Steam Assisted Gravity Drainage (SAGD) is a technique for recovering heavy crude oil and/or bitumen from geologic formations, and generally includes heating the bitumen through an injection borehole until it has a viscosity low enough to allow it to flow into a recovery borehole. As used herein, “bitumen” refers to any combination of petroleum and matter in the formation and/or any mixture or form of petroleum, specifically petroleum naturally occurring in a formation that is sufficiently viscous as to require some form of heating or diluting to permit removal from the formation.
SAGD techniques exhibit various problems that inhibit productivity and efficiency. For example, portions of a heat injector may overheat and warp causing difficulty in extracting an introducer string through the injection borehole. Also, difficulties in maintaining or controlling temperature of the liquid bitumen may pose difficulties in extracting the bitumen. Other problems include the requirement for large amounts of energy to deliver sufficient heat to the formation.
Disclosed herein is a system for monitoring a location of a borehole for production of petroleum from an earth formation. The system includes: an assembly including at least one of an injection conduit for injecting a thermal source into the formation and a production conduit for recovering material including the petroleum from the formation; a guide conduit attached to at least a portion of the at least one of the injection conduit and the production conduit, the guide conduit extending in a direction at least substantially parallel to the at least one of the injection conduit and the production conduit; and a detection source conduit insertable through the guide conduit and configured to dispose therein a detection source for detecting a location of the assembly in the formation.
Also disclosed herein is a method of monitoring a location of a borehole for production of petroleum from an earth formation. The method includes: inserting a detection conduit through a guide conduit attached to at least a portion of at least one of an injection conduit and a production conduit in the borehole, the guide conduit extending in a direction at least substantially parallel to the at least one of the injection conduit and the production conduit; disposing at least one detection source in the borehole via the detection conduit; advancing the at least one detection source to a selected location; activating the at least one detection source to emit a detection signal; and detecting the detection signal to determine a location of the detection source.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed system and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
The first borehole 12 includes an injection assembly 18 having an injection valve assembly 20 for introducing steam from a thermal source (not shown), an injection conduit 22 and an injector 24. The injector 24 receives steam from the conduit 22 and emits the steam through a plurality of openings such as slots 26 into a surrounding region 28. Bitumen 27 in region 28 is heated, decreases in viscosity, and flows substantially with gravity into a collector 30.
A production assembly 32 is disposed in second borehole 14, and includes a production valve assembly 34 connected to a production conduit 36. After region 28 is heated, the bitumen 27 flows into the collector 30 via a plurality of openings such as slots 38, and flows through the production conduit 36, into the production valve assembly 34 and to a suitable container or other location (not shown). In one embodiment, the bitumen 27 flows through the production conduit 36 and is recovered by one or more methods including natural steam lift, where some of the recovered hot water condensate flashes in the production conduit 36 and lifts the column of fluid to the surface, by gas lift where a gas is injected into the conduit 36 to lift the column of fluid, or by pumps such as progressive cavity pumps that work well for moving high-viscosity fluids with suspended solids.
In this embodiment, both the injection conduit 22 and the production conduit 36 are hollow cylindrical pipes, although they may take any suitable form sufficient to allow steam or bitumen to flow therethrough. Also in this embodiment, at least a portion of boreholes 12 and 14 are parallel horizontal boreholes. In other embodiments, the boreholes 12, 14 may advance in a vertical direction, a horizontal direction and/or an azimuthal direction, and may be positioned relative to one another as desired.
Referring to
The heel injector string 44 has a first inner diameter and extends to a first point at a distal end of the borehole 12 when the injector 24 is located at a heel-point in the borehole 12. As referred to herein, “distal end” refers to an end of a component that is farthest from the surface of a borehole, along a direction extending along the length of the borehole, and “proximal end” refers to an end of the component that is closest to the surface of the borehole along the direction extending along the length of the borehole. The mid injector string 42 has a first outer diameter that is smaller than the first inner diameter, has a second inner diameter, and extends to a mid-point. The toe injector string 40 has a second outer diameter that is smaller than the second inner diameter and extends to a toe-point. Each string 40, 42, 44 has a plurality of openings 52 such as drilled holes or slots that regulate the flow of steam through and out of each string 40, 42, 44. The heel injector string 44 and the mid injector string 42 may also include a centralizing flow restrictor 54. Injecting steam independently to the interior of each string 40, 42, 44 allows a user to control the flow of steam through each string independently, such as by varying injection pressure and/or varying a distribution of openings 52. This allows the user to adjust each string to ensure that an even distribution of steam is provided along the injector 24, and no hot spots are formed that could potentially warp or damage portions thereof. Furthermore, this configuration allows a user to conserve energy, for example, by providing lower temperature or pressure steam into the toe injection port 46. This is possible due to the insulative properties of the surrounding strings 42, 44 that thereby reduce thermal loss while the steam is flowing to the toe. Losses in prior art configurations necessitate the introduction of steam at much higher temperatures in order to still have sufficient thermal energy left by the time the steam reaches the toe to effectively reduce viscosity of the bitumen.
