Systems, Methods And Compositions For Recombinant In Vitro Transcription And Translation Utilizing Thermophilic Proteins

Information

  • Patent Application
  • 20220275028
  • Publication Number
    20220275028
  • Date Filed
    April 13, 2020
    4 years ago
  • Date Published
    September 01, 2022
    2 years ago
Abstract
Another aim of the current invention may include a recombinant cell-free expression system, the reaction mixture containing all the cell-free reaction components necessary for the in vitro biosynthesis of biological compounds, proteins, enzymes, biosimilars or chemical modification of small molecules.
Description
TECHNICAL FIELD

This invention relates to recombinant cell-free expression systems and methods of using the same for high yield in vitro production of biological materials.


SEQUENCE LISTINGS

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 5, 2022, is named 90125-00097-Sequence-Listing_Amended.txt and is 427 Kbytes in size


BACKGROUND

Cell-free expression systems (also known as in vitro transcription/translation, cell-free protein expression, cell-free translation, or cell-free biosynthesis) represent a molecular biology technique that enables researchers to express functional proteins or other target molecules in vitro. Such systems enable in vitro expression of proteins or other small molecules that are difficult to produce in vivo, as well as high-throughput production of protein libraries for protein evolution, functional genomics, and structural studies. Another advantage of such systems is that often the target protein to be expressed may be toxic to a host cell, or generally incompatible with cellular expression, making in vivo systems impractical if not wholly ineffective vehicles for protein expression. Compared to in vivo techniques based on bacterial or tissue culture cells, in vitro protein expression is considerably faster because it does not require gene transfection, cell culture or extensive protein purification.


More specifically, cell-free expression systems generate target molecules and complexes such as RNA species and proteins without using living cells. A typical cell-free expression system may utilize the biological components/machinery found in cellular lysates to generate target molecules from DNA containing one or more target genes. Common components of a typical cell-free expression system reaction may include a cell extract generally derived from a cell culture lysate, an energy source such as ATP, a supply of amino acids, cofactors such as magnesium, and the nucleic acid synthesis template with the desired genes, typically in the form of a plasmid synthesis template, or linear expression (or synthesis) template (LET or LST). A cell extract may be obtained by lysing the cell of interest and removing the cell walls, genomic DNA, and other debris through centrifugation or other precipitation methods. The remaining portions of the lysate or cell extract may contain the necessary cell machinery needed to express the target molecule.


A common cell-free expression system involves cell-free protein synthesis (CFPS). To produce one or more proteins of interest, typical CFPS systems harness an ensemble of catalytic components necessary for energy generation and protein synthesis from crude lysates of microbial, plant, or animal cells. Crude lysates contain the necessary elements for DNA to RNA transcription, RNA to protein translation, protein folding, and energy metabolism (e.g., ribosomes, aminoacyl-tRNA synthetases, translation initiation and elongation factors, ribosome release factors, nucleotide recycling enzymes, metabolic enzymes, chaperones, foldases, etc.). Common cell extracts in use today are made from Escherichia coli (ECE), rabbit reticulocytes (RRL), wheat germ (WGE), and insect cells (ICE), and even mammalian cells (MC).


Cell-free expression systems offer several advantages over conventional in vivo protein expression methods. Cell-free systems can direct most, if not all, of the metabolic resources of the cell towards the exclusive production of one protein. Moreover, the lack of a cell wall and membrane components in vitro is advantageous since it allows for control of the synthesis environment. For example, tRNA levels can be changed to reflect the codon usage of genes being expressed. The redox potential, pH, or ionic strength can also be altered with greater flexibility than in vivo since there is less concerned about cell growth or viability. Furthermore, direct recovery of purified, properly folded protein products can be easily achieved.


Despite many advantageous aspects of cell-free expression systems, several obstacles have previously limited their use as a protein production technology. These obstacles, which are especially present in the E. coli extract-based cell-free systems identified in U.S. Pat. No. 7,118,883, and the yeast extract-based cell-free systems identified in U.S. Pat. No. 9,528,137, include short reaction durations of active protein synthesis, low protein production rates, small reaction scales, a limited ability to correctly fold proteins containing multiple disulfide bonds, and its initial development as a “black-box” science. As a result, there exists a need for an economically viable commercial cell-free expression system that exhibits increased product yield, enhanced component stability, improved protein production rate, and extended reaction time.


As noted above, cell-free systems are not widely used for manufacturing of biologics because of their lack in consistency, yield and possibility to scale. The present inventors previously reported an extract-based cell-free system utilizing exemplary thermophiles to improve the application of such systems by replacing the E. coli machinery with thermostable proteins which led to improved production rates and higher yields, but also including a novel energy regeneration system. (Such novel energy regeneration systems being generally described in PCT Application No. PCT/US201 8/012121, the description, figures, examples, sequences and claims being incorporated herein by reference in their entirety.)


As detailed below, the present inventors have developed a fully recombinant in vitro transcription/translation system, which in some embodiments, incorporate peptide-based components from various exemplary thermophilic bacteria. As noted above, current commercially available cell-free systems are either based on adding necessary transcription/translation machinery from E. coli cell extracts or are based on recombinant E. coli enzymes. Various other sources for extracts have been reported including the use of thermophiles to improve in vitro protein production, but a fully recombinant expression system, including a fully-recombinant expression system based on thermophilic proteins has not been reported until now.


As will be discussed in more detail below, the current inventive technology overcomes the limitations of traditional cell-free expression systems while meeting the objectives of a truly energetically efficient and robust in vitro cell-free expression system that results in longer reaction durations and higher product yields. Specifically, the present invention includes a cell-free system based on thermophiles by recombinantly expressing each protein necessary for transcription/translation and thus enabling continuous flow with better control and fine tuning of the system without encountering huge variables as observed in extract-based batch systems. This system may be useful for small scale protein production in initial research applications as well as for mid-scale applications, such as small animal studies. The current invention allows for large scale manufacturing with the continuous flow approach in novel bioreactors described herein and can replace current manufacturing facilities with much larger footprints and personnel requirements.


BRIEF SUMMARY OF THE INVENTION

One aim of the current invention relates to a recombinant cell-free expression system, the reaction mixture containing all the cell-free reaction components necessary for the in vitro transcription/translation mechanism, amino acids, nucleotides, metabolic components which provide energy, and which are necessary for protein synthesis. In a preferred embodiment, the enzymes identified herein may be sourced from different thermophile bacteria, as opposed to traditional cell-free systems that source components from E. coli or other eukaryotic systems, such as yeast. This thermophilic sourcing strategy provides higher stability during all steps during in vitro translation (tRNA loading, ribosomal peptide biosynthesis), as well as allows for improved performance and longer run-time of the recombinant expression system.


This present inventor's thermophilic sourcing strategy allows for the generation of a recombinant cell-free expression system that exhibits less sensitivity to variations in pH and salt concentrations and may be less affected by increasing phosphate concentration due to ATP hydrolysis. Another benefit of this thermophilic sourcing strategy is that it allows the inventive recombinant cell-free expression system to employ different sets of tRNAs, which are recognized by the thermophilic aminoacyl-tRNA synthetase enzymes, thus enabling full codon coverage for the first time in a cell-free system.


Another aim of the current invention may include a recombinant cell-free expression system, the reaction mixture containing all the cell-free reaction components necessary for the in vitro biosynthesis of biological compounds, proteins, enzymes, biosimilars or chemical modification of small molecules.


Another aim of the current invention may include methods, systems and apparatus for a continuous flow bioreactor system for in vitro transcription, in vitro translation and in vitro biosynthesis of vaccines, biologicals, proteins, enzymes, biosimilars and biosynthesis or chemical modification of small molecules using enzymes in a continuous flow operation.


Another aim of the invention may include one or more isolated nucleotide coding sequences that may form part of a recombinant cell-free expression reaction mixture. In a preferred embodiment, one or more nucleotide coding sequences may be from a thermophilic or other bacteria. In a preferred embodiment, a nucleotide coding sequences may include, but not be limited to: initiation factor nucleotide coding sequences, elongation factor nucleotide coding sequences, release factor nucleotide coding sequences, ribosome-recycling factor nucleotide coding sequences, aminoacyl-tRNA synthetase nucleotide coding sequences, and methionyl-tRNA transformylase nucleotide coding sequences. Additional nucleotide coding sequences may include RNA polymerase nucleotide coding sequences, as well as nucleotide coding sequences identified in the incorporated reference PCT Application No. PCT/US201 8/012121 (the “'121 Application”) related to the inorganic polyphosphate energy-regeneration system incorporated herein.


Another aim of the invention may include the generation of expression vectors having one or more isolated nucleotide coding sequences operably linked to promotor sequence(s) that may be used to transform a bacterial cell. In certain embodiments, nucleotide coding sequences may be optimized for expression in a select bacteria.


Another aim of the invention may include the expression of a nucleotide coding sequence identified herein generating a protein that may be further isolated and included in a recombinant cell-free expression reaction mixture. In a preferred embodiment, an expressed protein may include, but not be limited to: initiation factor proteins, elongation factor proteins, release factor proteins, ribosome-recycling factor proteins, aminoacyl-tRNA synthetase proteins, and methionyl-tRNA transformylase proteins. Additional nucleotide coding sequences may include RNA polymerase proteins, as well as proteins and compounds identified in the '121 Application related to the inorganic polyphosphate energy-regeneration system incorporated herein.


Another aim of the current invention may include a continuous flow recombinant cell-free expression apparatus. In this preferred embodiment, such a continuous flow recombinant cell-free expression apparatus may include the application of hollow fibers and hollow fiber-based bioreactors as an exchange medium for in vitro transcription, in vitro translation and in vitro biosynthesis of biological, proteins, enzymes, biosimilars and biosynthesis or chemical modification of small molecules using enzymes in a continuous flow operation.


Additional aims of the invention may include one or more of the following preferred embodiments:

  • 1. A system for recombinant cell-free expression comprising:
    • a core recombinant protein mixture having at least the following components:
      • a plurality of initiation factors (IFs);
      • a plurality of elongation factors (EFs);
      • a plurality of peptide release factors (RFs);
      • at least one ribosome recycling factor (RRF);
      • a plurality of aminoacyl-tRNA-synthetases (RSs); and
      • at least one methionyl-tRNA transformylase (MTF);
    • at least one nucleic acid synthesis template;
    • a reaction mixture having cell-free reaction components necessary for in vitro macromolecule synthesis; and
    • wherein the above components are situated in a bioreactor configured for cell-free expression of macromolecules.
  • 2. The system of embodiment 1, wherein the components of said core recombinant protein mixture comprises a core recombinant protein mixture derived from a bacteria.
  • 3. The system of embodiment 2, wherein said core recombinant protein mixture derived from bacteria comprises a core recombinant protein mixture wherein at least one components is derived from a thermophilic bacteria.
  • 4. The system of any one of embodiments 2, and 3, wherein said thermophilic bacteria comprises a thermophilic Bacillaceae bacteria, or Geobacillus thermophilic bacteria.
  • 5. The system of embodiment 4, wherein said Geobacillus thermophilic bacteria is selected from the group consisting of: Geobacillus subterraneus, and Geobacillus stearothermophilus.
  • 6. The system of embodiment 1, wherein said core recombinant protein mixture derived from bacteria comprises a core recombinant protein mixture wherein at least one components is derived from a non-thermophilic bacteria, or a combination of non-thermophilic and thermophilic bacteria.
  • 7. The system of embodiment 6, wherein said non-thermophilic bacteria comprise Escherichia coli.
  • 8. The system of embodiment 1, wherein said plurality of initiation factors (IFs) comprises a plurality of initiation factors derived from thermophilic bacteria.
  • 9. The system of any one of embodiments 1, and 8, wherein said plurality of initiation factors derived from thermophilic bacteria comprise IF1, IF2, IF3, or a fragment or variant of any of the same.
  • 10. The system of any one of embodiments 1, 8, and 9, wherein the plurality of initiation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 2, 4, 6, 70, 72, and 74, or a sequence having at least 90% sequence identity.
  • 11. The system of embodiment 1, wherein said plurality of elongation factors (EFs) comprises a plurality of elongation factors derived from thermophilic bacteria.
  • 12. The system of any one of embodiments 1, and 11, wherein said plurality of elongation factors derived from thermophilic bacteria comprise EF-G; EF-Tu; EF-Ts; EF-4; EF-P, or a fragment or variant of any of the same.
  • 13. The system of any one of embodiments 1, 11, and 12, wherein the plurality of elongation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84, or a sequence having at least 90% sequence identity.
  • 14. The system of embodiment 1, wherein said plurality of peptide release factors (RFs) comprises a plurality of peptide release factors is derived from thermophilic bacteria, or a Bacillus bacteria.
  • 15. The system of any one of embodiments 1, and 14, wherein said plurality of peptide release factors derived from a thermophilic bacteria comprise RF1, RF2, and RF3, or a fragment or variant of any of the same.
  • 16. The system of any one of embodiments 1, 14, and 15, wherein the plurality of peptide release factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 18, 20, 22, 86, 88, or a sequence having at least 90% sequence identity.
  • 17. The system of embodiment 1, wherein said ribosome recycling factor (RRF) comprises a ribosome recycling factor derived from thermophilic bacteria.
  • 18. The system of any one of embodiments 1, and 17, wherein said ribosome recycling factor is derived from Geobacillus.
  • 19. The system of any one of embodiments 1, 17, and 18, wherein the ribosome recycling factor comprises a ribosome recycling factor according to amino acid sequences SEQ ID NOs. 14, and 90, or a sequence having at least 90% sequence identity.
  • 20. The system of embodiment 1, wherein said plurality of aminoacyl-tRNA-synthetases (RSs) comprises a plurality of aminoacyl-tRNA-synthetases derived from thermophilic bacteria, or E. coli.
  • 21. The system of any one of embodiments 1, and 20, wherein the plurality of aminoacyl-tRNA-synthetases comprises AlaRS; ArgRS; AsnRS; AspRS; CysRS; GlnRS; GluRS; GlyRS; HisRS; IleRS; LeuRS; LysRS; MetRS; PheRS (a); PheRS (b); ProRS; SerRS; ThrRS; TrpRS; TyrRS; and ValRS, or a fragment or variant of any of the same.
  • 22. The system of any one of embodiments 1, 20, and 21, wherein said plurality of aminoacyl-tRNA-synthetases are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130, or a sequence having at least 90% sequence identity.
  • 23. The system of embodiment 1, wherein said methionyl-tRNA transformylase (MTF) comprises a methionyl-tRNA transformylase derived from thermophilic bacteria.
  • 24. The system of embodiment 1, and 23, wherein said methionyl-tRNA transformylase is derived from Geobacillus.
  • 25. The system of any one of embodiments 1, 23, and 24, wherein the methionyl-tRNA transformylase comprises a methionyl-tRNA transformylase according to amino acid sequences SEQ ID NOs. 68, and 132, or a sequence having at least 90% sequence identity.
  • 26. The system of embodiment 1, wherein said nucleic acid synthesis template comprises a DNA template.
  • 27. The system of embodiment 26, wherein said DNA template comprises a linear DNA template having:
    • at least one target sequence operably linked to a promoter, and wherein said target sequence may optionally be codon optimized;
    • at least one ribosome binding site (RBS);
    • at least one expression product cleavage site; and
    • at least one tag.
  • 28. The system of embodiment 1, wherein said nucleic acid synthesis template comprises an RNA template.
  • 29. The system of embodiment 1, wherein said reaction mixture comprises one or more of the following components:
    • a quantity of ribosomes, and optionally a quantity of ribosomes derived from thermophilic bacteria;
    • a quantity of RNase inhibitor;
    • a quantity of RNA polymerase;
    • a quantity of tRNAs, and optionally a quantity of tRNAs derived from thermophilic bacteria;
    • a buffer; and
    • a quantity of amino acids.
  • 30. The system of embodiment 29, wherein said reaction mixture further comprises one or more of the following components:
    • Tris-Acetate;
    • Mg(OAc)2;
    • K+-glutamate;
    • amino-acetate;
    • NaCl;
    • KCl;
    • MgCl2;
    • DTT;
    • octyl-b-glycoside;
    • NAD;
    • NADP;
    • sorbitol;
    • FADH;
    • CoA;
    • PLP; and
    • SAM.
  • 31. The system of any of embodiments 1, and 29, and further comprising an energy source.
  • 32. The system of embodiment 32, wherein said energy source comprises a quantity of nucleotide tri-phosphates (NTPs).
  • 33. The system of embodiment 32, wherein said nucleotide tri-phosphates comprise one or more of the nucleotide tri-phosphates selected from the group consisting of: adenine triphosphate (ATP); guanosine triphosphate (GTP), Uridine triphosphate UTP, and Cytidine triphosphate (CTP)
  • 34. The system of any of embodiments 31, 32, and 33, wherein said energy source comprises an inorganic polyphosphate-based energy regeneration system.
  • 35. The system of embodiment 34, wherein said inorganic polyphosphate-based energy regeneration system comprises:
    • a cellular adenosine triphosphate (ATP) energy regeneration system comprising:
      • a quantity of Adenosyl Kinase (Gst AdK) enzyme;
      • a quantity of Polyphosphate Kinase (TaqPPK) enzyme;
      • a quantity of inorganic polyphosphate (PPi); and
      • a quantity of adenosine monophosphate (AMP);
    • wherein said AdK and PPK enzymes work synergistically to regenerate cellular ATP energy from PPi and AMP.
  • 36. The system of embodiment 1, wherein said bioreactor comprises a continuous flow bioreactor.
  • 37. A recombinant cell-free expression reaction mixture comprising:
    • a plurality of initiation factors (IFs);
    • a plurality of elongation factors (EF);
    • a plurality of release factors (RF)
    • at least one ribosome recycling factor (RRF);
    • a plurality of aminoacyl-tRNA-synthetases (RSs); and
    • at least one methionyl-tRNA transformylase (MTF);
  • 38. The system of embodiment 37, wherein said plurality of initiation factors (IFs) comprise a plurality of initiation factors derived from thermophilic bacteria.
  • 39. The system of any one of embodiments 37, and 38, wherein said plurality of initiation factors derived from thermophilic bacteria comprise IF1, IF2, IF3, or a fragment or variant of any of the same.
  • 40. The system of any one of embodiments 37, 38, and 39, wherein the plurality of initiation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 2, 4, 6, 70, 72, and 74, or a sequence having at least 90% sequence identity.
  • 41. The system of embodiment 37, wherein said plurality of elongation factors (EFs) comprise a plurality of elongation factors derived from thermophilic bacteria.
  • 42. The system of any one of embodiments 37, and 41, wherein said plurality of elongation factors derived from a thermophilic bacteria comprises EF-G, EF-Tu, EF-Ts, EF-4, EF-P, or a fragment or variant of any of the same.
  • 43. The system of any one of embodiments 37, 41, and 42, wherein the plurality of elongation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84, or a sequence having at least 90% sequence identity.
  • 44. The system of embodiment 37, wherein said plurality of peptide release factors (RFs) comprise a plurality of release factors derived from thermophilic bacteria, or a Bacillus sp. bacteria.
  • 45. The system of any one of embodiments 37, and 44, wherein the plurality of peptide release factors comprises RF1, RF2, and RF3, or a fragment or variant of any of the same.
  • 46. The system of any one of embodiments 37, 44, and 45, wherein the plurality of peptide release factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 18, 20, 22, 86, 88, or a sequence having at least 90% sequence identity.
  • 47. The system of embodiment 37, wherein said ribosome recycling factor (RRF) comprise a ribosome recycling factor derived from thermophilic bacteria.
  • 48. The system of any one of embodiments 37, and 47, wherein said ribosome recycling factor derived from Geobacillus.
  • 49. The system of any one of embodiments 37, 47, and 48, wherein the ribosome recycling factor comprise a ribosome recycling factor according to amino acid sequence SEQ ID NOs. 14, and 90, or a sequence having at least 90% sequence identity.
  • 50. The system of embodiment 37, wherein said plurality of aminoacyl-tRNA-synthetases (RSs) comprise a plurality of aminoacyl-tRNA-synthetases wherein at least one is derived from thermophilic bacteria.
  • 51. The system of any one of embodiments 37, and 50, wherein the plurality of aminoacyl-tRNA-synthetases comprise AlaRS; ArgRS; AsnRS; AspRS; CysRS; GlnRS; GluRS; GlyRS; HisRS; IleRS; LeuRS; LysRS; MetRS; PheRS (a); PheRS (b); ProRS; SerRS; ThrRS; TrpRS; TyrRS; and ValRS, or a fragment or variant of any of the same.
  • 52. The system of any one of embodiments 37, 50, and 51, wherein said plurality of aminoacyl-tRNA-synthetases are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130, or a sequence having at least 90% sequence identity
  • 53. The system of any one of embodiments 37, wherein said methionyl-tRNA transformylase (MTF) comprises a methionyl-tRNA transformylase derived from thermophilic bacteria.
  • 54. The system of any one of embodiments 37, and 53, wherein said methionyl-tRNA transformylase derived from Geobacillus.
  • 55 The system of any one of embodiments 37, 53, and 54, wherein the methionyl-tRNA transformylase comprises a methionyl-tRNA transformylase according to amino acid sequence SEQ ID NOs. 68, and 132, or a sequence having at least 90% sequence identity.
  • 56. An isolated nucleotide comprising a nucleotide selected from the group consisting of:
    • SEQ ID NOs. 1, 3, 5 69, 71, and 73;
    • SEQ ID NOs. 7, 9, 11, 13, 15, 75, 77, 79, 81, and 83;
    • SEQ ID NOs. 17, 19, 21, 85, and 87;
    • SEQ ID NOs. 23, and 89; and
    • SEQ ID NO. 25, 27, 29, 31, 33, 35,37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 and 131.
  • 57. An expression vector comprising at least one of the nucleotide sequences of embodiment 56, operably linked to a promoter.
  • 58. A bacteria transformed by one of the expression vectors of embodiment 57.
  • 59. The transformed bacteria of embodiment 58, wherein said bacteria comprises E. coli.
  • 60. A peptide comprising an amino acid sequence selected from the group consisting of:
    • SEQ ID NOs. 2, 4, 6, 70, 72 and 74;
    • SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84;
    • SEQ ID NOs. 18, 20, 22, 86, 88;
    • SEQ ID NOs. 14, and 90;
    • SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, SEQ ID NOs. 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130; and
    • SEQ ID NOs. 68, and 132, or a fragment or variant of any of the same.
  • 61. A cell-free expression system using at least one of the peptides of embodiment 60.


Additional aims of the inventive technology may become apparent from the detailed disclosure, figures and claims set forth below.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, which are incorporated into and form a part of the specification, illustrate one or more embodiments of the present invention and, together with the description, serve to explain certain aspects of the inventive technology. The drawings are only for the purpose of illustrating one or more preferred embodiments of the invention and are not to be construed as limiting the invention.



FIG. 1: Demonstrates results of Aminoacyl-tRNA-Synthetase Kinetic Activity Assay for the following Synthetase enzymes: AlaRS, ArgRS, AsnRS, AspRS, CysRS, GlnRS (Ec), GluRS, GlyRS, HisRS, IleRS, and a no tRNA control.



FIG. 2: Demonstrates results of Aminoacyl-tRNA-Synthetase Kinetic Activity Assay for the following Synthetase enzymes: LeuRS, LysRS, MetRS, PheRS, ProRS, SerRS, ThrRS, TrpRS, TyrRS, and ValRS, and a no tRNA control.



FIG. 3A: Demonstrates results of Aminoacyl-tRNA-Synthetase Activity Assay utilizing exemplary tRNA from E. coli.



FIG. 3B: Demonstrates results of Aminoacyl-tRNA-Synthetase Activity Assay utilizing tRNA from the exemplary thermophilic bacteria Geobacillus stearothermophilus.



FIG. 4: Demonstrates the production of a Green Fluorescent Protein (muGFP, SEQ ID NO. 134)) cell-free expression product utilizing the recombinant cell-free expression system described herein.



FIG. 5: Diagram of a hollow fiber reactor for cell-free production and continuous exchange in one embodiment thereof.



FIG. 6A-B: Images of a hollow fiber reactor for cell-free production and continuous exchange in one embodiment thereof.



FIG. 7: A pET151/D-TOPO vector was used for select synthesized genes which add N-terminal tags to the expressed proteins. All genes expressed in this vector were reverse translated into DNA from the protein sequence and codon-optimized for expression in E. coli. N-terminal tags may be omitted from specific sequences identified below.



FIG. 8: A pET24a(+) vector was used for select synthesized genes which adds a C-terminal 6× His-tag to the expressed protein. All genes expressed in this vector were reverse translated into DNA from the protein sequence and codon-optimized for expression in E. coli. C-terminal tags may be omitted from specific sequences identified below.



FIG. 9: A pNAT vector was designed and used for select cloned and/or synthesized genes, which adds an N-terminal FLAG tag and/or a C-terminal 6× His tag to the expressed protein. All genes expressed in this vector were reverse translated into DNA from the protein sequence and codon-optimized for expression in E. coli. Tags may be omitted from specific sequences identified below.



FIG. 10: A pNAT 2.0 vector was designed and used for select cloned and/or synthesized genes, which adds an N-terminal or C-terminal 6× His tag to the expressed protein. All genes expressed in this vector were reverse translated into DNA from the protein sequence and codon-optimized for expression in E. coli. Tags may be omitted from specific sequences identified below.



FIG. 11: Demonstrates SDS-PAGE results for the following purified Aminoacyl-tRNA-Synthetase (aaRS) enzymes: AlaRS, ArgRS, AsnRS, AspRS, CysRS, GlnRS (Ec), GluRS, GlyRS, HisRS, IleRS, and LeuRS.



FIG. 12: SDS-PAGE results for the following purified Aminoacyl-tRNA-Synthetase (aaRS) enzymes: LysRS, MetRS, PheBRS, ProRS, SerRS, ThrRS, TrpRS, TyrRS, ValRS, and the purified Methionyl-tRNA-Transformylase MTF.



FIG. 13: Demonstrates SDS-PAGE results for the following purified translation factors: IF-1, IF-2, IF-3, EF-G, EF-Ts, EF-Tu, EF-P, RF-1, RF-2, RF-3 and RRF.



FIG. 14: Demonstrates SDS-PAGE results for the purified translation factor EF-4.



FIG. 15: Demonstrates the real-time production of a fluorescent protein (muGFP; SEQ ID NO. 134) product utilizing the recombinant cell-free expression system described herein.



FIG. 16: shows a western blot with an anti-FLAG antibody of a cell-free protein expression reaction after reverse purification but without ribosomes filtered out. Demonstrates the specific detection of a protein cell-free expression product, specifically de-Green Fluorescent Protein (deGFP, SEQ ID NO. 135) utilizing the recombinant cell-free expression system described herein.



FIG. 17: (A) Demonstrates results of three independent Aminoacyl-tRNA-Synthetase AMP-Producing Activity Assay utilizing exemplary tRNA from E. coli. (B) Shows the AMP standard curve.





MODE(S) FOR CARRYING OUT THE INVENTION(S)

The present invention is particularly suited for the on-demand manufacturing of therapeutic macromolecules, such as polypeptides, in a cell-free environment that are suitable for direct delivery to a patient. Therefore, the present invention will be primarily described and illustrated in connection with the manufacturing of therapeutic proteins. However, the present invention can also be used to manufacture any type of protein, including toxic proteins, proteins with radiolabeled amino acids, unnatural amino acids, etc. Further, the present invention is particularly suited for the on-demand manufacturing of proteins using cell-free expression, and thus the present invention will be described primarily in the context of cell-free protein expression.


The present invention includes a variety of aspects, which may be combined in different ways. The following descriptions are provided to list elements and describe some of the embodiments of the present invention. These elements are listed with initial embodiments; however, it should be understood that they may be combined in any manner and in any number to create additional embodiments. The variously described examples and preferred embodiments should not be construed to limit the present invention to only the explicitly described systems, techniques, and applications. Further, this description should be understood to support and encompass descriptions and claims of all the various embodiments, systems, techniques, methods, devices, and applications with any number of the disclosed elements, with each element alone, and also with any and all various permutations and combinations of all elements in this or any subsequent application.


The inventive technology described herein may include a novel recombinant cell-free expression system. In one preferred embodiment, the invention may include the generation of a reaction mixture that includes a plurality of core portions that may contribute to the in vitro expression activity. Exemplary core proteins may include the following:


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having one or more initiation factors (IFs). Initiation factors may allow the formation of an initiation complex in the process of peptide synthesis. For example, IF1, IF2 and IF3 may be used in certain embodiments as initiation factors in the reaction mixture. For example, IF3 promotes the dissociation of ribosome into 30S and 50S subunits (i.e., the step being generally needed for initiating translation) and hinders the insertion of tRNAs other than formylmethionyl-tRNA into the P-position in the step of forming the initiation complex. IF2 binds to formylmethionyl-tRNA and transfers the formylmethionyl-tRNA to the P-position of 30S subunit, thereby forming the initiation complex. IF1 may potentiate the functions of IF2 and IF3. In the present invention, it may be preferable to use initiation factors derived from one or more bacteria, and more preferably thermophilic bacteria, for example, those obtained from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus. Exemplary amino acid sequences for one or more IFs of the invention may be selected from the group consisting of:


IF1 (SEQ ID NOs. 2, and 70)


IF2 (SEQ ID NOs. 4, and 72)


IF3 (SEQ ID NOs. 6, and 74)


In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one IF comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 1-2, 4, 6 69-70, 72 and 74, or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more IFs according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 1-2, 4, 6 69-70, 72 and 74 disclosed herein.


In the present invention, it may be preferable to use initiation factors expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more IFs of the invention may be selected from the group consisting of:


IF1 (SEQ ID NOs. 1, and 69)


IF2 (SEQ ID NOs. 3, and 71)


IF3 (SEQ ID NOs. 5, and 73)


Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequences SEQ ID NOs. 1, 3 and 5 have been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one IF comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 1, 3, 5, 69, 71, and 73, or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more IFs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 1, 3, 5, 69, 71, and 73 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having one or more elongation factors. An elongation factor, such as EF-Tu, may be classified into 2 types, i.e., GTP and GDP types. EF-Tu of the GTP type binds to aminoacyl-tRNA and transfers it to the A-position of ribosome. When EF-Tu is released from ribosome, GTP is hydrolyzed into GDP. Another elongation factor EF-Ts binds to EF-Tu of the GDP type and promotes the conversion of it into the GTP type. Another elongation factor EF-G promotes translocation following the peptide bond formation in the process of peptide chain elongation. In the present invention, it is preferable to use EFs from bacterial and more preferably from and more preferably thermophilic bacteria, for example, those obtained from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus. Exemplary amino acid sequences for one or more EFs of the invention may be selected from the group consisting of:


EF-G (SEQ ID NOs. 8, and 76)


EF-Tu (SEQ ID NOs. 10, and 78)


EF-Ts (SEQ ID NOs. 12, and 80)


EF-4 (SEQ ID NOs. 14, and 82)


EF-P (SEQ ID NOs. 16, and 84)


In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one EF comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84 or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more EFs according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84 disclosed herein.


In the present invention, it may be preferable to use EFs expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more EFs of the invention may be selected from the group consisting of:


EF-G (SEQ ID NOs. 7, and 75)


EF-Tu (SEQ ID NOs. 9, and 77)


EF-Ts (SEQ ID NOs. 11, and 79)


EF-4 (SEQ ID NOs. 13, and 81)


EF-P (SEQ ID NOs. 15, and 83)


Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequences SEQ ID NOs. 7, 9, 11, 13, and 15 have been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one EF comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 7, 9, 11, 13, 15, 75, 77, 79 and 83 or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more EFs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 7, 9, 11, 13, 15, 75, 77, 79 and 83 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having one or more peptide release factors (RFs). RFs may be responsible for terminating protein synthesis, releasing the translated peptide chain and recycling ribosomes for the initiation of the subsequent mRNA translation. When a protein is synthesized in a release factor-free reaction system, the reaction stops before the termination codon and thus a stable ternary complex (polysome display) composed of ribosome, peptide and mRNA can be easily formed. When a termination codon (UAA, UAG or UGA) is located at the A-position of ribosome, release factors RF1 and RF2 may enter the A-position and promote the dissociation of the peptide chain from peptidyl-tRNA at the P-position. RF1 recognizes UAA and UAG among the termination codons, while RF2 recognizes UAA and UGA. Another termination factor RF3 promotes the dissociation of RF1 and RF2 from ribosome after the dissociation of the peptide chain by RF1 and RF2.


In the present invention, it is preferable to use RFs from bacterial and more preferably from and more preferably thermophilic bacteria, for example, those obtained from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus. Exemplary amino acid sequences for one or more RFs of the invention may be selected from the group consisting of:


RF1 (SEQ ID NOs. 18, and 86)


RF2 (SEQ ID NOs. 20, and 88)


RF3 (SEQ ID NOs. 22)


In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one RF comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 18, 20, 22, 86, and 88 or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RFs according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 18, 20, 22, 86, and 88 disclosed herein.


In the present invention, it may be preferable to use RFs expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more RFs of the invention may be selected from the group consisting of:


RF1 (SEQ ID NOs. 17; and 85)


RF2 (SEQ ID NOs. 19; and 87)


RF3 (SEQ ID NO. 21)


Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequences SEQ ID NOs. 17, 19, and 21 have been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one RF comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 17, 19, 21, 85, and 87 or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RFs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 17, 19, 21, 85, and 87 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having one or more ribosome recycling factor (RRF) which promotes the dissociation of tRNA remaining at the P-position after the protein synthesis and the recycling of ribosome for the subsequent protein synthesis. In the present invention, it is preferable to use RRFs from bacterial and more preferably from and more preferably thermophilic bacteria, for example, those obtained from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus. Exemplary amino acid sequences for one or more RRFs of the invention may be selected from the group consisting of:


RRF (SEQ ID NO. 24, and 90)


In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one RRF comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 23 and 90 or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RRFs according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 23 and 90 disclosed herein.


In the present invention, it may be preferable to use RRFs expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more RRFs of the invention may be selected from the group consisting of:


RRF (SEQ ID NOs. 23, and 89)


Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequence SEQ ID NO. 23 has been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one RF comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 23, and 89 or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RFs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 23, and 89 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having one or more aminoacyl-tRNA synthetase (RS) enzymes. Aminoacyl-tRNA synthetase is an enzyme by which an amino acid is covalently bonded to tRNA in the presence of ATP to thereby synthesize aminoacyl-tRNA. In the present invention, it is preferable to use thermophile-origin aminoacyl-tRNA synthetase, for example, those obtained from the bacterial groups Bacillaceae, and/or Geobacillus, or more specifically from the species G. stearothermophilus, or Geobacillus stearothermophilus. Additional embodiments may include the use of an aminoacyl-tRNA synthetase enzymes from a non-thermophile, such as E. coli, such use being in conjunction with aminoacyl-tRNA synthetase enzymes of thermophile origin. Exemplary nucleotide and amino acid sequences for aminoacyl-tRNA synthetase enzymes selected from the group consisting of:











(SEQ ID NO. 26, and SEQ ID NO. 92)



AlaRS






(SEQ ID NO. 28, and SEQ ID NO. 94)



ArgRS






(SEQ ID NO. 30, and SEQ ID NO. 96)



AsnRS






(SEQ ID NO. 32, and SEQ ID NO. 98)



AspRS






(SEQ ID NO. 34, and SEQ ID NO. 100)



CysRS






(SEQ ID NO. 36)



GlnRS (Ec)






(SEQ ID NO. 38, and SEQ ID NO. 102)



GluRS






(SEQ ID NO. 40, and SEQ ID NO. 104)



GlyRS






(SEQ ID NO. 42, and SEQ ID NO. 106)



HisRS






(SEQ ID NO. 44, and SEQ ID NO. 108)



IleRS






(SEQ ID NO. 46, and SEQ ID NO. 110)



LeuRS






(SEQ ID NO. 48, and SEQ ID NO. 112)



LysRS






(SEQ ID NO. 50, and SEQ ID NO. 114)



MetRS






(SEQ ID NO. 52, and SEQ ID NO. 116)



PheRS (a)






(SEQ ID NO. 54, and SEQ ID NO. 118)



PheRS (b)






(SEQ ID NO. 56, and SEQ ID NO. 120)



ProRS






(SEQ ID NO. 58, and SEQ ID NO. 122)



SerRS






(SEQ ID NO. 60, and SEQ ID NO. 124)



ThrRS






(SEQ ID NO. 62, and SEQ ID NO. 126)



TrpRS






(SEQ ID NO. 64, and SEQ ID NO. 128)



TyrRS






(SEQ ID NO. 66, and SEQ ID NO. 130)



ValRS






In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one RS comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 134, 126, 128, and 130 or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RSs according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 134, 126, 128, and 130 disclosed herein.


