The invention relates generally to linear polar transmitters, and more particularly to systems, methods, and apparatuses for the performance enhancement of radio frequency (RF) power amplifiers.
In cost-sensitive mobile transmitters, performance trade-offs must be carefully managed to achieve high efficiency and high output power at the required gain and linearity. With an intrinsically nonlinear power amplifier (PA) itself, the only way to achieve a better linear operation is to restrict the dynamic range of signals to a small fraction of the PA's overall capability. Unfortunately, such a restriction in the dynamic range to achieve a more linear operation is quite inefficient since it requires the construction of an amplifier that is much larger in size and consumes more power.
With the demand to increase data transmission rates and communication capacity, Enhanced Data rate for GSM Evolution (EDGE) has been introduced within the existing GSM (Global System for Mobile communications) specifications and infrastructure. GSM is based on a constant envelope modulation scheme of Gaussian Minimum Shift Keying (GMSK), while EDGE is based on an envelope-varying modulation scheme of 3π/8-shifted 8-phase shift keying (8-PSK) principally to improve spectral efficiency. Because of this envelope-varying modulation scheme, EDGE transmitters are more sensitive to PA nonlinearities, which can significantly and negatively affect the performance of an EDGE handset. As a result, EGDE transmitters require accurate amplitude and phase control with additional blocks to compensate for distortion caused by the PA nonlinear characteristics and non-constant envelope variation.
To provide for efficiently amplified signal transmissions, many polar transmitter architectures have been proposed in the form of either an open-loop with digital predistortion scheme or a closed-loop with analog feedback scheme. First, in the conventional open-loop with digital predistortion scheme, the PA is characterized by calibration data including power, temperature, and frequency. The calibration data is then stored in look-up tables. The correct coefficients for the operating conditions from the look-up table are selected by digital logic and applied for predistortion. The DSP-based linearization can provide an accurate, stable operation as well as easy modification by the power of software programming. However, this technique requires time-consuming calibration on the production line to compensate for part-to-part variations and cannot easily correct any aging effect in the system. When employing a path for reflecting changes at the PA output to linearization, the circuitry becomes large and costly and consumes a considerable amount of DC power.
Second, a polar loop envelope feedback control is generally used for analog linearization. In such a feedback control structure, a precise receiver has to be included within the transmitter and the control loop bandwidth should greatly exceed the signal bandwidth. In addition, the intrinsic gain reduction characteristic in the negative feedback may cause a severe restriction to amplifiers that do not have enough transmission gain. Additionally, conventional polar loop systems feed back both distortion and signal power, thereby reducing the stability of the polar loop systems. Likewise, power amplifiers used in these conventional polar modulation systems are operated at highly nonlinear switching modes for efficiency so the cancellation of high-order distortion components becomes more important.
Embodiments of the invention may provide for an analog linear polar transmitter using multi-path orthogonal recursive predistortion. This transmitter may operate in a low power mode and achieve greater bandwidth by feeding the low-frequency even-order distortion components (i.e., the deviation from linear gain) back. Moreover, the distortion components may not be added to the input signal as feedback, but rather may be used to predistort the input signal in a multiplicative manner. In particular, the low-frequency even-order distortion components may generate odd-order in-band distortion terms when they are multiplied by the fundamental signal. Thus, such architecture may be inherently more stable than conventional additive polar loop systems.
According to an embodiment of the invention, there is a method for providing a linear polar transmitter. The method may include generating an input amplitude signal and an input phase signal, where the input amplitude signal and the input phase signal are orthogonal components of an input signal, and where the input amplitude signal and the input phase signal are generated on respective first and second signal paths, processing the input amplitude signal along the first signal path using an amplitude error signal to generate a predistorted amplitude signal, and processing the input phase signal along the second signal path using an phase error signal to generate a predistorted phase signal. The method may further include providing the predistorted amplitude signal along the first signal path and the predistorted phase signal along the second signal path to a power amplifier to generate an output signal, where the amplitude error signal is generated from a comparison of at least an amplitude portion of the output signal with the predistorted amplitude signal and where the phase error signal is generated from a comparison of at least a phase portion of the output signal with the predistorted phase signal.
According to another embodiment of the invention, there is a system for a linear polar transmitter. The system may include an input amplitude signal and an input phase signal, where the input amplitude signal and the input phase signal are orthogonal components of an input signal, and where the input amplitude signal and the input phase signal are provided on respective first and second signal paths. The system may also include a first predistortion module that processes the input amplitude signal along the first signal path using an inverse amplitude error signal to generate a predistorted amplitude signal, and a second predistortion module that processes the input phase signal along the second signal path using an inverse phase error signal to generate a predistorted phase signal. The system may further include a power amplifier that receives the predistorted amplitude signal along the first signal path and the predistorted phase signal along the second signal path and generates an output signal based upon the predistorted amplitude signal and the predistorted phase signal, where the amplitude error signal is generated from a comparison of at least an amplitude portion of the output signal with the predistorted amplitude signal and where the phase error signal is generated from a comparison of at least a phase portion of the output signal with the predistorted phase signal.