Referring again to
In one embodiment, the packer 60 does not include any slips, and is provided in conjunction with another packer, such as a packer 57. The packer 57 includes one or more slips for securing the packer 57 to the borehole 12 or to a well string 59. The well string 59 is thus attached to the packer 57, and is connected but not attached to the packer 60. The well string 59 is a tubular pipe or any suitable conduit through which components of the injection assembly 18 are disposed. In one embodiment, the well string 59 is a continuous conduit extending between packers 57 and 60. This configuration allows the well string to thermally expand without the need for an expansion joint. Use of an expansion joint can be problematic if expansion is excessive, and thus this configuration is advantageous in that an expansion joint is unnecessary.
In one embodiment, the injector 24 includes a monitoring/sensing assembly 64 that includes the parallel flow tube assembly 66 that may act as a packer and holds the strings 40, 42, 44 relative to a guide conduit 68. The guide conduit 68 is attached to an exterior housing 70. A monitoring/sensing conduit 72 is disposed in the guide conduit 68 for introduction of various monitoring or sensing devices, such as pressure and temperature sensors. In one embodiment, the monitoring/sensing conduit 72 is configured to allow the insertion of various detection sources such as magnetic sources, point of nuclear sources, electro-magnetic induction coils with resistors, acoustical devices, transmitting devices such as antennas, well logging tools and others. In one embodiment, the monitoring/sensing conduit is a coil tubing.
The systems described herein provide various advantages over existing processing methods and devices. The concentric injection strings provide for greater control of injection and assure a consistent distribution of steam relative to prior art injectors. Furthermore, no expansion joint is required, a flow back valve prevents steam from flowing back into the conduit 22 which improves efficiency. In addition, ease of installation is improved, a more effective and quicker pre-heat is accomplished as multiple steam conduits provide quicker heating, and greater thermal efficiency is achieved as the steam emission is precisely controllable and each conduit is more effectively insulated such as by sealed annulars with gas insulation. Furthermore, the assemblies described herein allow for improved monitoring and improved intervention ability relative to prior art assemblies.
In the first stage 301, a detection conduit such as the monitoring/sensing conduit 72 is inserted into the guide conduit 68.
In the second stage 302, at least one detection source is disposed in the borehole 12, 14 through the detection conduit and advanced to a selected location. In one embodiment, the detection source is advanced by hydraulically lowering the detection source through the detection conduit.
In the third stage 303, the detection source is activated to emit a detection signal.
In the fourth stage 304, the detection signal is detected by a detector to determine a location of the detection source. In one embodiment, the detector is located at the surface or an another borehole.
Referring to
Referring to
In one embodiment, the cable 92 includes an electrosensitive material 98 that changes shape based on the application of an electric current. In one embodiment, the electrosensitive material 98 is an electrosensitive shape memory alloy, which reacts to thermal or electrical application to change shape, and/or a electrically sensitive polymer. The electrosensitive material, in one embodiment, is disposed in one or more selected portions along the length of the cable 92.
In use, the cable 92 is uncoiled from the ranging device 90 after the ranging device 90 is advanced through the borehole 12, such as by retracting a retrieval head 100, or is otherwise extended along a selected length of the borehole 12 by any other suitable method. When an electric current or voltage is applied to the cable 92, the electrosensitive material changes shape, causing the cable 92 to form a coil at selected locations along the length of the cable 92. Each of these coils creates a magnetic field that is detectable by a detector to locate the corresponding location in the borehole 12. The voltage or current may be adjusted to cause the electrosensitive material to react accordingly, to change the length of the coil or location of the magnetic field along the cable 92. In one embodiment, resistors are positioned in and/or around the coils to permit a selected current to enter or bypass a specific coil or specific portion of a coil. In this way, the current or voltage may be adjusted to cause current to enter only selected coils. An exemplary configuration of the resistors is shown in
In one embodiment, the cable 92 and/or the housing 94 is incorporated in the ranging tool 74. For example, the rig survey line 76 is replaced with the cable 92, so that the ranging tool 74 need not be moved along the borehole 12 in order to move a magnetic field along the borehole 12. In this embodiment, the ranging tool 74 includes magnetic field sources in the form of the coils of cable 192, as well as any desired additional sources such as magnetic sources, point of nuclear sources, electro-magnetic induction coils with resistors, acoustical devices, transmitting devices such as antennas, and well logging tools.