In the present invention, it may be preferable to use RSs expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more RSs of the invention may be selected from the group consisting of:











(SEQ ID NO. 25, and SEQ ID NO. 91)



AlaRS






(SEQ ID NO. 27, and SEQ ID NO. 93)



ArgRS






(SEQ ID NO. 29, and SEQ ID NO. 95)



AsnRS






(SEQ ID NO. 31, and SEQ ID NO. 97)



AspRS






(SEQ ID NO. 33, and SEQ ID NO. 99)



CysRS






(SEQ ID NO. 35)



GlnRS






(Ec)






(SEQ ID NO. 37, and SEQ ID NO. 101)



GluRS






(SEQ ID NO. 39, and SEQ ID NO. 103)



GlyRS






(SEQ ID NO. 41, and SEQ ID NO. 105)



HisRS






(SEQ ID NO. 43, and SEQ ID NO. 107)



IleRS






(SEQ ID NO. 45, and SEQ ID NO. 109)



LeuRS






(SEQ ID NO. 47, and SEQ ID NO. 111)



LysRS






(SEQ ID NO. 49, and SEQ ID NO. 113)



MetRS






(SEQ ID NO. 51, and SEQ ID NO. 115)



PheRS (a)






(SEQ ID NO. 53, and SEQ ID NO. 117)



PheRS (b)






(SEQ ID NO. 55, and SEQ ID NO. 119)



ProRS






(SEQ ID NO. 57, and SEQ ID NO. 121)



SerRS






(SEQ ID NO. 59, and SEQ ID NO. 123)



ThrRS






(SEQ ID NO. 61, and SEQ ID NO. 125)



TrpRS






(SEQ ID NO. 63, and SEQ ID NO. 127)



TyrRS






(SEQ ID NO. 65, and SEQ ID NO. 129)



ValRS






Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequence SEQ ID NOs. 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, and 65 have been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one RS comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 25, 27, 29, 31, 33, 35,37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, and 129 or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more RSs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 25, 27, 29, 31, 33, 35,37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, and 129 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having a methionyl-tRNA transformylase (MTF). N-Formylmethionine, carrying a formyl group attached to the amino group at the end of methionine, serves as the initiation amino acid in a prokaryotic protein synthesis system. This formyl group is attached to the methionine in methionyl-tRNA by MTF. Namely, MTF transfers the formyl group in Nlυ-formyltetrahydrofolate to the N-terminus of methionyl-tRNA corresponding to the initiation codon, thereby giving a formylmethionyl-tRNA. The formyl group thus attached is recognized by IF2 and acts as an initiation signal for protein synthesis. In the present invention, it is preferable to use an MTF from bacterial and more preferably from and more preferably thermophilic bacteria, for example, those obtained from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus. Exemplary amino acid sequences for one or more MTFs of the invention may be selected from the group consisting of:


MTF (SEQ ID NO. 68, and 132)


In an embodiment of the invention, one or more of the above amino acid sequence thus comprises at least one MTF comprising or consisting of an amino acid sequence encoded by the amino acid sequences according to SEQ ID NOs. 68, and 132 or a fragment or variant of any one of these amino acid sequences. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more MTF s according to the invention may typically comprise an amino acid sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an amino acid sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 68, and 132 disclosed herein.


In the present invention, it may be preferable to use an MTF expressed in, and/or isolated from one or more bacteria, and more preferably a bacteria configured to express high-levels of proteins, for example, E. coli. Exemplary nucleotide sequences for one or more MTFs of the invention may be selected from the group consisting of:


MTF (SEQ ID NO. 67, and 131)


Notably, the nucleotide sequences may be codon-optimized for expression in one or more bacteria, or other protein expression system such as yeast or the like. For example, in this embodiment, exemplary nucleotide sequence SEQ ID NO. 67 has been codon-optimized for expression in E. coli.


In an embodiment of the invention, one or more of the above nucleotide sequence thus comprises at least one coding region encoding at least one MTF comprising or consisting of a nucleotide sequence encoded by the nucleotide sequence according to SEQ ID NOs. 67, and 131 or a fragment or variant thereof. In this context, a fragment of a protein or a variant thereof encoded by the at least one coding region of the one or more MTFs according to the invention may typically comprise a nucleotide sequence having a sequence identity of at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, preferably of at least 70%, more preferably of at least 80%, even more preferably at least 85%, even more preferably of at least 90% and most preferably of at least 95% or even 97%, with an nucleotide sequence of the respective naturally occurring full-length protein or a variant thereof, preferably according to SEQ ID NOs. 67, and 131 disclosed herein.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having a quantity of ribosomes. A ribosome is a particle where peptides are synthesized. It binds to mRNA and coordinates aminoacyl-tRNA to the A-position and formylmethionyl-tRNA or peptidyl-tRNA to the P-position, thereby forming a peptide bond. In the present invention, any ribosome can be used regardless of the origin, however, in a preferred embodiment, ribosomes may be isolated from thermophilic bacteria for use in the recombinant cell-free expression system, and preferably from cell lysates of thermophilic bacteria, such as from the bacterial families Bacillaceae, and/or Geobacillus, such as Geobacillus subterraneus, or Geobacillus stearothermophilus.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having a quantity of RNA polymerase or fragment or variant thereof which is an enzyme transcribing a DNA sequence into an RNA, occurs in various organisms. As an example, thereof, in one preferred embodiment, the invention may include a T7 RNA polymerase, for example according to amino acid sequence SEQ ID NO. 136. T7 RNA polymerase is derived from the in T7 phage which is an enzyme binding to a specific DNA sequence called T7 promoter and then transcribing the downstream DNA sequence into an RNA. In addition to T7 RNA polymerase, various RNA polymerases are usable in the present invention.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having a quantity of RNase inhibitor. RNase enzymes promoted the breakdown of RNA into oligonucleotides. RNase inhibitors are known in the art; as such, the type and quantity of RNase inhibitor to be included in a recombinant cell-free expression system is within the skill of those having ordinary skill in the art. Non-limiting examples of RNase inhibitors include mammalian ribonuclease inhibitor proteins [e.g., porcine ribonuclease inhibitor and human ribonuclease inhibitor (e.g., human placenta ribonuclease inhibitor and recombinant human ribonuclease inhibitor)], aurintricarboxylic acid (ATA) and salts thereof [e.g., triammonium aurintricarboxylate (aluminon)], adenosine 5′-pyrophosphate, 2′-cytidine monophosphate free acid (2′-CMP), 5′-diphosphoadenosine 3′-phosphate (ppA-3′-p), 5′-diphosphoadenosine 2′-phosphate (ppA-2′-p), leucine, oligovinysulfonic acid, poly(aspartic acid), tyrosine-glutamic acid polymer, 5′-phospho-2′-deoxyuridine 3′-pyrophosphate P′→5′-ester with adenosine 3′-phosphate (pdUppAp), and analogs, derivatives and salts thereof.


In one embodiment, the recombinant cell-free expression system may include a reaction mixture having a quantity of amino acids, a polynucleotide, such as an mRNA or DNA template encoding a target sequence typically in the form of a plasmid synthesis template, or linear expression (or synthesis) template (LET or LST), and other compounds and sequences identified in the '121 Application related to the inorganic polyphosphate energy-regeneration system, and preferably a coupled AdK/PPK energy regeneration system which may be necessary to energetically drive the in vitro expression reaction.


As generally shown in FIG. 8 of the '121 Application (incorporated herein by reference), in another preferred embodiment, isolated and purified Gst AdK (SEQ ID NO. 8 of the '121 application incorporated herein by reference) and/or TaqPPK (SEQ ID NO. 11 of the '121 application incorporated herein by reference) may be added to this cell-free expression system with a quantity of inorganic polyphosphate. In one embodiment, this quantity of inorganic polyphosphate may include an optimal polyphosphate concentration range. In this preferred embodiment, such optimal polyphosphate concentration range being generally, defined as the concentration of inorganic polyphosphate (PPi) that maintains the equilibrium of the reaction stable. In this preferred embedment, optimal polyphosphate concentration range may be approximately 0.2-2 mg/ml PPi.


As noted above, PPK can synthesize ADP from polyphosphate and AMP. In this preferred embodiment the coupled action of Gst AdK and PPK, may remove adenosine diphosphate (ADP) from the system by converting two ADP to one ATP and one adenosine monophosphate (AMP):




embedded image


This reaction may be sufficiently fast enough to drive an equilibrium reaction of PPK towards production of ADP:




embedded image


In this system, the presence of higher concentrations of AMP may further drive the TaqPPK reaction towards ADP.


In a preferred embodiment, the production of macromolecules using the recombinant cell-free system of the invention may be accomplished in a bioreactor system. As used herein, a “bioreactor” may be any form of enclosed apparatus configured to maintain an environment conducive to the production of macromolecules in vitro. A bioreactor may be configured to run on a batch, continuous, or semi-continuous basis, for example by a feeder reaction solution. Referring to FIG. 14 of the '121 application (incorporated herein by reference), in this embodiment the invention may further include a cell-free culture apparatus. This cell culture apparatus may be configured to culture, in certain preferred embodiments thermophilic bacteria. A fermentation vessel may be removable and separately autoclavable in a preferred embodiment. Additionally, this cell-free culture apparatus may be configured to accommodate the growth of aerobic as well as anaerobic with organisms. Moreover, both the cell-free expression bioreactor and cell-free culture apparatus may accommodate a variety of cell cultures, such a microalgae, plant cells and the like.


In one embodiment, the present invention may be particularly suited for operation with a continuous exchange or flow bioreactor (1). In this preferred embodiment, this continuous exchange production apparatus may include a plurality of fibers and hollow fiber-based bioreactor as an exchange medium for in vitro transcription, in vitro translation and in vitro biosynthesis of biologicals, vaccines, proteins, enzymes, biosimilars and biosynthesis or chemical modification of small molecules using enzymes in a continuous flow operation.


Generally referring to FIG. 5, a continuous flow bioreactor apparatus may include one or more hollow fibers (2) and hollow fiber-based bioreactors (2) as an exchange medium for in vitro transcription, in vitro translation and in vitro biosynthesis of biological, proteins, enzymes, biosimilars and biosynthesis or chemical modification of small molecules using enzymes in a continuous flow operation. In this embodiment, a continuous supply of substrates as described herein may be introduced to the apparatus, and may further be accompanied with the removal of a reaction product via a concentration gradient between the inner and out compartment of the hollow fiber reactors (2), allows for extend operational time and batch-independent production of biological and biologically modified materials, which may be isolated from the “flow-through” solution of the inner compartment.


As shown in FIGS. 5A and 5B, the operation of an exemplary hollow fiber reactor (2) is described. In this embodiment, while a feeding solution is pushed through the inner compartment of the reactor (3), the permeability of the fibers allow a continuous supply of substrates for mRNA synthesis (nucleotides), proteins in general (amino acids), substrates (for the in vitro biosynthesis or chemical modification of compounds) and the ATP regeneration system as incorporated herein from the '121 application to provide ATP and (via a nucleotide kinase, e.g. NDPK) GTP for the operation of the ribosome, the outer compartment (4) contains enzymes and factors to drive the in vitro transcription, in vitro translation, and in vitro biosynthesis reactions in a continuous exchange. Produced proteins, enzymes and larger biologicals are isolated and purified in a closed loop system as shown in FIG. 5B. This closed loop system prevents and/or reduces the risk of potential contaminations of the product, spillage or exposure, reducing the volume that needs to be processed and reducing the footprint of production spaces for biologicals of any kind. A straightforward increase of the volume of the reaction vessel, allows the adaptation from research scale biosynthesis to industrial scale production. Thus, reducing the development effort and costs for process scaling and development timelines.


In vitro recombinant cell-free expression, as used herein, refers to the cell-free synthesis of polypeptides in a reaction mixture or solution comprising biological extracts and/or defined cell-free reaction components. The reaction mix may comprise a template, or genetic template, for production of the macromolecule, e.g. DNA, mRNA, etc.; monomers for the macromolecule to be synthesized, e.g. amino acids, nucleotides, etc.; and such co-factors, enzymes and other reagents that are necessary for the synthesis, e.g. ribosomes, tRNA, polymerases, transcriptional factors, etc. The recombinant cell-free synthesis reaction, and/or cellular adenosine triphosphate (ATP) energy regeneration system components, incorporated by reference herein, may be performed/added as batch, continuous flow, or semi-continuous flow.


Some of the target proteins that may be expressed by the present invention may include, but not limited to: vaccines, eukaryotic peptides, prokaryotic peptides, bacterial related peptides, fungal related peptides, yeast-related, human related peptides, plant related peptides, toxin peptides, vasoactive intestinal peptides, vasopressin peptides, novel or artificially engineered peptides, virus related peptides, bacteriophage related proteins, hormones, antibodies, cell receptors, cell regulator proteins and fragments of any of the above-listed polypeptides.


Because this invention involves production of genetically altered organisms and involves recombinant DNA techniques, the following definitions are provided to assist in describing this invention.


The terms “isolated”, “purified”, or “biologically pure” as used herein, refer to material that is substantially or essentially free from components that normally accompany the material in its native state or when the material is produced. In an exemplary embodiment, purity and homogeneity are determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high-performance liquid chromatography. A nucleic acid or particular bacteria that are the predominant species present in a preparation is substantially purified. In an exemplary embodiment, the term “purified” denotes that a nucleic acid or protein that gives rise to essentially one band in an electrophoretic gel. Typically, isolated nucleic acids or proteins have a level of purity expressed as a range. The lower end of the range of purity for the component is about 60%, about 70% or about 80% and the upper end of the range of purity is about 70%, about 80%, about 90% or more than about 90%.


In preferred embodiments, the output of the cell-free expression system may be a product, such as a peptide or fragment thereof that may be isolated or purified. In the embodiment, solation or purification of a of a target protein wherein the target protein is at least partially separated from at least one other component in the reaction mixture, for example, by organic solvent precipitation, such as methanol, ethanol or acetone precipitation, organic or inorganic salt precipitation such as trichloroacetic acid (TCA) or ammonium sulfate precipitation, nonionic polymer precipitation such as polyethylene glycol (PEG) precipitation, pH precipitation, temperature precipitation, immunoprecipitation, chromatographic separation such as adsorption, ion-exchange, affinity and gel exclusion chromatography, chromatofocusing, isoelectric focusing, high performance liquid chromatography (HPLC), gel electrophoresis, dialysis, microfiltration, and the like.


As used herein, the term “activity” refers to a functional activity or activities of a peptide or portion thereof associated with a full-length (complete) protein. Functional activities include, but are not limited to, catalytic or enzymatic activity, antigenicity (ability to bind or compete with a polypeptide for binding to an anti-polypeptide antibody), immunogenicity, ability to form multimers, and the ability to specifically bind to a receptor or ligand for the polypeptide. Preferably, the activity of produced proteins retain at least 55%, 60%, 65%, 70%, 80%, 85%, 90%, 95% or more of the initial activity for at least 3 days at a temperature from about 0° C. to 30° C.


The term “nucleic acid” as used herein refers to a polymer of ribonucleotides or deoxyribonucleotides. Typically, “nucleic acid” polymers occur in either single- or double-stranded form but are also known to form structures comprising three or more strands. The term “nucleic acid” includes naturally occurring nucleic acid polymers as well as nucleic acids comprising known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Exemplary analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, and peptide-nucleic acids (PNAs). “DNA”, “RNA”, “polynucleotides”, “polynucleotide sequence”, “oligonucleotide”, “nucleotide”, “nucleic acid”, “nucleic acid molecule”, “nucleic acid sequence”, “nucleic acid fragment”, and “isolated nucleic acid fragment” are used interchangeably herein. For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). Estimates are typically derived from agarose or acrylamide gel electrophoresis, from sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Proteins sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.


As used herein, the terms “target protein” refers generally to any peptide or protein having more than about 5 amino acids. The polypeptides may be homologous to, or preferably, may be exogenous, meaning that they are heterologous, i.e., foreign, to the bacteria from which the bacterial cell where they may be produced, such as a human protein or a yeast protein produced in the host bacteria, such as E. coli. Preferably, mammalian polypeptides, viral, bacterial, fungal and artificially engineered polypeptides are used.


As is known in the art, different organisms preferentially utilize different codons for generating polypeptides. Such “codon usage” preferences may be used in the design of nucleic acid molecules encoding the proteins and chimeras of the invention in order to optimize expression in a particular host cell system.


All nucleotide sequences described in the invention may be codon optimized for expression in a particular organism, or for increases in production yield. Codon optimization generally improves the protein expression by increasing the translational efficiency of a gene of interest. The functionality of a gene may also be increased by optimizing codon usage within the custom designed gene. In codon optimization embodiments, a codon of low frequency in a species may be replaced by a codon with high frequency, for example, a codon UUA of low frequency may be replaced by a codon CUG of high frequency for leucine. Codon optimization may increase mRNA stability and therefore modify the rate of protein translation or protein folding. Further, codon optimization may customize transcriptional and translational control, modify ribosome binding sites, or stabilize mRNA degradation sites.


Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), the complementary (or complement) sequence, and the reverse complement sequence, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues (see e.g., Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al., J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al., Mol. Cell. Probes 8:91-98 (1994)). In addition to the degenerate nature of the nucleotide codons which encode amino acids, alterations in a polynucleotide that result in the production of a chemically equivalent amino acid at a given site, but do not affect the functional properties of the encoded polypeptide, are well known in the art. “Conservative amino acid substitutions” are those substitutions that are predicted to interfere least with the properties of the reference polypeptide. In other words, conservative amino acid substitutions substantially conserve the structure and the function of the reference protein. Thus, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine or histidine, can also be expected to produce a functionally equivalent protein or polypeptide. Exemplary conservative amino acid substitutions are known by those of ordinary skill in the art. Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.


Homology (e.g., percent homology, sequence identity+sequence similarity) can be determined using any homology comparison software computing a pairwise sequence alignment. As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences includes reference to the residues in the two sequences which are the same when aligned. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g. charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences which differ by such conservative substitutions are to have “sequence similarity” or “similarity”. Means for making this adjustment are well-known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., according to the algorithm of Henikoff S and Henikoff JG. [Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. U.S.A. 1992, 89(22): 10915-9].


According to a specific embodiment, the homolog sequences are at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or even identical to the sequences (nucleic acid or amino acid sequences) provided herein. Homolog sequences of SEQ ID Nos 1-22 of between 50%-99% may be included in certain embodiments of the present invention.


The term “primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation of DNA synthesis under suitable conditions. Such conditions include those in which synthesis of a primer extension product complementary to a nucleic acid strand is induced in the presence of four different nucleoside triphosphates and an agent for extension (for example, a DNA polymerase or reverse transcriptase) in an appropriate buffer and at a suitable temperature.


A primer is preferably a single-stranded DNA. The appropriate length of a primer depends on the intended use of the primer but typically ranges from about 6 to about 225 nucleotides, including intermediate ranges, such as from 15 to 35 nucleotides, from 18 to 75 nucleotides and from 25 to 150 nucleotides. Short primer molecules generally require cooler temperatures to form sufficiently stable hybrid complexes with the template. A primer need not reflect the exact sequence of the template nucleic acid but must be sufficiently complementary to hybridize with the template. The design of suitable primers for the amplification of a given target sequence is well known in the art and described in the literature cited herein.


As used herein, a “polymerase” refers to an enzyme that catalyzes the polymerization of nucleotides. “DNA polymerase” catalyzes the polymerization of deoxyribonucleotides. Known DNA polymerases include, for example, Pyrococcus furiosus (Pfu) DNA polymerase, E. coli DNA polymerase I, T7 DNA polymerase and Thermus aquaticus (Taq) DNA polymerase, among others. “RNA polymerase” catalyzes the polymerization of ribonucleotides. The foregoing examples of DNA polymerases are also known as DNA-dependent DNA polymerases. RNA-dependent DNA polymerases also fall within the scope of DNA polymerases. Reverse transcriptase, which includes viral polymerases encoded by retroviruses, is an example of an RNA-dependent DNA polymerase. Known examples of RNA polymerase (“RNAP”) include, for example, T3 RNA polymerase, T7 RNA polymerase, SP6 RNA polymerase and E. coli RNA polymerase, among others. The foregoing examples of RNA polymerases are also known as DNA-dependent RNA polymerase. The polymerase activity of any of the above enzymes can be determined by means well known in the art.


The term “reaction mixture,” or “cell-free reaction mixture” or “recombinant cell-free reaction mixture” as used herein, refers to a solution containing reagents necessary to carry out a given reaction. A cell-free expression system “reaction mixture” or “reaction solution” typically contains a crude or partially-purified extract, (such as from a bacteria, plant cell, microalgae, fungi, or mammalian cell) nucleotide translation template, and a suitable reaction buffer for promoting cell-free protein synthesis from the translation template. In one aspect, the CF reaction mixture can include an exogenous RNA translation template. In other aspects, the CF reaction mixture can include a DNA expression template encoding an open reading frame operably linked to a promoter element for a DNA-dependent RNA polymerase. In these other aspects, the CF reaction mixture can also include a DNA-dependent RNA polymerase to direct transcription of an RNA translation template encoding the open reading frame. In these other aspects, additional NTPs and divalent cation cofactor can be included in the CF reaction mixture. A reaction mixture is referred to as complete if it contains all reagents necessary to enable the reaction, and incomplete if it contains only a subset of the necessary reagents. It will be understood by one of ordinary skill in the art that reaction components are routinely stored as separate solutions, each containing a subset of the total components, for reasons of convenience, storage stability, or to allow for application-dependent adjustment of the component concentrations, and that reaction components are combined prior to the reaction to create a complete reaction mixture. Furthermore, it will be understood by one of ordinary skill in the art that reaction components are packaged separately for commercialization and that useful commercial kits may contain any subset of the reaction components of the invention. Moreover, those of ordinary skill will understand that some components in a reaction mixture, while utilized in certain embodiments, are not necessary to generate cell-free expression products. The term “cell-free expression products” may be any biological product produced through a cell-free expression system.


The term “about” or “approximately” means within a statistically meaningful range of a value or values such as a stated concentration, length, molecular weight, pH, time frame, temperature, pressure or volume. Such a value or range can be within an order of magnitude, typically within 20%, more typically within 10%, and even more typically within 5% of a given value or range. The allowable variation encompassed by “about” or “approximately” will depend upon the particular system under study. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted.


Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, and includes the endpoint boundaries defining the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein.


The term “recombinant” or “genetically modified” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, organism, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein, or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells may express genes that are not found within the native (nonrecombinant or wild-type) form of the cell or express native genes that are otherwise abnormally expressed, over-expressed, under-expressed or not expressed at all.


As used herein, the term “transformation” or “genetically modified” refers to the transfer of one or more nucleic acid molecule(s) into a cell. A microorganism is “transformed” or “genetically modified” by a nucleic acid molecule transduced into the bacteria or cell or organism when the nucleic acid molecule becomes stably replicated. As used herein, the term “transformation” or “genetically modified” encompasses all techniques by which a nucleic acid molecule can be introduced into a cell or organism, such as a bacteria.


As used herein, the term “promoter” refers to a region of DNA that may be upstream from the start of transcription, and that may be involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A promoter may be operably linked to a coding sequence for expression in a cell, or a promoter may be operably linked to a nucleotide sequence encoding a signal sequence which may be operably linked to a coding sequence for expression in a cell.


The term “operably linked,” when used in reference to a regulatory sequence and a coding sequence, means that the regulatory sequence affects the expression of the linked coding sequence. “Regulatory sequences,” or “control elements,” refer to nucleotide sequences that influence the timing and level/amount of transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences may include promoters; translation leader sequences; introns; enhancers; stem-loop structures; repressor or binding sequences; termination sequences; polyadenylation recognition sequences; etc. Particular regulatory sequences may be located upstream and/or downstream of a coding sequence operably linked thereto. Also, particular regulatory sequences operably linked to a coding sequence may be located on the associated complementary strand of a double-stranded nucleic acid molecule.


As used herein, the term “genome” refers to chromosomal DNA found within the nucleus of a cell, and also refers to organelle DNA found within subcellular components of the cell. The term “genome” as it applies to bacteria refers to both the chromosome and plasmids within the bacterial cell. In some embodiments of the invention, a DNA molecule may be introduced into a bacterium such that the DNA molecule is integrated into the genome of the bacterium. In these and further embodiments, the DNA molecule may be either chromosomally-integrated or located as or in a stable plasmid.


The term “gene” or “sequence” refers to a coding region operably joined to appropriate regulatory sequences capable of regulating the expression of the gene product (e.g., a polypeptide or a functional RNA) in some manner. A gene includes untranslated regulatory regions of DNA (e.g., promoters, enhancers, repressors, etc.) preceding (up-stream) and following (down-stream) the coding region (open reading frame, ORF) as well as, where applicable, intervening sequences (i.e., introns) between individual coding regions (i.e., exons). The term “structural gene” as used herein is intended to mean a DNA sequence that is transcribed into mRNA which is then translated into a sequence of amino acids characteristic of a specific polypeptide.


The term “expression,” as used herein, or “expression of a coding sequence” (for example, a gene or a transgene) refers to the process by which the coded information of a nucleic acid transcriptional unit (including, e.g., genomic DNA or cDNA) is converted into an operational, non-operational, or structural part of a cell, often including the synthesis of a protein. Gene expression can be influenced by external signals; for example, exposure of a cell, tissue, or organism to an agent that increases or decreases gene expression. Expression of a gene can also be regulated anywhere in the pathway from DNA to RNA to protein. Regulation of gene expression occurs, for example, through controls acting on transcription, translation, RNA transport and processing, degradation of intermediary molecules such as mRNA, or through activation, inactivation, compartmentalization, or degradation of specific protein molecules after they have been made, or by combinations thereof. Gene expression can be measured at the RNA level or the protein level by any method known in the art, including, without limitation, Northern blot, RT-PCR, Western blot, or in vitro, in situ, or in vivo protein activity assay(s).


The term “vector” refers to some means by which DNA, RNA, a protein, or polypeptide can be introduced into a host. The polynucleotides, protein, and polypeptide which are to be introduced into a host can be therapeutic or prophylactic in nature; can encode or be an antigen; can be regulatory in nature, etc. There are various types of vectors including virus, plasmid, bacteriophages, cosmids, and bacteria.


An “expression vector” is nucleic acid capable of replicating in a selected host cell or organism. An expression vector can replicate as an autonomous structure, or alternatively can integrate, in whole or in part, into the host cell chromosomes or the nucleic acids of an organelle, or it is used as a shuttle for delivering foreign DNA to cells, and thus replicate along with the host cell genome. Thus, an expression vector are polynucleotides capable of replicating in a selected host cell, organelle, or organism, e.g., a plasmid, virus, artificial chromosome, nucleic acid fragment, and for which certain genes on the expression vector (including genes of interest) are transcribed and translated into a polypeptide or protein within the cell, organelle or organism; or any suitable construct known in the art, which comprises an “expression cassette.” In contrast, as described in the examples herein, a “cassette” is a polynucleotide containing a section of an expression vector of this invention. The use of the cassettes assists in the assembly of the expression vectors. An expression vector is a replicon, such as plasmid, phage, virus, chimeric virus, or cosmid, and which contains the desired polynucleotide sequence operably linked to the expression control sequence(s).


The terms “expression product” as it relates to a protein expressed in a cell-free expression system as generally described herein, are used interchangeably and refer generally to any peptide or protein having more than about 5 amino acids. The polypeptides may be homologous to, or may be exogenous, meaning that they are heterologous, i.e., foreign, to the organism from which the cell-free extract is derived, such as a human protein, plant protein, viral protein, yeast protein, etc., produced in the cell-free extract. In some embodiment, the term “derived” means extracted from, or expressed and isolated from a bacteria. For example, in one embodiment a protein may be derived from a thermophilic bacteria may mean a protein that is endogenous to a thermophilic bacteria and isolated from said bacteria or expressed heterologously in a different bacteria and isolated as an individual protein or cell extract.


A “cell-free extract” or “lysate” may be derived from a variety of organisms and/or cells, including bacteria, thermophilic bacteria, thermotolerant bacteria, archaea, firmicutes, fungi, algae, microalgae, plant cell cultures, and plant suspension cultures.


As used herein the singular forms “a”, “and”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a cell” includes a plurality of such cells and reference to “the culture” includes reference to one or more cultures and equivalents thereof known to those skilled in the art, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs unless clearly indicated otherwise.


The invention now being generally described will be more readily understood by reference to the following examples, which are included merely for the purposes of illustration of certain aspects of the embodiments of the present invention. The examples are not intended to limit the invention, as one of skill in the art would recognize from the above teachings and the following examples that other techniques and methods can satisfy the claims and can be employed without departing from the scope of the claimed invention. Indeed, while this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.


The invention now being generally described will be more readily understood by reference to the following examples, which are included merely for the purposes of illustration of certain aspects of the embodiments of the present invention. The examples are not intended to limit the invention, as one of skill in the art would recognize from the above teachings and the following examples that other techniques and methods can satisfy the claims and can be employed without departing from the scope of the claimed invention. Indeed, while this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.


EXAMPLES
Example 1
Synthesis and Cloning of Proteins for Recombinant Cell-Free Expression System

The present inventors synthesized and cloned into select expression vectors a plurality of core recombinant proteins, and preferably from a select thermophilic bacteria, for use in a recombinant cell-free expression system. In this embodiment, the present inventors synthesized and cloned into select expression vectors a plurality of core recombinant thermophilic initiation factors (IFs). In this embodiment, the present inventors synthesized and cloned into select expression vectors a plurality of core recombinant thermophilic elongation factors (EFs). In this embodiment, the present inventors synthesized and cloned into select expression vectors a plurality of core recombinant release factors (RFs). In this embodiment, the present inventors synthesized and cloned into select expression vectors at least one core recombinant ribosome recycling factor (RRFs). In this embodiment, the present inventors synthesized and cloned into select expression vectors a plurality of core recombinant aminoacyl-tRNA-synthetases (RSs). In this embodiment, the present inventors synthesized and cloned into select expression vectors at least one core recombinant methionyl-tRNA transformylase (MTF).


As shown generally in Table 1, in one preferred embodiment, the present inventors synthesized, cloned, expressed in E. coli and purified at least twelve (12) different recombinant factors, including nucleotide and/or amino acid sequences, and at least twenty-two (22) recombinant synthetases, including nucleotide and/or amino acid sequences (SEQ ID NOs. 1-132) that form an exemplary Core Recombinant Protein Mixture of at least thirty-four (34) proteins that may be applied to the inventive recombinant cell-free expression system. These core proteins were clone into an expression vector, for example the pET151/D-TOPO (pET151), pET24a(+), or pNAT, as shown in FIGS. 7-8 and 9.


The present inventors further generated a recombinant cell-free reaction mixture that incorporates one or more of the thirty-four (34) proteins identified, as well as select isolated ribosomes and tRNA from exemplary thermophilic bacteria. The present inventors next included in the recombinant cell-free reaction mixture a quantity of RNA polymerase, and in particular a T7 RNA polymerase enzyme, as well as exemplary amino acids, and buffers. As noted above, the present inventors further generated a recombinant cell-free reaction mixture that incorporates one or more of the components of the inorganic polyphosphate energy-regeneration system identified in the claims of in PCT Application No. PCT/US201 8/012121 ('121 Application).


Example 2
Generation of an Exemplary Recombinant Cell-Free Reaction Mixture

In one embodiment, the present inventors generated a recombinant cell-free reaction mixture capable of in vitro transcription and translation selected from the group consisting of:

    • a reaction mixture at least thirty-three (33) thermophilic core proteins identified in Table 1;
    • one (1) core protein from E. coli identified in Table 1;
    • tRNA from thermophiles
    • a quantity of ribosomes isolated from select thermophiles;
    • a quantity of amino acids;
    • a quantity of nucleotide tri-phosphates (NTPs) such as ATP, CTP, GTP, TTP;
    • a quantity of a reaction buffer; and
    • one or more components of the inorganic polyphosphate-based energy regeneration or energy regeneration system identified in the claims, figures, sequences, and specification of the '121 Application, which has been incorporated herein.


Example 3
Activity of Recombinant Aminoacyl-tRNA-Synthetases

The present inventors confirmed the activity of each purified aminoacyl-tRNA-synthetase (RS). Generally, the aminoacyl-tRNA-synthetase reaction is a two-step process:


Step 1: Activation amino acid+ATP=>aminoacyl-AMP+PPi


Step 2: Transfer aminoacyl-AMP+tRNA=>aminoacyl-tRNA+AMP


The resulting PPi can be measured using the EnzCheck pyrophosphate kit. Utilizing this outline, the present inventors performed kinetic assays using a commercial pyrophosphate assay kit (EnzCheck Pyrophosphate Assay Kit, Molecular Probes, E-6654, incorporated herein by reference). This commercially available assay spectrophotometrically measures indirectly the enzymatic production of pyrophosphate. Each RS reaction was set up in a total of 30 μl with the following final concentrations shown in Table 2. 12.5 μl of the RS reaction mix was used to set up a 50 μl reaction for the pyrophosphate assay as demonstrated in Table 3. Pyrophosphate assays were set up in a 96-well plate and automatically read in 2 min intervals on a plate reader set to read the absorbance at 360 nm. These kinetic measurements were used as a qualitative first test of the activity and functionality of all RS proteins.


Assays were performed according to the manufacturer's instructions and the change in absorbance over time was plotted over time for each RS. As shown in FIGS. 1 and 2, each RS demonstrated good activity (no tRNA as control) and inorganic pyrophosphate is produced by hydrolysis of ATP to ADP+Pi and Pi can be detected indirectly using the EnzCheck assay kit. Even with low absorbance change, the data in FIGS. 1 and 2 is comparable to published reports regarding RS and graphs shown for other enzyme kinetics for ATP usage provided by the manufacture's guidelines. For clarity, for both FIGS. 1 and 2 only 10 RS were plotted on each graph but originated from the same experiment.


Resulting AMP from the aminoacyl-tRNA-synthetase reaction can be measured using the AMP-Glo™ kit. The present inventors performed assays using a commercial AMP detection kit (AMP-Glo™ assay, Promega V5012, incorporated herein by reference). This commercially available assay indirectly measures enzymatic production of AMP via a luminescence reaction. An included standard can be used for calibration and calculating the amount of produced AMP. This assay is a quantitative endpoint measurement assay. Each RS reaction was set up in a total of 100 μL with the final concentrations shown in Table 4, and run for one hour at 37° C. Subsequent AMP detection assays were performed in duplicate according to the manufacturer's instructions and produced AMP was calculated using the standard curve (FIG. 17B). FIG. 17A demonstrates results of three independent Aminoacyl-tRNA-Synthetase AMP-Producing Activity Assay utilizing exemplary tRNA from E. coli. A standard AMP curve is provided in FIG. 17B.


Example 4
Confirmation of Activity of Recombinant Aminoacyl-tRNA-Synthetases

As an additional confirmation of the activity of each cloned RS, the present inventors performed a malachite green phosphate assay using an available commercial kit (Cayman, Malachite Green Phosphate Assay Kit, #10009325, incorporated herein by reference). Produced pyrophosphate will form a complex with malachite green and lead to a color change which can be measured as absorbance. An included standard can be used for calibration and calculating the amount of produced PPi. This assay is a quantitative endpoint measurement assay. All reactions were performed according to the manufacturer's instructions and the produced PPi was calculated using the standard curve (shown as little inlet on graph).


