The present invention relates generally to wireless communications, and more particularly to systems, methods, and apparatuses for identifying one or more signal types from an input radio frequency (RF) signal.
In the United States and in a number of other countries, a regulatory body like the FCC (Federal Communications Commission) oftentimes regulates and allocates the use of radio spectrum in order to fulfill the communications needs of entities such as businesses and local and state governments as well as individuals. More specifically, the FCC licenses a number of spectrum segments to entities and individuals for commercial or public use (“licensees”). These licensees may have an exclusive right to utilize their respective licensed spectrum segments for a particular geographical area for a certain amount of time. Such licensed spectrum segments are believed to be necessary in order to prevent or mitigate interference from other sources. However, if particular spectrum segments are not in use at a particular location at a particular time (“the available spectrum”), another device should be able to utilize such an available spectrum for communications. Such utilization of the available spectrum would make for a much more efficient use of the radio spectrum or portions thereof.
Previous spectrum-sensing techniques disclosed for determining the available spectrum have been met with resistance for at least two reasons: (1) they either do not work for sophisticated signal formats or (2) they require excessive hardware performances and/or computation power consumption. For example, a spectrum sensing technique has been disclosed where a non-coherent energy detector performs a computation of a Fast Fourier Transform (FFT) for a narrow-band input signal. The FFT provides the spectral components of the narrow-band input signal, which are then compared with a predetermined threshold level to detect a meaningful signal reception. However, this predetermined threshold level is highly-affected by unknown and varying noise levels. Moreover, the energy detector does not differentiate between modulated signals, noise, and interference signals. Thus, it does not work for sophisticated signal formats such as spread spectrum signal, frequency hopping, and multi-carrier modulation.
As another example, a cyclo-stationary feature detection technique has been disclosed as a spectrum-sensing technique that exploits the cyclic features of modulated signals, sinusoid carriers, periodic pulse trains, repetitive hopping patterns, cyclic prefixes, and the like. Spectrum correlation functions are calculated to detect the signal's unique features such as modulation types, symbol rates, and presence of interferers. Since the detection span and frequency resolution are trade-offs, the digital system upgrade is the only way to improve the detection resolution for the wideband input signal spectrum. However, such a digital system upgrade requires excessive hardware performances and computation power consumption. Further, flexible or scalable detection resolution is not available without any hardware changes.
Accordingly, there is a need in the industry for fine-sensing modules for identifying one or more signal types from an input radio frequency (RF) signal while minimizing hardware and power consumption requirements.
According to an embodiment of the present invention, there is a fine-sensing module that is operative for identifying one or more signal types from an input radio frequency (RF) signal. For example, the fine-sensing modules may detect spectrum occupancy associated with communications via a variety of current and emerging wireless standards including IS-95, WCDMA, EDGE, GSM, Wi-Fi, Wi-MAX, Zigbee, Bluetooth, digital TV (ATSC, DVB), and the like.
The fine-sensing modules may be incorporated as part of cognitive radios, although other embodiments may utilize the fine-sensing modules in other wireless devices and systems. As described herein, the coarse-sensing modules may implement an Analog Auto-Correlation (AAC) function, which may derive the amount of the similarity (i.e., the correlation) between two signals, although other alternatives may be utilized as well.
According to an embodiment of the present invention, there is a radio frequency (RF) spectrum-sensing system. The system includes a multiplier that combines an RF input signal and a delayed RF input signal to produce a correlation signal and an integrator that receives the correlation signal from the multiplier, where the integrator determines correlation values from integrating the correlation signal. The system further includes a comparator in communication with the integrator that compares the correlation values to at least one threshold to generate information indicative of at least one signal feature of the RF input signal.
According to an aspect of the present invention, the at least one signal feature may include at least one of modulation type and frame structure of the RF input signal. According to another aspect of the present invention, a delay of the delayed RE input signal may be reconfigurable. According to another aspect of the present invention, the integrator may be a sliding-window integrator. According to still another aspect of the present invention, the system may further include an analog-to-digital converter for digitizing correlation values, According to another aspect of the present invention, a value for one or more of the thresholds may be reconfigurable. According to yet another aspect of the present invention, the multiplier may produce the correlation signal by multiplying the RF input signal and the delayed RF input signal.
According to another embodiment of the present invention, there is a method of identifying radio frequency (RF) spectrum usage. The method includes receiving an RF input signal, delaying the RF input signal to generate a delayed RF input signal, and combining the RF input signal and the delayed RF input signal to produce a correlation signal. The method further includes calculating correlation values by integrating the correlation signal and comparing the correlation values to at least one threshold to generate information indicative of at least one signal feature of the RF input signal.