In other embodiments, other components are disposed along the length of the cable 92, to provide ranging or other information. Examples of such components include point of nuclear sources, electro-magnetic induction coils with resistors, acoustical devices, transmitting devices such as antennas, well logging tools and others.
In the first stage 601, the cable 92 is disposed in a detection source conduit such as the monitoring/sensing conduit 72 that extends at least substantially parallel to the borehole 12, 14.
In the second stage 602, an electric current is applied to the cable 92 to cause the electrosensitive material 98 to change shape and cause one or more portions of the cable 92 to form a coil.
In the third stage 603, an electromagnet is formed at the one or more portions responsive to the electric current
In the fourth stage 604, the magnetic field is detected by a detector to determine a location of the detection source. In one embodiment, the detector is located at the surface or an another borehole.
Referring to
This configuration is advantageous over prior art sources that use sources such as acoustical and magnetic sources, in that the ranging device 90 does not need to be moved through the borehole 12 to detect different portions of the borehole 12. The ranging device is advantageous in that it reduces costs, increases drilling efficiency, eliminates the need for line trucks to move the source, increases accuracy due to the built in resistors, allows for faster relocation of magnetic sources by increasing voltage, is fully retrievable and reusable, and is potentially unlimited in length.
Referring to
In one embodiment, the guide conduit 68 includes a stinger to attach the guide conduit 68 to the production string to aid in recovery of the bitumen. In this embodiment, the monitoring/sensing assembly includes a gas lift 121, which includes the stinger to introduce a gas in the pump stinger 120, paths formed by the solid portions 112 and/or the production string 114, to reduce viscosity and aid in recovering the bitumen. The gas lift may be utilized with or without a pump. In one embodiment, a one-way valve is disposed between the guide conduit 68 and the injector 24 to prevent flow of bitumen or other materials into the guide conduit 68.
In one embodiment, a steam shroud 122 is disposed around the production string 114 and a pump 124. In one embodiment, the pump 124 is an electric submersible pump (ESP). Other pumps may be utilized, such as rod pumps and hydraulic pumps.
The steam shroud includes at least one conduit 126 that is concentric with the production string 114 and is in fluid communication with the production string 114. As the pump 124 pumps the bitumen toward the surface, a portion of the bitumen is forced into the concentric conduit 126 and toward steam flash venting perforations 128, through which excess steam can escape. The bitumen, as a result, increases in viscosity, and accordingly travels downward (i.e., away from the surface) and continues through the production string 114. In one embodiment, an injection line 130 extends into the conduit 126 for introduction of monitoring devices or cooling materials, such as a liquid, a gas or a chemical agent.
In one embodiment, during the petroleum recovery process, steam is injected through one or more of the injector strings 40, 42, 44 and is recovered through any one or more of the production strings. In one example, steam is injected through 40, 42, and recovered through the heel production string. Utilizing any such desired combinations may require less energy, and may also allow faster pre-heating with less energy than prior art techniques.
In the first stage 901, an injection assembly such as the injection assembly 18 is disposed in the first borehole 12, and advanced through the borehole 12 until the injector 24 is located at a selected location.
In the second stage 902, a production assembly such as the production assembly 32 is disposed in the second borehole 14, and advance through the borehole 14 until the collector 30 is positioned at a selected location. In one embodiment, the selected location is directly below, along the direction of gravity, the injector 24.
In the third stage 903, a thermal source such as steam is injected into the injector to introduce thermal energy to a portion of the formation 16 and reduce a viscosity of the material therein, such as bitumen. In one embodiment, the thermal source is injected through the openings 52 in one or more of the strings 40, 42, 44.
In the fourth stage 904, the material migrates with the force of gravity and is recovered through the production assembly. In one embodiment, the material is recovered through the openings 110 in one or more of the strings 40, 42, 44.
Referring to
The embodiment of
In the first stage 1101, an injection assembly such as the injection assembly 18 is disposed in the first borehole 12, and advanced through the borehole 12 until the injector 24 is located at a selected location.