As shown in Table 4 below, the final concentrations for each RS reaction included a total volume of 150 μl. Exemplary tRNAs from E. coli were utilized in this assay. As shown in FIG. 3A, the graph demonstrated good activity for all RS compared to the controls without reaction buffer (no ATP) and the wrong amino acid for one of the RS (AsnRS+Arg). Each RS was used in the same molar concentration and incubated for 60 min before measuring the PPi concentration using the kit. Each bar was corrected for background/blank measurement) and represents the average value of a duplicate measurement. As shown in FIG. 3B, the same assay was replicated as generally described above utilizing tRNAs from a Geobacillus thermophile, such as Geobacillus subterraneus, or Geobacillus stearothermophilus.


Example 5
Recombinant Cell-Free Expression of Exemplary Protein

The present inventors demonstrated the production of two exemplary GFP peptides (SEQ ID NO. 134-135) in the invention's recombinant cell-free expression system. As identified in Table 6, a control and template recombinant cell-free expression mixture was generated. Isolation of core recombinant proteins identified in Table 6 below was demonstrated in FIGS. 11-14. As shown in FIG. 4, recombinant cell-free expression system transcribed the added template DNA and translates the resulting mRNA into the protein as indicated by the band in FIG. 4. As further demonstrated in FIG. 15, the present inventors showed real-time production of a fluorescent protein (muGFP; SEQ ID NO. 134) product utilizing the recombinant cell-free expression system described herein. As further shown in FIG. 16, the present inventors showed production of a fluorescent protein (deGFP; SEQ ID NO. 135) product utilizing the recombinant cell-free expression system described herein. Further, the present inventors demonstrated the removal of the recombinant cell-free expression system translation components from the produced GFP peptide via reverse purification. As specifically shown in FIG. 16, a western blot was performed with an anti-FLAG antibody of a cell-free protein expression reaction after reverse purification.


Tables









TABLE 1





Exemplary core proteins for recombinant cell-free expression system


34 Core Recombinant Proteins


















12 Recombinant Factors
initiation factors




IF1




IF2




IF3




elongation factors




EF-G




EF-Tu




EF-Ts




EF-4




EF-P




release factors




RF1




RF2




RF3




ribosome-recycling factor




RRF



22 Recombinant Synthetases
aminoacyl-tRNA-synthetases




AlaRS




ArgRS




AsnRS




AspRS




CysRS




GlnRS (Ec)




GluRS




GlyRS




HisRS




IleRS




LeuRS




LysRS




MetRS




PheRS (a)




PheRS (b)




ProRS




SerRS




ThrRS




TrpRS




TyrRS




ValRS




methionyl-tRNA transformylase




MTF

















TABLE 2







Pyrophosphate assay RS reaction mixture concentrations.










Reaction buffer
RS reaction mix (30 μl)







50 mM HEPES
1 mM ATP



150 mM NaCl
20 μg tRNA



10 mM KCl
2 mM amino acid



5 mM MgSO4
7 μg RS



2 mM DTT
1x reaction buffer




ddH2O

















TABLE 3





50 μl pyrophosphate assay reaction.


Pyrophosphate assay (50 μl)

















1x reaction buffer



0.4 mM MESG substrate



1 U purine nucleoside phosphorylase



0.03 U inorganic pyrophosphatase



12.5 μl RS reaction mix



ddH2O

















TABLE 4







AMP assay RS reaction mixture concentrations










Reaction buffer
RS reaction mix (100 μl)







50 mM HEPES
50 μM ATP



150 mM NaCl
100 μg tRNA



10 mM KCl
1 mM amino acid



5 mM MgSO4
5 μg RS



2 mM DTT
1X reaction buffer




ddH2O

















TABLE 5







Recombinant cell-free protein expression reaction mixture








CONTROL REACTION
TEMPLATE REACTION















2
μl
Inorganic polyphosphate-based energy
2
μl
Inorganic polyphosphate-based energy




regeneration mixture


regeneration mixture


1.33
μl
Core Recombinant Protein Mix
1.33
μl
Core Recombinant Protein Mix


0.9
μl
Isolated Ribosomes - 100 mg/ml
0.9
μl
Isolated Ribosomes


0.2
μl
RNase Inhibitor
0.2
μl
RNase Inhibitor


0.2
μl
T7x polymerase
0.2
μl
T7x polymerase


0.37
μl
ddH2O
0.45
μl
DNA template
















TABLE 6







Protein, Vector and Tag Combination Listing











Protein Name
Vector
Tag







IF-1
pET151
6XHis




pNAT
FLAG



IF-2
pET151
6XHis




pNAT
FLAG



IF-3
pET151
6XHis




pNAT
FLAG



EF-G
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag



EF-Tu
pNAT
C tag



EF-Ts
pET151
6XHis




pNAT
FLAG




pNAT
Ctag



EF-4
pET24a(+)
6XHis




pNAT
FLAG



EF-P
pET24a(+)
6XHis




pNAT
FLAG



RF-1
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag




pNAT
C tag



RF-2
pET151
6XHis




pNAT
FLAG



RF-3
pET24a(+)
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag




pNAT
C tag



RRF
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag



AlaRS
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag




pNAT
C tag



ArgRS
pET151
6XHis




pNAT
FLAG



AspRS
pET151
6XHis




pNAT
FLAG



AsnRS
pET151
6XHis




pNAT
FLAG



CysRS
pET151
6XHis




pNAT
FLAG



GlnRS
pET151
6XHis




pNAT
FLAG



GluRS
pET151
6XHis




pNAT
FLAG



GlyRS
pET151
6XHis




pNAT
FLAG



HisRS
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag




pNAT
C tag



IleRS
pET151
6XHis




pNAT
FLAG



LeuRS
pET151
6XHis




pNAT
FLAG



LysRS
pET151
6XHis




pNAT
FLAG



MetRS
pET151
6XHis




pNAT
FLAG




pNAT
FLAG and





C-tag




pNAT
C tag



PheαRS
pET151
6XHis




pNAT
FLAG



PheβRS
pET151
6XHis




pNAT
FLAG



ProRS
pET151
6XHis




pNAT
FLAG



SerRS
pET151
6XHis




pNAT
FLAG



ThrRS
pET151
6XHis




pNAT
FLAG



TrpRS
pET151
6XHis




pNAT
FLAG



TyrRS
pET151
6XHis




pNAT
FLAG



ValRS
pET151
6XHis




pNAT
FLAG



MTF
pET151
6XHis




pNAT
FLAG

















TABLE 7







Sequence Identity with Geobacillus subterraneus


91A1 strain sequences









pET vector seqs - 91A1











% identical
% positive
% gaps















Gs Aminoacyl
AlaRS
92.72%
96.64%
1.57%


tRNA synthetases
ArgRS
92.64%
96.77%
0.00%



AsnRS
95.70%
98.19%
0.23%



AspRS
70.39%
72.93%
23.18%



CysRS
94.29%
96.83%
1.48%










GlnRS
No significant alignment












GluRS
93.78%
96.39%
1.61%



GlyRS
94.43%
97.43%
1.28%



HisRS
90.63%
95.78%
0.00%



IleRS
94.70%
97.95%
0.00%



LeuRS
94.58%
97.66%
0.74%



LysRS
96.16%
98.38%
0.00%



MetRS
95.08%
98.16%
0.00%



MTF
89.44%
94.72%
0.62%



PheαRS
91.64%
93.87%
3.90%



PheβRS
91.18%
95.53%
0.00%



ProRS
89.59%
93.00%
3.07%



SerRS
92.15%
96.07%
1.85%



ThrRS
92.96%
96.94%
0.46%



TrpRS
93.31%
98.48%
0.00%



TyrRS
90.00%
95.24%
0.00%



ValRS
93.96%
95.60%
3.19%


Gs Factors
EF-G
95.09%
98.27%
0.00%



EF-Ts
94.92%
97.29%
0.00%



EF-Tu
98.23%
99.49%
0.00%



EF-4
98.20%
99.51%
0.00%



EF-P
98.92%
99.46%
0.00%



IF-1
84.52%
85.71%
14.29%



IF-2
89.23%
91.00%
6.72%



IF-3
63.79%
65.52%
34.48%



RF-1
91.36%
93.04%
5.29%



RF-2
96.34%
98.48%
0.00%










RF-3
No significant alignment












RRF
94.09%
97.85%
0.00%










REFERENCES

The following references are hereby incorporated in their entirety by reference:


[1] Carlson, Erik D. et al. “Cell-Free Protein Synthesis: Applications Come of Age.” Biotechnology advances 30.5 (2012): 1185-1194. PMC. Web. 1 Jan. 2018.


[2] Lloyd, A. J., Thomann, H. U., Ibba, M., & So11, D. (1995). A broadly applicable continuous spectrophotometric assay for measuring aminoacyl-tRNA synthetase activity. Nucleic acids research, 23(15), 2886-2892.












SEQUENCE LISTINGS















SEQ ID NO. 1


DNA


IF-1-GbIF-1-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCCAAAGATGATGTGATTGAAGTTGAAGGCACCGTTATTGAAACCCTGCCGAATGCAATGTTTCGTG


TTGAACTGGAAAATGGTCATACCGTTCTGGCACATGTTAGCGGTAAAATTCGCATGCACTTTATTCGTAT


TCTGCCTGGTGATCGTGTTACCGTTGAACTGAGCCCGTACGATCTGACCCGTGGTCGTATTACCTATCGT


TATAAATGA





SEQ ID NO. 2


AMINO ACID


IF-1-GbIF-1-EcOpt



Geobacillus



MAKDDVIEVEGTVIETLPNAMFRVELENGHTVLAHVSGKIRMHFIRILPGDRVIVELSPYDLTRGRITYR


YK





SEQ ID NO. 3


DNA


IF-2-GsIF-2-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGAGCAAAATGCGCGTTTATGAGTACGCCAAAAAACAGAATGTTCCGAGCAAAGATGTGATCCACAAAC


TGAAAGAAATGAACATCGAAGTGAACAACCATATGGCAATGCTGGAAGCAGATGTTGTTGAAAAACTGGA


TCATCAGTATCGTCCGAATACCGGCAAAAAAGAAGAAAAAAAAGCCGAGAAGAAAACCGAGAAACCGAAA


CGTCCGACACCAGCAAAAGCAGCAGATTTTGCAGATGAAGAAATCTTCGATGATAGCAAAGAAGCAGCCA


AAATGAAACCGGCAAAGAAAAAAGGTGCACCGAAAGGTAAAGAAACCAAAAAAACCGAAGCACAGCAGCA


AGAGAAAAAACTGCTGCAGGCAGCGAAAAAGAAAGGCAAAGGTCCGGCAAAAGGGAAAAAACAGGCAGCA


CCGGCAGCCAAACAGGCACCGCAGCCTGCGAAAAAAGAAAAAGAACTGCCGAAAAAAATCACCTTTGAAG


GTAGCCTGACCGTTGCAGAACTGGCAAAAAAACTGGGTCGTGAACCGAGCGAAATTATCAAAAAACTGTT


TATGCTGGGTGTGATGGCCACCATTAATCAGGATCTGGATAAAGATGCCATTGAACTGATTTGCAGCGAT


TATGGTGTTGAGGTTGAAGAAAAAGTGACCATCGATGAAACCAACTTTGAAGCCATTGAAATTGTTGATG


CACCGGAAGATCTGGTTGAACGTCCGCCTGTTGTTACCATTATGGGTCATGTTGATCATGGTAAAACCAC


ACTGCTGGATGCAATTCGTCATAGCAAAGTTACCGAACAAGAAGCAGGCGGTATTACACAGCATATTGGT


GCATATCAGGTTACCGTGAACGATAAGAAAATCACGTTTCTGGATACACCGGGTCATGAAGCATTTACCA


CCATGCGTGCACGTGGTGCACAGGTGACCGATATTGTTATTCTGGTTGTTGCAGCAGATGATGGCGTTAT


GCCGCAGACCGTTGAAGCAATTAATCATGCAAAAGCCGCAAACGTTCCGATTATTGTTGCCATCAACAAA


ATCGATAAACCGGAAGCAAATCCGGATCGTGTTATGCAAGAACTGATGGAATATAATCTGGTTCCGGAAG


AATGGGGTGGTGATACCATTTTTTGTAAACTGAGCGCCAAAACCAAAGAAGGTCTGGACCATCTGCTGGA


AATGATTCTGCTGGTTAGCGAAATGGAAGAACTGAAAGCCAATCCGAATCGTCGTGCAGTTGGCACCGTT


ATTGAAGCCAAACTGGACAAAGGTCGTGGTCCGGTTGCGACCCTGCTGATTCAGGCAGGCACCCTGCGTG


TTGGTGATCCGATTGTTGTGGGCACCACCTATGGTCGTGTTCGTGCAATGGTTAATGATAGCGGTCGTCG


TGTTAAAGAAGCAACCCCGAGCATGCCGGTTGAAATTACCGGTCTGCATGAAGTTCCGCAGGCAGGCGAT


CGTTTTATGGTTTTTGAAGATGAGAAAAAGGCACGCCAGATTGCCGAAGCACGTGCACAGCGTCAGCTGC


AAGAACAGCGTAGCGTTAAAACCCGTGTTAGCCTGGATGACCTGTTTGAGCAGATTAAACAGGGTGAAAT


GAAAGAGCTGAACCTGATTGTTAAAGCCGATGTTCAGGGTAGCGTTGAAGCCCTGGTTGCAGCACTGCAG


AAAATTGATGTTGAAGGTGTTCGCGTGAAAATTATCCATGCAGCCGTTGGTGCAATTACCGAAAGCGATA


TTAGCCTGGCAACCGCAAGCAATGCAATTGTGATTGGTTTTAATGTTCGTCCGGATGCAAATGCAAAACG


TGCAGCAGAAAGTGAAAAAGTGGATATTCGTCTGCACCGCATTATCTATAACGTGATCGAAGAAATTGAG


GCAGCCATGAAAGGTATGCTGGATCCGGAATATGAAGAGAAAGTTATTGGTCAGGCAGAAGTTCGTCAGA


CCTTTAAAGTTAGCAAAGTGGGTACAATTGCCGGTTGTTATGTTACCGATGGTAAAATTACCCGTGATAG


TAAAGTTCGTCTGATTCGTCAGGGTATTGTTGTGTATGAAGGTGAAATTGATAGCCTGAAACGCTATAAA


GATGATGTTCGTGAAGTTGCCCAGGGTTATGAATGTGGTCTGACCATTAAAAACTTCAACGACATTAAAG


AGGGCGACGTTATCGAAGCCTATATCATGCAAGAAGTTGCACGCGCATAA





SEQ ID NO. 4


Amino Acid


IF-2-GsIF-2-EcOpt



Geobacillusstearothermophilus



MSKMRVYEYAKKQNVPSKDVIHKLKEMNIEVNNHMAMLEADVVEKLDHQYRPNTGKKEEKKAEKKTEKPK


RPTPAKAADFADEEIFDDSKEAAKMKPAKKKGAPKGKETKKTEAQQQEKKLLQAAKKKGKGPAKGKKQAA


PAAKQAPQPAKKEKELPKKITFEGSLTVAELAKKLGREPSEIIKKLFMLGVMATINQDLDKDAIELICSD


YGVEVEEKVTIDETNFEAIEIVDAPEDLVERPPVVTIMGHVDHGKTTLLDAIRHSKVTEQEAGGITQHIG


AYQVTVNDKKITFLDTPGHEAFTTMRARGAQVTDIVILVVAADDGVMPQTVEAINHAKAANVPIIVAINK


IDKPEANPDRVMQELMEYNLVPEEWGGDTIFCKLSAKIKEGLDHLLEMILLVSEMEELKANPNRRAVGTV


IEAKLDKGRGPVATLLIQAGTLRVGDPIVVGTTYGRVRAMVNDSGRRVKEATPSMPVEITGLHEVPQAGD


RFMVFEDEKKARQIAEARAQRQLQEQRSVKTRVSLDDLFEQIKQGEMKELNLIVKADVQGSVEALVAALQ


KIDVEGVRVKIIHAAVGAITESDISLATASNAIVIGFNVRPDANAKRAAESEKVDIRLHRIIYNVIEEIE


AAMKGMLDPEYEEKVIGQAEVRQTFKVSKVGTIAGCYVTDGKITRDSKVRLIRQGIVVYEGEIDSLKRYK


DDVREVAQGYECGLTIKNFNDIKEGDVIEAYIMQEVARA





SEQ ID NO. 5


DNA


IF-3-GbIF-3-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGATCAGCAAGGACTTTATCATCAATGAGCAGATTCGTGCACGTGAAGTTCGTCTGATTGATCAGAATG


GTGAACAGCTGGGTATCAAAAGCAAACAAGAAGCACTGGAAATTGCAGCACGTCGTAATCTGGATCTGGT


TCTGGTGGCACCGAATGCAAAACCGCCTGTTTGTCGTATTATGGATTATGGCAAATTTCGCTTCGAGCAG


CAGAAAAAAGAAAAAGAGGCACGCAAAAAGCAGAAAGTGATCAATGTTAAAGAAGTGCGTCTGAGCCCGA


CCATTGAAGAACATGATTTTAACACCAAACTGCGCAACGCACGCAAATTTCTGGAAAAAGGTGATAAAGT


GAAAGCCACCATTCGTTTTAAAGGTCGTGCAATCACCCATAAAGAAATTGGTCAGCGTGTTCTGGATCGT


TTTAGCGAAGCATGTGCAGATATTGCAGTTGTTGAAACCGCACCGAAAATGGATGGTCGTAATATGTTTC


TGGTGCTGGCTCCGAAAAACGACAACAAATAA





SEQ ID NO. 6


Amino Acid


IF-3-GbIF-3-EcOpt



Geobacillus



MISKDFIINEQIRAREVRLIDQNGEQLGIKSKQEALEIAARRNLDLVLVAPNAKPPVCRIMDYGKFRFEQ


QKKEKEARKKQKVINVKEVRLSPTIEEHDFNTKLRNARKFLEKGDKVKATIRFKGRAITHKEIGQRVLDR


FSEACADIAVVETAPKMDGRNMFLVLAPKNDNK





SEQ ID NO. 7


DNA


EF-G-GsEF-G-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCACGTGAATTCAGCCTGGAAAAAACCCGTAATATTGGTATTATGGCCCATATCGATGCAGGTAAAA


CCACCACCACCGAACGTATTCTGTTTTATACCGGTCGTGTGCATAAAATTGGTGAAGTTCATGAAGGTGC


AGCAACCATGGATTGGATGGAACAAGAACAAGAGCGTGGTATTACCATTACCAGCGCAGCCACCACCGCA


CAGTGGAAAGGTCATCGTATTAACATTATTGATACACCGGGTCACGTTGATTTTACCGTTGAAGTTGAAC


GTAGCCTGCGTGTTCTGGATGGTGCAATTACCGTGCTGGATGCACAGAGCGGTGTTGAACCGCAGACCGA


AACCGTTTGGCGTCAGGCAACCACCTATGGTGTTCCGCGTATTGTTTTTGTGAACAAGATGGATAAAATC


GGTGCCGATTTCCTGTATAGCGTTAAAACCCTGCATGATCGTCTGCAGGCAAATGCACATCCGGTTCAGC


TGCCGATTGGTGCAGAAGATCAGTTTAGCGGTATTATTGATCTGGTTGAAATGTGCGCCTATCACTATCA


TGATGAACTGGGCAAAAACATCGAACGCATTGATATTCCGGAAGAATATCGTGATATGGCCGAAGAGTAT


CACAACAAACTGATTGAAGCAGTTGCAGAACTGGATGAAGAACTGATGATGAAATATCTGGAAGGCGAAG


AAATTACCGCAGAGGAACTGAAAGCAGCAATTCGTAAAGCAACCATTAGCGTGGAATTTTTTCCGGTTTT


TTGTGGTAGCGCCTTCAAAAACAAAGGTGTGCAGCTGCTGCTGGATGGCGTTGTTGATTATCTGCCGAGT


CCGGTGGATATTCCTGCAATTCGTGGTGTTGTTCCGGATACCGAAGAAGAAGTTACACGCGAAGCAAGTG


ATGATGCACCGTTTGCAGCACTGGCCTTTAAAATCATGACCGATCCGTATGTTGGTAAGCTGACCTTTAT


TCGTGTTTATAGCGGCACCCTGGATAGCGGTAGCTATGTTATGAATACCACCAAAGGTAAACGTGAACGT


ATTGGTCGTCTGCTGCAGATGCATGCAAATCATCGTCAAGAAATCAGCAAAGTTTATGCCGGTGATATTG


CAGCAGCAGTTGGTCTGAAAGATACCACAACCGGTGATACCCTGTGTGATGAAAAACATCCGGTGATTCT


GGAAAGCATGCAGTTTCCGGAACCGGTTATTAGCGTTGCAATTGAACCGAAAAGCAAAGCCGATCAGGAT


AAAATGAGCCAGGCACTGCAGAAACTGCAAGAAGAGGATCCGACCTTTCGTGCACATACCGATCCGGAAA


CCGGTCAGACCATTATTAGTGGTATGGGTGAACTGCATCTGGATATCATTGTTGATCGTATGCGTCGCGA


ATTTAAAGTTGAAGCAAATGTTGGTGCACCGCAGGTTGCATATCGTGAAACCTTTCGTAAAAGCGCACAG


GTTGAAGGCAAATTTATCCGTCAGAGTGGTGGTCGTGGTCAGTATGGTCATGTTTGGATTGAATTTTCAC


CGAACGAACGCGGTAAAGGCTTTGAATTTGAAAATGCAATTGTTGGTGGTGTGGTGCCGAAAGAATATGT


TCCGGCAGTTCAGGCAGGTCTGGAAGAGGCAATGCAGAATGGTGTTCTGGCAGGTTATCCGGTTGTTGAT


ATTAAAGCCAAACTGTTCGATGGCAGCTATCACGATGTTGATAGCAGCGAAATGGCATTCAAAATTGCAG


CAAGCCTGGCACTGAAAAATGCCGCAACCAAATGTGATCCTGTTCTGCTGGAACCGATTATGAAAGTGGA


AGTTGTTATCCCTGAGGAATATCTGGGTGATATTATGGGCGATATTACCAGCCGTCGTGGTCGCATTGAA


GGTATGGAAGCACGTGGTAATGCCCAGGTTGTTCGTGCAATGGTTCCGCTGGCAGAAATGTTTGGTTATG


CAACCAGCCTGCGTAGCAATACCCAAGGTCGTGGCACCTTTAGCATGGTTTTTGATCATTATGAAGAGGT


GCCCAAAAACATTGCCGATGAGATCATCCAAGGGCGAATAA





SEQ ID NO. 8


Amino Acid


EF-G-GsEF-G-EcOpt



Geobacillus



MAREFSLEKTRNIGIMAHIDAGKTTTTERILFYTGRVHKIGEVHEGAATMDWMEQEQERGITITSAATTA


QWKGHRINIIDTPGHVDFTVEVERSLRVLDGAITVLDAQSGVEPQTETVWRQATTYGVPRIVFVNKMDKI


GADFLYSVKTLHDRLQANAHPVQLPIGAEDQFSGIIDLVEMCAYHYHDELGKNIERIDIPEEYRDMAEEY


HNKLIEAVAELDEELMMKYLEGEEITAEELKAAIRKATISVEFFPVFCGSAFKNKGVQLLLDGVVDYLPS


PVDIPAIRGVVPDTEEEVTREASDDAPFAALAFKIMTDPYVGKLTFIRVYSGILDSGSYVMNITKGKRER


IGRLLQMHANHRQEISKVYAGDIAAAVGLKDTTTGDTLCDEKHPVILESMQFPEPVISVAIEPKSKADQD


KMSQALQKLQEEDPTFRAHTDPETGQTIISGMGELHLDIIVDRMRREFKVEANVGAPQVAYRETFRKSAQ


VEGKFIRQSGGRGQYGHVWIEFSPNERGKGFEFENAIVGGVVPKEYVPAVQAGLEEAMQNGVLAGYPVVD


IKAKLFDGSYHDVDSSEMAFKIAASLALKNAATKCDPVLLEPIMKVEVVIPEEYLGDIMGDITSRRGRIE


GMEARGNAQVVRAMVPLAEMFGYATSLRSNTQGRGTFSMVFDHYEEVPKNIADEIIKKNKGE





SEQ ID NO. 9


DNA


EF-Tu-GsEF-Tu-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCCAAAGCCAAATTTGAACGTACCAAACCGCATGTTAATATTGGCACCATTGGTCATGTTGATCATG


GTAAAACCACACTGACCGCAGCAATTACCACCGTTCTGGCAAAACAGGGTAAAGCCGAAGCAAAAGCATA


TGATCAGATTGATGCAGCACCGGAAGAACGTGAACGTGGTATTACCATTAGCACCGCACATGTTGAATAT


GAAACCGATGCACGTCATTATGCCCATGTTGATTGTCCGGGTCATGCAGATTATGTGAAAAATATGATTA


CCGGTGCAGCACAGATGGATGGTGCAATTCTGGTTGTTAGCGCAGCAGATGGTCCGATGCCGCAGACACG


TGAACATATTCTGCTGAGCCGTCAGGTTGGTGTTCCGTATATTGTTGTGTTTCTGAACAAATGCGATATG


GTGGATGATGAAGAACTGCTGGAACTGGTTGAAATGGAAGTTCGTGATCTGCTGTCCGAATATGATTTTC


CGGGTGATGAAGTTCCGGTTATTAAAGGTAGCGCACTGAAAGCACTGGAAGGTGATCCGCAGTGGGAAGA


AAAAATCATTGAACTGATGAATGCCGTGGATGAGTATATTCCGACACCGCAGCGTGAAGTTGATAAACCG


TTTATGATGCCGATCGAAGATGTGTTTAGCATTACCGGTCGTGGCACCGTTGCAACCGGTCGCGTTGAAC


GTGGCACCCTGAAAGTTGGTGATCCGGTTGAAATTATTGGTCTGAGTGATGAACCGAAAACCACCACCGT


TACCGGTGTTGAAATGTTTCGTAAACTGTTAGATCAGGCCGAAGCCGGTGATAATATTGGTGCACTGCTG


CGTGGTGTTTCACGTGATGAGGTGGAACGTGGTCAGGTTCTGGCGAAACCTGGTAGCATTACACCGCATA


CCAAATTCAAAGCACAGGTTTATGTTCTGACCAAAGAAGAAGGCGGTCGTCATACCCCGTTTTTTAGCAA


TTATCGTCCGCAGTTTTATTTCCGTACCACCGATGTTACCGGTATTATTACCCTGCCGGAAGGTGTGGAA


ATGGTTATGCCTGGTGATAACGTTGAAATGACCGTGGAACTGATTGCACCGATTGCAATTGAAGAAGGCA


CCAAATTTAGCATTCGTGAAGGTGGTCGTACCGTTGGTGCAGGTAGCGTTAGCGAAATTATCGAATAA





SEQ ID NO. 10


Amino Acid


EF-Tu-GsEF-Tu-EcOpt



Geobacillus



MAKAKFERTKPHVNIGTIGHVDHGKTTLTAAITTVLAKQGKAEAKAYDQIDAAPEERERGITISTAHVEY


ETDARHYAHVDCPGHADYVKNMITGAAQMDGAILVVSAADGPMPQTREHILLSRQVGVPYIVVFLNKCDM


VDDEELLELVEMEVRDLLSEYDFPGDEVPVIKGSALKALEGDPQWEEKIIELMNAVDEYIPTPQREVDKP


FMMPIEDVFSITGRGTVATGRVERGTLKVGDPVEIIGLSDEPKTTGVTGVEMFRKLLDQAEAGDNIGALL


RGVSRDEVERGQVLAKPGSITPHTKFKAQVYVLTKEEGGRHTPFFSNYRPQFYFRTTDVTGIITLPEGVE


MVMPGDNVEMTVELIAPIAIEEGTKFSIREGGRTVGAGSVSEIIE





SEQ ID NO. 11


DNA


EF-Ts-GsEF-Ts-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCAATTACCGCACAGATGGTTAAAGAACTGCGTGAAAAAACCGGTGCAGGTATGATGGATTGTAAAA


AAGCACTGACCGAAACCAATGGCGATATGGAAAAAGCAATTGATTGGCTGCGCGAAAAAGGTATTGCAAA


AGCAGCAAAAAAAGCCGATCGTATTGCAGCAGAAGGTATGGCATATATTGCAGTTGAAGGTAATACCGCA


GTTATCCTGGAAGTTAATAGCGAAACCGATTTTGTGGCAAAAAACGAAGCATTTCAGACCCTGGTGAAAG


AGCTGGCAGCACATCTGCTGAAACAGAAACCGGCAAGCCTGGATGAAGCACTGGGTCAGACCATGGATAA


TGGTAGCACCGTTCAGGATTATATCAATGAAGCCATTGCCAAAATCGGCGAAAAAATCACCCTGCGTCGT


TTTGCAGTTGTTAATAAAGCAGATGGTGAAACCTTTGGTGCCTATCTGCATATGGGTGGTCGTATTGGTG


TTCTGACCCTGCTGGCAGGTAATGCAAGCGAAGATGTTGCAAAAGATGTGGCAATGCATATTGCAGCCCT


GCATCCGAAATATGTTAGCCGTGATGATGTTCCGCAAGAAGAAATTGCACACGAACGTGAAGTTCTGAAA


CAGCAGGCACTGAATGAAGGCAAACCGGAAAAAATTGTGGAAAAGATGGTTGAAGGTCGCCTGAACAAAT


TCTATGAAGATGTTTGTCTGCTGGAACAGGCCTTTGTTAAAAATCCGGATGTTACCGTTCGTCAGTATGT


TGAAAGCAATGGTGCCACCGTTAAACAGTTTATTCGTTATGAAGTTGGTGAGGGCTTAGAAAAACGCCAG


GATAATTTTGCCGAAGAAGTTATGAGCCAGGTTCGCAAACAGTAA





SEQ ID NO. 12


Amino Acid


EF-Ts-GsEF-Ts-EcOpt



Geobacillus



MAITAQMVKELREKTGAGMMDCKKALTETNGDMEKAIDWLREKGIAKAAKKADRIAAEGMAYIAVEGNTA


VILEVNSETDFVAKNEAFQTLVKELAAHLLKQKPASLDEALGQTMDNGSTVQDYINEAIAKIGEKITLRR


FAVVNKADGETFGAYLHMGGRIGVLTLLAGNASEDVAKDVAMHIAALHPKYVSRDDVPQEEIAHEREVLK


QQALNEGKPEKIVEKMVEGRLNKFYEDVCLLEQAFVKNPDVTVRQYVESNGATVKQFIRYEVGEGLEKRQ


DNFAEEVMSQVRKQ





SEQ ID NO. 13


DNA


EF-4-GsEF-4-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGAACCGTGAGGAACGTCTGAAACGTCAGGAGCGTATTCGTAACTTCAGCATCATTGCGCACATCGACC


ACGGTAAAAGCACCCTGGCGGATCGTATCCTGGAGAAAACCGGTGCGCTGAGCGAGCGTGAACTGCGTGA


ACAGACCCTGGACATGATGGATCTGGAGCGTGAACGTGGTATCACCATTAAGCTGAACGCGGTGCAACTG


ACCTATAAGGCGAAAAACGGCGAGGAATACATCTTCCACCTGATTGACACCCCGGGCCACGTGGATTTTA


CCTATGAAGTTAGCCGTAGCCTGGCGGCGTGCGAAGGTGCGATTCTGGTGGTTGATGCGGCGCAGGGTAT


TGAGGCGCAAACCCTGGCGAACGTGTACCTGGCGATTGACAACAACCTGGAAATCCTGCCGGTTATCAAC


AAAATTGATCTGCCGAGCGCGGAGCCGGAACGTGTGCGTCAGGAGATCGAAGACGTTATTGGTCTGGATG


CGAGCGAGGCGGTGCTGGCGAGCGCGAAGGTTGGTATCGGCATTGAGGAAATCCTGGAGCAAATTGTGGA


AAAAATTCCGGCGCCGAGCGGTGACCCGGATGCGCCGCTGAAGGCGCTGATCTTTGACAGCCTGTACGAT


CCGTATCGTGGCGTGGTTGCGTACGTGCGTATTGTTGACGGTACCGTTAAGCCGGGCCAGCGTATCAAAA


TGATGAGCACCGGCAAGGAGTTCGAAGTGACCGAGGTGGGCGTTTTTACCCCGAAGCAAAAAATCGTTGA


CGAACTGACCGTGGGTGATGTTGGCTATCTGACCGCGAGCATTAAGAACGTGAAAGATACCCGTGTTGGT


GACACCATTACCGATGCGGAGCGTCCGGCGGCGGAACCGCTGCCGGGTTACCGTAAACTGAACCCGATGG


TTTTCTGCGGCATGTATCCGATCGACACCGCGCGTTACAACGATCTGCGTGAGGCGCTGGAAAAGCTGCA


GCTGAACGACGCGGCGCTGCACTTCGAGCCGGAAACCAGCCAAGCGCTGGGTTTCGGCTTTCGTTGCGGT


TTTCTGGGCCTGCTGCACATGGAGATCATTCAGGAACGTATCGAGCGTGAATTTCACATCGATCTGATTA


CCACCGCGCCGAGCGTGGTTTATAAAGTGCACCTGACCGACGGTACCGAGGTGAGCGTTGATAACCCGAC


CAACATGCCGGACCCGCAAAAAATCGATCGTATTGAGGAACCGTATGTGAAGGCGACCATTATGGTTCCG


AACGACTACGTGGGCCCGGTTATGGAACTGTGCCAGGGTAAACGTGGCACCTTCGTGGACATGCAATACC


TGGATGAGAAGCGTGTTATGCTGATCTATGACATTCCGCTGAGCGAAATCGTTTACGACTTCTTTGATGC


GCTGAAGAGCAACACCAAAGGTTACGCGAGCTTTGATTATGAGCTGATTGGCTACCGTCCGAGCAACCTG


GTGAAAATGGACATCCTGCTGAACGGTGAAAAGATTGATGCGCTGAGCTTCATCGTTCACCGTGAGGCGG


CGTATGAACGTGGCAAAGTGATTGTTGAGAAGCTGAAAGACCTGATCCCGCGTCAGCAATTTGAAGTGCC


GGTTCAGGCGGCGATTGGTAACAAAATCATTGCGCGTAGCACCATCAAGGCGCTGCGTAAAAACGTGCTG


GCGAAGTGCTACGGTGGCGATGTTAGCCGTAAGCGTAAACTGCTGGAGAAGCAGAAAGAAGGTAAGAAAC


GTATGAAACAGATTGGTAGCGTTGAGGTGCCGCAAGAAGCGTTCATGGCGGTGCTGAAGATCGACGATCA


AAAGAAA





SEQ ID NO. 14


Amino Acid


EF-4-GsEF-4-EcOpt



Geobacillus



MNREERLKRQERIRNFSIIAHIDHGKSTLADRILEKTGALSERELREQTLDMMDLERERGITIKLNAVQL


TYKAKNGEEYIFHLIDTPGHVDFTYEVSRSLAACEGAILVVDAAQGIEAQTLANVYLAIDNNLEILPVIN


KIDLPSAEPERVRQEIEDVIGLDASEAVLASAKVGIGIEEILEQIVEKIPAPSGDPDAPLKALIFDSLYD


PYRGVVAYVRIVDGTVKPGQRIKMMSTGKEFEVTEVGVFTPKQKIVDELTVGDVGYLTASIKNVKDTRVG


DTITDAERPAAEPLPGYRKLNPMVFCGMYPIDTARYNDLREALEKLQLNDAALHFEPETSQALGFGFRCG


FLGLLHMEIIQERIEREFHIDLITTAPSVVYKVHLTDGTEVSVDNPTNMPDPQKIDRIEEPYVKATIMVP


NDYVGPVMELCQGKRGTFVDMQYLDEKRVMLIYDIPLSEIVYDFFDALKSNTKGYASFDYELIGYRPSNL


VKMDILLNGEKIDALSFIVHREAAYERGKVIVEKLKDLIPRQQFEVPVQAAIGNKIIARSTIKALRKNVL


AKCYGGDVSRKRKLLEKQKEGKKRMKQIGSVEVPQEAFMAVLKIDDQKK





SEQ ID NO. 15


DNA


EF-P-GsEF-P-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGATCAGCGTGAACGACTTCCGTACCGGTCTGACCATCGAAGTTGATGGCGAGATTTGGCGTGTGCTGG