According to an aspect of the present invention, comparing the correlation values may include comparing the correlation values to at least one threshold to generate information indicative of at least one of a modulation type and frame structure of the RF input signal. According to another aspect of the present invention, the method may further include reconfiguring a delay associated with the delayed RF input signal. According to still another aspect of the present invention, calculating the correlation values may include calculating the correlation values by applying a sliding-window integrator to the correlation signal. According to another aspect of the present invention, the method may further include digitizing the information indicative of at least one signal feature of the RF input signal. According to another aspect of the present invention, the method may further include reconfiguring a value for at least one threshold. According to yet another aspect of the present invention, combining the RF input signal and the delayed RF input signal may include multiplying the RF input signal and the delayed RF input signal.
According to yet another embodiment of the present invention, there is a radio frequency (RF) spectrum-sensing apparatus. The apparatus includes an antenna for receiving an RF input signal, a delay module that delays the RF input signal to form a delayed RF input signal, and a multiplier for combining the RF input signal and the delayed RF input signal to form a correlation signal. The apparatus further includes an integrator that integrates the correlation signal to calculate correlation values and a comparator that compares the correlation values to at least one threshold to generate information indicative of at least one signal feature of the input radio signal.
According to an aspect of the present invention, the delay of the delay module may be reconfigurable. According to another aspect of the present invention, the integrator may be a sliding-window integrator. According to another aspect of the present invention, a value for at least one threshold may be reconfigurable. According to still another aspect of the present invention, the at least one signal feature may include at least one of the modulation type and frame structure of the RF input signal. According to yet another aspect of the present invention, the multiplier may be operative to multiply the RF input signal and the delayed RF input signal.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Embodiments of the present invention relate to cognitive radio systems, methods, and apparatuses for exploiting limited spectrum resources. The cognitive radios may allow for negotiated and/or opportunistic spectrum sharing over a wide frequency range covering a plurality of mobile communication protocols and standards. In accordance with the present invention, embodiments of the cognitive radio may be able to intelligently detect the usage of a segment in the radio spectrum and to utilize any temporarily unused spectrum segment rapidly without interfering with communications between other authorized users. The use of these cognitive radios may allow for a variety of heterogeneous wireless networks (e.g., using different communication protocols, frequencies, etc.) to coexist with each other. These wireless networks may include cellular networks, wireless personal area networks (PAN), wireless local area networks (LAN), and wireless metro area networks (MAN). These wireless networks may also coexist with television networks, including digital TV networks. Other types of networks may be utilized in accordance with the present invention, as known to one of ordinary skill in the art.
A. System Overview of Cognitive Radios
During operation of the cognitive radio system of
Referring back to
In some instances, based on the recognized spectrum segments, the MAC module 124 may request a more refined search of the spectrum occupancy (block 206). In such a case, the fine-sensing module 106 may be operative to identify the particular signal types and/or modulation schemes utilized within at least a portion of the spectrum occupancy (block 208). The information identifying the signal types and/or modulation schemes may then be digitized by the A/D converter 118, and provided to the spectrum recognition module 120. Information about the signal type and/or modulation scheme may be necessary to determine the impact of interferers within the detected suspicious spectrum segments.
In accordance with an embodiment of the present invention, the spectrum recognition module 120 may compare information from the coarse-sensing module 104 and/or fine-sensing module 106 with a spectrum usage database (block 210) to determine an available (e.g., non-occupied or safe) spectrum slot (block 212). The spectrum usage database may include information regarding known signal types, modulation schemes, and associated frequencies. Likewise the spectrum usage database may include one or more thresholds for determining whether information from the coarse-sensing module 104 and/or fine-sensing module 106 is indicative of one or more occupied spectrum. According to an exemplary embodiment of the present invention, the spectrum usage database may be updated based upon information received from an external source, including periodic broadcasts form a base station or other remote station, removable information stores (e.g., removable chips, memory, etc.), Internet repositories. Alternatively, the spectrum usage database may be updated based upon internally, perhaps based upon adaptive learning techniques that may involve trial and error, test configurations, statistical calculations, etc.
The sensing results determined by the spectrum recognition module 120 may be reported to the controller (e.g., spectrum allocation module) of the MAC module 124, and permission may be requested for a particular spectrum use (block 214). Upon approval from the controller, the reconfiguration block of the MAC module 124 may provide reconfiguration information to the radio front end 108 via the signal processing module 126 (block 218). In an exemplary embodiment of the present invention the radio front-end 108 may be reconfigurable to operate at different frequencies (“frequency-agile”), where the particular frequency or frequencies may depend upon the selected spectrum segments for use in communications by the cognitive radio 100. In conjunction with the frequency-agile front-end 108, the signal processing module 126, which may be a physical layer signal processing block in an exemplary embodiment, may enhance the cognitive radio's 100 performance with adaptive modulation and interference mitigation technique.
