5968587 Frankel Oct 1999 A
5994659 Offer Nov 1999 A
6002104 Hsu Dec 1999 A
6008470 Zhang Dec 1999 A
6043471 Wiseman Mar 2000 A
6051810 Stava Apr 2000 A
6077369 Kusano Jun 2000 A
6078023 Jones Jun 2000 A
6090067 Carter Jul 2000 A
6107602 Geissler Aug 2000 A
6115273 Geissler Sep 2000 A
6160241 Stava Dec 2000 A
6169263 Derby Jan 2001 B1
6204476 Reynolds Mar 2001 B1
6248976 Blankenship Jun 2001 B1
6259059 Hsu Jul 2001 B1
6265688 Lyshkow Jul 2001 B1
6274845 Stava Aug 2001 B1
6278074 Morlock Aug 2001 B1
6292715 Rongo Sep 2001 B1
6331694 Blankenship Dec 2001 B1
6359258 Blankenship Mar 2002 B1
6479792 Beiermann Nov 2002 B1
6486439 Spear Nov 2002 B1
6515259 Hsu Feb 2003 B1
6559416 Steenis May 2003 B1
6583386 Ivkovich Jun 2003 B1
6596970 Blankenship Jul 2003 B2
6624388 Blankenship et al. Sep 2003 B1
6642482 Rappl Nov 2003 B2
6670579 Davidson Dec 2003 B2
6707001 Ulrich Mar 2004 B1
6710297 Artelsmair Mar 2004 B1
6720529 Davidson Apr 2004 B2
6744012 Ueda Jun 2004 B2
6747247 Holverson Jun 2004 B2
6849828 Aigner Feb 2005 B2
6906284 Kim Jun 2005 B2
6909067 Davidson Jun 2005 B2
6933466 Hutchison Aug 2005 B2
6958263 Bhattacharyya Oct 2005 B2
6974931 Holverson Dec 2005 B2
6974932 Holverson Dec 2005 B2
6984806 Huismann Jan 2006 B2
6995338 Hutchison Feb 2006 B2
7002103 Holverson Feb 2006 B2
7105775 Giese Sep 2006 B2
7129443 Davidson Oct 2006 B2
7145101 Tong Dec 2006 B2
7244905 Das Jul 2007 B2
7265320 Ou Sep 2007 B2
7304269 Fulmer Dec 2007 B2
7307240 Holverson Dec 2007 B2
7351933 Huismann Apr 2008 B2
7381923 Gordon Jun 2008 B2
7576300 Giese Aug 2009 B2
7683290 Daniel Mar 2010 B2
8203100 Ueda Jun 2012 B2
8288686 Kaufman Oct 2012 B2
8304693 Ma Nov 2012 B2
8357877 Ma Jan 2013 B2
8487215 Holverson Jul 2013 B2
8604388 Dingeldein Dec 2013 B2
9095928 Ash Aug 2015 B2
9162312 Ma Oct 2015 B2
9193004 Enyedy Nov 2015 B2
9193005 Ma Nov 2015 B2
9403231 Hutchison Aug 2016 B2
9409250 Daniel Aug 2016 B2
9463523 Roth Oct 2016 B2
9539662 Hutchison Jan 2017 B2
9669486 Dingeldein Jun 2017 B2
9950383 Davidson Apr 2018 B2
20020008095 Norrish Jan 2002 A1
20020045970 Krause Apr 2002 A1
20020107825 Manicke Aug 2002 A1
20020117487 Corby Aug 2002 A1
20020117488 Arndt Aug 2002 A1
20030010756 Enyedy Jan 2003 A1
20030058149 Jayadeva Mar 2003 A1
20040010342 Thelen Jan 2004 A1
20040069759 Davidson Apr 2004 A1
20040182828 Schmidt Sep 2004 A1
20040222204 Hutchison Nov 2004 A1
20040238511 Matus Dec 2004 A1
20050072762 Delgado Apr 2005 A1
20050184039 Stava Aug 2005 A1
20050218132 Wells Oct 2005 A1
20050269306 Fulmer Dec 2005 A1
20060138115 Norrish Jun 2006 A1
20060163227 Hillen Jul 2006 A1
20060163229 Hutchison Jul 2006 A1
20070051711 Kachline Mar 2007 A1
20070084840 Davidson Apr 2007 A1
20070102407 Uezono May 2007 A1
20070170163 Narayanan Jul 2007 A1
20070235434 Davidson Oct 2007 A1
20070267394 Beck Nov 2007 A1
20080264916 Nagano Oct 2008 A1