AATTCCAGCACGTTAAGCCGGGTAAAGGCGCGGCGTTTGTGCGTAGCAAGCTGCGTAACCTGCGTACCGG


TGCGATCCAAGAACGTACCTTCCGTGCGGGCGAGAAGGTGAACCGTGCGCAGATTGACACCCGTAAAATG


CAATACCTGTATGCGAACGGTGACCAGCACGTTTTTATGGATATGGAGACCTACGAACAGATCGAGCTGC


CGGCGAAACAAATTGAGTATGAACTGAAGTTCCTGAAAGAAAACATGGAAGTGTTTATCATGATGTACCA


AGGTGAAACCATCGGCATTGAGCTGCCGAACACCGTTGAGCTGAAGGTGGTTGAGACCGAACCGGGTATT


AAAGGTGATACCGCGAGCGGTGGCAGCAAGCCGGCGAAACTGGAAACCGGCCTGGTGGTTCAGGTGCCGT


TCTTTGTTAACGAGGGTGACACCCTGATCATTAACACCGCGGATGGCACCTATGTTAGCCGTGCG





SEQ ID NO. 16


Amino Acid


EF-P-GsEF-P-EcOpt



Geobacillus



MISVNDFRTGLTIEVDGEIWRVLEFQHVKPGKGAAFVRSKLRNLRTGAIQERTFRAGEKVNRAQIDTRKM


QYLYANGDQHVFMDMETYEQIELPAKQIEYELKFLKENMEVFIMMYQGETIGIELPNTVELKVVETEPGI


KGDTASGGSKPAKLETGLVVQVPFFVNEGDTLIINTADGTYVSRA





SEQ ID NO. 17


DNA RF-1


Title: GsRF-1-Ec Opt


Origin: Geobacillusstearothermophilus (codon-optimized for E.coli)


ATGTTTGATCGTCTGGAAGCAGTTGAACAGCGTTATGAAAAACTGAATGAACTGCTGATGGAACCGGATG


TTATTAACGATCCGAAAAAACTGCGCGATTATAGCAAAGAACAGGCAGATCTGGAAGAAACCGTTCAGAC


CTATCGTGAGTATAAAAGCGTTCGTGAACAGCTGGCCGAAGCAAAAGCAATGCTGGAAGAGAAACTGGAA


CCTGAACTGCGTGAAATGGTGAAAGAAGAAATTGGCGAACTGGAAGAACGTGAAGAAGCACTGGTTGAGA


AACTGAAAGTTCTGCTGCTGCCGAAAGATCCGAATGATGAAAAAAACGTGATCATGGAAATTCGTGCAGC


AGCCGGTGGCGAAGAAGCAGCACTGTTTGCCGGTGATCTGTATCGTATGTATACCCGTTATGCAGAAAGC


CAAGGTTGGAAAACCGAAGTTATTGAAGCAAGCCCGACCGGTTTAGGTGGTTATAAAGAAATCATCTTCA


TGATCAATGGCAAGGGTGCATACAGCAAACTGAAATTTGAAAATGGTGCACATCGTGTTCAGCGTGTTCC


GGAAACCGAAAGCGGTGGTCGTATTCATACCAGCACCGCAACCGTTGCATGTCTGCCGGAAATGGAAGAA


ATCGAAGTGGAAATCAACGAGAAAGATATTCGCGTTGATACCTTTGCAAGCAGCGGTCCTGGTGGTCAGA


GCGTTAATACCACCATGAGCGCAGTTCGTCTGACCCATATTCCGACCGGTATTGTTGTTACCTGTCAGGA


TGAAAAATCCCAGATCAAAAACAAAGAAAAAGCCATGAAAGTGCTGCGTGCCCGTATCTATGATAAATAT


CAGCAAGAGGCACGTGCGGAATATGATCAGACCCGTAAACAGGCAGTTGGCACCGGTGATCGTAGCGAAC


GTATTCGTACCTATAACTTTCCGCAGAATCGTGTTACCGATCATCGTATTGGTCTGACCATTCAAAAACT


GGATCAGGTTCTGGATGGTCATCTGGATGAAATTATCGAAGCACTGATTCTGGATGACCAGGCAAAAAAG


CTGGAACAGGCAAATGATGCAAGCTAA





SEQ ID NO. 18


Amino Acid


RF-1-GsRF-1-EcOpt



Geobacillusstearothermophilus



MFDRLEAVEQRYEKLNELLMEPDVINDPKKLRDYSKEQADLEETVQTYREYKSVREQLAEAKAMLEEKLE


PELREMVKEEIGELEEREEALVEKLKVLLLPKDPNDEKNVIMEIRAAAGGEEAALFAGDLYRMYTRYAES


QGWKTEVIEASPTGLGGYKEIIFMINGKGAYSKLKFENGAHRVQRVPETESGGRIHTSTATVACLPEMEE


IEVEINEKDIRVDTFASSGPGGQSVNTTMSAVRLTHIPTGIVVTCQDEKSQIKNKEKAMKVLRARIYDKY


QQEARAEYDQTRKQAVGTGDRSERIRTYNFPQNRVTDHRIGLTIQKLDQVLDGHLDEIIEALILDDQAKK


LEQANDAS





SEQ ID NO. 19


DNA


RF-2-GsRF-2-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGGCAGCACCGAATTTTTGGGATGATCAGAAAGCAGCACAGGCAGTTATTAGCGAAGCAAATGCACTGA


AAGATCTGGTGGAAGAATTTAGCAGCCTGGAAGAACGTTTTGATAATCTGGAAGTTACCTACGAACTGCT


GAAAGAAGAACCGGACGACGAACTGCAGGCAGAACTGGTTGAAGAGGCAAAAAAACTGATGAAAGATTTT


AGCGAATTTGAACTGCAGCTGCTGCTGAATGAACCGTATGATCAAAATAATGCCATCCTGGAACTGCATC


CTGGTGCCGGTGGCACCGAAAGCCAGGATTGGGCAAGCATGCTGCTGCGTATGTATACCCGTTGGGCAGA


AAAAAAAGGCTTTAAAGTTGAAACCCTGGATTATCTGCCTGGTGAAGAAGCAGGTATTAAAAGCGTTACC


CTGCTGATTAAAGGCCATAATGCATATGGTTATCTGAAAGCCGAAAAAGGTGTTCATCGTCTGGTTCGTA


TTAGCCCGTTTGATGCAAGCGGTCGTCGTCATACCAGCTTTGTTAGCTGTGAAGTTGTGCCGGAACTGGA


TGATAACATTGAAATTGAAATTCGCCCTGAAGAACTGAAGATTGATACCTATCGTAGCAGCGGTGCAGGC


GGTCAGCATGTTAATACCACCGATAGCGCAGTGCGTATTACCCATCTGCCGACCGGTATTGTTGTTACCT


GTCAGAGCGAACGTAGCCAGATTAAAAACCGTGAAAAAGCCATGAATATGCTGAAAGCCAAACTGTACCA


GAAGAAATTAGAAGAACAGCAGGCCGAGCTGGCCGAACTGCGTGGTGAACAGAAAGAAATTGGTTGGGGT


AATCAGATTCGCAGCTATGTTTTTCATCCGTACAGCCTGGTTAAAGATCATCGTACCAATGTTGAAGTTG


GTAATGTTCAGGCCGTTATGGATGGTGAAATTGATGTTTTTATCGATGCATACCTGCGTGCCAAACTGAA


ATAA





SEQ ID NO. 20


Amino Acid


RF-2-GsRF-2-EcOpt



Geobacillusstearothermophilus



MAAPNFWDDQKAAQAVISEANALKDLVEEFSSLEERFDNLEVTYELLKEEPDDELQAELVEEAKKLMKDF


SEFELQLLLNEPYDQNNAILELHPGAGGTESQDWASMLLRMYTRWAEKKGFKVETLDYLPGEEAGIKSVT


LLIKGHNAYGYLKAEKGVHRLVRISPFDASGRRHTSFVSCEVVPELDDNIEIEIRPEELKIDTYRSSGAG


GQHVNTTDSAVRITHLPTGIVVTCQSERSQIKNREKAMNMLKAKLYQKKLEEQQAELAELRGEQKEIGWG


NQIRSYVFHPYSLVKDHRTNVEVGNVQAVMDGEIDVFIDAYLRAKLK





SEQ ID NO. 21


DNA


RF-3-BX1-RF-3-EcOpt



Bacillus sp. X1 (codon-optimized for E.coli)



ATGGGTAACGATTTCAAGAAAGAAGTGCTGAGCCGTCGTACCTTTGCGATCATTAGCCATCCGGATGCGG


GCAAGACCACCCTGACCGAGAAACTGCTGCTGTTCGGTGGCGCGATCCGTGATGCGGGTACCGTTAAGGC


GAAGAAAACCGGCAAATACGCGACCAGCGACTGGATGGAAATCGAGAAACAGCGTGGTATTAGCGTGACC


AGCAGCGTTATGCAATTCGATTACAACGGTTATCGTGTGAACATTCTGGACACCCCGGGCCACCAGGACT


TTAGCGAAGATACCTATCGTACCCTGATGGCGGTGGACAGCGCGGTTATGATCATTGATAGCGCGAAGGG


CATCGAGGACCAAACCATTAAGCTGTTCAAAGTGTGCCGTATGCGTGGTATCCCGATTTTCACCTTTATC


AACAAGCTGGACCGTCAGGGCAAACAACCGCTGGAGCTGCTGGCGGAACTGGAGGAAGTTCTGGGTATCG


AGAGCTACCCGATGAACTGGCCGATTGGTATGGGCAAAGAATTTCTGGGCATCTATGATCGTTACTATAA


CCGTATTGAGCAGTTCCGTGTGAACGAGGAAGAGCGTTTTATCCCGCTGAACGAAGACGGTGAAATTGAG


GGCAACCACAAGCTGGTTAGCAGCGGTCTGTACGAGCAGACCCTGGAAGAGATCATGCTGCTGAACGAGG


CGGGTAACGAATTTAGCGCGGAGCGTGTGGCGGCGGGTCAACTGACCCCGGTTTTCTTTGGTAGCGCGCT


GACCAACTTCGGCGTGCAGACCTTTCTGGAAACCTATCTGCAATTTGCTCCGCCGCCGAAGGCGCGTAAC


AGCAGCATCGGCGAGATTGATCCGCTGAGCGAAGAGTTTAGCGGCTTCGTTTTTAAAATTCAGGCGAACA


TGAACCCGGCGCACCGTGACCGTATCGCGTTCGTGCGTATTTGCAGCGGCAAGTTTGAGCGTGGCATGAG


CGTTAACCTGCCGCGTCTGGGCAAGCAGCTGAAACTGACCCAAAGCACCAGCTTCATGGCGGAAGAGCGT


AACACCGTGGAAGAGGCGGTTAGCGGTGACATCATTGGCCTGTACGATACCGGTACCTATCAGATCGGCG


ATACCCTGACCGTGGGCAAAAACGACTTCCAGTTTGAGCGTCTGCCGCAATTCACCCCGGAACTGTTTGT


GCGTGTTAGCGCGAAGAACGTTATGCGTCAGAAGAGCTTTTACAAAGGTCTGCACCAGCTGGTGCAAGAA


GGCGCGATTCAACTGTACAAGACCGTTAAAACCGATGAGTATCTGCTGGGTGCGGTGGGCCAGCTGCAAT


TCGAAGTTTTTGAGCACCGTATGAAGAACGAATATAACGCGGAAGTGCTGATGGAACGTCTGGGTAGCAA


AATCGCGCGTTGGATTGAAAACGACGAGGTTGATGAAAACCTGAGCAGCAGCCGTAGCCTGCTGGTGAAA


GACCGTTACGATCACTATGTTTTCCTGTTTGAGAACGACTTCGCGCTGCGTTGGTTTCAGGAAAAGAACC


CGACCATCAAACTGTACAACCCGATGGACCAACACGAT





SEQ ID NO. 22


Amino Acid


RF-3


BX1-RF-3-EcOpt



Bacillus sp. X1



MGNDFKKEVLSRRTFAIISHPDAGKTTLTEKLLLFGGAIRDAGTVKAKKTGKYATSDWMEIEKQRGISVT


SSVMQFDYNGYRVNILDTPGHQDFSEDTYRTLMAVDSAVMIIDSAKGIEDQTIKLFKVCRMRGIPIFTFI


NKLDRQGKQPLELLAELEEVLGIESYPMNWPIGMGKEFLGIYDRYYNRIEQFRVNEEERFIPLNEDGEIE


GNHKLVSSGLYEQTLEEIMLLNEAGNEFSAERVAAGQLTPVFFGSALTNFGVQTFLETYLQFAPPPKARN


SSIGEIDPLSEEFSGFVFKIQANMNPAHRDRIAFVRICSGKFERGMSVNLPRLGKQLKLIQSTSFMAEER


NTVEEAVSGDIIGLYDTGTYQIGDTLTVGKNDFQFERLPQFTPELFVRVSAKNVMRQKSFYKGLHQLVQE


GAIQLYKTVKTDEYLLGAVGQLQFEVFEHRMKNEYNAEVLMERLGSKIARWIENDEVDENLSSSRSLLVK


DRYDHYVFLFENDFALRWFQEKNPTIKLYNPMDQHD





SEQ ID NO. 23


DNA


RRF-GbRRF-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCCAAACAGGTTATTCAGCAGGCCAAAGAAAAAATGGATAAAGCCGTTCAGGCATTTACCCGTGAAC


TGGCAAGCATTCGTGCAGGTCGTGCAAATGCAGGTCTGCTGGAAAAAGTTACCGTTGATTATTATGGTGT


TCCGACGCCGATTAATCAGCTGGCGAGCATTAGCGTTCCGGAAGCACGTCTGCTGGTGATTCAGCCGTAT


GATAAAAGCGCAATCAAAGAGATGGAAAAAGCAATTCTGGCAAGCGATCTGGGTCTGACCCCGAGCAATG


ATGGTAGCGTTATTCGTCTGGTTATTCCGCCTCTGACCGAAGAACGTCGTCGCGAACTGGCGAAACTGGT


GAAAAAATACAGCGAAGATGCAAAAGTTGCCGTGCGTAATATTCGTCGTGATGCAAATGATGAGCTGAAA


AAGCTGGAAAAGAATGGCGAAATTACCGAAGATGAACTGCGTAGCTATACCGATGAAGTTCAGAAACTGA


CCGATGATCATATCGCAAAAATTGACGCCATCACCAAAGAGAAAGAAAAAGAAGTCATGGAAGTTTAA





SEQ ID NO. 24


Amino Acid


RRF


GbRRF-EcOpt



Geobacillus



MAKQVIQQAKEKMDKAVQAFTRELASIRAGRANAGLLEKVTVDYYGVPTPINQLASISVPEARLLVIQPY


DKSAIKEMEKAILASDLGLTPSNDGSVIRLVIPPLTEERRRELAKLVKKYSEDAKVAVRNIRRDANDELK


KLEKNGEITEDELRSYTDEVQKLTDDHIAKIDAITKEKEKEVMEV





SEQ ID NO. 25


DNA


AlaRS-GsAlaRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGAAAAAACTGACCAGCGCACAGGTTCGTCGCATGTTTCTGGAATTTTTTCAAGAAAAAGGTCATGCCG


TTGAACCGAGCGCAAGCCTGATTCCGGTTGATGATCCGAGCCTGCTGTGGATTAATAGCGGTGTTGCAAC


CCTGAAAAAATACTTTGATGGTCGTATTGTTCCGGAAAATCCGCGTATTTGTAATGCCCAGAAAAGCATT


CGTACCAACGATATTGAAAATGTGGGTAAAACCGCACGCCATCACACCTTTTTTGAAATGCTGGGCAATT


TTAGCATCGGCGATTATTTCAAACGTGAAGCAATTCATTGGGCCTGGGAATTTCTGACCAGTGATAAATG


GATTGGTTTTGATCCGGAACGTCTGAGCGTTACCGTTCATCCGGAAGATGAAGAAGCATATAACATTTGG


CGCAATGAAATTGGTCTGCCGGAAGAACGTATTATTCGTCTGGAAGGTAACTTTTGGGATATTGGTGAAG


GTCCGAGCGGTCCGAATACCGAAATCTTTTATGATCGTGGTGAAGCCTTTGGTAATGATCCGAATGATCC


TGAACTGTATCCAGGTGGTGAAAATGATCGTTATCTGGAAGTTTGGAATCTGGTGTTTAGCCAGTTTAAT


CATAATCCGGATGGCACCTATACACCGCTGCCGAAAAAAAACATTGATACCGGCATGGGTTTAGAACGTA


TGTGTAGCATTCTGCAGGATGTTCCGACCAATTTTGAAACCGACCTGTTTCTGCCGATTATTCGTGCAAC


CGAGCAGATTGCCGGTGAACGTTATGGTGAAGATCCGGATAAAGATGTTGCCTTTAAAGTGATTGCCGAT


CATATTCGCGCAGTTACCTTTGCAATTGGTGATGGTGCACTGCCGAGCAATGAAGGTCGTGGTTATGTTC


TGCGTCGTCTGCTGCGTCGTGCAGTTCGTTATGCAAAACATATTGGTATTGAACGTCCGTTCATGTATGA


ACTGGTTCCGGTTGTTGGTGAAATCATGCACGATTATTATCCCGAGGTTAAAGAGAAAGCCGATTTTATT


GCACGTGTGATTCGTACCGAAGAAGAACGTTTTCACGAAACCCTGCATGAAGGTCTGGCAATTCTGGCAG


AAGTTATTGAAAAAGCAAAAGAACAGGGTTCCGATGTTATTCCGGGTGAAGAGGCATTTCGTCTGTATGA


TACCTATGGTTTTCCGATTGAACTGACCGAAGAATATGCAGCCGAAGCAGGTATGACCGTTGATCATGCA


GGTTTTGAACGTGAAATGGAACGTCAGCGTGAACGTGCCCGTGCAGCACGTCAGGATGTTGATAGTATGC


AGGTTCAAGGTGGTGTTCTGGGTGATATTAAAGATGAAAGTCGCTTTGTGGGCTATGATGAGCTGGTTGC


AGCAAGCACCGTTATTGCAATTGTTAAAGATGGTCGTCTGGTGGAAGAAGTTAAAGCAGGCGAAGAAGCA


CAGATTATTGTTGATGTTACCCCGTTTTATGCAGAAAGCGGTGGTCAGATTGCAGATCAGGGTGTTTTTG


AAAGCGAAACCGGCACCGCAGTTGTGAAAGATGTTCAGAAAGCACCGAATGGTCAGCATCTGCATGCAAT


TATTGTGGAACATGGCACCGTTAAAAAAGGTAGCCGTTATACCGCACGTGTTGATGAAGCAAAACGTATG


CGTATTGTGAAAAATCATACCGCAACACATCTGCTGCATCAGGCACTGAAAGACGTTCTGGGTCGTCATG


TTAATCAGGCAGGTAGCCTGGTTGCACCGGATCGTCTGCGTTTTGACTTTACCCATTTTGGTCAGGTTAA


ACCCGAAGAACTGGAACGTATTGAAGCGATTGTTAATGAGCAGATTTGGAAAAGCCTGCCGGTGGATATT


TTCTATAAACCGCTGGAAGAGGCAAAAGCAATGGGTGCAATGGCACTGTTTGGTGAAAAATATGGTGATA


TTGTGCGTGTGGTTAAAGTGGGTGATTATAGCCTGGAACTGTGTGGTGGTTGTCATGTGCCGAATACCAG


CGCCATTGGTCTGTTTAAAATCGTTAGCGAAAGCGGTATTGGTGCAGGCACCCGTCGCATTGAAGCAGTT


ACCGGTGAAGCAGCATATCGTTTTATGAGCGAACAGCTGGCCATTCTGCAAGAAGCAGCACAGAAACTGA


AAACCAGTCCGAAAGAACTGAATGCACGTCTGGATGGCCTGTTTGCAGAACTGAAAGAATTAGAACGCGA


AAATGAAAGCCTGGCAGCCCGTCTGGCACATATGGAAGCAGAACATCTGACCCGTCAGGTAAAAGATGTT


AATGGTGTTCCGGTTCTGGCAGCAAAAGTTCAGGCAAATGATATGAATCAGCTGCGTGCCATGGCCGATG


ATCTGAAACAAAAACTGGGTACAGCAGTTATTGTTCTGGCAAGCGCACAAGGTGGTAAAGTTCAGCTGAT


TGCAGCCGTTACAGATGACCTGGTAAAAAAAGGTTTTCATGCGGGTAAACTGGTTAAAGAAGTTGCAAGC


CGTTGCGGTGGTGGTGGCGGTGGTCGTCCGGATCTGGCACAGGCAGGCGGTAAAGATCCGAGCAAAGTTG


GTGAAGCACTGGGTTATGTTGAAACCTGGGTTAAAAGCGTGAGCTAA





SEQ ID NO. 26


Amino Acid


AlaRS-GsAlaRS-EcOpt



Geobacillusstearothermophilus



MKKLTSAQVRRMFLEFFQEKGHAVEPSASLIPVDDPSLLWINSGVATLKKYFDGRIVPENPRICNAQKSI


RINDIENVGKTARHHTFFEMLGNFSIGDYFKREAIHWAWEFLTSDKWIGFDPERLSVTVHPEDEEAYNIW


RNEIGLPEERIIRLEGNFWDIGEGPSGPNTEIFYDRGEAFGNDPNDPELYPGGENDRYLEVWNLVFSQFN


HNPDGTYTPLPKKNIDTGMGLERMCSILQDVPTNFETDLFLPIIRATEQIAGERYGEDPDKDVAFKVIAD


HIRAVIFAIGDGALPSNEGRGYVLRRLLRRAVRYAKHIGIERPFMYELVPVVGEIMHDYYPEVKEKADFI


ARVIRTEEERFHETLHEGLAILAEVIEKAKEQGSDVIPGEEAFRLYDTYGFPIELTEEYAAEAGMTVDHA


GFEREMERQRERARAARQDVDSMQVQGGVLGDIKDESRFVGYDELVAASTVIAIVKDGRLVEEVKAGEEA


QIIVDVTPFYAESGGQIADQGVFESETGTAVVKDVQKAPNGQHLHAIIVEHGTVKKGSRYTARVDEAKRM


RIVKNHTATHLLHQALKDVLGRHVNQAGSLVAPDRLRFDFTHFGQVKPEELERIEAIVNEQIWKSLPVDI


FYKPLEEAKAMGAMALFGEKYGDIVRVVKVGDYSLELCGGCHVPNTSAIGLFKIVSESGIGAGTRRIEAV


TGEAAYRFMSEQLAILQEAAQKLKTSPKELNARLDGLFAELKELERENESLAARLAHMEAEHLTRQVKDV


NGVPVLAAKVQANDMNQLRAMADDLKQKLGTAVIVLASAQGGKVQLIAAVTDDLVKKGFHAGKLVKEVAS


RCGGGGGGRPDLAQAGGKDPSKVGEALGYVETWVKSVS





SEQ ID NO. 27


DNA


ArgRS-GsArgRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGAATATTGTGGGCCAGATCAAAGAAAAAATGAAAGAAGAAATTCGTCAGGCAGCAGTTCGTGCAGGTC


TGGCAAGCGCAGATGAACTGCCGGATGTTCTGCTGGAAGTTCCGCGTGATAAAGCACATGGTGATTATAG


CACCAATATTGCAATGCAGCTGGCACGTATTGCAAAAAAACCGCCTCGTGCAATTGCCGAAGCAATTGTT


GGTCAGCTGGATCGTGAACGTATGAGCGTTGCCCGTATTGAAATTGCAGGTCCGGGTTTTATCAACTTCT


ATATGGATAATCGTTACCTGACCGCAGTTGTTCCGGCAATTCTGCAGGCAGGTCAGGCATATGGTGAAAG


TAATGTTGGTAATGGTGAGAAAGTCCAGGTTGAATTTGTTAGCGCAAATCCGACCGGTGATCTGCATCTG


GGTCATGCACGTGGTGCAGCAGTTGGTGATAGCCTGTGTAATATTCTGGCAAAAGCAGGTTTTGATGTGA


CCCGTGAATACTATATTAATGATGCAGGCAAGCAGATCTACAATCTGGCCAAAAGCGTTGAAGCACGTTA


TTTTCAGGCACTGGGTGTTGATATGCCGCTGCCGGAAGATGGTTATTATGGTGATGATATTGTGGAAATC


GGCAAAAAACTGGCCGAAGAATATGGTGATCGTTTCGTTGAAATGGAAGAAGAGGAACGTCTGGCATTTT


TTCGTGATTATGGTCTGCGTTATGAGCTGGAAAAAATCAAAAAAGATCTGGCCGATTTTCGCGTTCCGTT


TGATGTTTGGTATAGCGAAACCAGCCTGTATGAAAGCGGTAAAATTGATGAAGCACTGAGCACCCTGCGT


GAACGTGGTTATATCTATGAACAGGATGGTGCAACCTGGTTTCGTAGCACCGCATTTGGAGATGATAAAG


ATCGTGTTCTGATTAAACAGGACGGCACCTATACCTATCTGCTGCCGGATATTGCATATCATCAGGATAA


ACTGCGTCGCGGTTTTAAGAAACTGATTAACATTTGGGGTGCCGATCATCATGGTTATATTCCTCGCATG


AAAGCAGCAATTGCAGCACTGGGTTATGATCCGGAAGCACTGGAAGTTGAAATTATTCAGATGGTGAATC


TGTATCAGAATGGCGAACGTGTGAAAATGAGCAAACGTACCGGTAAAGCAGTTACCATGCGTGAACTGAT


GGAAGAGGTTGGTGTTGATGCAGTTCGTTATTTCTTTGCAATGCGTAGCGGTGATACCCATCTGGATTTT


GATATGGATCTGGCAGTTAGCCAGAGCAATGAAAATCCGGTTTATTATGTTCAGTATGCCCATGCGCGTG


TTAGCAGCATTCTGCGTCAGGCGGAAGAACAGCATATTAGCTATGATGGTGATCTGGCACTGCATCATCT


GGTTGAAACCGAAAAAGAAATTGAGCTGCTGAAAGTGCTGGGTGATTTTCCGGATGTTGTTGCAGAAGCA


GCACTGAAACGTATGCCGCATCGTGTTACCGCATATGCATTTGACCTGGCCAGCGCACTGCATAGCTTTT


ATAACGCCGAAAAAGTTCTGGATCTGGACAACATCGAAAAAACCAAAGCACGTCTGGCCCTGGTTAAAGC


CGTTCAGATTACACTGCAGAATGCACTGGCCCTGATTGGTGTGAGCGCACCGGAACAAATGTAA





SEQ ID NO. 28


Amino Acid


ArgRS-GsArgRS-EcOpt



Geobacillus



MNIVGQIKEKMKEEIRQAAVRAGLASADELPDVLLEVPRDKAHGDYSTNIAMQLARIAKKPPRAIAEAIV


GQLDRERMSVARIEIAGPGFINFYMDNRYLTAVVPAILQAGQAYGESNVGNGEKVQVEFVSANPTGDLHL


GHARGAAVGDSLCNILAKAGFDVTREYYINDAGKQIYNLAKSVEARYFQALGVDMPLPEDGYYGDDIVEI


GKKLAEEYGDRFVEMEEEERLAFFRDYGLRYELEKIKKDLADFRVPFDVWYSETSLYESGKIDEALSTLR


ERGYIYEQDGATWFRSTAFGDDKDRVLIKQDGTYTYLLPDIAYHQDKLRRGFKKLINIWGADHHGYIPRM


KAAIAALGYDPEALEVEIIQMVNLYQNGERVKMSKRTGKAVTMRELMEEVGVDAVRYFFAMRSGDTHLDF


DMDLAVSQSNENPVYYVQYAHARVSSILRQAEEQHISYDGDLALHHLVETEKEIELLKVLGDFPDVVAEA


ALKRMPHRVTAYAFDLASALHSFYNAEKVLDLDNIEKTKARLALVKAVQITLQNALALIGVSAPEQM





SEQ ID NO. 29


DNA


AsnRS-GsAsnRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGATGTGAGCATTATTGGTGGTAATCAGTGTGTTAAAACCACCACCATTGCCGAAGTTAATCAGTATG


TTGGTCAGCAGGTTACCATTGGTGCATGGCTGGCAAATAAACGTAGCAGCGGTAAAATTGTTTTTCTGCA


GCTGCGTGATGGCACCGGTTTTATTCAGGGTGTTGTTGAAAAAGCCAATGTTAGCGAAGAGGTTTTTCAG


CGTGCAAAAACCCTGACACAAGAAACCAGCCTGTATGTGACCGGCACCGTTCGTATTGATGAACGTAGCC


CGTTTGGTTATGAACTGAGCGTTGCCGATCTGCAGGTTATTCAAGAAGCAGTTGATTATCCGATTACGCC


GAAAGAACATGGTGTTGAATTTCTGATGGATCATCGTCATCTGTGGCTGCGTAGCCGTCGTCAGCATGCA


ATTATGAAAATTCGCAACGAAATTATCCGTGCCACCTATGAATTTTTCAACGATCGTGGTTTTGTGAAAG


TGGATGCACCGATTCTGACCGGTAGCGCACCGGAAGGCACCACCGAACTGTTTCATACCAAATATTTCGA


TGAGGATGCATATCTGAGCCAGAGCGGTCAGCTGTATATGGAAGCAGCAGCAATGGCACTGGGTAAAGTT


TTTAGCTTTGGTCCGACCTTTCGTGCCGAAAAAAGCAAAACCCGTCGCCATCTGATTGAATTTTGGATGG


TTGAACCGGAAATGGCCTTTTATGAATTTGAAGATAATCTGCGCCTGCAAGAGGAATATGTTAGCTATCT


GGTTCAGAGCGTTCTGGAACGTTGTCGTCTGGAACTGGGTCGCCTGGGTCGTGATGTTAGCAAACTGGAA


TTAGTTAAACCGCCTTTTCCGCGTCTGACCTATGATGAAGCAATTAAACTGCTGCATGAAAAAGGCCTGA


CCGATATTGAATGGGGTGATGATTTTGGTGCACCGCATGAAACCGCAATTGCAGAAAGCTTTGATAAACC


GGTGTTTATCACCCATTATCCGACCAGCCTGAAACCGTTTTATATGCAGCCGGATCCGAATCGTCCGGAT


GTTGTTCTGTGTGCAGATCTGATTGCTCCGGAAGGTTATGGTGAAATTATTGGCGGTAGCGAACGCATCC


ATGATTATGAGCTGCTGAAACGTCGCCTGGAAGAACATCATCTGCCGCTGGAAGCATATGAATGGTATCT


GGATCTGCGTAAATATGGTAGCGTTCCGCATAGCGGTTTTGGTCTGGGTTTAGAACGTACCGTTGCATGG


ATTTGCGGTGTTGAACATGTGCGTGAAACCATTCCGTTTCCACGTCTGCTGAATCGTCTGTATCCGTAA





SEQ ID NO. 30


Amino Acid


AsnRS-GsAsnRS-EcOpt



Geobacillus



MDVSIIGGNQCVKTTTIAEVNQYVGQQVTIGAWLANKRSSGKIVFLQLRDGTGFIQGVVEKANVSEEVFQ


RAKTLIQETSLYVTGIVRIDERSPFGYELSVADLQVIQEAVDYPITPKEHGVEFLMDHRHLWLRSRRQHA


IMKIRNEIIRATYEFFNDRGFVKVDAPILTGSAPEGTTELFHTKYFDEDAYLSQSGQLYMEAAAMALGKV


FSFGPTFRAEKSKTRRHLIEFWMVEPEMAFYEFEDNLRLQEEYVSYLVQSVLERCRLELGRLGRDVSKLE


LVKPPFPRLTYDEAIKLLHEKGLTDIEWGDDFGAPHETAIAESFDKPVFITHYPTSLKPFYMQPDPNRPD


VVLCADLIAPEGYGEIIGGSERIHDYELLKRRLEEHHLPLEAYEWYLDLRKYGSVPHSGFGLGLERTVAW


ICGVEHVRETIPFPRLLNRLYP





SEQ ID NO. 31


DNA


AspRS-GsAspRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGAACGCACCTATTATTGTGGTGAAGTTCCGGAAACCGCAGTTGGTGAACGTGTTGTTCTGAAAGGTT


GGGTTCAGAAACGTCGTGATTTAGGTGGTCTGATTTTTATCGATCTGCGTGATCGTACCGGTATTGTTCA


GGTTGTTGCAAGTCCGGATGTTAGCGCAGAAGCACTGGCAGCAGCAGAACGTGTTCGTAGCGAATATGTT


CTGAGCGTTGAAGGCACCGTTGTTGCCCGTGCACCGGAAACAGTTAATCCGAATATTGCAACCGGTCGCA


TTGAAATTCAGGCAGAACGTATTGAAATTATCAACGAAGCAAAAACCCCTCCGTTTAGCATTAGTGATGA


TACCGATGCAGCCGAAGATGTTCGTCTGAAATATCGTTATCTGGATCTGCGTCGTCCGGTTATGTTTCAG


ACCCTGGCACTGCGTCATAAAATCACCAAAACCGTTCGTGATTTTCTGGATAGCGAACGCTTTCTGGAAA


TTGAAACCCCGATGCTGACCAAAAGCACACCGGAAGGTGCACGTGATTATCTGGTTCCGAGCCGTGTTCA


TCCGGGTGAATTTTATGCACTGCCGCAGAGTCCGCAGATCTTTAAACAGCTGCTGATGGTTGGTGGTGTG


GAACGTTATTATCAGATTGCACGTTGTTTTCGTGATGAGGACCTGCGTGCAGATCGTCAGCCGGAATTTA


CCCAGATTGATATTGAAATGAGCTTCATCGAGCAAGAGGATATCATTGATCTGACCGAACGTATGATGGC


AGCAGTTGTTAAAGCAGCAAAAGGTATTGATATTCCGCGTCCGTTTCCGCGTATTACCTATGATGAAGCA


ATGAGCTGTTATGGTAGCGATAAACCGGATATTCGTTTTGGTCTGGAACTGGTTGATGTGAGCGAAATTG


TTCGTGATAGCGCATTTCAGGTTTTTGCGCGTGCAGTTAAAGAAGGTGGTCAGGTTAAAGCAATTAATGC


AAAAGGTGCAGCACCGCGTTATAGCCGTAAAGATATTGATGCACTGGGCGAATTTGCAGGTCGTTATGGT


GCCAAAGGTCTGGCATGGCTGAAAGCAGAAGGTGAAGAACTGAAAGGTCCGATTGCAAAATTCTTTACCG


ATGAAGAACAGGCAGCCCTGCGTCGTGCACTGGCCGTTGAAGATGGTGACCTGCTGCTGTTTGTTGCAGA


TGAAAAAGCAATTGTTGCAGCAGCACTGGGTGCGCTGCGTCTGAAACTGGGTAAAGAACTGGGTCTGATT


GATGAAGCCAAACTGGCATTTCTGTGGGTTACCGATTGGCCTCTGCTGGAATACGATGAAGAGGAAGGTC


GCTATTACGCAGCACATCATCCGTTTACCATGCCGGTGCGTGATGATATCCCGCTGCTGGAAACCAATCC


GAGCGCAGTTCGTGCACAGGCATATGATCTGGTTCTGAATGGTTATGAATTAGGTGGTGGTAGCCTGCGT


ATTTTTGAACGTGATGTGCAAGAAAAAATGTTTCGTGCCCTGGGTTTTAGCGAAGAAGAAGCACGTCGTC


AGTTTGGTTTTCTGTTAGAAGCATTTGAATATGGCACCCCTCCGCATGGTGGTATTGCACTGGGTTTAGA


TCGTCTGGTTATGCTGCTGGCAGGTCGTACCAATCTGCGCGATACCATTGCATTTCCGAAAACCGCCAGC


GCAAGCTGTCTGCTGACCGAAGCACCGGGTCCTGTTAGCGACAAACAGCTGGAAGAACTGCATCTGGCAG


TTGTTCTGCCGGAAAATGAATAA





SEQ ID NO. 32


Amino Acid


AspRS-GsAspRS-EcOpt



Geobacillus



MERTYYCGEVPETAVGERVVLKGWVQKRRDLGGLIFIDLRDRTGIVQVVASPDVSAEALAAAERVRSEYV


LSVEGTVVARAPETVNPNIATGRIEIQAERIEIINEAKTPPFSISDDTDAAEDVRLKYRYLDLRRPVMFQ


TLALRHKITKTVRDFLDSERFLEIETPMLTKSTPEGARDYLVPSRVHPGEFYALPQSPQIFKQLLMVGGV


ERYYQIARCFRDEDLRADRQPEFTQIDIEMSFIEQEDIIDLTERMMAAVVKAAKGIDIPRPFPRITYDEA


MSCYGSDKPDIRFGLELVDVSEIVRDSAFQVFARAVKEGGQVKAINAKGAAPRYSRKDIDALGEFAGRYG


AKGLAWLKAEGEELKGPIAKFFTDEEQAALRRALAVEDGDLLLFVADEKAIVAAALGALRLKLGKELGLI


DEAKLAFLWVTDWPLLEYDEEEGRYYAAHHPFTMPVRDDIPLLETNPSAVRAQAYDLVLNGYELGGGSLR


IFERDVQEKMFRALGFSEEEARRQFGFLLEAFEYGTPPHGGIALGLDRLVMLLAGRTNLRDTIAFPKTAS


ASCLLTEAPGPVSDKQLEELHLAVVLPENE





SEQ ID NO. 33


DNA


CysRS-GsCysRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGAGCAGCATTCGTCTGTATAATACCCTGACGCGTAAAAAAGAACCGTTTGAACCGCTGGAACCGAACA