In the second stage 1102, a production assembly such as the production assembly 32 is disposed in the second borehole 14, and advance through the borehole 14 until a collector such as collector 30 is positioned at a selected location. In one embodiment, the selected location is directly below, along the direction of gravity, the injector 24.
In the third stage 1103, the thermal injection conduit 132 is disposed through at least a portion of the production string 114 and/or the collector 30. In one embodiment, the thermal injection conduit 132 is disposed in an interior of the production string 114 and the collector 30. In another embodiment, the thermal injection conduit 132 extends from a surface location to a distal end of the collector 30.
In the fourth stage 1104, a first thermal source such as steam is injected into the injector 24 to introduce thermal energy to a portion of the formation 16 and reduce a viscosity of the material therein, such as bitumen.
In the fifth stage 1105, the material migrates with the force of gravity and is recovered through the production string 114 and the collector 30.
In the sixth stage 1106, a second thermal source is injected into the thermal injection conduit 132 to regulate a thermal property of the material.
Referring to
In the first stage 1301, an injection assembly such as the injection assembly 18 is disposed in at least one injection borehole 140, and advanced through the injection borehole 140 until the injector 24 is located at a selected location.
In the second stage 1302, a production assembly such as the production assembly 32 is disposed in at least one production borehole 142, and advanced through the production borehole 142 until a collector such as collector 30 is positioned at a selected location. As discussed above, each production borehole 142 is at least partially intersected by the horizontal portion of the at least one drainage borehole 144, the at least one drainage borehole having a horizontal portion that at least partially intersects the production borehole;
In the third stage 1303, a first thermal source such as steam is injected into the injector 24 to introduce thermal energy to a portion of the formation 16 and reduce a viscosity of the material therein, such as bitumen.
In the fourth stage 1304, the material is recovered through the production assembly 32. In one embodiment, recovery is facilitated by pumping the material through the production assembly 32, for example, via an ESP, by gas lift, by natural steam lift and/or by any natural or artificial device for recovering the bitumen. In one embodiment, recovery includes inducing a flow of the material through the at least one drainage borehole 144 into the at least one production borehole 142 and/or exerting a pressure on the at least one production borehole 142. In one embodiment, recovery includes injecting additional materials such as steam, gas or liquid into the drainage boreholes 144 to facilitate recovery.
In the first stage 1401, a location and path of at least one production borehole 142 is selected. In one embodiment, the path includes a vertical and/or azimuthal direction.
In the second stage 1402, one or more horizontal drainage boreholes 144 are drilled in a vertical or azimuthal array, in which at least a portion of each drainage borehole intersects an area to be defined by the production borehole(s) 142.
In the third stage 1403, the production borehole(s) 142 are drilled in a vertical and/or azimuthal direction. In one embodiment, the cross sectional area of each production borehole 142 is greater than a cross sectional area of drainage boreholes 144, and the production borehole(s) 142 are each drilled so that a portion of the production borehole 142 intersects with each drainage borehole 144.
In the fourth stage 1404, which may be performed at any time relative to the first and second stages, the injection borehole(s) 140 are drilled in a vertical and/or azimuthal direction at a selected location relative to the production borehole(s) 142 and the drainage boreholes 144. In one embodiment, the injection borehole(s) 140 are drilled in a path that does not intersect either the production borehole(s) 142 or the drainage borehole(s) 144. In addition, materials such as steam, gas or liquid, or monitoring devices, can be inserted into the drainage boreholes 144 to increase recovery efficiency and/or monitor the production borehole(s) 142.
The borehole configuration of
In support of the teachings herein, various analyses and/or analytical components may be used, including digital and/or analog systems. The system may have components such as a processor, storage media, memory, input, output, communications link (wired, wireless, pulsed mud, optical or other), user interfaces, software programs, signal processors (digital or analog) and other such components (such as resistors, capacitors, inductors and others) to provide for operation and analyses of the apparatus and methods disclosed herein in any of several manners well-appreciated in the art. It is considered that these teachings may be, but need not be, implemented in conjunction with a set of computer executable instructions stored on a computer readable medium, including memory (ROMs, RAMs), optical (CD-ROMs), or magnetic (disks, hard drives), or any other type that when executed causes a computer to implement the method of the present invention. These instructions may provide for equipment operation, control, data collection and analysis and other functions deemed relevant by a system designer, owner, user or other such personnel, in addition to the functions described in this disclosure.