According to yet another embodiment of the invention, there is a system for a linear polar transmitter. The system may include an input amplitude signal and an input phase signal, where the input amplitude signal and the input phase signal are orthogonal components of an input signal, and where the input amplitude signal and the input phase signal are provided on respective first and second signal paths. The system may also include first means for processing the input amplitude signal along the first signal path using an inverse amplitude error signal to generate a predistorted amplitude signal, and second means for processes the input phase signal along the second signal path using an inverse phase error signal to generate a predistorted phase signal. The system may further include a power amplifier that receives the predistorted amplitude signal along the first signal path and the predistorted phase signal along the second signal path and generates an output signal based upon the predistorted amplitude signal and the predistorted phase signal, where the amplitude error signal is generated from a comparison of at least an amplitude portion of the output signal with the predistorted amplitude signal and where the phase error signal is generated from a comparison of at least a phase portion of the output signal with the predistorted phase signal.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein;
The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
Embodiments of the invention may provide linear polar transmitters that are based upon a polar modulation technique using two respective paths for amplitude and phase, and an analog orthogonal recursive predistortion linearization technique. The polar modulation technique may enhance the battery life by dynamically adjusting the bias level of a power amplifier. Additionally, the analog orthogonal recursive predistortion may provide for a substantially instantaneous correction of amplitude and phase errors in a radio frequency (RF) power amplifier (PA), thereby enhancing the linear output power capability and efficiency of the PA. Additionally, embodiments of the invention may utilize even-order distortion components to predistort the input signal in a multiplicative manner, which allows for correction of any distortion that may occur within the correction loop bandwidth, including envelope memory effects.
The analog amplitude signal xA(t) at the output of DAC 104a may be provided to the amplitude predistortion module 118 as the input amplitude signal. Likewise, the analog phase signal xP(t) at the output of DAC 104b is provided to the phase modulation module 106 in order to upconvert the analog phase modulation signal xP(t) from a baseband signal to a RF signal rxP(t). The resulting input amplitude signal rxP(t) may then be provided to the phase predistortion module 120.
The amplitude predistortion module 118 and the phase predistortion module 120 will now be discussed with respect to
Still referring to
As will be also described in further detail below, the amplitude predistortion module 118 and the phase predistortion module 120 may be operative to predistort the baseband amplitude signal xA(t) and the phase-modulated RF signal rxP(t), respectively. In particular, the amplitude signal input xA(t) may be predistorted by an inverse amplitude error signal eA(t) from the amplitude modulation error detection module 114, producing an amplitude-predistorted signal zA(t). As a result, the output zA(t) may contain the fundamental term of the input xA(t) as well as the inverse odd-order intermodulation distortion (IMD) terms of the output yA(t), such as third-order IMD, fifth-order IMD, and the like. The inverse amplitude distortion terms may be used in the power amplifier module 112 to compensate for the amplitude distortions of the PA output ry(t).
To produce the inverse amplitude error signal eA(t), the amplitude modulation error detection module 114, and in particular the amplitude predistortion function 132, generally performs a comparison of the output zA(t) of the predistortion module 118 with the diode-detected output yA(t) of the power amplifier module 112. For example, the comparison of the output zA(t) of the amplitude predistortion module 118 with the envelope-detected output yA(t) of the PA output ry(t) through a diode envelope detector 130 may be performed by a voltage divider. By dividing the signal zA(t) by the signal yA(t), the odd-order distortion terms, which are located near to the fundamental term, are order-down converted to the lower odd-order distortion terms. The inverse amplitude error signal eA(t) may include the inverse amplitude gain of the power amplifier module 112. The inverse amplitude error signal eA(t) may also include low-frequency, even-order intermodulation distortion terms, alleviating the required bandwidth of components operating in the amplitude error correction loop.
Likewise, the phase-modulated RF signal input rxP(t) may be predistorted by an inverse phase error signal eP(t) from the phase modulation error detection module 116, producing a phase-predistorted RF signal rzP(t). As a result, the output rzP (t) may contain the fundamental term of the input rxP(t) as well as the inverse odd-order intermodulation distortion (IMD) terms of the output ryP(t), such as third-order IMD, fifth-order IMD, and the like. The inverse phase distortion terms may be used in the power amplifier module 112 to compensate for the phase distortions of the PA output ry(t).