AAGTTAAAATGTATGTTTGTGGTCCGACCGTGTATAACTATATTCATATTGGTAATGCCCGTGCAGCCAT


TGTGTTTGATACCATTCGTCGTTATCTGGAATTTCGCGGTTATGATGTTACCTATGTGAGCAATTTTACC


GACGTGGATGACAAACTGATTAAAGCAGCACGTGAACTGGGTGAAAGCGTTCCGGCAATTGCAGAACGTT


TTATTGAAGCCTATTTCGAAGATATTCAGGCCCTGGGTTGTAAAAAAGCAGATATTCATCCGCGTGTGAC


CGAAAATATCGATACCATTATTGAATTTATCCAGGCGCTGATCGATAAAGGCTATGCATATGAAGTTGAT


GGCGACGTTTATTATCGTACCCGTAAATTTCGCGAATATGGCAAACTGAGCCATCAGAGCATTGATGAAC


TGCAGGCAGGCGCACGTATTGAAATTGGTGAAAAAAAAGATGATCCGCTGGATTTTGCACTGTGGAAAGC


AGCAAAAGAAGGTGAAATTTGTTGGGATAGCCCGTGGGGTAAAGGTCGTCCTGGTTGGCATATTGAATGT


AGCGCAATGGCACGTAAATATCTGGGTGATACGATTGATATTCATGCCGGTGGTCAGGATCTGACCTTTC


CGCATCATGAAAATGAAATTGCACAGAGCGAAGCACTGACCGGTAAACCGTTTGCCAAATATTGGCTGCA


TAATGGCTATCTGAACATCAACAACGAGAAAATGAGCAAAAGCCTGGGTAATTTTGTTCTGGTGCATGAT


ATTATTCGCGAGATTGATCCGCAGGTTCTGCGCTTTTTTATGCTGAGCGTTCATTATCGTCATCCGATCA


ATTATAGCGAAGAACTGCTGGAAAGCGCACGTCGTGGTCTGGAACGTCTGAAAACCGCATATAGCAATCT


GCAGCACCGTCTGCAGGCAAGCACCAATCTGACCGATAATGATGAAGAATGGGTTAGCCGTATTGCCGAT


ATTCGTGCAAGCTTTATTCGTGAAATGGATGATGATTTTAACACCGCCAATGGTATTGCCGTTCTGTTTG


AACTGGCAAAACAGGCAAATCTGTATCTGCAAGAAAAAACCACCTCCGAAAAAGTGATTCATGCATTTCT


GCGTGAATTTGAACAGCTGGCAGATGTTCTGGGTCTGACCCTGAAACAGGATGAGCTGCTGGATGAAGAA


ATTGAAGCCCTGATTCAGAAACGTAATGAAGCCCGTAAAAATCGTGATTTTGCCCTGGCAGATCGTATTC


GTGATGAATTACGTGCGAAAAACATCATCCTGGAAGATACACCGCAGGGCACCCGTTGGAAACGTGGTTA


A





SEQ ID NO. 34


Amino Acid


CysRS-GsCysRS-EcOpt



Geobacillus



MSSIRLYNTLTRKKEPFEPLEPNKVKMYVCGPTVYNYIHIGNARAAIVFDTIRRYLEFRGYDVTYVSNFT


DVDDKLIKAARELGESVPAIAERFIEAYFEDIQALGCKKADIHPRVTENIDTIIEFIQALIDKGYAYEVD


GDVYYRTRKFREYGKLSHQSIDELQAGARIEIGEKKDDPLDFALWKAAKEGEICWDSPWGKGRPGWHIEC


SAMARKYLGDTIDIHAGGQDLTFPHHENEIAQSEALTGKPFAKYWLHNGYLNINNEKMSKSLGNFVLVHD


IIREIDPQVLRFFMLSVHYRHPINYSEELLESARRGLERLKTAYSNLQHRLQASTNLTDNDEEWVSRIAD


IRASFIREMDDDFNTANGIAVLFELAKQANLYLQEKTTSEKVIHAFLREFEQLADVLGLTLKQDELLDEE


IEALIQKRNEARKNRDFALADRIRDELRAKNIILEDTPQGTRWKRG





SEQ ID NO. 35


DNA


GlnRS-EcGlnRS-EcOpt



E.coli



ATGAGCGAAGCAGAAGCACGTCCGACCAACTTTATTCGTCAGATTATTGATGAAGATCTGGCCAGCGGTA


AACATACCACCGTTCATACCCGTTTTCCGCCTGAACCGAATGGTTATCTGCATATTGGTCATGCCAAAAG


CATTTGCCTGAATTTTGGTATTGCCCAGGATTATAAAGGTCAGTGCAATCTGCGTTTCGATGATACCAAT


CCGGTGAAAGAAGATATCGAATACGTCGAGAGCATCAAAAATGATGTTGAATGGCTGGGTTTTCATTGGA


GCGGTAATGTTCGTTATAGCAGCGATTATTTTGATCAGCTGCATGCCTATGCAATCGAACTGATTAACAA


AGGTCTGGCCTATGTTGATGAACTGACACCGGAACAAATTCGTGAATATCGTGGTACACTGACCCAGCCT


GGTAAAAATAGCCCGTATCGTGATCGTAGCGTTGAAGAAAATCTGGCCCTGTTTGAAAAAATGCGTGCCG


GTGGTTTTGAAGAAGGTAAAGCCTGTCTGCGTGCAAAAATTGATATGGCAAGCCCGTTTATTGTTATGCG


TGATCCGGTTCTGTATCGCATCAAATTTGCAGAACATCATCAGACCGGTAACAAATGGTGTATCTATCCG


ATGTATGATTTCACCCATTGCATTAGTGATGCCCTGGAAGGTATTACCCATAGCCTGTGTACCCTGGAAT


TTCAGGATAATCGTCGTCTGTATGATTGGGTGTTAGACAATATCACCATTCCGGTGCATCCGCGTCAGTA


TGAATTTAGCCGTCTGAATCTGGAATACACCGTTATGAGCAAACGTAAACTGAATCTGCTGGTGACCGAT


AAACATGTTGAAGGTTGGGATGATCCGCGTATGCCGACCATTAGCGGTCTGCGTCGTCGTGGTTATACCG


CAGCAAGCATCCGTGAATTTTGTAAACGTATTGGTGTGACCAAACAGGATAACACCATTGAAATGGCCAG


CCTGGAAAGCTGTATTCGCGAAGATCTGAATGAAAATGCACCGCGTGCAATGGCAGTTATCGATCCGGTT


AAACTGGTGATCGAAAATTATCAAGGTGAAGGTGAAATGGTGACCATGCCGAATCATCCGAATAAACCGG


AAATGGGTAGCCGTCAGGTTCCGTTTAGCGGTGAAATTTGGATTGATCGTGCAGATTTTCGTGAAGAAGC


CAACAAACAGTATAAACGTCTGGTTCTGGGTAAAGAAGTTCGTCTGCGTAACGCCTATGTTATTAAAGCA


GAACGTGTTGAAAAAGATGCCGAAGGCAATATTACCACCATTTTTTGTACCTATGACGCAGATACCCTGA


GCAAAGATCCGGCAGATGGTCGTAAAGTTAAAGGTGTTATTCATTGGGTTAGCGCAGCACATGCACTGCC


GGTTGAAATTCGCCTGTATGATCGTCTGTTTAGCGTTCCGAATCCGGGTGCAGCAGATGATTTTCTGAGC


GTTATTAATCCGGAAAGCCTGGTTATTAAACAGGGTTTTGCCGAACCGAGCCTGAAAGATGCAGTTGCAG


GTAAAGCATTTCAGTTTGAACGCGAAGGTTATTTTTGTCTGGATAGCCGTCATAGCACCGCAGAAAAACC


GGTGTTTAATCGTACCGTTGGTCTGCGTGATACCTGGGCAAAAGTTGGTGAATAA





SEQ ID NO. 36


Amino Acid


GlnRS-EcGlnRS-EcOpt



E.coli



MSEAEARPTNFIRQIIDEDLASGKHTTVHTRFPPEPNGYLHIGHAKSICLNFGIAQDYKGQCNLRFDDTN


PVKEDIEYVESIKNDVEWLGFHWSGNVRYSSDYFDQLHAYAIELINKGLAYVDELTPEQIREYRGTLIQP


GKNSPYRDRSVEENLALFEKMRAGGFEEGKACLRAKIDMASPFIVMRDPVLYRIKFAEHHQTGNKWCIYP


MYDFTHCISDALEGITHSLCTLEFQDNRRLYDWVLDNITIPVHPRQYEFSRLNLEYTVMSKRKLNLLVTD


KHVEGWDDPRMPTISGLRRRGYTAASIREFCKRIGVTKQDNTIEMASLESCIREDLNENAPRAMAVIDPV


KLVIENYQGEGEMVTMPNHPNKPEMGSRQVPFSGEIWIDRADFREEANKQYKRLVLGKEVRLRNAYVIKA


ERVEKDAEGNITTIFCTYDADTLSKDPADGRKVKGVIHWVSAAHALPVEIRLYDRLFSVPNPGAADDFLS


VINPESLVIKQGFAEPSLKDAVAGKAFQFEREGYFCLDSRHSTAEKPVFNRTVGLRDTWAKVGE





SEQ ID NO. 37


DNA


GluRS-GsGluRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCCAAAGAAGTTCGCGTTCGTTACGCACCGAGTCCGACCGGTCATCTGCATATTGGTGGTGCACGTA


CCGCACTGTTTAATTACCTGTTTGCACGTCATCATGGTGGCAAAATGATTGTGCGTATTGAAGATACCGA


TATCGAACGTAATGTTGAAGGTGGTGAAAAAAGCCAGCTGGAAAATCTGAAATGGCTGGGCATTGATTAT


GATGAAAGCATTGATCAGGATGGTGGTTATGGTCCGTATCGTCAGACCGAACGTCTGGATATTTATCGCA


AATATGTGAACGAACTGCTGGAACAGGGTCATGCCTATAAATGTTTTTGTACACCGGAAGAACTGGAACG


TGAACGTGAAGCACAGCGTGCAGCAGGTATTGCAGCACCGCAGTATAGCGGTAAATGTCGTCATCTGACA


CCGGAACAGGTTGCCGAACTGGAAGCACAGGGTAAACCGTATACCATTCGTCTGAAAGTTCCGGAAGGTA


AAACCTATGAATTCTATGATCTGGTGCGTGGCAAAGTTGTGTTTGAAAGCAAAGATGTTGGTGGCGATTG


GGTTATTGTTAAAGCAAATGGTATTCCGACCTATAACTTTGCCGTTGTGATTGATGATCACCTGATGGAA


ATTTCACATGTGTTTCGTGGTGAAGAACATCTGAGCAATACCCCGAAACAGCTGATGGTGTATGAATATT


TTGGTTGGGAACCGCCTCAGTTTGCACATCTGACCCTGATTGTTAATGAACAGCGTAAAAAACTGAGCAA


ACGCGACGAAAGCATTATTCAGTTTGTGAGCCAGTATAAAGAACTGGGTTATCTGCCGGAAGCCATGTTT


AACTTTTTTGCACTGTTAGGTTGGTCACCGGAAGGTGAAGAAGAAATCTTTACCAAAGATGAACTGATCC


GCATGTTTGATGTTAGCCGTCTGAGCAAAAGCCCGAGTATGTTTGATACCAAAAAGCTGACCTGGATGAA


CAACCAGTACATCAAAAAACTGGATCTGGATCGTCTGGTTGAACTGGCACTGCCGCATCTGGTTAAAGCA


GGTCGTCTGCCTGCAGATATGACCGATGAGCAGCGTCAGTGGGCACGTGATCTGATTGCACTGTATCAAG


AGCAGATGAGCTATGGTGCAGAAATTGTTCCGCTGAGCGAACTGTTTTTCAAAGAAGAGATTGATTACGA


GGATGAAGCACGTCAGGTTCTGGCAGAAGAACAGGTTCCGGCAGTTCTGAGCACCTTTCTGGAAAGCGTT


CGTGAGCTGGAACCGTTTACCGCAGATGAAATTAAAGCAGCAATTAAAGCCGTTCAGAAAGCAACCGGTC


AGAAAGGGAAAAAACTGTTTATGCCGATTCGTGCAGCCGTTACAGGTCAGACCCATGGTCCGGAACTGCC


GTTTGCAATTCAGCTGCTGGGTAAAGAAAAAGTGATTGAACGCCTGGAACGCGCACTGCAAGAAAAATTC


TAA





SEQ ID NO. 38


Amino Acid


GluRS-GsGluRS-EcOpt



Geobacillus



MAKEVRVRYAPSPTGHLHIGGARTALFNYLFARHHGGKMIVRIEDTDIERNVEGGEKSQLENLKWLGIDY


DESIDQDGGYGPYRQTERLDIYRKYVNELLEQGHAYKCFCTPEELEREREAQRAAGIAAPQYSGKCRHLT


PEQVAELEAQGKPYTIRLKVPEGKTYEFYDLVRGKVVFESKDVGGDWVIVKANGIPTYNFAVVIDDHLME


ISHVFRGEEHLSNTPKQLMVYEYFGWEPPQFAHLTLIVNEQRKKLSKRDESIIQFVSQYKELGYLPEAMF


NFFALLGWSPEGEEEIFTKDELIRMFDVSRLSKSPSMFDTKKLTWMNNQYIKKLDLDRLVELALPHLVKA


GRLPADMTDEQRQWARDLIALYQEQMSYGAEIVPLSELFFKEEIDYEDEARQVLAEEQVPAVLSTFLESV


RELEPFTADEIKAAIKAVQKATGQKGKKLFMPIRAAVTGQTHGPELPFAIQLLGKEKVIERLERALQEKF





SEQ ID NO. 39


DNA


GlyRS-GsGlyRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCAGTTACCATGGAAGAAATTGTTGCACATGCAAAACATCGTGGTTTTGTTTTTCCGGGTAGCGAAA


TTTATGGTGGTCTGGCAAATACCTGGGATTATGGTCCGCTGGGTGTTGAACTGAAAAATAACATTAAACG


TGCCTGGTGGAAAAAATTCGTTCAAGAAAGCCCGTATAATGTTGGTCTGGATGCAGCAATTCTGATGAAT


CCGCGTACCTGGGAAGCAAGCGGTCATCTGGGTAACTTTAATGATCCGATGGTTGATTGCAAACAGTGTA


AAGCACGTCATCGTGCAGATAAACTGATTGAAAAAGCCCTGGAAGAAAAAGGCATTGAGATGATTGTTGA


TGGTCTGCCGCTGGCAAAAATGGATGAACTGATTAAAGAATATGATATCGCCTGTCCGGAATGTGGTAGC


CGTGATTTTACCAATGTTCGTCAGTTTAACCTGATGTTCAAAACCTATCAGGGTGTTACCGAAAGCAGCG


CCAATGAAATTTATCTGCGTCCGGAAACCGCACAGGGTATTTTTGTTAATTTCAAAAATGTGCAGCGCAC


CATGCGTAAAAAACTGCCGTTTGGTATTGCACAGATTGGCAAAAGCTTTCGCAACGAAATTACCCCTGGT


AATTTTACCTTTCGCACCCGTGAATTTGAGCAGATGGAACTGGAATTTTTCTGTAAACCGGGTGAAGAAC


TGCAGTGGCTGGAATATTGGAAACAGTTTTGTAAAGAATGGCTGCTGAGCCTGGGTATGAAAGAAGATAA


TATTCGTCTGCGTGATCATGCCAAAGAAGAACTGAGCCATTATAGCAATGCAACCACCGATATCGAATAT


CATTTTCCGTTTGGTTGGGGTGAACTGTGGGGTATTGCAAGCCGTACCGATTATGATCTGAAACGCCATA


TGGAATATAGCGGTGAAGATTTCCATTACCTGGATCAAGAAACCAACGAACGTTATATTCCGTATTGTAT


TGAACCGAGTCTGGGTGCAGATCGTGTTACCCTGGCATTTATGATTGATGCCTATGATGAAGAGGAACTT


GAAGATGGTACAACCCGTACCGTGATGCATCTGCATCCGGCACTGGCACCGTATAAAGCAGCAGTGCTGC


CGTTAAGCAAAAAACTGGCAGATGGTGCACGTCGTATTTATGAGGAACTGGCAAAACACTTCATGGTGGA


TTATGATGAAACCGGTAGTATTGGTAAACGTTATCGTCGTCAGGATGAAATTGGCACCCCGTTTTGTATT


ACCTATGATTTTGAAAGCGAACAGGATGGTCAGGTTACCGTTCGTGATCGTGATACAATGGAACAGGTTC


GTCTGCCGATTGGCGAACTGAAAGCATTTCTGGAAGAGAAAATCGCCTTCTAA





SEQ ID NO. 40


Amino Acid


GlyRS-GsGlyRS-EcOpt



Geobacillus



MAVTMEEIVAHAKHRGFVFPGSEIYGGLANTWDYGPLGVELKNNIKRAWWKKFVQESPYNVGLDAAILMN


PRTWEASGHLGNFNDPMVDCKQCKARHRADKLIEKALEEKGIEMIVDGLPLAKMDELIKEYDIACPECGS


RDFTNVRQFNLMFKTYQGVTESSANEIYLRPETAQGIFVNFKNVQRTMRKKLPFGIAQIGKSFRNEITPG


NFTFRTREFEQMELEFFCKPGEELQWLEYWKQFCKEWLLSLGMKEDNIRLRDHAKEELSHYSNATTDIEY


HFPFGWGELWGIASRTDYDLKRHMEYSGEDFHYLDQETNERYIPYCIEPSLGADRVTLAFMIDAYDEEEL


EDGTTRTVMHLHPALAPYKAAVLPLSKKLADGARRIYEELAKHFMVDYDETGSIGKRYRRQDEIGTPFCI


TYDFESEQDGQVTVRDRDTMEQVRLPIGELKAFLEEKIAF





SEQ ID NO. 41


DNA


HisRS-GsHisRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCATTTCAGATTCCGCGTGGCACCCAGGATGTTCTGCCTGGTGATACCGAAAAATGGCAGTATGTTG


AACATGTTGCACGTAATCTGTGTAGCCGTTATGGTTATCGTGAAATTCGTACCCCGATTTTTGAACACAC


CGAACTGTTTCTGCGTGGTGTGGGTGATACCACCGATATTGTTCAGAAAGAAATGTATACCTTCGAGGAT


AAAGGTGGTCGTGCACTGACCCTGCGTCCGGAAGGCACCGCACCGGTTGTTCGTGCATTTGTGGAACATA


AACTGTATGGTAGTCCGCATCAGCCGCTGAAACTGTATTATTCAGGTCCGATGTTTCGTTATGAACGTCC


TGAAGCAGGTCGTTTTCGTCAGTTTGTTCAGTTTGGTGTTGAAGCACTGGGTAGCAGCGATCCGGCAATT


GATGCAGAAGTTATGGCACTGGCAATGCATATTTATGAAGCCCTGGGTCTGAAACGTATTCGTCTGGTGA


TTAATAGCCTGGGTGATCTGGATAGCCGTCGTGCACATCGTGAAGCGCTGGTTCGTCATTTTAGCAGCCG


TATTCATGAACTGTGTCCGGATTGTCAGACCCGTCTGCATACCAATCCGCTGCGTATTCTGGATTGTAAA


AAAGATCGTGATCATGAGCTGATGGCAACCGCACCGAGCATCCTGGATTATCTGAATGAAGATAGCCGTG


CCTATTTCGAGAAAGTGAAACAGTATCTGACCAATCTGGGTATTCCGTTTGTTATTGATAGTCGTCTGGT


TCGTGGTCTGGATTATTACAATCATACCACCTTTGAAATCATGAGCGAAGCCGAAGGTTTTGGTGCAGCA


GCAACCCTGTGTGGTGGTGGTCGTTATAATGGTCTGGTTCAAGAAATTGGTGGTCCGGAAACACCTGGTA


TTGGTTTTGCACTGAGCATTGAACGTCTGCTGGCAGCACTGGATGCCGAAGGTGTTGAACTGCCGGTTGA


AAGTGGCCTGGATTGTTATGTTGTTGCAGTTGGTGAACGTGCAAAAGATGAAGCAGTGCGTCTGGTTTAT


GCCCTGCGTCGTAGCGGTCTGCGTGTTGATCAGGATTACCTGGGTCGTAAACTGAAAGCACAGCTGAAAG


CAGCAGATCGTCTGGGTGCAAGCTTTGTTGCAATTATTGGTGATGAGGAACTGGAACGTCAAGAAGCAGC


AGTTAAACATATGGCAAGCGGTGAACAGACCAATGTTCCGCTGGGTGAACTGGCACATTTTCTGCATGAA


CGTATTGGCAAAGAAGAATAA





SEQ ID NO. 42


Amino Acid


HisRS-GsHisRS-EcOpt



Geobacillus



MAFQIPRGTQDVLPGDTEKWQYVEHVARNLCSRYGYREIRTPIFEHTELFLRGVGDTTDIVQKEMYTFED


KGGRALTLRPEGTAPVVRAFVEHKLYGSPHQPLKLYYSGPMFRYERPEAGRFRQFVQFGVEALGSSDPAI


DAEVMALAMHIYEALGLKRIRLVINSLGDLDSRRAHREALVRHFSSRIHELCPDCQTRLHTNPLRILDCK


KDRDHELMATAPSILDYLNEDSRAYFEKVKQYLTNLGIPFVIDSRLVRGLDYYNHTTFEIMSEAEGFGAA


ATLCGGGRYNGLVQEIGGPETPGIGFALSIERLLAALDAEGVELPVESGLDCYVVAVGERAKDEAVRLVY


ALRRSGLRVDQDYLGRKLKAQLKAADRLGASFVAIIGDEELERQEAAVKHMASGEQTNVPLGELAHFLHE


RIGKEE





SEQ ID NO. 43


DNA


IleRS-GsIleRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGGACTACAAAGAAACCCTGCTGATGCCGCAGACCGAATTTCCGATGCGTGGTAATCTGCCGAAACGTG


AACCGGAAATGCAGAAAAAATGGGAAGAGATGGATATCTACCGCAAAGTTCAAGAACGTACCAAAGGTCG


TCCGCTGTTTGTTCTGCATGATGGTCCGCCTTATGCAAATGGTGATATTCATATGGGTCATGCCCTGAAC


AAAATCCTGAAAGATATTATCGTGCGCTATAAGAGCATGAATGGTTATTGTGCACCGTATGTTCCAGGTT


GGGATACCCATGGTCTGCCGATTGAAACCGCACTGGCAAAACAGGGTGTTGATCGTAAAAGCATGAGCGT


TGCAGAATTTCGTAAACGTTGTGAACAGTATGCCTATGAGCAGATTGATAATCAGCGTCGTCAGTTTAAA


CGTCTGGGTGTTCGTGGTGATTGGGATAATCCGTATATTACCCTGAAACCGGAATATGAAGCACAGCAGA


TTAAAGTGTTTGGCGAGATGGCAAAAAAAGGCCTGATCTATAAAGGTCTGAAACCTGTTTATTGGAGCCC


GAGCAGCGAAAGTGCACTGGCAGAAGCAGAAATTGAGTATAAAGATAAACGCTCCCCGAGCATTTATGTT


GCCTTTCCGGTTAAAGATGGTAAAGGTGTTCTGGAAGGTGATGAACGTATTGTGATTTGGACCACCACAC


CGTGGACCATTCCGGCAAATCTGGCAATTGCAGTTCATCCGGATCTGGATTATCATGTTGTTGATGTTAG


CGGTAAACGTTATGTTGTTGCAGCAGCACTGGCCGAAAGCGTTGCAAAAGAAATTGGTTGGGATGCATGG


TCAGTTGTGAAAACCGTTAAAGGTAAAGAACTGGAATATGTGGTTGCGAAACACCCGTTTTATGAACGTG


ATAGCCTGGTTGTTTGTGGTGAACATGTGACCACCGATGCAGGCACCGGTTGTGTTCATACCGCACCTGG


TCATGGTGAAGATGATTTTCTGGTTGGTCAGAAATATGGCCTGCCGGTTCTGTGTCCGGTGGATGAACGT


GGTTATATGACCGAAGAAGCACCGGGTTTTGAAGGTATGTTTTATGAGGATGCCAACAAAGCGATTACGC


AGAAACTGGAAGAAGTTGGCGCACTGCTGAAACTGGGTTTTATTACCCATAGCTATCCGCATGATTGGCG


TACCAAACAGCCGACCATTTTTCGTGCAACCACACAGTGGTTTGCAAGCATTGATAAAATTCGCAATGAA


CTGCTGCAGGCCATCAAAGAAACAAAATGGATCCCGGAATGGGGTGAAATTCGCATTCATAACATGGTTC


GTGATCGCGGTGATTGGTGTATTAGCCGTCAGCGTGCATGGGGTGTTCCGATTCCGGTGTTTTATGGTGA


AAATGGTGAACCGATTATCACCGATGAAACCATTGAACATGTTAGCAACCTGTTTCGTCAGTATGGTAGC


AATGTTTGGTTTGAACGTGAAGCAAAAGATCTGCTGCCGGAAGGTTTTACCCATCCGAGCAGCCCGAATG


GTATTTTTACAAAAGAAACCGATATCATGGACGTGTGGTTTGATAGCGGTAGCAGCCATCAGGCAGTTCT


GGTGGAACGTGATGATCTGATGCGTCCGGCAGATCTGTATCTGGAAGGCAGCGATCAGTATCGTGGTTGG


TTTAATAGCAGCCTGAGCACCGCAGTTGCAGTGACCGGTAAAGCACCGTATAAAGGTGTGCTGAGCCATG


GTTTTGTGCTGGATGGTGAAGGTCGTAAAATGAGCAAAAGCCTGGGTAATGTTGTTGTTCCTGCAAAAGT


TATGGAACAGTTTGGTGCAGATATTCTGCGTCTGTGGGTTGCCAGCGTTGATTATCAGGCAGATGTTCGT


ATTAGCGATCATATTCTGAAACAGGTGAGCGAAGTGTATCGCAAAATTCGTAATACCTTTCGCTTTATGC


TGGGTAACCTGTTTGATTTTGATCCGAATCAGAATGCAGTTCCGATTGGTGAACTGGGTGAAGTTGATCG


TTATATGCTGGCCAAACTGAATAAACTGATCGCCAAAGTGAAAAAAGCCTATGATAGCTACGATTTCGCA


GCCGTTTATCATGAAATGAACCATTTTTGTACCGTTGAACTGAGCGCCTTTTATCTGGATATGGCAAAAG


ATATCCTGTATATCGAAGCAGCAGATAGCCGTGCACGTCGTGCAGTTCAGACCGTTCTGTATGAAACCGT


TGTTGCACTGGCGAAACTGATTGCACCGATTCTGCCGCATACCGCAGATGAAGTTTGGGAACATATTCCG


AATCGTCGTGAAAATGTGGAAAGCGTTCAGCTGACCGATATGCCGGAACCGATTGCAATTGATGGCGAAG


AGGCACTGCTGGCAAAATGGGATGCCTTTATGGATGTTCGTGATGATATGCTGAAAGCACTGGAAAATGC


CCGTAACGAAAAAGTGATTGGTAAAAGCCTGACCGCAAGCGTTATTGTTTATCCGAAAGATGAAGCACGT


AAACTGCTGGCGAGCCTGGATGCCGATCTGCGTCAGCTGCTGATTGTTAGCGCATTTAGCATTGCAGATG


AACCGTATGATGCTGCCCCTGCAGAAGCCGAACGTCTGGATCATGTTGCCGTTCTGGTTCGTCCTGCCGA


AGGTGAAACCTGCGAACGTTGTTGGACCGTTACACCGGCAGTTGGTCAGGATCCGAGCCATCCGACCTTT


TGTCCGCGTTGTGCACATATTGTTAACGAACATTATAGCGCCTAA





SEQ ID NO. 44


Amino Acid


IleRS-GsIleRS-EcOpt



Geobacillusstearothermophilus



MDYKETLLMPQTEFPMRGNLPKREPEMQKKWEEMDIYRKVQERTKGRPLFVLHDGPPYANGDIHMGHALN


KILKDIIVRYKSMNGYCAPYVPGWDTHGLPIETALAKQGVDRKSMSVAEFRKRCEQYAYEQIDNQRRQFK


RLGVRGDWDNPYITLKPEYEAQQIKVFGEMAKKGLIYKGLKPVYWSPSSESALAEAEIEYKDKRSPSIYV


AFPVKDGKGVLEGDERIVIWTTTPWTIPANLAIAVHPDLDYHVVDVSGKRYVVAAALAESVAKEIGWDAW


SVVKTVKGKELEYVVAKHPFYERDSLVVCGEHVTTDAGTGCVHTAPGHGEDDFLVGQKYGLPVLCPVDER


GYMTEEAPGFEGMFYEDANKAITQKLEEVGALLKLGFITHSYPHDWRTKQPTIFRATTQWFASIDKIRNE


LLQAIKETKWIPEWGEIRIHNMVRDRGDWCISRQRAWGVPIPVFYGENGEPIITDETIEHVSNLFRQYGS


NVWFEREAKDLLPEGFTHPSSPNGIFTKETDIMDVWFDSGSSHQAVLVERDDLMRPADLYLEGSDQYRGW


FNSSLSTAVAVTGKAPYKGVLSHGFVLDGEGRKMSKSLGNVVVPAKVMEQFGADILRLWVASVDYQADVR


ISDHILKQVSEVYRKIRNTFRFMLGNLFDFDPNQNAVPIGELGEVDRYMLAKLNKLIAKVKKAYDSYDFA


AVYHEMNHFCTVELSAFYLDMAKDILYIEAADSRARRAVQTVLYETVVALAKLIAPILPHTADEVWEHIP


NRRENVESVQLTDMPEPIAIDGEEALLAKWDAFMDVRDDMLKALENARNEKVIGKSLTASVIVYPKDEAR


KLLASLDADLRQLLIVSAFSIADEPYDAAPAEAERLDHVAVLVRPAEGETCERCWTVTPAVGQDPSHPTF


CPRCAHIVNEHYSA





SEQ ID NO. 45


DNA


LeuRS-GsLeuRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGAGCTTTAACCACCGTGAAATCGAACAGAAATGGCAGGATTATTGGGAGAAGAATAAAACCTTTCGTA