Further, various other components may be included and called upon for providing aspects of the teachings herein. For example, a sample line, sample storage, sample chamber, sample exhaust, pump, piston, power supply (e.g., at least one of a generator, a remote supply and a battery), vacuum supply, pressure supply, refrigeration (i.e., cooling) unit or supply, heating component, motive force (such as a translational force, propulsional force or a rotational force), magnet, electromagnet, sensor, electrode, transmitter, receiver, transceiver, controller, optical unit, electrical unit or electromechanical unit may be included in support of the various aspects discussed herein or in support of other functions beyond this disclosure.
One skilled in the art will recognize that the various components or technologies may provide certain necessary or beneficial functionality or features. Accordingly, these functions and features as may be needed in support of the appended claims and variations thereof, are recognized as being inherently included as a part of the teachings herein and a part of the invention disclosed.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications will be appreciated by those skilled in the art to adapt a particular instrument, situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 12/140,779, filed Jun. 17, 2008 and claims priority to U.S. Provisional Patent Application Ser. No. 61/052,919, filed May 13, 2008, each of which are specifically incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1362552 | Alexander et al. | Dec 1920 | A |
1488753 | Kelly | Apr 1924 | A |
1580325 | Leroy | Apr 1926 | A |
1649524 | Hammond | Nov 1927 | A |
1915867 | Penick | Jun 1933 | A |
1984741 | Harrington | Dec 1934 | A |
2089477 | Halbert | Aug 1937 | A |
2119563 | Wells | Jun 1938 | A |
2214064 | Niles | Sep 1940 | A |
2257523 | Combs | Sep 1941 | A |
2391609 | Wright | Dec 1945 | A |
2412841 | Spangler | Dec 1946 | A |
2762437 | Egan et al. | Sep 1956 | A |
2804926 | Zublin | Sep 1957 | A |
2810352 | Tumlison | Oct 1957 | A |
2814947 | Stegemeier et al. | Dec 1957 | A |
2942668 | Maly et al. | Jun 1960 | A |
2945541 | Maly et al. | Jul 1960 | A |
3103789 | McDuff | Sep 1963 | A |
3216503 | Fisher et al. | Nov 1965 | A |
3240274 | Solum | Mar 1966 | A |
3273641 | Bourne | Sep 1966 | A |
3302408 | Schmid | Feb 1967 | A |
3322199 | Van Note, Jr. | May 1967 | A |
3326291 | Zandmer | Jun 1967 | A |
3333635 | Crawford | Aug 1967 | A |
3385367 | Kollsman | May 1968 | A |
3386508 | Bielstein et al. | Jun 1968 | A |
3399548 | Burns | Sep 1968 | A |
3419089 | Venghiattis | Dec 1968 | A |
3451477 | Kelley | Jun 1969 | A |
3468375 | States | Sep 1969 | A |
RE27252 | Sklar et al. | Dec 1971 | E |
3675714 | Thompson | Jul 1972 | A |
3692064 | Hohnerlein et al. | Sep 1972 | A |
3739845 | Berry et al. | Jun 1973 | A |
3791444 | Hickey | Feb 1974 | A |
3876471 | Jones | Apr 1975 | A |
3918523 | Stuber | Nov 1975 | A |
3951338 | Genna | Apr 1976 | A |
3958649 | Bull et al. | May 1976 | A |
3975651 | Griffiths | Aug 1976 | A |
4153757 | Clark, III | May 1979 | A |
4173255 | Kramer | Nov 1979 | A |
4180132 | Young | Dec 1979 | A |
4186100 | Mott | Jan 1980 | A |
4187909 | Erbstoesser | Feb 1980 | A |
4245701 | Chambers | Jan 1981 | A |
4248302 | Churchman | Feb 1981 | A |