20080264917 White Oct 2008 A1
20080264923 White Oct 2008 A1
20090026188 Schorghuber Jan 2009 A1
20090039066 Centner Feb 2009 A1
20090173726 Davidson Jul 2009 A1
20090215302 Roberts Aug 2009 A1
20100012637 Jaegar Jan 2010 A1
20100059493 McAninch Mar 2010 A1
20100096373 Hillen Apr 2010 A1
20100096436 Nangle Apr 2010 A1
20100133250 Sardy Jun 2010 A1
20100176104 Peters Jul 2010 A1
20100308026 Vogel Dec 2010 A1
20100308027 Vogel Dec 2010 A1
20100314371 Davidson Dec 2010 A1
20110108527 Peters May 2011 A1
20110114612 Holverson May 2011 A1
20110163080 Beck Jul 2011 A1
20110204034 Schartner Aug 2011 A1
20110204035 Grossauer Aug 2011 A1
20110297658 Peters Aug 2011 A1
20110248007 Takeda Oct 2011 A1
20110266269 Kachline Nov 2011 A1
20120024828 Oowaki Feb 2012 A1
20120061362 Davidson Mar 2012 A1
20120074112 Kotera Mar 2012 A1
20120097655 Daniel Apr 2012 A1
20120248080 Hutchison Oct 2012 A1
20120285932 Yuan Nov 2012 A1
20120291172 Wills Nov 2012 A1
20120298642 Lambert Nov 2012 A1
20130112674 Mnich May 2013 A1
20130112676 Hutchison May 2013 A1
20130213942 Peters Aug 2013 A1
20130264323 Daniel Oct 2013 A1
20130270245 Holverson Oct 2013 A1
20140008328 Enyedy Jan 2014 A1
20140008331 Ogborn Jan 2014 A1
20140008339 Ogborn Jan 2014 A1
20140008343 Ash Jan 2014 A1
20140008344 Enyedy Jan 2014 A1
20140008354 Pletcher Jan 2014 A1
20140021183 Peters Jan 2014 A1
20140021186 Denney Jan 2014 A1
20140021187 Denney Jan 2014 A1
20140021188 Denney Jan 2014 A1
20140034621 Daniel Feb 2014 A1
20140034622 Barrett Feb 2014 A1
20140035279 Narayanan Feb 2014 A1
20140042129 Daniel Feb 2014 A1
20140042138 Matthews Feb 2014 A1
20140048524 Ash Feb 2014 A1
20140116994 Peters May 2014 A1
20140131321 Enyedy May 2014 A1
20140158669 Davidson Jun 2014 A1
20140177109 Curtis Jun 2014 A1
20140183176 Hutchison Jul 2014 A1
20140199878 Ihde Jul 2014 A1
20140217077 Davidson Aug 2014 A1
20140251971 Hearn Sep 2014 A1
20140263193 Denney Sep 2014 A1
20140263194 Narayanan Sep 2014 A1
20140263228 Peters Sep 2014 A1
20140263229 Peters Sep 2014 A1
20140263230 Peters Sep 2014 A1
20140263231 Peters Sep 2014 A1
20140263234 Peters Sep 2014 A1
20140263237 Daniel Sep 2014 A1
20140263241 Henry Sep 2014 A1
20140263243 Marschke Sep 2014 A1
20140263251 Enyedy Sep 2014 A1
20140319103 Stabb et al. Oct 2014 A1
20140367370 Hutchison Dec 2014 A1
20140374391 Cole Dec 2014 A1
20150001184 Cole Jan 2015 A1
20150001197 Marschke Jan 2015 A1
20150014283 Peters Jan 2015 A1
20150028010 Peters Jan 2015 A1
20150028011 Peters Jan 2015 A1
20150028012 Peters Jan 2015 A1
20150083702 Scott Mar 2015 A1
20150090703 Peters Apr 2015 A1
20150105898 Adams Apr 2015 A1
20150151375 Peters Jun 2015 A1
20150158105 Peters Jun 2015 A1
20150158106 Peters Jun 2015 A1
20150158107 Latessa Jun 2015 A1
20150158108 Peters Jun 2015 A1
20150183044 Peters Jul 2015 A1
20150183045 Peters Jul 2015 A1