Many modifications can be made to the cognitive radio 100 without departing from embodiments of the present invention. In an alternative embodiment, the antenna 116 may comprise at least two antennas. A first antenna may be provided for the radio front end 108 while a second antenna may be provided for the spectrum sensing module 102. The use of at least two antennas may remove the necessity of a transmit/receive switch 114 between the radio front end 108 and the spectrum-sensing module 102 according to an exemplary embodiment. However, in another embodiment of the present invention, a transmit/receive switch 114 may still be needed between the transmitter 110 and the receiver 112 of the radio front end 108. In addition, the spectrum sensing module 102, the A/D converter 118, and the MAC module 124 may remain in operation even where the radio front end 108 and signal processing module 126 are not operational or are on standby. This may reduce the power consumption of the cognitive radio 100 while still allowing the cognitive radio 100 to determine the spectrum occupancy.
Having described the cognitive radio 100 generally, the operation of the components of the cognitive radio 100 will now be described in further detail.
B. Spectrum-sensing Components
Still referring to
Now referring to the spectrum-sensing module 102 of
In accordance with an exemplary embodiment of the present invention, the coarse-sensing module 104 may utilize wavelet transforms in providing a multi-resolution sensing feature known as Multi-Resolution Spectrum Sensing (MRSS). The use of MRSS with the coarse-sensing module 104 may allow for a flexible detection resolution without requiring an increase in the hardware burden.
With MRSS, a wavelet transform may be applied to a given time-variant signal to determine the correlation between the given time-variant signal and the function that serves as the basis (e.g., a wavelet pulse) for the wavelet transform. This determined correlation may be known as the wavelet transform coefficient, which may be determined in analog form according to an embodiment of the present invention. The wavelet pulse described above that serves as the basis for the wavelet transform utilized with MRSS may be varied or configured, perhaps via the MAC module 124, according to an embodiment of the present invention. In particular, the wavelet pulses for the wavelet transform may be varied in bandwidth, carrier frequency, and/or period. By varying the wavelet pulse width, carrier frequency, and/or period, the spectral contents provided through the wavelet transform coefficient for the given signal may be represented with a scalable resolution or multi-resolution. For example, by varying the wavelet pulse width and/or carrier frequency after maintaining them within a certain interval, the wavelet transform coefficient may provide an analysis of the spectral contents of the time-variant signals in accordance with an exemplary embodiment of the present invention. Likewise, the shape of the wavelet pulse may be configurable according to an exemplary embodiment of the present invention.
The selection of the appropriate wavelet pulse, and in particular the width and carrier frequency for the wavelet pulse, for use in MRSS will now be described in further detail.
In accordance with an embodiment of the present invention, an uncertainty inequality may be applied to the selection of a wavelet pulse width (Wt) 302 and resolution bandwidth (Wf) 304. Generally, the uncertainty inequality provides bounds for the wavelet pulse width (Wt) 302 and resolution bandwidth (Wf) 304 for particular types of wavelet pulses. An uncertainty inequality may be utilized where the product of the wavelet pulse width (Wt) 302 and the resolution bandwidth (Wf) 304 may be greater than or equal to 0.5 (i.e., Wt*Wf≧0.5). Equality may be reached where the wavelet pulse is a Gaussian wavelet pulse. Thus, for a Gaussian wavelet pulse, the wavelet pulse width (Wt) 302 and the resolution bandwidth (Wf) 304 may be selected for use in the wavelet transform such that their product is equal to 0.5 according to the uncertainty inequality.
While the Gaussian wavelet pulses have been described above for an illustrative embodiment, other shapes of wavelet pulses may be utilized, including from the Hanning, Haar, Daubechies, Symlets, Coifets, Bior Splines, Reverse Bior, Meyer, DMeyer, Mexican hat, Morlet, Complex Gaussian, Shannon, Frequency B-Spline, and Complex Morlet wavelet families.
Referring to the coarse-sensing module 104 of
Still referring to
These analog correlation values y(t) at the output of the analog integrator 408 are associated with wavelet pulses v(t) having a given spectral width that is based upon the pulse width and the resolution bandwidth discussed above. Referring back to the coarse-sensing module 104 of
For example, by applying a narrow wavelet pulse v(t) and a large tuning step size of the LO frequency fLO(t), an MRSS implementation in accordance with an embodiment of the present invention may examine a very wide spectrum span in a fast and sparse manner. By contrast, very precise spectrum searching may be realized with a wide wavelet pulse v(t) and the delicate adjusting of the LO frequency fLO(t). Moreover, in accordance with an exemplary embodiment of the present invention, this MRSS implementation may not require any passive filters for image rejection due to the bandpass filtering effect of the window signal (e.g., modulated wavelet pulses w(t)). Likewise, the hardware burdens, including high-power consuming digital hardware burdens, of such an MRSS implementation may be minimized.