4250907 | Struckman et al. | Feb 1981 | A |
4257650 | Allen | Mar 1981 | A |
4265485 | Boxerman et al. | May 1981 | A |
4278277 | Krijgsman | Jul 1981 | A |
4283088 | Tabakov et al. | Aug 1981 | A |
4287952 | Erbstoesser | Sep 1981 | A |
4390067 | Willman | Jun 1983 | A |
4398600 | Vazquez | Aug 1983 | A |
4398898 | Odom | Aug 1983 | A |
4410216 | Allen | Oct 1983 | A |
4415205 | Rehm et al. | Nov 1983 | A |
4434849 | Allen | Mar 1984 | A |
4463988 | Bouck et al. | Aug 1984 | A |
4484641 | Dismukes | Nov 1984 | A |
4491186 | Alder | Jan 1985 | A |
4497714 | Harris | Feb 1985 | A |
4512403 | Santangelo et al. | Apr 1985 | A |
4552218 | Ross et al. | Nov 1985 | A |
4552230 | Anderson et al. | Nov 1985 | A |
4572295 | Walley | Feb 1986 | A |
4576404 | Weber | Mar 1986 | A |
4577691 | Huang et al. | Mar 1986 | A |
4614303 | Moseley, Jr. et al. | Sep 1986 | A |
4649996 | Kojicic et al. | Mar 1987 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4821800 | Scott et al. | Apr 1989 | A |
4856590 | Caillier | Aug 1989 | A |
4899835 | Cherrington | Feb 1990 | A |
4917183 | Gaidry et al. | Apr 1990 | A |
4944349 | Von Gonten, Jr. | Jul 1990 | A |
4974674 | Wells | Dec 1990 | A |
4997037 | Coston | Mar 1991 | A |
4998585 | Newcomer et al. | Mar 1991 | A |
5004049 | Arterbury | Apr 1991 | A |
5016710 | Renard et al. | May 1991 | A |
5040283 | Pelgrom | Aug 1991 | A |
5060737 | Mohn | Oct 1991 | A |
5107927 | Whiteley et al. | Apr 1992 | A |
5132903 | Sinclair | Jul 1992 | A |
5156811 | White | Oct 1992 | A |
5188191 | Tomek | Feb 1993 | A |
5217076 | Masek | Jun 1993 | A |
5333684 | Walter et al. | Aug 1994 | A |
5337821 | Peterson | Aug 1994 | A |
5339895 | Arterbury et al. | Aug 1994 | A |
5339897 | Leaute | Aug 1994 | A |
5355956 | Restarick | Oct 1994 | A |
5377750 | Arterbury et al. | Jan 1995 | A |
5381864 | Nguyen et al. | Jan 1995 | A |
5384046 | Lotter et al. | Jan 1995 | A |
5431346 | Sinaisky | Jul 1995 | A |
5435393 | Brekke et al. | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439966 | Graham et al. | Aug 1995 | A |
5511616 | Bert | Apr 1996 | A |
5551513 | Surles et al. | Sep 1996 | A |
5586213 | Bridges et al. | Dec 1996 | A |
5597042 | Tubel et al. | Jan 1997 | A |
5609204 | Rebardi et al. | Mar 1997 | A |
5673751 | Head et al. | Oct 1997 | A |
5803179 | Echols et al. | Sep 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5831156 | Mullins | Nov 1998 | A |
5839508 | Tubel et al. | Nov 1998 | A |
5873410 | Iato et al. | Feb 1999 | A |
5881809 | Gillespie et al. | Mar 1999 | A |
5896928 | Coon | Apr 1999 | A |
5944446 | Hocking | Aug 1999 | A |
5982801 | Deak | Nov 1999 | A |
6044869 | Koob | Apr 2000 | A |
6068015 | Pringle | May 2000 | A |
6098020 | Den Boer | Aug 2000 | A |
6112815 | Boe et al. | Sep 2000 | A |
6112817 | Voll et al. | Sep 2000 | A |
6119780 | Christmas | Sep 2000 | A |
6228812 | Dawson et al. | May 2001 | B1 |
6253847 | Stephenson | Jul 2001 | B1 |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6273194 | Hiron et al. | Aug 2001 | B1 |
6301959 | Hrametz et al. | Oct 2001 | B1 |
6305470 | Woie | Oct 2001 | B1 |
6325152 | Kelley et al. | Dec 2001 | B1 |
6338363 | Chen et al. | Jan 2002 | B1 |
6367547 | Towers et al. | Apr 2002 | B1 |
6371210 | Bode et al. | Apr 2002 | B1 |
6372678 | Youngman et al. | Apr 2002 | B1 |