20150209889 Peters Jul 2015 A1
20150209905 Matthews Jul 2015 A1
20150209906 Denney et al. Jul 2015 A1
20150209907 Narayanan Jul 2015 A1
20150209908 Peters Jul 2015 A1
20150209910 Denney Jul 2015 A1
20150209913 Denney Jul 2015 A1
20150213921 Koide Jul 2015 A1
20150251275 Denney et al. Sep 2015 A1
20150273612 Peters Oct 2015 A1
20150283638 Henry Oct 2015 A1
20150283639 Henry Oct 2015 A1
20160074954 Marschke Mar 2016 A1
20160144444 Davidson May 2016 A1
20160167151 Mehn Jun 2016 A1
20160175975 Lattner Jun 2016 A1
20160199939 Hartman Jul 2016 A1
20160221105 Henry Aug 2016 A1
20160288235 Davidson Oct 2016 A1
20160318112 Hutchison Nov 2016 A1
20170080512 Centner Mar 2017 A1
20170165778 Hsu Jun 2017 A1
20170225255 Zwayer Aug 2017 A1
20180236585 Davidson Aug 2018 A1
Foreign Referenced Citations (80)
Number Date Country
413801 Jun 2006 AT
2072711 Dec 1992 CA
2883947 Mar 2014 CA
2125475 Dec 1992 CN
2181354 Nov 1994 CN
1298778 Jun 2001 CN
1496774 May 2004 CN
1600486 Mar 2005 CN
1640603 Jul 2005 CN
1712168 Dec 2005 CN
1714978 Jan 2006 CN
1836818 Sep 2006 CN
1871093 Nov 2006 CN
101062530 Oct 2007 CN
201098775 Aug 2008 CN
101376191 Mar 2009 CN
201249331 Jun 2009 CN
101804495 Aug 2010 CN
101862886 Oct 2010 CN
102059476 May 2011 CN
102470473 May 2012 CN
102554418 Jul 2012 CN
102596475 Jul 2012 CN
102770228 Nov 2012 CN
102825370 Dec 2012 CN
202824943 Mar 2013 CN
104968465 Oct 2015 CN
2501928 Jul 1976 DE
19808383 Sep 1999 DE
212004000048 Jun 2006 DE
0150543 Aug 1985 EP
0194045 Sep 1986 EP
0204559 Dec 1986 EP
0387223 Sep 1990 EP
0936019 Aug 1999 EP
0936019 Mar 2001 EP
1232825 Aug 2002 EP
2218537 Aug 2010 EP
2286949 Feb 2011 EP
2322315 May 2011 EP
2522453 Nov 2012 EP
2892680 Jul 2015 EP
2781291 Oct 2015 EP
1443701 Jun 1966 FR
S5719166 Feb 1982 JP
S57109573 Jul 1982 JP
S583784 Jan 1983 JP
S58119466 Jul 1983 JP
S60108175 Jun 1985 JP
S60108176 Jun 1985 JP
S60170577 Sep 1985 JP
61186172 Aug 1986 JP
61186172 Aug 1986 JP
S629773 Jan 1987 JP
S6471575 Mar 1989 JP
H03285768 Dec 1991 JP
H06277840 Oct 1994 JP
H07204848 Aug 1995 JP
10097327 Apr 1998 JP
H11156542 Jun 1999 JP
2001276971 Oct 2001 JP
2003205385 Jul 2003 JP
2003311409 Nov 2003 JP
2005034853 Feb 2005 JP
2006205189 Aug 2006 JP
2009072814 Apr 2009 JP
4950819 Jun 2012 JP
2014176890 Sep 2014 JP
1020060133016 Dec 2006 KR
20080009816 Jan 2008 KR
20100120562 Nov 2010 KR
1020120027764 Mar 2012 KR
101497460 Mar 2015 KR
872102 Oct 1981 SU
9640465 Dec 1996 WO
0132347 May 2001 WO
0153030 Jul 2001 WO
2005030422 Apr 2005 WO
2014140783 Sep 2014 WO
2015125008 Aug 2015 WO
Non-Patent Literature Citations (43)
Entry
Int'l Search Report and Written Opinion for PCT/US2018/036852 dated Oct. 2, 2018 (17 pgs).
Int'l Search Report and Written Opinion for PCT/US2016/065265 dated Mar. 14, 2017 (16 pages).
International Search Report from PCT Application No. PCT/US2014/055529, dated Mar. 6, 2015, 9 pgs.