CACCGGATGATGATGACAAACCGAAATTCTATGTGCTGGATATGTTTCCGTATCCGAGCGGTGCAGGTCT


GCATGTTGGTCATCCGGAAGGTTATACCGCAACCGATATTCTGGCACGTATGAAACGTATGCAGGGTTAT


AATGTTCTGCATCCGATGGGTTGGGATGCATTTGGTCTGCCTGCAGAACAGTATGCACTGGATACCGGTA


ATGATCCGGCAGAATTTACCCAGAAAAACATCGATAACTTTCGTCGCCAGATTAAAAGCCTGGGTTTTAG


CTATGATTGGGATCGTGAAATCAATACCACCGATCCGAATTATTACAAATGGACCCAGTGGATCTTCCTG


AAACTGTATGAAAAAGGTCTGGCCTATATGGATGAAGTTCCGGTTAATTGGTGTCCGGCACTGGGCACCG


TTCTGGCAAATGAAGAAGTTATTAACGGTCGTAGCGAACGTGGTGGCCATCCGGTTATTCGTAAACCGAT


GCGTCAGTGGATGCTGAAAATTACCGCATATGCAGATCGTCTGCTGGAAGATCTGGAAGAATTAGATTGG


CCTGAAAGCATCAAAGAAATGCAGCGTAATTGGATTGGTCGTAGTGAAGGTGCAGAAATTGAATTTGCAG


TTGATGGTCACGATGAAACCTTTACCGTTTTTACCACACGTCCGGATACACTGTTTGGTGCAACCTATAC


CGTGCTGGCACCGGAACATCCGCTGGTTGAAAAAATCACCACTCCGGAACAGAAACCTGCCGTTGATGCA


TATCTGAAAGAAATTCAGAGCAAAAGCGATCTGGAACGTACCGATCTGGCCAAAGAAAAAACCGGTGTGT


TTACCGGTGCATATGCCATTCATCCTGTTACCGGTGATCGCCTGCCGATTTGGATTGCAGATTATGTTCT


GATGAGCTATGGTACAGGTGCAATTATGGCAGTTCCGGCACATGATGAACGTGATTATGAATTCGCCAAA


AAATTCCATCTGCCGATGAAAGAAGTTGTTGCAGGCGGTAATATTGAGAAAGAAGCATATACAGGCGACG


GCGAACATATTAACAGCGAATTTCTGAATGGCCTGAATAAACAAGAGGCCATCGATAAAATGATTGCCTG


GCTGGAAGAACATGGTAAAGGTCGTAAAAAAGTTAGCTATCGTCTGCGTGATTGGCTGTTTAGCCGTCAG


CGTTATTGGGGTGAACCGATTCCGATTATTCATTGGGAAGATGGCACCATGACACCGGTTCCGGAAGAAG


AACTGCCGCTGGTTCTGCCGAAAACCGATGAAATTCGTCCGAGCGGCACCGGTGAAAGTCCGCTGGCAAA


TATTGAAGAATGGGTTAATGTTGTGGATCCGAAAACGGGTAAAAAAGGTCGTCGCGAAACCAATACCATG


CCGCAGTGGGCAGGTAGCTGTTGGTATTATCTGCGTTATATTGATCCGCACAACGATAAACAGCTGGCAG


ATCCGGAAAAACTGAAAAAATGGCTGCCGGTTGATGTGTATATTGGTGGTGCCGAACATGCAGTGCTGCA


TCTGCTGTATGCACGTTTTTGGCATAAATTTCTGTATGACCTGGGTATTGTTCCGACCAAAGAACCGTTT


CAGAAACTGTTTAATCAGGGTATGATTCTGGGCGAGAACAACGAAAAAATGAGCAAAAGTAAAGGCAATG


TGGTGAACCCGGATGATATTATTGAAAGCCATGGTGCAGATACCCTGCGTCTGTATGAGATGTTTATGGG


TCCGCTGGAAGCAAGCATTGCATGGTCAACCAAAGGCCTGGATGGTGCACGTCGTTTTCTGGATCGTGTT


TGGCGTCTGTTTGTTACCGAAAATGGTGAACTGAATCCGAACATTGTTGATGAACCGGCAAATGATACCC


TGGAACGCATTTATCATCAGACCGTTAAAAAAGTGACCGAGGATTATGAAGCCCTGCGTTTTAATACCGC


AATTAGCCAGCTGATGGTGTTTATTAACGAAGCCTATAAAGCCGAGCAGATGAAAAAAGAATATATGGAA


GGCTTCGTGAAACTGCTGAGTCCGGTTTGTCCGCATATTGGTGAAGAACTGTGGCAGAAACTGGGTCATA


CCGATACCATTGCATATGAACCGTGGCCGACCTATGATGAAACCAAACTGGTTGAAGATGTGGTGGAAAT


TGTTGTGCAGATTAATGGTAAAGTGCGTAGTCGCCTGCATGTGCCTGTTGATCTGCCTAAAGAAGCCTTA


GAAGAACGCGCACTGGCGGATGAAAAGATTAAAGAACAGCTGGAAGGTAAAACCGTGCGTAAAGTTATTG


CCGTTCCGGGTAAACTGGTTAATATTGTTGCCAACTAA





SEQ ID NO. 46


Amino Acid


LeuRS-GsLeuRS-EcOpt



Geobacillusstearothermophilus



MSFNHREIEQKWQDYWEKNKTFRTPDDDDKPKFYVLDMFPYPSGAGLHVGHPEGYTATDILARMKRMQGY


NVLHPMGWDAFGLPAEQYALDTGNDPAEFTQKNIDNFRRQIKSLGFSYDWDREINTTDPNYYKWTQWIFL


KLYEKGLAYMDEVPVNWCPALGTVLANEEVINGRSERGGHPVIRKPMRQWMLKITAYADRLLEDLEELDW


PESIKEMQRNWIGRSEGAEIEFAVDGHDETFTVFTTRPDTLFGATYTVLAPEHPLVEKITTPEQKPAVDA


YLKEIQSKSDLERTDLAKEKTGVFTGAYAIHPVTGDRLPIWIADYVLMSYGTGAIMAVPAHDERDYEFAK


KFHLPMKEVVAGGNIEKEAYTGDGEHINSEFLNGLNKQEAIDKMIAWLEEHGKGRKKVSYRLRDWLFSRQ


RYWGEPIPIIHWEDGTMTPVPEEELPLVLPKTDEIRPSGTGESPLANIEEWVNVVDPKTGKKGRRETNTM


PQWAGSCWYYLRYIDPHNDKQLADPEKLKKWLPVDVYIGGAEHAVLHLLYARFWHKFLYDLGIVPTKEPF


QKLFNQGMILGENNEKMSKSKGNVVNPDDIIESHGADTLRLYEMFMGPLEASIAWSTKGLDGARRFLDRV


WRLFVTENGELNPNIVDEPANDTLERIYHQTVKKVTEDYEALRFNTAISQLMVFINEAYKAEQMKKEYME


GFVKLLSPVCPHIGEELWQKLGHTDTIAYEPWPTYDETKLVEDVVEIVVQINGKVRSRLHVPVDLPKEAL


EERALADEKIKEQLEGKTVRKVIAVPGKLVNIVAN





SEQ ID NO. 47


DNA


LysRS-GsLysRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGAGCCATGAAGAACTGAATGATCAGCTGCGTGTTCGTCGTGAAAAACTGAAAAAAATCGAAGAACTGG


GCGTTGATCCGTTTGGTAAACGTTTTGAACGTACCCATAAAGCCCAAGAACTGTTTGAACTGTATGGTGA


TCTGAGCAAAGAGGAACTGGAAGAAAAACAAATTGAAGTTGCAGTTGCCGGTCGCATTATGACCAAACGT


GGTAAAGGTAAAGCAGGCTTTGCACATATTCAGGATGTTACCGGTCAGATTCAGATTTATGTGCGTCAGG


ATGATGTTGGTGAACAGCAGTATGAACTGTTCAAAATTAGCGATCTGGGTGATATTGTTGGTGTTCGTGG


CACCATGTTTAAAACCAAAGTGGGTGAACTGAGCATTAAAGTGAGCAGCTATGAATTTCTGACCAAAGCA


CTGCGTCCGCTGCCGGAAAAATATCATGGTCTGAAAGATATTGAACAGCGTTATCGTCAGCGCTATCTGG


ATCTGATTATGAATCCGGAAAGCAAAAAAACCTTTATTACCCGCTCACTGATTATCCAGAGCATGCGTCG


TTATCTGGATAGCCGTGGATATCTGGAAGTTGAAACCCCGATGATGCATGCCGTTGCCGGTGGTGCAGCA


GCACGTCCGTTTATTACACATCATAATGCACTGGATATGACCCTGTATATGCGTATTGCAATTGAACTGC


ATCTGAAACGTCTGATTGTTGGCGGTCTGGAAAAAGTGTATGAAATTGGTCGTGTGTTTCGCAATGAAGG


TATTAGCACCCGTCATAATCCGGAATTTACCATGCTGGAACTGTACGAAGCATATGCCGATTTTCACGAT


ATTATGGAACTGACCGAAAACCTGATTGCCCATATTGCAACCGAAGTTCTGGGCACCACCAAAATTCAGT


ATGATGAACATGTTGTTGACCTGACACCGGAATGGCGTCGTCTGCATATGGTTGATGCAATTAAAGAATA


TGTCGGCGTGGATTTTTGGCGTCAGATGAGTGATGAAGAAGCACGCGAACTGGCAAAAGAACATGGTGTG


GAAGTTGCACCGCATATGACCTTTGGCCATATTGTGAACGAATTCTTTGAGCAGAAAGTGGAAAGCCATC


TGATTCAGCCGACCTTTATCTATGGTCATCCGGTTGAAATTAGTCCGCTGGCCAAAAAAAACCCGGATGA


TCCTCGTTTTACCGATCGTTTTGAGCTGTTTATTGTGGGTCGTGAACATGCAAATGCCTTTACCGAACTG


AACGATCCGATTGATCAGCGTCAGCGTTTTGAAGCACAGCTGAAAGAACGTGAACAGGGTAATGATGAAG


CACACGAAATGGATGAAGATTTTCTGGAAGCACTGGAATATGGTATGCCTCCGACCGGTGGTTTAGGTAT


TGGTGTTGATCGTCTGGTTATGCTGCTGACCAATAGTCCGAGCATTCGTGATGTTCTGCTGTTTCCGCAG


ATGCGTCATAAATAA





SEQ ID NO. 48


Amino Acid


LysRS-GsLysRS-EcOpt



Geobacillusstearothermophilus



MSHEELNDQLRVRREKLKKIEELGVDPFGKRFERTHKAQELFELYGDLSKEELEEKQIEVAVAGRIMTKR


GKGKAGFAHIQDVTGQIQIYVRQDDVGEQQYELFKISDLGDIVGVRGTMFKTKVGELSIKVSSYEFLTKA


LRPLPEKYHGLKDIEQRYRQRYLDLIMNPESKKTFITRSLIIQSMRRYLDSRGYLEVETPMMHAVAGGAA


ARPFITHHNALDMTLYMRIAIELHLKRLIVGGLEKVYEIGRVFRNEGISTRHNPEFTMLELYEAYADFHD


IMELTENLIAHIATEVLGTTKIQYDEHVVDLTPEWRRLHMVDAIKEYVGVDFWRQMSDEEARELAKEHGV


EVAPHMTFGHIVNEFFEQKVESHLIQPTFIYGHPVEISPLAKKNPDDPRFTDRFELFIVGREHANAFTEL


NDPIDQRQRFEAQLKEREQGNDEAHEMDEDFLEALEYGMPPTGGLGIGVDRLVMLLTNSPSIRDVLLFPQ


MRHK





SEQ ID NO. 49


DNA


MetRS-GsMetRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGGAAAAAAAGACCTTCTATCTGACCACGCCGATCTATTATCCGAGCGATCGTCTGCATATTGGTCATG


CATATACCACCGTTGCCGGTGATGCAATGGCACGTTATAAACGTATGCGTGGTTATGATGTTATGTATCT


GACCGGCACCGATGAACATGGTCAGAAAATTCAGCGTAAAGCCGAAGAAAAAGGTGTTACACCGCAGCAG


TATGTTGATGAAATTGTTGCAGGTATTCAAGAACTGTGGAAAAAACTGGATATCAGCTATGATGATTTCA


TCCGTACCACACAAGAACGCCATAAAAAAGTTGTTGAGCAGATTTTTACCCGTCTGGTTGAACAGGGTGA


TATTTATCTGGGTGAATATGAAGGTTGGTATTGTACCCCGTGTGAAAGCTTTTATACCGAACGTCAGCTG


GTTGATGGTAATTGTCCGGATTGTGGTCGTCCGGTTGAAAAAGTTAAAGAGGAAAGCTATTTTTTCCGCA


TGAGCAAATATGTTGATCGCCTGCTGCAGTATTATGAAGAAAACCCGGATTTCATTCAGCCGGAAAGCCG


TAAAAATGAGATGATTAACAACTTTATCAAACCTGGCCTGGAAGATCTGGCAGTTAGCCGTACCACCTTT


GATTGGGGTATTAAAGTTCCGGGTAATCCGAAACATGTGATCTATGTTTGGATTGATGCACTGGCCAACT


ATATTACCGCATTAGGTTATGGCACCGATAACGATGAAAAATTCCGTAAATATTGGCCTGCCGATGTTCA


TCTGGTTGGTAAAGAAATTGTTCGCTTCCATACCATTTATTGGCCGATTATGCTGATGGCACTGGGTCTG


CCGCTGCCGAAAAAAGTTTTTGGTCATGGTTGGCTGCTGATGAAAGATGGTAAAATGAGCAAAAGCAAAG


GCAATGTTGTTGATCCGGTTACACTGATTGATCGTTATGGTCTGGATGCACTGCGTTATTATCTGCTGCG


TGAAGTTCCGTTTGGTGCAGATGGTGTTTTTACACCGGAAGGTTTTATTGAGCGCATCAATTATGATCTG


GCAAATGATCTGGGTAATCTGCTGCATCGTACCGTTGCAATGATCGAAAAATACTTTGATGGTGTGATTC


CGCCTTATCGTGGTCCGAAAACACCGTTTGATCAAGAGCTGGTTCAGACCGCACGTGAAGTTGTTCGTCA


GTATGAAGAGGCAATGGAAGGTATGGAATTTAGCGTTGCACTGGCAGCAGTTTGGCAGCTGATTAGTCGT


ACCAATAAATACATTGATGAAACCCAGCCGTGGGTGTTAGCAAAAGATGAACAGAAACGTGATGAACTGG


CAGCCGTTATGACCCATCTGGCAGAAAGCCTGCGTCATACCGCAGTTCTGCTGCAGCCGTTTCTGACCCG


CACACCGGAACGTATGCTGGCACAGCTGGGTATTACCGATCATAGCCTGAAAGAATGGGATAGCCTGTAT


GATTTTGGTCTGATTCCGGAAGGCACCAAAGTTCAGAAAGGTGAACCGCTGTTTCCGCGTCTGGATATTG


AAGCAGAAGTGGAATATATCAAAGCCCATATGCAAGGTGGTAAACCGGCAGCCGAACCGGTTAAAGAAGA


AAAAAAAGCAGCCGAAGCAGCGGAAATTAGCATCGATGAATTTGCAAAAGTTGATCTGCGTGTTGCCGAA


GTTATTCATGCAGAACGTATGAAAAACGCCGATAAACTGCTGAAACTGCAGCTGGATTTAGGTGGTGAAA


AACGTCAGGTTATTAGCGGTATTGCCGAATTCTATAAACCGGAAGAACTGGTGGGTAAAAAAGTGATTTG


TGTGGCAAATCTGAAACCGGCAAAACTGCGTGGTGAATGGTCTGAAGGCATGATTCTGGCAGGCGGTAGC


GGTGGTGAATTTAGCCTGGCAACCGTTGATCAGCATGTTCCGAATGGTACGAAAATCAAATAA





SEQ ID NO. 50


Amino Acid


MetRS-GsMetRS-EcOpt



Geobacillusstearothermophilus



MEKKTFYLTTPIYYPSDRLHIGHAYTTVAGDAMARYKRMRGYDVMYLTGTDEHGQKIQRKAEEKGVTPQQ


YVDEIVAGIQELWKKLDISYDDFIRTTQERHKKVVEQIFTRLVEQGDIYLGEYEGWYCTPCESFYTERQL


VDGNCPDCGRPVEKVKEESYFFRMSKYVDRLLQYYEENPDFIQPESRKNEMINNFIKPGLEDLAVSRTTF


DWGIKVPGNPKHVIYVWIDALANYITALGYGTDNDEKFRKYWPADVHLVGKEIVRFHTIYWPIMLMALGL


PLPKKVFGHGWLLMKDGKMSKSKGNVVDPVTLIDRYGLDALRYYLLREVPFGADGVFTPEGFIERINYDL


ANDLGNLLHRTVAMIEKYFDGVIPPYRGPKTPFDQELVQTAREVVRQYEEAMEGMEFSVALAAVWQLISR


INKYIDETQPWVLAKDEQKRDELAAVMTHLAESLRHTAVLLQPFLTRTPERMLAQLGITDHSLKEWDSLY


DFGLIPEGTKVQKGEPLFPRLDIEAEVEYIKAHMQGGKPAAEPVKEEKKAAEAAEISIDEFAKVDLRVAE


VIHAERMKNADKLLKLQLDLGGEKRQVISGIAEFYKPEELVGKKVICVANLKPAKLRGEWSEGMILAGGS


GGEFSLATVDQHVPNGTKIK





SEQ ID NO. 51


DNA


Phe-aRS-GsPhe-aRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGAAAGAACGCCTGTATGAACTGAAACGTCAGGCACTGGAACAAATTGGTCAGGCACGTGATCTGCGTA


TGCTGAATGATGTTCGTGTTGCATATCTGGGTAAAAAAGGTCCGATTACCGAAGTTCTGCGTGGTATGGG


TGCACTGCCTCCGGAAGAACGTCCGAAAATTGGTGCACTGGCAAATGAAGTTCGTGAAGCAATTCAGCAG


GCCCTGGAAGCAAAACAGGCAAAACTTGAACAAGAAGAAGTGGAACGTAAACTGGCAGCCGAAGCAATTG


ATGTTACCCTGCCTGGTCGTCCGGTTAGCCTGGGTAATCCGCATCCGCTGACACGTGTTATTGAAGAAAT


TGAGGACCTGTTTATTGGCATGGGTTATACCGTTGCAGAAGGTCCGGAAGTTGAAACCGATTATTACAAT


TTTGAAGCCCTGAATCTGCCGAAAGGTCATCCGGCACGCGATATGCAGGATAGCTTTTATATCACCGAAG


AAATTCTGCTGCGTACCCATACCTCACCGATGCAGGCACGTACCATGGAAAAACATCGTGGTCGTGGTCC


GGTTAAAATCATTTGTCCGGGTAAAGTTTATCGTCGCGATACCGATGATGCAACCCATAGCCATCAGTTT


ACACAGATTGAAGGTCTGGTTGTGGATCGTAATATTCGTATGAGCGATCTGAAAGGCACCCTGCGTGAAT


TTGCCCGTAAACTGTTTGGTGAAGGTCGTGATATTCGTTTTCGTCCGAGCTTTTTTCCGTTTACCGAACC


GAGCGTTGAAGTTGATGTTAGCTGTTTTCGTTGTGAAGGCCGTGGTTGCGGTGTTTGTAAAGGCACCGGT


TGGATTGAAATTTTAGGTGCAGGTATGGTTCATCCGAATGTTCTGGAAATGGCAGGTTTTGATAGTAAAA


CCTATACCGGTTTTGCATTCGGTATGGGTCCTGAACGTATTGCAATGCTGAAATATGGCATTGATGATAT


CCGCCACTTCTATCAGAATGATCTGCGCTTTCTGCGTCAGTTTCTGCGTGTTTAA





SEQ ID NO. 52


Amino Acid


Phe-aRS-GsPhe-aRS-EcOpt



Geobacillus



MKERLYELKRQALEQIGQARDLRMLNDVRVAYLGKKGPITEVLRGMGALPPEERPKIGALANEVREAIQQ


ALEAKQAKLEQEEVERKLAAEAIDVTLPGRPVSLGNPHPLTRVIEEIEDLFIGMGYTVAEGPEVETDYYN


FEALNLPKGHPARDMQDSFYITEEILLRTHTSPMQARTMEKHRGRGPVKIICPGKVYRRDTDDATHSHQF


TQIEGLVVDRNIRMSDLKGTLREFARKLFGEGRDIRFRPSFFPFTEPSVEVDVSCFRCEGRGCGVCKGTG


WIEILGAGMVHPNVLEMAGFDSKTYTGFAFGMGPERIAMLKYGIDDIRHFYQNDLRFLRQFLRV





SEQ ID NO. 53


DNA


Phe-bRS-GsPhe-bRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGCTGGTTAGCTATCGTTGGCTGGGTGAATATGTTGATCTGACCGGTATTACCGCAAAAGAACTGGCAG


AACGTATTACCAAAAGCGGTATTGAAGTTGAACGTGTTGAAGCACTGGATCGTGGTATGAATGGTGTTGT


TATTGGTCATGTTCTGGAATGTGAACCGCATCCGAATGCAGATAAACTGCGTAAATGTCTGGTTGATTTA


GGTGAAGGTGAACCGGTGCGTATTATTTGTGGTGCACCGAATGTTGCAAAAGGTCAGAAAGTTGCAGTTG


CCAAAGTTGGTGCAGTTCTGCCTGGTAACTTTAAAATCAAACGTGCAAAACTGCGTGGCGAAGAAAGCAA


TGGTATGATTTGTAGCCTGCAAGAACTGGGTGTTGAAACCAAAGTTGTTCCGAAAGAATATGCCGATGGC


ATTTTTGTTTTTCCGAGTGATGCACCGGTTGGTGCCGATGCACTGGAATGGCTGGGTCTGCATGATGAAG


TTCTGGAACTGGCACTGACCCCGAATCGTGCAGATTGTCTGAGCATGATTGGTGTTGCCTATGAAGTTGC


AGCAATTCTGGGTCGTGATGTTAAACTGCCGGAAGCAGCAGTTAAAGAAAATAGCGAACATGTGCACGAA


TATATCAGCGTTCGTGTGGAAGCACCGGAAGATAATCCGCTGTATGCAGGTCGTATTGTTAAAAATGTTC


GTATTGGTCCGAGTCCGCTGTGGATGCAGGCACGTCTGATGGCAGCAGGTATTCGTCCGCATAATAATGT


TGTTGACATCACCAACTATATCCTGCTGGAATATGGTCAGCCGCTGCATGCATTTGATTATGATCGTCTG


GGTAGCAAAGAAATTGTTGTTCGTCGTGCAAAAGCCGGTGAAACCATTATTACCCTGGATGATGTTGAAC


GTAAACTGACCGAAAATCATCTGGTGATTACCAATGGTCGCGAACCGGTTGCACTGGCAGGCGTTATGGG


TGGTGCCAATAGCGAAGTTCGTGATGATACCACCACCGTTTTTATTGAAGCAGCCTATTTCACCAGTCCG


GTTATTCGTCAGGCCGTTAAAGATCATGGTCTGCGTAGCGAAGCGAGCACCCGTTTTGAAAAAGGTATTG


ATCCGGCACGTACCAAAGAGGCCCTGGATCGCGCAGCAGCACTGATGAGCGAATATGCAGGCGGTGAAGT


TGTTGGTGGTATTGTTGAAGCCAGCGTTTGGCGTCAGGATCCGGTTGTTGTTACCGTTACACTGGAACGC


ATTAATGGTGTTCTGGGCACCGCAATGACCAAAGAAGAAGTGGCTGCCATTCTGAGCAATCTGCAGTTTC


CGTTTACCGAAGATAATGGCACCTTTACCATTCATGTTCCGAGCCGTCGTCGTGATATTGCAATTGAAGA


AGATATTATTGAAGAGGCAGCCCGTCTGTATGGTTATGATCGCCTGCCTGCAACACTGCCGGTTGCCGAA


GCAAAACCTGGTGGTCTGACACCGCATCAGGCAAAACGTCGTCGCGTTCGTCGTTATCTGGAAGGCACCG


GTCTGTTTCAGGCAATTACCTATAGCCTGACCTCACCGGATAAAGCAACCCGCTTTGCCCTGGAAACCGC


AGAACCGATTCGTCTGGCACTGCCGATGAGTGAAGAACGTAGCGTTCTGCGTCAGAGCCTGATTCCGCAT


CTGCTGGAAGCCGCAAGCTATAATCGTGCACGTCAGGTTGAAGATGTTGCCCTGTATGAAATTGGTAGCG


TTTATCTGAGCAAAGGTGAACATGTACAGCCTGCAGAAAAAGAACGTTTAGCCGGTGTGCTGACAGGTCT


GTGGCATGCACATCTGTGGCAGGGTGAAAAAAAAGCCGTTGATTTTTATGTGGCCAAAGGTATTCTGGAT


GGTCTGTTTGATCTGCTGGGTTTAGCAGCACGTATTGAATATAAACCGGCAAAACGCGCTGATCTGCATC


CGGGTCGTACCGCAGATATTGTGCTGGATGGCCGTGTGATTGGTTTTGTTGGTCAGCTGCATCCTGCAGT


TCAGAAAGAGTATGATCTGAAAGAAACCTATGTGTTTGAGCTGGCCCTGACCGATCTGCTGAATGCAGAA


AGCGAAGCAATTCGTTATGAACCTATTCCGCGTTTTCCGAGCGTTGTGCGCGACATTGCACTGGTTGTTG


ATGAAAATGTTGAAGCGGGTGCACTGAAACAGGCAATCGAAGAAGCAGGTAAACCGCTGGTTAAAGATGT


TAGCCTGTTCGATGTTTATAAAGGCGATCGTCTGCCGGATGGTAAAAAAAGTCTGGCATTTAGCCTGCGT


TATTATGATCCGGAACGCACCCTGACAGATGAAGAGGTTGCAGCAGTGCATGAACGTGTGCTGGCAGCAG


TTGAAAAACAGTTTGGTGCCGTGCTGCGTGGTTAA





SEQ ID NO. 54


Amino Acid


Phe-bRS-GsPhe-bRS-EcOpt



Geobacillusstearothermophilus



MLVSYRWLGEYVDLTGITAKELAERITKSGIEVERVEALDRGMNGVVIGHVLECEPHPNADKLRKCLVDL


GEGEPVRIICGAPNVAKGQKVAVAKVGAVLPGNFKIKRAKLRGEESNGMICSLQELGVETKVVPKEYADG


IFVFPSDAPVGADALEWLGLHDEVLELALTPNRADCLSMIGVAYEVAAILGRDVKLPEAAVKENSEHVHE


YISVRVEAPEDNPLYAGRIVKNVRIGPSPLWMQARLMAAGIRPHNNVVDITNYILLEYGQPLHAFDYDRL


GSKEIVVRRAKAGETIITLDDVERKLTENHLVITNGREPVALAGVMGGANSEVRDDTTTVFIEAAYFISP


VIRQAVKDHGLRSEASTRFEKGIDPARTKEALDRAAALMSEYAGGEVVGGIVEASVWRQDPVVVTVTLER


INGVLGTAMTKEEVAAILSNLQFPFTEDNGTFTIHVPSRRRDIAIEEDIIEEAARLYGYDRLPAILPVAE


AKPGGLTPHQAKRRRVRRYLEGTGLFQAITYSLTSPDKATRFALETAEPIRLALPMSEERSVLRQSLIPH


LLEAASYNRARQVEDVALYEIGSVYLSKGEHVQPAEKERLAGVLTGLWHAHLWQGEKKAVDFYVAKGILD


GLFDLLGLAARIEYKPAKRADLHPGRTADIVLDGRVIGFVGQLHPAVQKEYDLKETYVFELALTDLLNAE


SEAIRYEPIPRFPSVVRDIALVVDENVEAGALKQAIEEAGKPLVKDVSLFDVYKGDRLPDGKKSLAFSLR


YYDPERTLTDEEVAAVHERVLAAVEKQFGAVLRG





SEQ ID NO. 55


DNA


ProRS-GsProRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGCGTCAGAGCCAGGCATTTATTCCGACACTGCGTGAAGTTCCGGCAGATGCAGAAGTTAAAAGCCATC


AGCTGCTGCTGCGTGCAGGTTTTATTCGTCAGAGCGCAAGCGGTGTTTATACCTTTCTGCCGCTGGGTCA


GCGTGTGCTGCAGAAAGTTGAAGCAATTATTCGCGAAGAAATGAATCGTATTGGTGCCATGGAACTGTTT


ATGCCTGCACTGCAGCCTGCAGAACTGTGGCAGCAGAGCGGTCGTTGGTATAGCTATGGTCCGGAACTGA


TGCGTCTGAAAGATCGTCATGAACGTGATTTTGCACTGGGTCCGACACATGAAGAGATGATTACCGCAAT


TGTTCGTGATGAGGTGAAAACCTATAAACGTCTGCCTCTGGTTCTGTATCAGATCCAGACCAAATTCCGT


GATGAAAAACGTCCGCGTTTTGGTCTGTTACGTGGTCGTGAATTTATGATGAAAGATGCCTATAGCTTCC


ATACCAGCAAAGAAAGCCTGGATGAAACCTACAACAATATGTATGAAGCCTACGCCAACATTTTTCGTCG


TTGCGGTCTGAATTTTCGTGCAGTTATTGCAGATAGCGGTGCAATTGGTGGTAAAGATACCCACGAATTC


ATGGTTCTGAGCGATATTGGTGAAGATACCATTGCATATAGTGATGCAAGCGATTATGCAGCCAATATTG


AAATGGCACCGGTTGTTGCAACCTATGAAAAAAGTGATGAACCTCCGGCAGAACTGAAGAAAGTTGCCAC


ACCGGGTCAGAAAACCATTGCCGAAGTTGCAAGCCATCTGCAAATTAGTCCGGAACGTTGTATTAAAAGC


CTGCTGTTTAATGTGGATGGTCGTTATGTTCTGGTGCTGGTTCGTGGTGATCATGAAGCAAATGAAGTGA


AAGTGAAAAATGTGCTGGATGCCACCGTTGTTGAACTGGCAAAACCGGAAGAAACCGAACGTGTTATGAA


TGCACCGATTGGTAGCCTGGGTCCTATTGGTGTTAGCGAAGATGTTACCGTTATTGCCGATCATGCAGTT


GCAGCAATTGTTAATGGTGTTTGTGGTGCCAATGAAGAGGGCTATCATTACATTGGTGTGAATCCGGGTC


GCGATTTTGCAGTTAGCCAGTATGCCGATCTGCGTTTTGTTAAAGAAGGTGATCCGAGTCCGGATGGTAA


AGGCACCATTCGTTTTGCACGTGGTATTGAAGTTGGCCATGTTTTTAAACTGGGCACCAAATATAGCGAA


GCCATGAATGCAGTTTATCTGGATGAGAATGGTCAGACCCAGACAATGATTATGGGTTGTTATGGTATTG


GCGTTAGCCGTCTGGTTGCAGCCATTGCAGAACAGTTTGCCGATGAACATGGTCTGGTTTGGCCTGCAAG


CGTTGCACCGTTTCATATTCATCTGCTGACCGCAAATGCCAAATCAGATGAACAGCGTGCACTGGCCGAA


GAATGGTATGAAAAACTGGGTCAAGCAGGTTTTGAAGTGCTGTATGATGATCGTCCAGAACGTGCCGGTG


TTAAATTTGCCGATAGCGATCTGATTGGTATTCCGCTGCGTGTTACCGTGGGTAAACGTGCAGGCGAAGG


TGTTGTTGAAGTTAAAGTTCGTAAAACCGGTGAAACCTTTGATGTTCCGGTTAGCGAACTGGTTGATACC


GCACGTCGTCTGCTGCAGAGCTAA





SEQ ID NO. 56


Amino Acid


ProRS-GsProRS-EcOpt



Geobacillusstearothermophilus



MRQSQAFIPTLREVPADAEVKSHQLLLRAGFIRQSASGVYTFLPLGQRVLQKVEAIIREEMNRIGAMELF


MPALQPAELWQQSGRWYSYGPELMRLKDRHERDFALGPTHEEMITAIVRDEVKTYKRLPLVLYQIQTKFR


DEKRPRFGLLRGREFMMKDAYSFHTSKESLDETYNNMYEAYANIFRRCGLNFRAVIADSGAIGGKDTHEF


MVLSDIGEDTIAYSDASDYAANIEMAPVVATYEKSDEPPAELKKVATPGQKTIAEVASHLQISPERCIKS


LLFNVDGRYVLVLVRGDHEANEVKVKNVLDATVVELAKPEETERVMNAPIGSLGPIGVSEDVTVIADHAV


AAIVNGVCGANEEGYHYIGVNPGRDFAVSQYADLRFVKEGDPSPDGKGTIRFARGIEVGHVFKLGTKYSE


AMNAVYLDENGQTQTMIMGCYGIGVSRLVAAIAEQFADEHGLVWPASVAPFHIHLLTANAKSDEQRALAE


EWYEKLGQAGFEVLYDDRPERAGVKFADSDLIGIPLRVTVGKRAGEGVVEVKVRKTGETFDVPVSELVDT


ARRLLQS





SEQ ID NO. 57


DNA


SerRS-GsSerRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGCTGGATGTGAAAATTCTGCGTACCCAGTTTGAAGAGGTGAAAGAAAAACTGATGCAGCGTGGTGGTG


ATCTGACCAATATTGATCGTTTTGAACAGCTGGATAAAGATCGTCGTCGTCTGATTGCAGAAGTTGAAGA


ACTGAAAAGCAAACGCAATGATGTTAGCCAGCAGATTGCAGTTCTGAAACGCGAAAAAAAAGATGCAGAA


CCGCTGATTGCACAGATGCGTGAAGTTGGTGATCGTATTAAACGTATGGATGAGCAGATTCGTCAGCTGG


AAGCAGAACTGGATGATCTGCTGCTGAGCATTCCGAATGTTCCGCATGAAAGCGTTCCGATTGGCCAGAG


CGAAGAAGATAACGTTGAAGTTCGTCGTTGGGGTGAACCGCGTAGCTTTAGCTTTGAACCGAAACCGCAT


TGGGAAATTGCAGATCGTCTGGGTCTGCTGGATTTTGAACGTGCAGCAAAAGTTGCAGGTAGCCGTTTTG


TTTTCTATAAAGGTCTGGGTGCACGTCTGGAACGTGCACTGATTAACTTTATGCTGGATATTCACCTGGA


TGAGTTTGGCTATGAAGAAGTTCTGCCTCCGTATCTGGTTAATCGTGCAAGCATGATTGGCACCGGTCAG


CTGCCGAAATTTGCAGAAGATGCATTTCATCTGGATAGCGAGGATTATTTTCTGATTCCGACCGCAGAAG


TTCCGGTTACCAATCTGCATCGTGATGAAATTCTGGCAGCAGATGACCTGCCGATCTATTATGCAGCATA


TAGCGCATGTTTTCGTGCAGAAGCAGGTAGCGCAGGTCGTGATACCCGTGGTCTGATTCGCCAGCATCAG


TTCAATAAAGTTGAACTGGTGAAATTCGTGAAGCCGGAAGATAGCTATGATGAACTGGAAAAGCTGACCC


GTCAGGCAGAAACCATTCTGCAGCGTCTGGGCCTGCCGTATCGTGTTGTTGCACTGTGTACCGGTGATCT


GGGTTTTAGCGTTGCAAAAACCTATGATATTGAAGTTTGGCTGCCGAGCTATGGCACCTATCGTGAAATT


AGCAGCTGTAGCAATTTTGAAGCATTTCAGGCACGTCGTGCCAATATTCGTTTTCGTCGTGATCCGAAAG


CAAAACCGGAATATGTTCATACCCTGAATGGTAGCGGTCTGGCAATTGGTCGTACCGTTGCAGCAATTCT


GGAAAATTATCAGCAAGAAGATGGCAGCGTTATTGTTCCGGAAGCACTGCGTCCGTATATGGGCAATCGT


GATGTTATTCGTTAA





SEQ ID NO. 58


Amino Acid


SerRS-GsSerRS-EcOpt



Geobacillusstearothermophilus



MLDVKILRTQFEEVKEKLMQRGGDLTNIDRFEQLDKDRRRLIAEVEELKSKRNDVSQQIAVLKREKKDAE


PLIAQMREVGDRIKRMDEQIRQLEAELDDLLLSIPNVPHESVPIGQSEEDNVEVRRWGEPRSFSFEPKPH


WEIADRLGLLDFERAAKVAGSRFVFYKGLGARLERALINFMLDIHLDEFGYEEVLPPYLVNRASMIGTGQ


LPKFAEDAFHLDSEDYFLIPTAEVPVTNLHRDEILAADDLPIYYAAYSACFRAEAGSAGRDTRGLIRQHQ


FNKVELVKFVKPEDSYDELEKLTRQAETILQRLGLPYRVVALCTGDLGFSVAKTYDIEVWLPSYGTYREI


SSCSNFEAFQARRANIRFRRDPKAKPEYVHTLNGSGLAIGRTVAAILENYQQEDGSVIVPEALRPYMGNR


DVIR





SEQ ID NO. 59


DNA


ThrRS-GsThrRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGCCGGATGTTATTCGTATTACCTTTCCGGATGGTGCCGAAAAAGAATTTCCGAAAGGCACCACCACCG