6419021 | George et al. | Jul 2002 | B1 |
6474413 | Barbosa et al. | Nov 2002 | B1 |
6505682 | Brockman | Jan 2003 | B2 |
6516888 | Gunnarson et al. | Feb 2003 | B1 |
6530431 | Castano-Mears et al. | Mar 2003 | B1 |
6561732 | Bloomfield et al. | May 2003 | B1 |
6581681 | Zimmerman et al. | Jun 2003 | B1 |
6581682 | Parent et al. | Jun 2003 | B1 |
6622794 | Zisk, Jr. | Sep 2003 | B2 |
6632527 | McDaniel et al. | Oct 2003 | B1 |
6635732 | Mentak | Oct 2003 | B2 |
6667029 | Zhong et al. | Dec 2003 | B2 |
6679324 | Den Boer et al. | Jan 2004 | B2 |
6692766 | Rubinstein et al. | Feb 2004 | B1 |
6699503 | Sako et al. | Mar 2004 | B1 |
6699611 | Kim et al. | Mar 2004 | B2 |
6712154 | Cook et al. | Mar 2004 | B2 |
6722437 | Vercaemer et al. | Apr 2004 | B2 |
6786285 | Johnson et al. | Sep 2004 | B2 |
6817416 | Wilson et al. | Nov 2004 | B2 |
6820690 | Vercaemer et al. | Nov 2004 | B2 |
6830104 | Nguyen et al. | Dec 2004 | B2 |
6831044 | Constien | Dec 2004 | B2 |
6840321 | Restarick et al. | Jan 2005 | B2 |
6857476 | Richards | Feb 2005 | B2 |
6863126 | McGlothen et al. | Mar 2005 | B2 |
6896049 | Moyes | May 2005 | B2 |
6913079 | Tubel | Jul 2005 | B2 |
6938698 | Coronado | Sep 2005 | B2 |
6951252 | Restarick et al. | Oct 2005 | B2 |
6959764 | Preston | Nov 2005 | B2 |
6976542 | Henriksen et al. | Dec 2005 | B2 |
7011076 | Weldon et al. | Mar 2006 | B1 |
7032675 | Steele et al. | Apr 2006 | B2 |
7059410 | Bousche et al. | Jun 2006 | B2 |
7084094 | Gunn et al. | Aug 2006 | B2 |
7159656 | Eoff et al. | Jan 2007 | B2 |
7185706 | Freyer | Mar 2007 | B2 |
7207385 | Smith et al. | Apr 2007 | B2 |
7252162 | Akinlade et al. | Aug 2007 | B2 |
7258166 | Russell | Aug 2007 | B2 |
7264047 | Brezinski et al. | Sep 2007 | B2 |
7290606 | Coronado et al. | Nov 2007 | B2 |
7290610 | Corbette et al. | Nov 2007 | B2 |
7318472 | Smith | Jan 2008 | B2 |
7322412 | Badalamenti et al. | Jan 2008 | B2 |
7325616 | Lopez de Cardenas et al. | Feb 2008 | B2 |
7360593 | Constien | Apr 2008 | B2 |
7367399 | Steele et al. | May 2008 | B2 |
7395858 | Barbosa et al. | Jul 2008 | B2 |
7398822 | Meijer et al. | Jul 2008 | B2 |
7409999 | Henriksen et al. | Aug 2008 | B2 |
7413022 | Broome et al. | Aug 2008 | B2 |
7451814 | Graham et al. | Nov 2008 | B2 |
7469743 | Richards | Dec 2008 | B2 |
7581593 | Pankratz et al. | Sep 2009 | B2 |
7621326 | Crichlow | Nov 2009 | B2 |
7644854 | Holmes et al. | Jan 2010 | B1 |
7647966 | Cavender et al. | Jan 2010 | B2 |
7673678 | MacDougall et al. | Mar 2010 | B2 |
7757757 | Vroblesky | Jul 2010 | B1 |
7931081 | Sponchia | Apr 2011 | B2 |
20020020527 | Kilaas | Feb 2002 | A1 |
20020125009 | Wetzel et al. | Sep 2002 | A1 |
20020148610 | Bussear et al. | Oct 2002 | A1 |
20020170717 | Venning et al. | Nov 2002 | A1 |
20030221834 | Hess et al. | Dec 2003 | A1 |
20040052689 | Yao | Mar 2004 | A1 |
20040060705 | Kelley | Apr 2004 | A1 |
20040094307 | Daling et al. | May 2004 | A1 |
20040144544 | Freyer | Jul 2004 | A1 |
20040159447 | Bissonnette et al. | Aug 2004 | A1 |
20040194971 | Thomson | Oct 2004 | A1 |
20040244988 | Preston | Dec 2004 | A1 |
20050016732 | Brannon et al. | Jan 2005 | A1 |
20050086807 | Richard et al. | Apr 2005 | A1 |
20050126776 | Russell | Jun 2005 | A1 |
20050178705 | Broyles et al. | Aug 2005 | A1 |