Referring back to
An Multi-Resolution Spectrum Sensing (MRSS) implementation in accordance with an embodiment of the present invention will now be described with respect to several computer simulations. In particular, a computer simulation was performed using a two-tone signal x(t), where each tone was set at the same amplitude but at a different frequency. The sum of the two tone signals with different frequencies and the phases can be expressed as x(t)=A1 cos(ω1t+θ1)+A2 cos(ω2t+θ2).
In accordance with the exemplary simulated MRSS implementation, the Hanning window function (e.g., Wt*Wƒ=0.513) for this exemplary simulated MRSS implementation was chosen as the wavelet window function that bounds the selection of wavelet pulse width Wt and the resolution bandwidth Wƒ for the wavelet pulses v(t). The Hanning window function was used in this simulation because of its relative simplicity in terms of the practical implementation. The uncertainty inequality of Wt*Wf=0.513 discussed above may be derived from the calculations of the wavelet pulse width (Wt) 302 and the resolution bandwidth (Wf) 304 for Hanning wavelet pulses as shown below:
Each modulated wavelet pulse w(t) is then multiplied by the time-variant signal x(t) by an analog multiplier 406 to produce the resulting analog correlation output signals z(t), as illustrated in
The correlation values y(t) can then be integrated by the analog integrator 408 and sampled by the analog-to-digital converter 118.
according to an exemplary embodiment of the present invention. The spectrum shape detected by the spectrum recognition module 120 in the MAC module 124 is shown in
An exemplary circuit diagram of the coarse sensing module 104 shown in
The respective I- and Q-components of the modulated wavelet pulse w(t) are then multiplied by the respective multipliers 456a and 456b to generate the respective correlation output signals zI(t) and zQ(t). The correlation output signals zI(t) and zQ(t) are then integrated by the respective integrators 458a and 458b to yield respective correlation values yI(t) and yQ(t). While
In accordance with an exemplary embodiment of the present invention, the fine-sensing module 106 of
According to an embodiment of the present invention, the correlation function implemented for the fine-sensing module 106 may be an Analog Auto-Correlation (AAC) function. The AAC function may derive the amount of the similarity (i.e., the correlation) between two signals. In other words, the correlation between the same waveforms produces the largest value. However, because the data modulated waveform has a random feature because the underlying original data includes random values, the correlation between the periodic signal waveform and the data modulated signal waveform may be ignored. Instead, the periodic feature of a given signal (e.g., modulation format or frame structure) has a high correlation that may be utilized by the AAC function as the signature for the specific signal type. The specific signal type identified by the AAC function in the fine-sensing module 106 may be provided to the signal processing module 126 for mitigation of interference effects.
Now referring to the fine-sensing module 106 of
The analog correlation between the original input signal x(t) and the corresponding delayed signal x(t−Td) may be performed by multiplying or otherwise combining these two signals—the original input signal x(t) and the delayed signal x(t−Td)—with an analog multiplier 504 to form a correlation signal. The correlation signal is then integrated with an analog integrator 506 to yield correlation values. The analog integrator 506 may be a sliding-window integrator according to an exemplary embodiment of the present invention. When correlation values from the integrator 506 are greater than a certain threshold as determined by the comparator 508, the specific signal type for the original input signal may be identified by the spectrum recognition module 120 of the MAC module 124. According to an embodiment of the present invention, the threshold may be predetermined for each signal type. These signal types can include IS-95, WCDMA, EDGE, GSM, Wi-Fi, Wi-MAX, Zigbee, Bluetooth, digital TV (ATSC, DVB), and the like.
Because the exemplary AAC implementation in
In accordance with an embodiment of the present invention, the AAC implementation of
Many variations of the AAC implementation described with respect to
C. Signal Processing Block
Referring back to
D. Frequency-agile Radio Front End
As stated previously with respect to
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority to U.S. Provisional Application No. 60/729,034, filed Oct. 21, 2005, entitled “Systems, Methods, and Apparatuses for Fine-Sensing Modules,” which is incorporated herein by reference in its entirety. In addition, this application is related to the following co-pending, commonly assigned U.S. applications, each of which is entirely incorporated herein by reference: “Systems, Methods, and Apparatuses for Spectrum-Sensing Cognitive Radios” filed Jul. 18, 2006, and accorded Application No. ______ and “Systems, Methods, and Apparatuses for Coarse-Sensing Modules,” filed Jul. 18, 2006, and accorded Application No. ______.
Number | Date | Country | |
---|---|---|---|
60729034 | Oct 2005 | US |