To produce the inverse phase error signal eP(t), the phase modulation error detection module 116, and in particular, the phase predistortion function 436, generally performs a comparison of the output rzP(t) of the predistortion module 120 with the amplitude-limited output ryP(t) of the power amplifier module 112. For example, the comparison of the output rzP(t) of the phase predistortion module 120 with the amplitude-limited output ryP(t) of the PA output ry(t) through a limiter 134 may be performed by a Gilbert-cell voltage multiplier. When relatively small amplitude signals are applied to the input ports of the Gilbert-cell voltage multiple, it may behave as an analog multiplier. If the phase error of the inputs is in the vicinity of 90°, the average value of the output may be linearly proportional to the phase error. The inverse amplitude error signal eP(t) may include the inverse phase deviation of the power amplifier module 112. The inverse phase error signal eA(t) may also include low-frequency, even-order intermodulation distortion terms, thereby alleviating the required bandwidth of components operating in the phase error correction loop.
In
If the amplitude modulation (AM) and phase modulation (PM) paths are fully synchronized, then the PA 124 input signal rz(t), which comes from the multiplication of the transmitter input signal rx(t) with the inverse PA distortion signal e(t), may be defined as follows:
where xA(t) and rxP((t) are the baseband amplitude input and the phase-modulated RF input, respectively. Likewise, eA(t) and eP(t) are the outputs of the predistortion function FA{·}132 for amplitude and FP{·} 136 for phase, respectively.
As the system 100 of
where G{·} is the PA 124 odd-order transfer function, F{·} is the predistortion function comprised of FA 132 and FP 136, and ak is the k-th complex coefficient of the PA 124 transfer function. As a result obtained from equations (1) to (4) above, a linearly amplified RE signal a1·rx(t) can simply be produced with this architecture, according to an embodiment of the invention.
Amplitude Error Correction. The amplitude error correction loop, which includes the amplitude modulation error detection module 114, will be described with reference to
Phase Error Correction.
Amplitude Modulation. In time-division multiple access (TDMA) communication systems such as GSM/EDGE, the power control of a PA output has to meet the time mask specification, while preserving the efficiency of the power supply. This power control may be performed by using a linear regulator, switching regulator, or combined structure. Unlike the GSM system, a polar EDGE system in accordance with an embodiment of the invention may require the tracking of RF envelope signals. Tracking the envelope signal may require a much wider operation bandwidth.
Phase Modulation.
In
Simulation Results. The time-domain signal test shown in
Error vector magnitude (EVM) measurement provides a means of characterizing the magnitude and phase variations introduced by the PA nonlinear behavior over a wide dynamic range. As shown in
Illustrative Implementation.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application claims priority to U.S. Provisional Ser. No. 60/803,871, entitled “Systems, Methods, and Apparatuses for Linear Polar Transmitters,” filed on Jun. 4, 2006, which is incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
5420536 | Faulkner et al. | May 1995 | A |
5742201 | Eisenberg et al. | Apr 1998 | A |
6141390 | Cova | Oct 2000 | A |
6236267 | Anzil | May 2001 | B1 |
6295442 | Camp, Jr. et al. | Sep 2001 | B1 |
6396345 | Dolman | May 2002 | B2 |
6449465 | Gailus et al. | Sep 2002 | B1 |
6642786 | Jin et al. | Nov 2003 | B1 |
6794938 | Weldon | Sep 2004 | B2 |
6831905 | Lomp et al. | Dec 2004 | B1 |
6914483 | Shigaki | Jul 2005 | B2 |
6985467 | Lomp et al. | Jan 2006 | B2 |
7024620 | Ponce et al. | Apr 2006 | B2 |
7042286 | Meade et al. | May 2006 | B2 |
7379715 | Udagawa et al. | May 2008 | B2 |
7460613 | Sahlman | Dec 2008 | B2 |
7532676 | Fonseka et al. | May 2009 | B2 |
20020196864 | Booth et al. | Dec 2002 | A1 |
20050239422 | Jafari et al. | Oct 2005 | A1 |
20060071711 | Persson et al. | Apr 2006 | A1 |
20060178120 | Puma | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
10257436 | Sep 2003 | DE |
10257435 | Sep 2004 | DE |
1017162 | Jul 2000 | EP |
1691518 | Aug 2006 | EP |
2380880 | Apr 2003 | GB |
1020040016366 | Feb 2004 | KR |
0233844 | Apr 2002 | WO |
0247249 | Jun 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20070298734 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60803871 | Jun 2006 | US |