AAGATGTTGCAGCAAGCATTAGTCCGGGTCTGAAAAAAAAGGCAATTGCGGGTAAACTGAATGGTCGTTT


TGTTGATCTGCGTACACCGCTGCATGAAGATGGTGAACTGGTGATTATTACCCAGGATATGCCGGAAGCA


CTGGATATTCTGCGTCATAGCACCGCACATCTGATGGCACAGGCAATTAAACGTCTGTATGGCAATGTGA


AATTAGGTGTTGGTCCGGTGATTGAAAACGGCTTCTATTATGATATCGACATGGAACATAAACTGACACC


GGATGATCTGCCGAAAATTGAAGCAGAAATGCGCAAAATCGTGAAAGAGAACCTGGATATTGTTCGCAAA


GAAGTTAGTCGCGAAGAGGCAATTCGCCTGTATGAAGAAATTGGTGATGAACTGAAACTGGAACTGATTG


CAGATATTCCGGAAGGTGAACCGATTAGCATTTATGAACAGGGCGAATTTTTTGATCTGTGCCGTGGTGT


TCATGTTCCGAGCACCGGTAAAATCAAAGAATTTAAACTGCTGAGCATCAGCGGTGCATATTGGCGTGGT


GATAGCAATAACAAAATGCTGCAGCGTATTTATGGCACCGCGTTTTTCAAAAAAGAAGATCTGGATCGTT


ATCTGCGTCTGCTGGAAGAAGCAAAAGAACGCGATCATCGTAAACTGGGTAAAGAGCTGGAACTGTTTAC


CACCAGTCAGCAGGTTGGTCAGGGTCTGCCGCTGTGGCTGCCGAAAGGTGCAACCATTCGTCGTATTATT


GAACGCTATATCGTGGATAAAGAAGTTGCACTGGGTTACGATCATGTTTATACACCGGTTCTGGGTAGCG


TTGAACTGTATAAAACCAGCGGTCATTGGGATCACTACAAAGAAAATATGTTTCCGCCTATGGAAATGGA


CAATGAAGAACTGGTTCTGCGTCCGATGAATTGTCCGCATCACATGATGATCTATAAAAGCAAACTGCAC


AGCTATCGTGAACTGCCGATTCGTATTGCAGAACTGGGCACCATGCATCGTTATGAAATGAGCGGTGCAC


TGACCGGTCTGCAGCGTGTTCGTGGTATGACCCTGAATGATGCACATATCTTTGTTCGTCCGGATCAGAT


CAAAGATGAATTCAAACGTGTGGTGAACCTGATCCTGGAAGTGTATAAAGATTTTGGCATCGAAGAATAC


AGCTTCCGTCTGAGTTATCGTGATCCGCATGATAAAGAAAAATACTATGATGACGATGAAATGTGGGAAA


AAGCACAGCGTATGCTGCGTGAAGCAATGGATGAATTAGGTCTGGATTATTATGAAGCCGAAGGTGAAGC


AGCCTTTTATGGTCCGAAACTGGATGTTCAGGTTCGTACCGCACTGGGAAAAGATGAAACCCTGAGCACC


GTTCAGCTGGATTTTCTGCTGCCGGAACGTTTCGATCTGACCTATATTGGTGAAGATGGCAAACCGCATC


GTCCGGTTGTTATTCATCGTGGTGTTGTTAGCACCATGGAACGTTTTGTGGCATTTCTGATCGAAGAGTA


TAAAGGTGCATTTCCGACCTGGCTGGCACCGGTTCAGGTTAAAGTTATTCCGGTTAGTCCGGAAGCGCAC


CTGGATTATGCATATGATGTTCAGCGTACCCTGAAAGAACGTGGTTTTCGTGTTGAAGTTGATGAACGCG


ACGAAAAAATCGGCTATAAAATCCGTGAAGCACAGATGCAGAAAATCCCGTATATGCTGGTTGTTGGTGA


TAAAGAGGTTAGCGAACGCGCAGTTAATGTTCGTCGTTATGGTGAAAAAGAAAGCCGTACCATGGGCCTT


GATGAATTTATGGCCCTGCTGGCAGATGATGTTCGTGAAAAACGTACCCGTCTGGGCAAAGCACAGTAA





SEQ ID NO. 60


Amino Acid


ThrRS-GsThrRS-EcOpt



Geobacillus



MPDVIRITFPDGAEKEFPKGTTTEDVAASISPGLKKKAIAGKLNGRFVDLRTPLHEDGELVIITQDMPEA


LDILRHSTAHLMAQAIKRLYGNVKLGVGPVIENGFYYDIDMEHKLTPDDLPKIEAEMRKIVKENLDIVRK


EVSREEAIRLYEEIGDELKLELIADIPEGEPISIYEQGEFFDLCRGVHVPSTGKIKEFKLLSISGAYWRG


DSNNKMLQRIYGTAFFKKEDLDRYLRLLEEAKERDHRKLGKELELFTTSQQVGQGLPLWLPKGATIRRII


ERYIVDKEVALGYDHVYTPVLGSVELYKTSGHWDHYKENMFPPMEMDNEELVLRPMNCPHHMMIYKSKLH


SYRELPIRIAELGTMHRYEMSGALTGLQRVRGMTLNDAHIFVRPDQIKDEFKRVVNLILEVYKDFGIEEY


SFRLSYRDPHDKEKYYDDDEMWEKAQRMLREAMDELGLDYYEAEGEAAFYGPKLDVQVRALGKDETLSTV


QLDFLLPERFDLTYIGEDGKPHRPVVIHRGVVSTMERFVAFLIEEYKGAFPTWLAPVQVKVIPVSPEAHL


DYAYDVQRTLKERGFRVEVDERDEKIGYKIREAQMQKIPYMLVVGDKEVSERAVNVRRYGEKESRTMGLD


EFMALLADDVREKRTRLGKAQ





SEQ ID NO. 61


DNA


TrpRS-GsTrpRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGAAAACCATCTTTAGCGGTATTCAGCCGAGCGGTGTTATTACCCTGGGTAACTATATTGGTGCACTGC


GTCAGTTTATTGAACTGCAGCATGAATATAACTGCTATTTCTGCATTGTTGATCAGCATGCAATTACCGT


TTGGCAGGATCCGCATGAACTGCGCCAGAATATTCGTCGTCTGGCAGCACTGTATCTGGCAGTTGGTATT


GATCCGACACAGGCAACCCTGTTTATTCAGAGCGAAGTTCCGGCACATGCACAGGCAGCATGGATGCTGC


AATGTATTGTTTATATTGGCGAACTGGAACGCATGACCCAGTTTAAAGAAAAAAGCGCAGGTAAAGAAGC


AGTTAGCGCAGGTCTGCTGACCTATCCGCCTCTGATGGCAGCCGATATTCTGCTGTATAACACCGATATT


GTTCCGGTTGGTGATGATCAGAAACAGCATATCGAACTGACCCGTGATCTGGCAGAACGTTTTAACAAAC


GTTATGGTGAGCTGTTTACCATTCCGGAAGCACGTATTCCGAAAGTTGGTGCACGTATTATGAGCCTGGT


GGATCCGACCAAAAAAATGAGCAAAAGCGATCCGAATCCGAAAGCCTATATTACACTGCTGGATGATGCA


AAAACCATCGAGAAAAAAATCAAAAGTGCCGTGACCGATAGCGAAGGCACCATTCGTTATGATAAAGAAG


CCAAACCGGGTATTAGCAACCTGCTGAACATTTATAGCACCCTGAGCGGTCAGAGCATTGAAGAATTAGA


ACGTAAATATGAAGGCAAAGGCTACGGTGTTTTTAAAGCAGATCTGGCACAGGTTGTTATTGAAACCCTG


CGTCCGATTCAAGAACGTTATCATCATTGGATGGAAAGCGAAGAACTGGATCGTGTTCTGGATGAAGGTG


CAGAAAAAGCAAATCGTGTTGCAAGCGAAATGGTGCGTAAAATGGAACAGGCAATGGGTCTGGGTCGTCG


TCGTTAA





SEQ ID NO. 62


Amino Acid


TrpRS-GsTrpRS-EcOpt



Geobacillusstearothermophilus



MKTIFSGIQPSGVITLGNYIGALRQFIELQHEYNCYFCIVDQHAITVWQDPHELRQNIRRLAALYLAVGI


DPTQATLFIQSEVPAHAQAAWMLQCIVYIGELERMTQFKEKSAGKEAVSAGLLTYPPLMAADILLYNTDI


VPVGDDQKQHIELTRDLAERFNKRYGELFTIPEARIPKVGARIMSLVDPTKKMSKSDPNPKAYIILLDDA


KTIEKKIKSAVTDSEGTIRYDKEAKPGISNLLNIYSTLSGQSIEELERKYEGKGYGVFKADLAQVVIETL


RPIQERYHHWMESEELDRVLDEGAEKANRVASEMVRKMEQAMGLGRRR





SEQ ID NO. 63


DNA


TyrRS-GsTyrRS-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGGATCTGCTGGCAGAACTGCAGTGGCGTGGTCTGGTGAATCAGACCACCGATGAAGATGGTCTGCGTG


AACTGCTGAAAGAAGAACGCGTTACCCTGTATTGTGGTTTTGATCCGACCGCAGATAGCCTGCATATTGG


TAATCTGGCAGCAATTCTGACCCTGCGTCGTTTTCAGCAGGCAGGTCATCAGCCGATTGCACTGGTTGGT


GGTGCAACCGGTCTGATTGGTGATCCGAGCGGTAAAAAAAGCGAACGTACCCTGAATGCAAAAGAAACCG


TTGAAGCATGGTCAGCACGTATTCAAGAACAGCTGAGCCGTTTTCTGGATTTTGAAGCACATGGTAATCC


GGCAAAAATCAAGAACAACTATGATTGGATTGGTCCGCTGGATGTTATTACCTTTCTGCGTGATGTTGGC


AAACATTTCAGCGTGAATTATATGATGGCCAAAGAAAGCGTTCAGAGCCGTATTGAAACCGGTATTAGCT


TTACCGAATTCAGCTATATGATGCTGCAGGCCTATGATTTTCTGCGTCTGTATGAAACCGAAGGTTGTCG


TCTGCAGATTGGTGGTAGCGATCAGTGGGGCAATATTACCGCAGGTCTGGAACTGATTCGTAAAACCAAA


GGTGAAGCACGTGCATTTGGTCTGACCATTCCGCTGGTTACCAAAGCAGATGGTACAAAATTTGGTAAAA


CCGAAAGCGGCACCATTTGGCTGGATAAAGAAAAAACCAGTCCGTATGAGTTCTACCAGTTTTGGATTAA


TACCGATGATCGTGATGTGATCCGCTACCTGAAATACTTTACATTTCTGAGCAAAGAAGAGATCGAAGCC


TTTGAACAAGAACTGCGTGAAGCACCGGAAAAACGTGCAGCACAGAAAGCACTGGCAGAAGAAGTTACCA


AACTGGTTCATGGTGAAGAAGCACTGCGTCAGGCAGTTCGTATTAGCGAAGCACTGTTTAGCGGTGATAT


TGGCAACCTGACCGCAGCAGAAATTGAACAGGGTTTTAAAGATGTTCCGAGCTTTGTTCATGAAGGTGGT


GATGTGCCGCTGGTCGAACTGCTGGTTAGCGCAGGTATTAGCCCGAGCAAACGTCAGGCACGTGAAGATA


TTCAGAATGGTGCCATTTATGTGAATGGTGAACGTCTGCAGGATGTTGGTGCGATTCTGACAGCAGAACA


TCGTCTGGAAGGTCGTTTTACCGTTATTCGTCGTGGCAAGTATTACCTGATTCGCTATGCCTAA





SEQ ID NO. 64


Amino Acid


TyrRS-GsTyrRS-EcOpt



Geobacillusstearothermophilus



MDLLAELQWRGLVNQTTDEDGLRELLKEERVTLYCGFDPTADSLHIGNLAAILTLRRFQQAGHQPIALVG


GATGLIGDPSGKKSERTLNAKETVEAWSARIQEQLSRFLDFEAHGNPAKIKNNYDWIGPLDVITFLRDVG


KHFSVNYMMAKESVQSRIETGISFTEFSYMMLQAYDFLRLYETEGCRLQIGGSDQWGNITAGLELIRKTK


GEARAFGLTIPLVTKADGTKFGKTESGTIWLDKEKTSPYEFYQFWINTDDRDVIRYLKYFTFLSKEEIEA


FEQELREAPEKRAAQKALAEEVTKLVHGEEALRQAVRISEALFSGDIGNLTAAEIEQGFKDVPSFVHEGG


DVPLVELLVSAGISPSKRQAREDIQNGAIYVNGERLQDVGAILTAEHRLEGRFTVIRRGKKKYYLIRYA





SEQ ID NO. 65


DNA


ValRS-GsValRS-EcOpt



Geobacillus (codon-optimized for E.coli)



ATGGCACAGCATGAAGTTAGCATGCCTCCGAAATATGATCATCGTGCAGTTGAAGCAGGTCGTTATGAAT


GGTGGCTGAAAGGTAAATTCTTTGAAGCAACCGGTGATCCGAATAAACGTCCGTTTACCATTGTTATTCC


GCCTCCGAATGTGACCGGTAAACTGCATCTGGGTCATGCATGGGATACCACACTGCAGGATATTATCACC


CGTATGAAACGTATGCAGGGTTATGATGTTCTGTGGCTGCCTGGTATGGATCATGCAGGTATTGCAACCC


AGGCAAAAGTTGAAGAAAAACTGCGTCAGCAGGGTCTGAGCCGTTATGATCTGGGTCGTGAAAAATTTCT


GGAAGAAACCTGGAAATGGAAAGAAGAATACGCAGGTCATATTCGTAGCCAGTGGGCAAAATTAGGTCTG


GGTTTAGATTATACCCGTGAACGTTTTACCCTGGATGAAGGTCTGAGCAAAGCAGTTCGTGAAGTTTTTG


TTAGCCTGTATCGTAAAGGTCTGATTTATCGCGGTGAGTATATCATTAATTGGGACCCTGTTACCAAAAC


CGCACTGAGCGATATTGAAGTGGTTTACAAAGAAGTTAAAGGCGCACTGTATCATCTGCGTTATCCGCTG


GCAGATGGTAGCGGTTGTATTGAAGTTGCAACCACACGTCCGGAAACCATGCTGGGTGATACCGCAGTTG


CAGTTCATCCTGATGATGAACGTTATAAACATCTGATCGGCAAAATGGTGAAACTGCCGATTGTTGGTCG


CGAAATTCCGATTATTGCAGATGAATATGTGGACATGGAATTTGGTAGTGGTGCCGTGAAAATTACACCG


GCACATGATCCGAACGATTTTGAAATTGGTAATCGCCATAATCTGCCTCGTATTCTGGTGATGAATGAAG


ATGGCACCATGAATGAAAATGCCATGCAGTATCAAGGTCTGGATCGTTTTGAATGCCGTAAACAAATTGT


TCGCGATCTGCAAGAACAGGGTGTTCTGTTTAAAATCGAAGAACATGTGCATAGCGTTGGTCATAGCGAA


CGTAGCGGTGCAGTTATTGAACCGTATCTGAGCACCCAGTGGTTTGTTAAAATGAAACCGCTGGCCGAAG


CAGCAATTAAACTGCAGCAGACCGATGGTAAAGTTCAGTTTGTGCCGGAACGCTTTGAAAAAACCTATCT


GCATTGGCTGGAAAACATTCGTGATTGGTGTATTAGCCGTCAGCTGTGGTGGGGTCATCGTATTCCGGCA


TGGTATCATAAAGAAACCGGTGAAATTTATGTGGATCACGAACCGCCTAAAGATATCGAAAATTGGGAAC


AAGATCCGGATGTTCTGGATACCTGGTTTAGCAGCGCACTGTGGCCGTTTAGCACCATGGGTTGGCCTGA


TGTTGAAAGTCCGGATTATAAACGTTATTATCCGACCGATGTGCTGGTTACCGGTTATGATATTATCTTT


TTTTGGGTGAGCCGCATGATTTTTCAAGGCCTGGAATTTACCGGCAAACGCCCTTTTAAAGATGTTCTGA


TTCATGGTCTGGTGCGTGATGCACAGGGTCGTAAAATGAGCAAAAGCTTAGGTAATGGTGTTGATCCGAT


GGATGTGATTGATCAGTATGGTGCAGATGCACTGCGTTATTTTCTGGCAACCGGTAGCAGCCCTGGTCAG


GATCTGCGTTTTAGCACCGAAAAAGTGGAAGCAACGTGGAATTTTGCCAACAAAATTTGGAATGCAAGCC


GTTTTGCACTGATGAACATGGGTGGTATGACCTATGAAGAACTGGATCTGAGCGGTGAAAAAACAGTTGC


GGATCATTGGATTCTGACCCGTCTGAATGAAACCATTGATACCGTTACCAAACTGGCCGAAAAATATGAA


TTTGGTGAAGCCGGTCGTACCCTGTATAACTTTATTTGGGATGATCTGTGCGATTGGTATATCGAAATGG


CAAAACTGCCGCTGTATGGTGATGATGAGGCAGCAAAAAAAACAACCCGTAGCGTTCTGGCATATGTGCT


GGATAATACCATGCGCCTGCTGCATCCGTTTATGCCGTTTATTACCGAAGAAATTTGGCAGAATCTGCCG


CATGAAGGTGAAAGCATTACCGTTGCACCGTGGCCTCAGGTTCGTCCGGAACTGAGCAATGAAGAGGCAG


CGGAAGAAATGCGTATGCTGGTTGATATTATTCGTGCCGTTCGTAATGTTCGTGCCGAAGTTAATACCCC


TCCGAGCAAACCGATTGCACTGTATATCAAAGTTAAAGACGAACAGGTTCGTGCAGCCCTGATGAAAAAT


CGTGCATATCTGGAACGTTTTTGCAATCCGAGCGAACTGCTGATTGATACCAATGTTCCTGCACCGGATA


AAGCAATGACCGCAGTGGTGACCGGTGCAGAACTGATTATGCCGCTGGAAGGCCTGATTAACATTGAAGA


AGAAATTAAACGCCTGGAAAAAGAACTTGATAAATGGAACAAAGAGGTGGAACGCGTCGAAAAAAAACTG


GCAAATGAAGGTTTTCTGGCCAAAGCACCAGCGCATGTTGTGGAAGAAGAACGTCGTAAACGTCAGGATT


ACATGGAAAAACGTGAAGCAGTTAAAGCACGTCTGGCCGAACTGAAACGTTAA





SEQ ID NO. 66


Amino Acid


ValRS-GsValRS-EcOpt



Geobacillus



MAQHEVSMPPKYDHRAVEAGRYEWWLKGKFFEATGDPNKRPFTIVIPPPNVTGKLHLGHAWDTTLQDIIT


RMKRMQGYDVLWLPGMDHAGIATQAKVEEKLRQQGLSRYDLGREKFLEETWKWKEEYAGHIRSQWAKLGL


GLDYTRERFTLDEGLSKAVREVFVSLYRKGLIYRGEYIINWDPVTKTALSDIEVVYKEVKGALYHLRYPL


ADGSGCIEVATTRPETMLGDTAVAVHPDDERYKHLIGKMVKLPIVGREIPIIADEYVDMEFGSGAVKITP


AHDPNDFEIGNRHNLPRILVMNEDGTMNENAMQYQGLDRFECRKQIVRDLQEQGVLFKIEEHVHSVGHSE


RSGAVIEPYLSTQWFVKMKPLAEAAIKLQQTDGKVQFVPERFEKTYLHWLENIRDWCISRQLWWGHRIPA


WYHKETGEIYVDHEPPKDIENWEQDPDVLDTWFSSALWPFSTMGWPDVESPDYKRYYPTDVLVTGYDIIF


FWVSRMIFQGLEFTGKRPFKDVLIHGLVRDAQGRKMSKSLGNGVDPMDVIDQYGADALRYFLATGSSPGQ


DLRFSTEKVEATWNFANKIWNASRFALMNMGGMTYEELDLSGEKTVADHWILTRLNETIDTVTKLAEKYE


FGEAGRTLYNFIWDDLCDWYIEMAKLPLYGDDEAAKKTTRSVLAYVLDNTMRLLHPFMPFITEEIWQNLP


HEGESITVAPWPQVRPELSNEEAAEEMRMLVDIIRAVRNVRAEVNTPPSKPIALYIKVKDEQVRAALMKN


RAYLERFCNPSELLIDTNVPAPDKAMTAVVTGAELIMPLEGLINIEEEIKRLEKELDKWNKEVERVEKKL


ANEGFLAKAPAHVVEEERRKRQDYMEKREAVKARLAELKR





SEQ ID NO. 67


DNA


MTF-GsMTF-EcOpt



Geobacillusstearothermophilus (codon-optimized for E.coli)



ATGACCAACATTGTGTTTATGGGCACACCGGATTTTGCAGTTCCGATTCTGCGTCAGCTGCTGCATGATG


GTTATCGTGTTGCAGCAGTTGTTACCCAGCCGGATAAACCGAAAGGTCGTAAACGTGAACCTGTTCCGCC


TCCGGTTAAAGTTGAAGCAGAACGTCGTGGTATTCCGGTTCTGCAGCCGACCAAAATTCGTGAACCGGAA


CAGTATGAACAGGTGCTGGCATTTGCACCGGATCTGATTGTTACCGCAGCATTTGGTCAGATTCTGCCGA


AAGCACTGCTGGATGCACCGAAATATGGTTGCATTAATGTTCATGCAAGCCTGCTGCCGGAACTGCGTGG


TGGTGCACCGATTCATTATGCAATTTGGCAGGGTAAAACCAAAACCGGTGTTACCATTATGTATATGGTT


GAACGTCTGGATGCCGGTGATATGCTGGCACAGGTTGAAGTGCCGATTGCAGAAACCGATACCGTTGGCA


CCCTGCATGATAAACTGAGCGCAGCGGGTGCAAAACTGCTGAGCGAAACCCTGCCGCTGCTGCTGGAAGG


CAATATTACACCGGTTCCGCAGGATGAAGAAAAAGCAACCTATGCACCTAATATTCGTCGTGAACAAGAA


CGTATTGATTGGACCCAGCCTGGTGAAGCCATTTATAACCATATTCGTGCCTTTCATCCGTGGCCTGTTA


CCTATACCACACAGGATGGTCATATTTGGAAAGTTTGGTGGGGTGAAAAAGTTCCTGCACCGCGTAGCGC


ACCGCCTGGCACCATTCTGGCACTGGAAGAAAATGGTATTGTTGTTGCAACCGGTAATGAAACCGCAATT


CGTATTACCGAACTGCAGCCTGCAGGTAAAAAACGTATGGCAGCCGGTGAATTTCTGCGTGGCGCAGGTA


GCCGTCTGGCAGTTGGTATGAAACTGGGTGAAGATCATGAACGTACCTAA





SEQ ID NO. 68


Amino Acid


MTF-GsMTF-EcOpt



Geobacillusstearothermophilus



MINIVFMGTPDFAVPILRQLLHDGYRVAAVVTQPDKPKGRKREPVPPPVKVEAERRGIPVLQPTKIREPE


QYEQVLAFAPDLIVTAAFGQILPKALLDAPKYGCINVHASLLPELRGGAPIHYAIWQGKTKTGVTIMYMV


ERLDAGDMLAQVEVPIAETDTVGTLHDKLSAAGAKLLSETLPLLLEGNITPVPQDEEKATYAPNIRREQE


RIDWTQPGEAIYNHIRAFHPWPVTYTTQDGHIWKVWWGEKVPAPRSAPPGTILALEENGIVVATGNETAI


RITELQPAGKKRMAAGEFLRGAGSRLAVGMKLGEDHERT





SEQ ID NO. 69


DNA


IF-1-GsuIF-1



Geobacillussubterraneus DSM 13552 (91A1)



ATGTTACTCATTCGAAGGAGGGAGAGCCGCTCGATGGCAAAAGACGATGTAATTGAAGTGGAAGGCACCG


TCATTGAAACATTGCCAAATGCGATGTTTCGTGTAGAATTAGAAAATGGGCACACAGTATTGGCCCATGT


GTCCGGCAAAATCCGTATGCACTTCATCCGCATTTTGCCTGGCGATAAAGTGACGGTGGAGTTGTCGCCG


TATGATTTAACGCGTGGACGGATTACGTATCGATATAAA





SEQ ID NO. 70


Amino Acid


IF-1-GsuIF-1



Geobacillussubterraneus DSM 13552 (91A1)



MLLIRRRESRSMAKDDVIEVEGTVIETLPNAMFRVELENGHTVLAHVSGKIRMHFlRILPGDKVTVELSP


YDLTRGRITYRYK





SEQ ID NO. 71


DNA


IF-2-GsuIF-2



Geobacillussubterraneus DSM 13552 (91A1)



ATGGTGTCCCGCTTTGCAAAGTGCCGGACCGGTATACGCTCGGCGGCGCGATCGGCAAAGACGCCCGCGT


CGTTGTCGCCGTCACCGACGAAGGGTTCGCGCGCCAATTGCAAACGATGCTCGACTGATCTTTATGGGGG


TGAATGTATGTCGAAAATGCGTGTGTACGAATACGCCAAAAAACATAATGTGCCAAGCAAGGACGTTATT


CATAAATTGAAAGAAATGAATATTGAAGTGAACAACCATATGACTATGCTCGAAGCCGATGTCGTCGAAA


AGCTCGATCATCAATACCGCGTGAACTCAGAGAAAAAAGCGGAAAAGAAAACGGAGAAACCGAAGCGGCC


GACGCCGGCGAAAGCCGCCGATTTTGCCGACGAGGAAATGTTTGAGGACAAGAAAGAAACGGCAAAGACG


AAGCCGGCGAAGAAAAAGGGAGCAGTGAAAGGAAAGGAAACGAAAAAAACAGAAGCACAGCAGCAAGAAA


AGAAACTGTTCCAAGCGGCGAAGAAAAAAGGAAAAGGACCGATGAAAGGCAAAAAACAAGCTGCCCCAGC


CTCAAAGCAGGCGCAGCAGCCGGCGAAAAAAGAAAAAGAGCTCCCGAAAAAAATTACGTTCGAAGGTTCG


CTCACGGTAGCCGAATTGGCGAAAAAACTTGGCCGCGAGCCGTCGGAAATCATTAAAAAACTGTTTATGC


TCGGCGTCATGGCGACGATTAACCAAGATTTAGACAAAGATGCGATCGAGCTCATTTGCTCTGATTACGG


AGTTGAAGTCGAAGAAAAAGTGACGATCGATGAAACGAATTTTGAAACGATCGAAATTGTCGATGCACCG


GAAGATTTGGTGGAACGGCCGCCGGTCGTCACGATTATGGGGCACGTTGACCACGGGAAAACAACGCTGC


TTGACGCAATCCGCCACTCGAAAGTGACCGAGCAAGAGGCGGGCGGTATTACACAGCATATCGGTGCTTA


TCAAGTCACGGTCAACGGCAAGAAAATTACGTTCCTCGATACGCCGGGGCATGAAGCGTTTACGACGATG


CGGGCGCGCGGTGCGCAAGTGACGGATATCGTCATCCTTGTTGTTGCTGCTGATGATGGGGTCATGCCGC


AGACGGTCGAGGCGATTAACCACGCCAAAGCGGCGAACGTACCGATTATCGTCGCCATTAACAAAATGGA


TAAGCCGGAAGCAAACCCGGATCGCGTTATGCAAGAGTTGATGGAGTACAACCTCGTTCCGGAAGAATGG


GGTGGCGATACGATTTTCTGCAAGCTGTCGGCGAAAACCCAAGACGGTATTGACCATCTGTTGGAAATGA


TTTTGCTTGTCAGCGAAATGGAAGAACTAAAAGCGAACCCGAACCGCCGCGCGCTCGGTACGGTGATCGA


AGCGAAGCTCGATAAAGGGCGCGGTCCGGTAGCGACGTTGCTCGTCCAAGCCGGTACGCTAAAAGTCGGT


GATCCGATTGTTGTCGGAACAACGTACGGACGCGTGCGCGCGATGGTCAATGACAGCGGTCGGCGTGTCA


AAGAAGCGGGTCCGTCGATGCCGGTCGAAATCACAGGGCTTCATGATGTGCCGCAAGCCGGGGACCGCTT


TATGGTATTTGAAGATGAGAAGAAAGCGCGACAAATCGGAGAAGCGCGGGCACAGCGGCAGCTGCAAGAG


CAGCGGAGCGTGAAAACGCGCGTCAGCTTGGACGATTTGTTTGAACAAATTAAGCAAGGTGAAATGAAAG


AGCTGAACTTGATCGTTAAGGCCGACGTCCAAGGATCGGTCGAAGCGCTTGTCGCCGCCTTGCAAAAAAT


CGATATCGAAGGCGTGCGTGTGAAAATTATCCACGCGGCGGTCGGCGCCATTACGGAGTCAGACATCTTG


TTGGCAACGACCTCGAACGCGATCGTCATCGGTTTTAACGTCCGTCCGGACACCAATGCGAAGCGGGCTG


CCGAATCAGAAAACGTCGACATCCGCCTCCACCGCATTATTTACAATGTCATCGAAGAAATTGAAGCGGC


GATGAAAGGGATGCTCGACCCAGAATATGAAGAAAAAGTGATCGGTCAGGCGGAAGTGCGGCAAACGTTC


AAAGTGTCGAAAGTCGGCACGATCGCCGGGTGCTACGTCACCGACGGCAAAATTACCCGCGACAGCAAAG


TGCGCCTTATCCGTCAAGGCATCGTCGTGTACGAAGGCGAAATCGACTCGCTCAAACGGTATAAAGATGA


TGTGCGTGAGGTGGCGCAAGGATACGAATGCGGCGTGACCATCAAAAACTTCAACGATATTAAAGAAGGG


GACGTCATCGAGGCGTACATCATGCAGGAAGTGGCTCGCGCA





SEQ ID NO. 72


Amino Acid


IF-2-GsuIF-2



Geobacillussubterraneus DSM 13552 (91A1)



MVSRFAKCRTGIRSAARSAKTPASLSPSPTKGSRANCKRCSTDLYGGECMSKMRVYEYAKKHNVPSKDVI


HKLKEMNIEVNNHMTMLEADVVEKLDHQYRVNSEKKAEKKTEKPKRPTPAKAADFADEEMFEDKKETAKT


KPAKKKGAVKGKETKKTEAQQQEKKLFQAAKKKGKGPMKGKKQAAPASKQAQQPAKKEKELPKKITFEGS


LTVAELAKKLGREPSEIIKKLFMLGVMATINQDLDKDAIELICSDYGVEVEEKVTIDETNFETIEIVDAP


EDLVERPPVVTIMGHVDHGKTTLLDAIRHSKVTEQEAGGITQHIGAYQVTVNGKKITFLDTPGHEAFTTM


RARGAQVTDIVILVVAADDGVMPQTVEAINHAKAANVPIIVAINKMDKPEANPDRVMQELMEYNLVPEEW


GGDTIFCKLSAKTQDGIDHLLEMILLVSEMEELKANPNRRALGTVIEAKLDKGRGPVAILLVQAGTLKVG


DPIVVGTTYGRVRAMVNDSGRRVKEAGPSMPVEITGLHDVPQAGDRFMVFEDEKKARQIGEARAQRQLQE


QRSVKTRVSLDDLFEQIKQGEMKELNLIVKADVQGSVEALVAALQKIDIEGVRVKIIHAAVGAITESDIL


LATTSNAIVIGFNVRPDTNAKRAAESENVDIRLHRIIYNVIEEIEAAMKGMLDPEYEEKVIGQAEVRQTF


KVSKVGTIAGCYVTDGKITRDSKVRLIRQGIVVYEGEIDSLKRYKDDVREVAQGYECGVTIKNFNDIKEG


DVIEAYIMQEVARA





SEQ ID NO. 73


DNA


IF-3-GsuIF-3



Geobacillussubterraneus DSM 13552 (91A1)



ATGGACTACGGCAAATTCCGCTTTGAGCAGCAAAAGAAAGAAAAAGAAGCGCGCAAAAAGCAAAAGGTGA


TCAACATTAAAGAGGTGCGCCTCAGCCCGACAATTGAGGAACACGACTTTAATACGAAACTACGCAATGC


GCGCAAGTTTTTAGAAAAAGGCGATAAAGTGAAGGCGACGATCCGCTTTAAAGGGCGGGCGATCACCCAT


AAAGAAATCGGGCAGCGCGTCCTTGACCGCTTCTCGGAAGCATGCGCTGATATCGCGGTCGTCGAAACGG


CGCCGAAATTGGAAGGGCGCAACATGTTTTTAGTGCTGGCACCGAAAAATGACAACAAG





SEQ ID NO. 74


Amino Acid


IF-3-GsuIF-3



Geobacillussubterraneus DSM 13552 (91A1)



MDYGKFRFEQQKKEKEARKKQKVINIKEVRLSPTIEEHDENTKLRNARKFLEKGDKVKATIRFKGRAITH


KEIGQRVLDRESEACADIAVVETAPKLEGRNMELVLAPKNDNK





SEQ ID NO. 75


DNA


EF-G-GsuEF-G



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCAAGAGAGTTCTCCTTAGAAAACACTCGTAACATAGGAATCATGGCGCACATTGACGCCGGAAAAA


CGACGACGACGGAACGAATCCTGTTCTACACAGGCCGCGTTCATAAAATCGGGGAAACGCATGAAGGCTC


AGCTACGATGGACTGGATGGAACAAGAGCAAGAGCGCGGGATTACGATTACGTCGGCGGCGACAACGGCG


CAATGGAAAGGCCATCGCATCAACATCATCGACACGCCAGGGCACGTCGACTTCACGGTTGAGGTTGAAC


GTTCGTTGCGCGTGTTGGACGGAGCCATTACAGTTCTTGACGCCCAATCTGGTGTAGAACCGCAAACGGA


AACAGTTTGGCGTCAAGCGACTACATATGGTGTTCCGCGGATTGTATTCGTCAACAAAATGGACAAAATC


GGTGCGGACTTCTTGTATGCGGTAAAAACGCTCCATGACCGCTTACAAGCGAATGCCTACCCGGTGCAGT


TGCCGATCGGCGCTGAAGACCAATTCACCGGCATTATTGACCTCGTGGAAATGTGTGCATACCATTACCA


CGACGACCTTGGCAAAAACATCGAACGCATCGAAATTCCGGAAGACTACCGCGATTTAGCGGAAGAATAT


CATGGCAAGCTCATTGAGGCTGTTGCGGAACTCGATGAAGAGCTGATGATGAAATATTTAGAAGGAGAAG


AAATTACGAAAGAAGAGCTGAAAGCCGCAATCCGTAAGGCGACGATCAACGTTGAATTCTATCCAGTCTT


CTGCGGTTCAGCTTTTAAAAACAAAGGTGTTCAGCTGCTTCTTGACGGGGTTGTCGACTACTTGCCGTCT


CCGTTAGATATCCCGGCGATTCGCGGTATCATTCCGGATACGGAAGAAGAAGTGGCTCGCGAAGCACGCG


ATGACGCTCCGTTCTCCGCGTTGGCATTCAAAATTATGACTGACCCGTACGTTGGGAAGTTGACGTTCTT


CCGCGTCTACTCCGGAACGCTTGATTCCGGTTCTTACGTCATGAACTCAACGAAACGGAAGCGTGAACGG


ATCGGTCGCTTGCTGCAAATGCATGCGAACCACCGTCAAGAAATTTCGACAGTCTATGCCGGTGATATTG


CGGCAGCAGTAGGTTTAAAAGAAACAACGACCGGCGATACTCTATGTGATGAGAAAAATCTTGTCATCTT


AGAGTCGATGCAATTCCCAGAGCCGGTTATCTCGGTGGCGATCGAACCGAAATCGAAAGCCGACCAAGAT


AAGATGGGTCAAGCATTGCAAAAACTGCAAGAGGAAGACCCGACATTCCGTGCGCATACCGATCCGGAAA


CAGGACAAACGATCATTTCCGGGATGGGCGAGCTGCACTTGGACATTATCGTCGACCGGATGCGTCGCGA


ATTCAAAGTCGAGGCGAACGTTGGTGCACCGCAAGTTGCTTACCGTGAAACGTTCCGTCAATCGGCTCAA


GTCGAAGGGAAATTTATTCGCCAGTCCGGTGGTCGTGGTCAGTACGGTCACGTTTGGATCGAATTCACAC


CGAACGAACGCGGTAAAGGCTTTGAATTTGAAAATGCGATCGTCGGTGGGGTCGTTCCGAAAGAGTACGT


GCCGGCTGTTCAAGCTGGATTGGAAGAAGCGATGCAAAACGGTGTCTTAGCTGGCTACCCGGTTGTTGAC


ATCAAAGCGAAACTGTTTGATGGATCGTACCATGATGTCGACTCGAGTGAGATGGCGTTCAAAATTGCTG


CTTCGATGGCGTTGAAAAACGCGGCAGCGAAGTGTGAACCGGTTCTGCTTGAACCGATCATGAAAGTAGA


AGTCGTCATCCCTGAAGAATACCTCGGCGACATTATGGGTGACATCACATCCCGCCGCGGTCGCGTCGAA


GGGATGGAAGCGCGCGGAAACGCCCAAGTTGTTCGTGCAATGGTGCCGCTGGCCGAAATGTTCGGTTATG


CAACATCGCTCCGTTCGAACACGCAAGGGCGTGGAACGTTCTCGATGGTATTTGACCATTACGAAGAAGT


TCCGAAAAACATCGCCGATGAAATTATCTAAAGGCGAA





SEQ ID NO. 76


Amino Acid


EF-G-GsuEF-G



Geobacillussubterraneus DSM 13552 (91A1)