20050189119 | Gynz-Rekowski | Sep 2005 | A1 |
20050199298 | Farrington | Sep 2005 | A1 |
20050207279 | Chemali et al. | Sep 2005 | A1 |
20050241835 | Burris et al. | Nov 2005 | A1 |
20050274515 | Smith et al. | Dec 2005 | A1 |
20060032630 | Heins | Feb 2006 | A1 |
20060042798 | Badalamenti et al. | Mar 2006 | A1 |
20060048936 | Fripp et al. | Mar 2006 | A1 |
20060048942 | Moen et al. | Mar 2006 | A1 |
20060076150 | Coronado et al. | Apr 2006 | A1 |
20060086498 | Wetzel et al. | Apr 2006 | A1 |
20060108114 | Johnson | May 2006 | A1 |
20060118296 | Dybevik et al. | Jun 2006 | A1 |
20060124360 | Lee et al. | Jun 2006 | A1 |
20060157242 | Graham et al. | Jul 2006 | A1 |
20060175065 | Ross | Aug 2006 | A1 |
20060185849 | Edwards et al. | Aug 2006 | A1 |
20060250274 | Mombourquette et al. | Nov 2006 | A1 |
20060272814 | Broome et al. | Dec 2006 | A1 |
20060273876 | Pachla et al. | Dec 2006 | A1 |
20070012444 | Horgan et al. | Jan 2007 | A1 |
20070039741 | Hailey, Jr. | Feb 2007 | A1 |
20070044962 | Tibbles | Mar 2007 | A1 |
20070045266 | Sandberg et al. | Mar 2007 | A1 |
20070056729 | Pankratz et al. | Mar 2007 | A1 |
20070131434 | MacDougall et al. | Jun 2007 | A1 |
20070181299 | Chung et al. | Aug 2007 | A1 |
20070209799 | Vinegar et al. | Sep 2007 | A1 |
20070246210 | Richards | Oct 2007 | A1 |
20070246213 | Hailey, Jr. | Oct 2007 | A1 |
20070246225 | Hailey, Jr. et al. | Oct 2007 | A1 |
20070246407 | Richards et al. | Oct 2007 | A1 |
20070272408 | Zazaovsky et al. | Nov 2007 | A1 |
20070289749 | Wood et al. | Dec 2007 | A1 |
20080035349 | Richard | Feb 2008 | A1 |
20080035350 | Henriksen et al. | Feb 2008 | A1 |
20080053662 | Williamson et al. | Mar 2008 | A1 |
20080135249 | Fripp et al. | Jun 2008 | A1 |
20080149323 | O'Malley et al. | Jun 2008 | A1 |
20080149351 | Marya et al. | Jun 2008 | A1 |
20080169099 | Pensgaard | Jul 2008 | A1 |
20080236839 | Oddie | Oct 2008 | A1 |
20080236843 | Scott et al. | Oct 2008 | A1 |
20080251255 | Forbes et al. | Oct 2008 | A1 |
20080283238 | Richards et al. | Nov 2008 | A1 |
20080296023 | Willauer | Dec 2008 | A1 |
20080314590 | Patel | Dec 2008 | A1 |
20090056816 | Arov et al. | Mar 2009 | A1 |
20090057014 | Richard et al. | Mar 2009 | A1 |
20090071646 | Pankratz et al. | Mar 2009 | A1 |
20090101330 | Johnson | Apr 2009 | A1 |
20090101342 | Gaudette et al. | Apr 2009 | A1 |
20090133869 | Clem | May 2009 | A1 |
20090133874 | Dale et al. | May 2009 | A1 |
20090139717 | Richard et al. | Jun 2009 | A1 |
20090139727 | Tanju et al. | Jun 2009 | A1 |
20090194282 | Beer et al. | Aug 2009 | A1 |
20090205834 | Garcia et al. | Aug 2009 | A1 |
20090301704 | Dillett et al. | Dec 2009 | A1 |
20100126720 | Kaiser et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
1385594 | Dec 2002 | CN |
1492345 | Jun 1976 | GB |
2341405 | Mar 2000 | GB |
59089383 | May 1984 | JP |
1335677 | Aug 1985 | SU |
9403743 | Feb 1994 | WO |
0079097 | Dec 2000 | WO |
0165063 | Sep 2001 | WO |
0177485 | Oct 2001 | WO |
0192681 | Dec 2001 | WO |
02075110 | Sep 2002 | WO |
2004018833 | Mar 2004 | WO |
2006015277 | Feb 2006 | WO |
2008092241 | Aug 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110056680 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61052919 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12140779 | Jun 2008 | US |
Child | 12944404 | US |