International Search Report from PCT application No. PCT/US2013/073863 dated May 2, 2014, 15 pgs.
International Search Report from PCT application No. PCT/US2014/014241 dated May 9, 2014, 8 pgs.
PCT International Search Report & Written Opinion of PCT/US2012/063783 dated Mar. 1, 2013, 12 pages.
International Search Report from PCT application No. PCT/US2013/077710 dated May 9, 2014, 12 pgs.
International Search Report from PCT application No. PCT/US2013/073490 dated May 13, 2014, 10 pgs.
International Search Report from PCT application No. PCT/US2014/017864, dated Aug. 22, 2014, 9 pgs.
International Search Report from PCT application No. PCT/US2014/045872, dated Nov. 4, 2014, 10 pgs.
International Search Report from PCT application No. PCT/US2014/041201, dated Nov. 4, 2014, 11 pg.
International Search Report from PCT application No. PCT/US2015/045715, dated Jan. 7, 2016, 12 pgs.
International Search Report from PCT application No. PCT/US2015/055040, dated Feb. 3, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2015/056121, dated Apr. 4, 2016, 11 pgs.
International Search Report from PCT application No. PCT/US2016/017385, dated Jul. 19, 2016, 13 pgs.
Bondy et al., “Graph Theory with Applications,” Department of Combinatorics and Optimization, University of Waterloo, 1976, p. 7-8.
“ALT 304,” Miller—The Power of Blue, Jun. 2001.
“Maxstar 200 SD, DX, and LX,” Miller Electric Mfg. Co., Oct. 2003.
Office Action from U.S. Appl. No. 15/498,249 dated Apr. 20, 2018.
Int'l Search Report and Written Opinion for PCT/US2018/029770 dated Sep. 12, 2018 (13 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/036915 dated Oct. 1, 2018 (15 pgs).
Int'l Search Report and Written Opinion for PCT/US2018/036914 dated Oct. 2, 2018 (14 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/036906 dated Oct. 1, 2018 (15 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/036919 dated Oct. 2, 2018 (13 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/035087 dated Sep. 19, 2018 (15 pgs.).
Canadian Office Action Appln No. 3,005,408 dated Mar. 19, 2019.
Gupta, “A low temperature hydrogen sensor based on palladium nanoparticles,” Published in 2014.
Int'l Search Report and Written Opinion Appln No. PCT/U2019/049109 dated Dec. 2, 2019 (11 pgs).
Int'l Search Report and Written Opinion Appln No. PCT/US2019/050972, dated Nov. 14, 2019, (13 pgs).
Int'l Search Report and Written Opinion for PCT/US2018/036898 dated Oct. 1, 2018 (14 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/036900 dated Oct. 5, 2018 (15 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/049888 dated Feb. 1, 2019 (14 pgs.).
Int'l Search Report and Written Opinion for PCT/US2018/052384 dated Feb. 12, 2019 (12 pgs.).
Lincoln Electric, “Storing and Redrying Electrodes,” Published in 2011.
N.A.: “Drahtgluhe”, Aug. 23, 2016 (Aug. 23, 2016), XP055510057, Wikipedia, Retrieved from the Internet: URL:https://de.wikipedia.Org/w/index.php7title=Drahtgl%C3%BChe&oldid=157333005, [retrieved on Sep. 26, 2018], with machine translation, 2 pages.
Non-Final Office Action U.S. Appl. No. 15/343,992 dated Mar. 7, 2019 (18 pgs.).
Non-Final Office Action U.S. Appl. No. 15/498,249 dated Sep. 23, 2019 (43 pgs).
PCT, IPRP, issued in connection with PCT/US2018/036898, dated Dec. 19, 2019, 7 pages.
PCT, IPRP, issued in connection with PCT/US2018/036900, dated Dec. 19, 2019, 7 pages.
Pitrun, “The effect of welding parameters on levels of diffusible hydrogen in weld metal deposited using gas shield rutile flux cored wires,” Published in 2004.
Canadian Office Action Appln. No. 3,066,740 dated Apr. 15, 2021.
European Office Action Appln No. 18735131.7 dated Jul. 13, 2021.
European Office Communication with extended European Search Report Appln No. 22164117.8 dated Jul. 7, 2022.
Related Publications (1)
Number Date Country
20180354052 A1 Dec 2018 US
Provisional Applications (1)
Number Date Country
62517505 Jun 2017 US