MAREFSLENTRNIGIMAHIDAGKITTTERILFYTGRVHKIGETHEGSATMDWMEQEQERGITITSAATTA


QWKGHRINIIDTPGHVDFTVEVERSLRVLDGAITVLDAQSGVEPQTETVWRQATTYGVPRIVFVNKMDKI


GADFLYAVKTLHDRLQANAYPVQLPIGAEDQFTGIIDLVEMCAYHYHDDLGKNIERIEIPEDYRDLAEEY


HGKLIEAVAELDEELMMKYLEGEEITKEELKAAIRKATINVEFYPVFCGSAFKNKGVQLLLDGVVDYLPS


PLDIPAIRGIIPDTEEEVAREARDDAPFSALAFKIMTDPYVGKLTFFRVYSGTLDSGSYVMNSTKRKRER


IGRLLQMHANHRQEISTVYAGDIAAAVGLKETTTGDTLCDEKNLVILESMQFPEPVISVAIEPKSKADQD


KMGQALQKLQEEDPTFRAHTDPETGQTIISGMGELHLDIIVDRMRREFKVEANVGAPQVAYRETFRQSAQ


VEGKFIRQSGGRGQYGHVWIEFTPNERGKGFEFENAIVGGVVPKEYVPAVQAGLEEAMQNGVLAGYPVVD


IKAKLFDGSYHDVDSSEMAFKIAASMALKNAAAKCEPVLLEPIMKVEVVIPEEYLGDIMGDITSRRGRVE


GMEARGNAQVVRAMVPLAEMFGYATSLRSNTQGRGTFSMVFDHYEEVPKNIADEIIKKNKGE





SEQ ID NO. 77


DNA


EF-Tu-GsuEF-Tu



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCTAAAGCGAAATTTGAGCGTACGAAACCGCACGTCAACATTGGCACGATCGGCCACGTTGACCATG


GGAAAACGACGTTGACAGCTGCGATCACGACAGTTCTTGCGAAACAAGGTAAAGCAGAAGCGAGAGCGTA


CGACCAAATCGACGCTGCTCCGGAAGAGCGTGAACGCGGAATCACGATTTCGACGGCTCACGTTGAGTAT


GAAACAGAAAACCGTCACTATGCGCACGTTGACTGCCCGGGCCACGCTGACTACGTGAAAAACATGATCA


CGGGCGCAGCGCAAATGGACGGCGCGATCCTTGTTGTATCGGCTGCTGACGGTCCGATGCCGCAAACTCG


CGAACACATTCTTCTTTCCCGCCAAGTCGGTGTTCCGTACATCGTTGTTTTCTTGAACAAATGCGACATG


GTGGACGACGAAGAATTGCTTGAACTCGTTGAAATGGAAGTTCGCGATCTTCTTTCTGAATATGACTTCC


CGGGCGACGAAGTGCCGGTTATCAAAGGTTCGGCATTAAAAGCGCTCGAAGGCGATGCACAATGGGAAGA


AAAAATCGTTGAACTGATGAACGCGGTTGACGAGTACATCCCAACTCCGCAACGTGAAGTAGACAAACCG


TTCATGATGCCGGTTGAGGACGTCTTCTCGATCACGGGTCGTGGTACGGTTGCAACGGGCCGTGTTGAGC


GCGGTACGTTAAAAGTTGGTGACCCGGTTGAAATCATCGGTCTTTCGGACGAGCCGAAATCGACGACTGT


TACGGGTGTAGAAATGTTCCGTAAGCTTCTCGACCAAGCAGAAGCTGGTGACAACATCGGTGCGCTTCTC


CGCGGTGTATCGCGTGACGAAGTTGAGCGCGGTCAAGTATTGGCGAAACCGGGCTCGATCACGCCACACA


CGAAATTTAAAGCACAAGTTTACGTTCTGACGAAAGAAGAAGGCGGACGCCATACTCCGTTCTTCTCGAA


CTACCGTCCGCAATTCTACTTCCGTACAACGGACGTAACGGGCATCATCACGCTTCCAGAAGGCGTTGAA


ATGGTTATGCCTGGCGACAACGTTGAAATGACGGTTGAACTGATCGCTCCGATCGCGATCGAAGAAGGTA


CGAAATTCTCGATCCGTGAAGGCGGCCGCACGGTTGGTGCTGGTTCCGTATCGGAAATCATTGAG





SEQ ID NO. 78


Amino Acid


EF-Tu-GsuEF-Tu



Geobacillussubterraneus DSM 13552 (91A1)



MAKAKFERTKPHVNIGTIGHVDHGKTTLTAAITTVLAKQGKAEARAYDQIDAAPEERERGITISTAHVEY


ETENRHYAHVDCPGHADYVKNMITGAAQMDGAILVVSAADGPMPQTREHILLSRQVGVPYIVVFLNKCDM


VDDEELLELVEMEVRDLLSEYDFPGDEVPVIKGSALKALEGDAQWEEKIVELMNAVDEYIPTPQREVDKP


FMMPVEDVFSITGRGTVATGRVERGTLKVGDPVEIIGLSDEPKSTTVTGVEMFRKLLDQAEAGDNIGALL


RGVSRDEVERGQVLAKPGSITPHTKFKAQVYVLTKEEGGRHTPFFSNYRPQFYFRTTDVTGIITLPEGVE


MVMPGDNVEMTVELIAPIAIEEGTKFSIREGGRTVGAGSVSEIIE








SEQ ID NO. 79


DNA


EF-Ts-GsuEF-Ts



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCGATTACAGCACAAATGGTAAAAGAGCTGCGCGAAAAAACGGGCGCAGGCATGATGGACTGCAAAA


AAGCGCTCACCGAAACGAACGGTGACATGGAAAAAGCGATCGACTGGCTGCGTGAAAAAGGAATTGCTAA


AGCAGCGAAAAAAGCAGATCGCATCGCAGCGGAAGGAATGACATACATCGCGACGGAAGGCAATGCGGCT


GTCATTTTGGAAGTAAACTCGGAAACGGACTTCGTTGCCAAAAACGAAGCGTTCCAAACGCTCGTTAAGG


AGCTGGCTGCACATCTGCTGAAACAAAAGCCAGCCACGCTTGATGAAGCGCTCGGACAAACGATGAGCAG


TGGTTCCACTGTTCAAGATTACATTAACGAAGCAGTTGCTAAAATCGGTGAAAAAATTACGCTCCGCCGC


TTTGCTGTTGTCAACAAAGCGGATGATGAAACGTTTGGCGCGTACTTGCACATGGGCGGGCGCATCGGCG


TATTAACATTATTAGCCGGCAACGCAACTGAAGAGGTCGCTAAAGATGTGGCGATGCATATTGCTGCGCT


CCATCCGAAATACGTTTCGCGCGATGAAGTGCCGCAAGAAGAGATTGCGCGCGAACGTGAAGTGTTGAAA


CAACAAGCGTTGAACGAAGGTAAGCCGGAAAACATCGTTGAAAAAATGGTTGAAGGCCGTCTGAAAAAGT


TTTACGAAGATGTTTGCCTGCTTGAGCAAGCGTTCGTGAAAAACCCGGATGTGACGGTACGCCAATACGT


CGAATCGAGCGGAGCAACCGTGAAGCAGTTCATCCGCTACGAAGTTGGTGAAGGGCTCGAAAAACGTCAA


GATAATTTCGCTGAAGAAGTCATGAGCCAAGTAAGAAAACAA





SEQ ID NO. 80


Amino Acid


EF-Ts-GsuEF-Ts



Geobacillussubterraneus DSM 13552 (91A1)



MAITAQMVKELREKTGAGMMDCKKALTETNGDMEKAIDWLREKGIAKAAKKADRIAAEGMTYIATEGNAA


VILEVNSETDFVAKNEAFQTLVKELAAHLLKQKPATLDEALGQTMSSGSTVQDYINEAVAKIGEKITLRR


FAVVNKADDETFGAYLHMGGRIGVLTLLAGNATEEVAKDVAMHIAALHPKYVSRDEVPQEEIAREREVLK


QQALNEGKPENIVEKMVEGRLKKFYEDVCLLEQAFVKNPDVTVRQYVESSGATVKQFIRYEVGEGLEKRQ


DNFAEEVMSQVRKQ





SEQ ID NO. 81


DNA


EF-4-GsuEF-4



Geobacillussubterraneus DSM 13552 (91A1)



ATGAACCGGGAAGAACGGTTGAAACGGCAGGAACGGATTCGCAACTTTTCGATTATCGCTCACATTGACC


ACGGAAAATCGACGCTTGCGGACCGCATTTTAGAAAAAACAGGTGCGCTGTCGGAGCGCGAGTTGCGCGA


GCAGACGCTCGATATGATGGAGCTCGAGCGCGAGCGCGGCATCACGATCAAATTGAATGCGGTCCAGTTG


ACATATAAAGCGAAAAACGGGGAAGAGTATATTTTCCATTTGATCGATACGCCGGGCCACGTCGATTTTA


CGTATGAAGTGTCGCGCAGCTTGGCTGCTTGCGAAGGAGCGATCTTAGTCGTCGATGCGGCGCAAGGCAT


TGAAGCGCAGACGCTCGCAAACGTGTATTTGGCCATTGACAACAATTTAGAAATTTTACCAGTCATTAAT


AAAATCGATTTGCCAAGCGCCGAGCCGGAGCGTGTCCGCCAAGAAATCGAAGACGTCATTGGCCTCGATG


CCTCTGAAGCGGTGCTCGCCTCCGCGAAAGTCGGCATCGGCGTCGAGGACATTTTAGAACAAATCGTGGA


AAAAATTCCTGCTCCGTCAGGCGATCCGGACGCGCCGTTGAAGGCGCTCATTTTTGATTCACTTTATGAC


CCGTACCGCGGCGTTGTCGCCTACGTCCGTATCGTCGATGGAACGGTTAAGCCGGGCCAGCGCATTAAAA


TGATGTCGACCGGCAAAGAGTTTGAAGTGACCGAAGTCGGCGTGTTTACACCAAAACCAAAAGTTGTCGA


CGAACTGATGGTCGGTGATGTCGGCTATTTAACTGCGTCGATCAAAAACGTACAAGATACGCGCGTCGGC


GATACGATTACCGATGCCGAACGGCCGGCTGCTGAGCCACTCCCTGGCTACCGGAAGCTCAATCCGATGG


TGTTTTGCGGCATGTACCCGATCGACACGGCGCGCTACAACGACTTGCGCGAAGCGTTAGAAAAGCTGCA


GCTCAACGATGCGGCGCTTCACTTTGAACCGGAAACGTCGCAGGCGCTCGGGTTTGGCTTTCGTTGCGGG


TTTCTCGGCTTGCTTCATATGGAGATTATCCAAGAGCGGATTGAACGTGAATTTCATATCGATTTAATTA


CAACGGCGCCGAGCGTTGTCTACAAAGTATATTTAACGGACGGAACGGAAGTCGATGTCGACAACCCGAC


GAACATGCCGGATCCGCAAAAAATCGACCGCATCGAAGAGCCGTATGTAAAAGCGACGATTATGGTGCCG


AACGACTACGTCGGACCGGTGATGGAGCTGTGCCAAGGAAAGCGTGGCACGTTCGTTGACATGCAATATT


TAGATGAAAAGCGGGTCATGTTGATTTACGATATTCCGCTGTCGGAAATCGTGTATGACTTTTTCGATGC


GTTAAAGTCGAACACGAAAGGGTATGCGTCGTTTGACTATGAATTGATCGGTTACCGGCCGTCCAATCTT


GTCAAAATGGATATTTTGTTGAATGGCGAAAAAATTGACGCTTTATCGTTTATTGTTCACCGCGATTCGG


CTTATGAGCGCGGCAAAGTGATCGTCGAGAAGCTGAAAGATTTAATTCCACGCCAACAGTTTGAAGTGCC


TGTGCAGGCGGCGATCGGCAATAAGATCATCGCCCGTTCGACGATCAAGGCGCTGCGTAAAAACGTGCTC


GCCAAATGTTACGGCGGCGACGTGTCGCGGAAACGGAAACTGCTTGAGAAACAAAAAGAAGGAAAGAAAC


GGATGAAACAAATCGGTTCGGTCGAAGTGCCGCAGGAAGCGTTTATGGCTGTCTTGAAAATCGACGACCA


GAAAAAA





SEQ ID NO. 82


Amino Acid


EF-4-GsuEF-4



Geobacillussubterraneus DSM 13552 (91A1)



MNREERLKRQERIRNFSIIAHIDHGKSTLADRILEKTGALSERELREQTLDMMELERERGITIKLNAVQL


TYKAKNGEEYIFHLIDTPGHVDFTYEVSRSLAACEGAILVVDAAQGIEAQTLANVYLAIDNNLEILPVIN


KIDLPSAEPERVRQEIEDVIGLDASEAVLASAKVGIGVEDILEQIVEKIPAPSGDPDAPLKALIFDSLYD


PYRGVVAYVRIVDGTVKPGQRIKMMSTGKEFEVTEVGVFTPKPKVVDELMVGDVGYLTASIKNVQDTRVG


DTITDAERPAAEPLPGYRKLNPMVFCGMYPIDTARYNDLREALEKLQLNDAALHFEPETSQALGFGFRCG


FLGLLHMEIIQERIEREFHIDLITTAPSVVYKVYLTDGTEVDVDNPTNMPDPQKIDRIEEPYVKATIMVP


NDYVGPVMELCQGKRGTFVDMQYLDEKRVMLIYDIPLSEIVYDFFDALKSNTKGYASFDYELIGYRPSNL


VKMDILLNGEKIDALSFIVHRDSAYERGKVIVEKLKDLIPRQQFEVPVQAAIGNKIIARSTIKALRKNVL


AKCYGGDVSRKRKLLEKQKEGKKRMKQIGSVEVPQEAFMAVLKIDDQKK





SEQ ID NO. 83


DNA


EF-P-GsuEF-P



Geobacillussubterraneus DSM 13552 (91A1)



ATGATTTCAGTGAACGATTTTCGCACAGGGCTTACGATTGAGGTCGACGGCGAGATTTGGCGCGTCCTTG


AGTTCCAGCATGTTAAGCCGGGCAAAGGGGCGGCGTTCGTCCGTTCGAAGCTGCGCAACTTGCGTACCGG


CGCCATTCAAGAGCGGACGTTCCGCGCTGGCGAAAAAGTAAACCGGGCACAAATTGATACGCGCAAAATG


CAATATTTATACGCTAACGGCGACTTGCATGTCTTTATGGATATGGAAACATACGAACAAATCGAGCTGC


CAGCGAAACAAATTGAGTATGAGCTGAAGTTCTTAAAAGAAAACATGGAAGTATTTATCATGATGTATCA


AGGCGAAACGATCGGTGTTGAGCTGCCGAACACCGTCGAGTTGAAAGTCGTTGAAACAGAGCCGGGCATC


AAAGGTGACACGGCTTCCGGCGGTTCGAAGCCGGCCAAGCTCGAAACCGGTCTTGTCGTTCAAGTGCCGT


TTTTCGTCAATGAAGGCGACACGCTCATCATTAACACGGCTGACGGTACGTACGTTTCGCGGGCA





SEQ ID NO. 84


Amino Acid


EF-P-GsuEF-P



Geobacillussubterraneus DSM 13552 (91A1)



MISVNDFRTGLTIEVDGEIWRVLEFQHVKPGKGAAFVRSKLRNLRTGAIQERTFRAGEKVNRAQIDTRKM


QYLYANGDLHVFMDMETYEQIELPAKQIEYELKFLKENMEVFIMMYQGETIGVELPNTVELKVVETEPGI


KGDTASGGSKPAKLETGLVVQVPFFVNEGDTLIINTADGTYVSRA





SEQ ID NO. 85


DNA


RF-1-GsuRF-1



Geobacillussubterraneus DSM 13552 (91A1)



ATGGATCCAGCCGTTATCAACGACCCGAAAAAGTTGCGCGATTATTCGAAAGAGCAGGCTGATTTGACTG


AAACGGTGCAAACGTACCGTGAATACAAGTCCGTTCGCAGTCAGCTCGCGGAAGCGAAGGCTATGCTGGA


AGAAAAACTTGAGCCAGAGCTGCGCGAGATGGTGAAAGAGGAAATTGATGAGCTCGAAGAACGGGAAGAA


GCGCTCGTTGAGAAGTTGAAAGTGTTGCTTTTGCCGAAAGATCCGAATGATGAGAAAAACGTCATTATGG


AAATTCGTGCCGCCGCCGGTGGCGAGGAAGCCGCGCTGTTTGCCGGCGACTTGTACCGGATGTATACGCG


CTATGCGGAGTCGCAAGGGTGGAAAACGGAAGTGATCGAAGCAAGCCCAACAGGTCTTGGCGGCTATAAA


GAAATCATCTTTATGGTCAATGGGAAAGGGGCGTATTCGAAGCTGAAGTTTGAAAACGGCGCTCATCGCG


TCCAACGCGTCCCGGAAACGGAATCAGGCGGACGCATCCATACATCGACGGCAACGGTCGCCTGCTTGCC


GGAAATGGAAGAAGTCGAAGTCGAAATTCATGAAAAAGACATTCGCGTCGATACGTACGCCTCGAGCGGG


CCAGGGGGACAAAGCGTGAACACGACGATGTCAGCCGTACGCCTCACCCATATTCCGACCGGCATTGTCG


TTACTTGCCAAGACGAAAAATCGCAAATTAAAAACAAAGAAAAAGCGATGAAAGTGTTGCGCGCCCGCAT


TTACGACAAATACCAGCAAGAAGCGCGCGCCGAGTATGACCAAACGCGTAAGCAAGCAGTCGGCACCGGC


GATCGCTCAGAGCGCATCCGCACGTACAACTTCCCGCAAAACCGCGTCACTGACCACCGTATCGGGTTGA


CGATTCAAAAGCTTGACCTCGTGTTAGACGGGCAGCTCGATGAAATTATCGAGGCGCTCATTTTAGACGA


CCAGTCGAAAAAACTGGAGCAAGCGAACGATGCGTCG





SEQ ID NO. 86


Amino Acid


RF-1-GsuRF-1



Geobacillussubterraneus DSM 13552 (91A1)



MDPAVINDPKKLRDYSKEQADLTETVQTYREYKSVRSQLAEAKAMLEEKLEPELREMVKEEIDELEEREE


ALVEKLKVLLLPKDPNDEKNVIMEIRAAAGGEEAALFAGDLYRMYTRYAESQGWKTEVIEASPTGLGGYK


EIIFMVNGKGAYSKLKFENGAHRVQRVPETESGGRIHTSTATVACLPEMEEVEVEIHEKDIRVDTYASSG


PGGQSVNTTMSAVRLTHIPTGIVVTCQDEKSQIKNKEKAMKVLRARIYDKYQQEARAEYDQTRKQAVGTG


DRSERIRTYNFPQNRVTDHRIGLTIQKLDLVLDGQLDEIIEALILDDQSKKLEQANDAS





SEQ ID NO. 87


DNA


RF-2-Gsu-RF2



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCCGCGCCCGGCTTTTGGGATGACCAGAAAGCGGCGCAGGCGATCATTTCCGAAGCGAATGCGCTCA


AGGAATTAGTCGGCGAGTTTGAATCGCTCGCGGAACGGTTCGACAACTTGGAAGTGACGTATGAGTTGTT


GAAAGAGGAGCCGGATGACGAGCTGCAGGCTGAACTTGTGGAAGAAGCGAAAAAATTGACGAAAGACTTC


AGCCAGTTTGAGCTGCAGCTGTTGCTCAACGAGCCGTACGACCAAAATAACGCGATTTTGGAGCTTCATC


CGGGTGCGGGCGGCACGGAATCGCAAGACTGGGCGTCGATGCTGTTGCGCATGTACACGCGCTGGGCGGA


GAAAAAAGGATTTAAAGTCGAAACACTGGATTATCTCCCAGGCGAGGAAGCCGGGGTGAAAAGCGTCACC


TTGCTTATCAAGGGACATAATGCATACGGCTACTTAAAGGCGGAAAAAGGGGTACACCGGCTTGTGCGCA


TCTCCCCGTTTGACGCCTCAGGCCGCCGCCATACGTCGTTCGTGTCATGCGAAGTCGTGCCGGAGATGGA


CGATAACATTGAGATTGAGATCCGTCCGGAAGAGCTGAAAATCGACACGTACCGCTCAAGCGGTGCGGGC


GGGCAGCACGTCAACACGACCGACTCCGCGGTGCGCATCACCCACTTGCCGACCGGCATTGTCGTTACGT


GCCAATCGGAGCGGTCGCAAATTAAAAACCGCGAAAAAGCGATGAATATGTTAAAAGCGAAGCTGTATCA


AAAGAAAATGGAGGAACAGCAAGCTGAACTCGCCGAGCTGCGCGGCGAGCAAAAAGAAATCGGCTGGGGC


AGCCAAATCCGCTCCTACGTCTTCCATCCGTATTCGCTTGTCAAAGACCATCGGACGAATGTGGAGGTCG


GCAACGTGCAAGCGGTGATGGATGGGGAAATCGATGTGTTCATTGACGCGTATTTGCGCGCGAAATTGAA


G





SEQ ID NO. 88


Amino Acid


RF-2-GsuRF-2



Geobacillussubterraneus DSM 13552 (91A1)



MAAPGFWDDQKAAQAIISEANALKELVGEFESLAERFDNLEVTYELLKEEPDDELQAELVEEAKKLTKDF


SQFELQLLLNEPYDQNNAILELHPGAGGTESQDWASMLLRMYTRWAEKKGFKVETLDYLPGEEAGVKSVT


LLIKGHNAYGYLKAEKGVHRLVRISPFDASGRRHTSFVSCEVVPEMDDNIEIEIRPEELKIDTYRSSGAG


GQHVNTTDSAVRITHLPTGIVVTCQSERSQIKNREKAMNMLKAKLYQKKMEEQQAELAELRGEQKEIGWG


SQIRSYVFHPYSLVKDHRTNVEVGNVQAVMDGEIDVFIDAYLRAKLK





SEQ ID NO. 89


DNA


RRF-GsuRRF



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCAAAGCAAGTGATCCAACAGGCGAAAGAAAAAATGGATAAAGCTGTGCAAGCGTTCAGCCGCGAGT


TGGCGACCGTCCGTGCCGGTCGGGCGAACGCGGGGTTGCTTGAGAAAGTAACCGTTGACTATTACGGTGT


CGCAACGCCGATCAACCAGCTCGCTACGATCAGCGTGCCGGAAGCGCGTATGCTTGTCATTCAGCCGTAT


GACAAATCGGTCATTAAAGAAATGGAAAAAGCGATTTTAGCGTCGGACTTAGGAGTGACGCCGTCGAATG


ACGGATCGGTTATCCGCCTTGTCATTCCGCCGCTTACTGAAGAACGTCGCCGTGAACTGGCGAAGCTCGT


CAAAAAATATTCGGAAGAAGCGAAAGTTGCGGTGCGCAACATCCGTCGCGATGCAAACGATGAGCTGAAA


AAACTCGAGAAAAATAGCGAGATTACGGAAGATGAGCTGCGCAGCTATACCGACGAAGTGCAAAAGCTGA


CCGACAGCCATATCGCCAAAATTGACGCCATCACAAAAGAGAAAGAAAAAGAAGTGATGGAAGTA





SEQ ID NO. 90


Amino Acid


RRF-GsuRRF



Geobacillussubterraneus DSM 13552 (91A1)



MAKQVIQQAKEKMDKAVQAFSRELATVRAGRANAGLLEKVTVDYYGVATPINQLATISVPEARMLVIQPY


DKSVIKEMEKAILASDLGVTPSNDGSVIRLVIPPLTEERRRELAKLVKKYSEEAKVAVRNIRRDANDELK


KLEKNSEITEDELRSYTDEVQKLTDSHIAKIDAITKEKEKEVMEV





SEQ ID NO. 91


DNA


AlaRS-GsuAlaRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAGAGTTTTTTTATATAAAAGACCAAAGGGGAGGATTGTTATGAAAAAGTTAACATCTGCCGAAGTGC


GGCGTATGTTTTTGCAGTTTTTCCAAGAAAAAGGCCATGCGGTCGAGCCGAGCGCTTCGCTCATTCCTGT


CGATGACCCGTCGTTATTATGGATCAACAGCGGTGTCGCGACGCTGAAAAAATATTTTGATGGCCGTATC


ATCCCGGACAACCCGCGCATTTGCAATGCGCAAAAATCGATCCGCACAAACGACATCGAAAATGTCGGGA


AAACGGCTCGCCACCATACGTTTTTTGAAATGCTCGGCAACTTTTCGATCGGCGATTATTTCAAGCGTGA


AGCGATTCATTGGGCATGGGAGTTTTTAACAAGTGAAAAGTGGATTGGTTTTGATCCAGAGCGGTTGTCA


GTCACTGTTCATCCGGAAGACGAAGAGGCGTATAACATTTGGCGCAACGAGATCGGTCTTCCTGAAGAGC


GGATTATTCGTTTAGAAGGAAACTTCTGGGATATCGGTGAAGGCCCGAGCGGTCCGAACACGGAAATTTT


TTATGACCGCGGTGAAGCGTTCGGCAACGATCCAAACGATCCAGAACTGTATCCAGGCGGGGAAAATGAC


CGCTACTTAGAAGTATGGAATCTCGTCTTTTCACAGTTCAACCATAACCCGGACGGCACGTACACGCCGC


TGCCGAAGAAAAACATCGATACCGGCATGGGCTTAGAGCGGATGTGCTCGATTTTGCAAGATGTACCGAC


GAACTTTGAAACTGATTTGTTCATGCCGATCATCCGCGCGACTGAGCAGATCGCGGGTGAGCAATACGGC


AAAGATCCGAATAAAGACGTTGCTTTTAAGGTCATCGCTGACCATATTCGTGCCGTGACGTTTGCGGTCG


GCGACGGGGCGCTGCCGTCGAACGAAGGACGAGGCTATGTATTGCGCCGCCTGCTTCGCCGCGCTGTGCG


CTATGCGAAACAAATCGGCATTGACCGTCCATTTATGTATGAGCTTGTTCCGGTTGTCGGTGAAATTATG


CAAGACTATTATCCGGAAGTGAAAGAAAAAGCCGATTTCATCGCCCGCGTCATTCGGACGGAAGAAGAGC


GGTTCCACGAAACGCTTCATGAAGGGCTCGCCATTTTGGCAGAAGTGATGGAAAAGGCGAAAAAACAAGG


AAGCACCGTCATTCCAGGAGAAGAGGCGTTCCGCTTGTACGATACGTACGGCTTCCCGCTCGAGCTGACG


GAAGAATATGCTGCTGAAGCGGGCATGTCGGTCGATCACGCCGGTTTTGAGCGCGAGATGGAGCGCCAGC


GCGAACGGGCCCGTGCCGCTCGCCAAGATGTCGATTCGATGCAAGTGCAAGGCGGGGTGCTCGGCGACAT


TAAAGACGAAAGCCGTTTTGTCGGCTACGATGAGCTCGTCGTTTCTTCGACGGTCATTGCCATCATTAAA


GACGGACAGCTCGTGGAGGAAGTCGGGACTGGCGAGGAAGCACAAATCATCGTTGATGTGACGCCGTTTT


ACGCCGAAAGCGGCGGACAAATCGCTGACCAAGGTGTGTTTGAAGGCGAAACGGGAACAGCGGTCGTCAA


AGATGTGCAAAAAGCACCGAACGGTCAGCACCTCCATTCGATTGTCGTCGAACGCGGTGCGGTGAAAAAA


GGCGATCGCTATACGGCGCGCGTCGATGAAGTGAAGCGGTCGCAAATCGTGAAAAACCATACGGCGACCC


ACTTGCTTCATCAAGCGTTAAAAGACGTTCTTGGCCGCCATGTCAACCAGGCCGGATCACTCGTTGCCCC


GGATCGGCTTCGCTTTGACTTTACTCATTTCGGGCAAGTGAAGCCTGATGAGCTCGAGCGCATTGAGGCG


ATCGTCAATGAACAAATTTGGAAGAGTATTCCGGTCGACATTTTTTACAAACCGCTCGAGGAAGCAAAAG


CGATGGGGGCGATGGCGCTGTTTGGTGAAAAATACGGCGATATCGTCCGCGTTGTTAAAGTTGGCGACTA


CAGCTTAGAGTTGTGCGGCGGCTGCCATGTGCCGAATACAGCGGCCATTGGGTTGTTTAAAATCGTCTCC


GAGTCCGGCATCGGTGCCGGCACGCGCCGGATTGAAGCGGTGACTGGGGAAGCGGCATACCGCTTTATGA


GCGAACAGCTTGCTCTGTTGCAAGAAGCGGCGCAAAAGCTGAAAACGAGCCCGAGAGAGCTGAATGCCCG


CCTTGATGGGCTGTTTGCCGAACTGCGCCAACTGCAGCGCGAAAATGAGTCGCTTGCTGCCCGTCTCGCC


CATATGGAGGCGGAACACCTCACCCGTCAAGTGAAAGAGGTGGGCGGTGTGCCGGTATTAGCCGCAAAAG


TGCAGGCGAACGACATGAACCAATTGCGGGCGATGGCTGATGACTTGAAGCAAAAACTAGGGACGGCGGT


CATCGTGTTAGCGGCCGTGCAAGGTGGCAAAGTCCAATTGATTGCTGCGGTGACTGATGACTTAGTGAAA


AAAGGATACCACGCCGGCAAACTCGTCAAAGAAGTGGCTTCACGTTGCGGCGGCGGAGGCGGCGGACGTC


CTGATATGGCGCAGGCCGGTGGGAAGGACGCGAACAAAGTCGGCGAAGCGCTCGATTATGTCGAAACATG


GGTCAAATCCATTTCC





SEQ ID NO. 92


Amino Acid


AlaRS-GsuAlaRS



Geobacillussubterraneus DSM 13552 (91A1)



MRVFLYKRPKGRIVMKKLTSAEVRRMFLQFFQEKGHAVEPSASLIPVDDPSLLWINSGVATLKKYFDGRI


IPDNPRICNAQKSIRINDIENVGKTARHHTFFEMLGNFSIGDYFKREAIHWAWEFLTSEKWIGFDPERLS


VTVHPEDEEAYNIWRNEIGLPEERIIRLEGNFWDIGEGPSGPNTEIFYDRGEAFGNDPNDPELYPGGEND


RYLEVWNLVFSQFNHNPDGTYTPLPKKNIDTGMGLERMCSILQDVPTNFETDLFMPIIRATEQIAGEQYG


KDPNKDVAFKVIADHIRAVIFAVGDGALPSNEGRGYVLRRLLRRAVRYAKQIGIDRPFMYELVPVVGEIM


QDYYPEVKEKADFIARVIRTEEERFHETLHEGLAILAEVMEKAKKQGSTVIPGEEAFRLYDTYGFPLELT


EEYAAEAGMSVDHAGFEREMERQRERARAARQDVDSMQVQGGVLGDIKDESRFVGYDELVVSSTVIAIIK


DGQLVEEVGTGEEAQIIVDVTPFYAESGGQIADQGVFEGETGTAVVKDVQKAPNGQHLHSIVVERGAVKK


GDRYTARVDEVKRSQIVKNHTATHLLHQALKDVLGRHVNQAGSLVAPDRLRFDFTHFGQVKPDELERIEA


IVNEQIWKSIPVDIFYKPLEEAKAMGAMALFGEKYGDIVRVVKVGDYSLELCGGCHVPNTAAIGLFKIVS


ESGIGAGTRRIEAVTGEAAYRFMSEQLALLQEAAQKLKTSPRELNARLDGLFAELRQLQRENESLAARLA


HMEAEHLTRQVKEVGGVPVLAAKVQANDMNQLRAMADDLKQKLGTAVIVLAAVQGGKVQLIAAVTDDLVK


KGYHAGKLVKEVASRCGGGGGGRPDMAQAGGKDANKVGEALDYVETWVKSIS





SEQ ID NO. 93


DNA


ArgRS-GsuArgRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAACATTGTCGGACAAATGAAAGAACAGCTGAAAGAGGAAATTCGCCAGGCGGTGGGAAAAGCCGGGC


TGGTGGCGGCTGAGGAGCTGCCAGAAGTATTGCTTGAGGTGCCGCGCGAAAAGGCTCATGGCGATTATTC


GACGAATATCGCCATGCAGCTCGCCCGCATCGCGAAAAAGCCACCGCGGGCAATCGCCGAAGCCATCGTT


GAAAAGTTTGACGCCGAGCGTGTTTCGGTGGCGCGCATCGAGGTAGCCGGCCCAGGGTTTATTAACTTTT


ACATGGACAATCGCTATTTGACAGCGGTTGTGCCGGCGATTTTGCAAGCGGGCCAAGCGTATGGCGAGTC


GAATGTCGGCAAAGGGGAAAAAGTGCAAGTCGAGTTCGTCTCGGCTAACCCGACCGGCAACTTGCATTTA


GGTCATGCTCGCGGTGCGGCGGTTGGCGATTCACTTAGCAATATTTTGGCGAAAGCCGGATTCGATGTGA


CGCGTGAATATTACATTAATGATGCCGGCAAACAAATTTATAACTTGGCGAAATCAGTCGAAGCCCGCTA


TTTCCAAGCGCTCGGTACCGATATGCCGCTGCCGGAGGACGGCTATTACGGTGACGACATCGTGGAAATC


GGCAAAAAGCTCGCCGATGAATATGGCGATCGGTTCGTCCATGTGGACGAAGAAGAACGACTCGCCTTTT


TCCGCGAATACGGCCTCCGTTATGAGCTCGACAAAATTAAAAACGATTTGGCTGCCTTCCGCGTTCCATT


TGACGTTTGGTATTCGGAAACATCGCTTTATGAGAGCGGCAAAATCGATGAGGCGCTCTCAACGCTGCGT


GAGCGCGGTTACATTTACGAACAGGACGGAGCCACATGGTTTCGTTCGACGGCGTTTGGCGATGACAAAG


ACCGTGTGTTAATCAAGCAAGACGGAACGTATACGTATTTGCTTCCGGACATCGCTTACCATCAAGATAA


GCTGCGGCGTGGGTTCACGAAGCTAATCAACGTCTGGGGAGCGGATCATCATGGCTACATCCCGCGCATG


AAAGCGGCGATCGCTGCGCTCGGCTACGATCCAGAAGCGCTCGAGGTCGAAATTATCCAAATGGTGAACT


TATACCAAAACGGCGAGCGCGTCAAAATGAGCAAACGTACTGGCAAAGCGGTGACGATGCGCGAGCTGAT


GGAAGAAGTCGGCGTCGATGCTGTCCGCTACTTCTTCGCTATGCGTTCGGGCGATACGCATCTCGATTTT


GATATGGACTTGGCTGTTGCCCAGTCGAATGAAAACCCGGTCTACTATGTCCAATATGCACATGCCCGCG


TCTCAAGCATTCTCCGTCAAGCAAAAGAGCATCAACTGTCGTATGAAGGCGACGTCGATCTTCATCATCT


CGTGGAAACAGAAAAAGAAATCGAGCTGCTCAAAGCGCTTGGCGACTTCCCGGACGTTGTCGCTGAGGCG


GCCTTGAAACGGATGCCACATCGCGTCACCGCCTATGCGTTTGATTTGGCGTCGGCGCTCCACAGCTTTT


ACAATGCGGAAAAAGTGCTTGACCTAGACCAGATCGAAAAAACGAAAGCTCGTCTCGCGCTTGTCAAGGC


GGTGCAAATCACGCTGCAAAACGCTCTAGCGTTAATCGGCGTCTCAGCGCCGGAACAAATG





SEQ ID NO. 94


Amino Acid


ArgRS-GsuArgRS



Geobacillussubterraneus DSM 13552 (91A1)



MNIVGQMKEQLKEEIRQAVGKAGLVAAEELPEVLLEVPREKAHGDYSTNIAMQLARIAKKPPRAIAEAIV


EKFDAERVSVARIEVAGPGFINFYMDNRYLTAVVPAILQAGQAYGESNVGKGEKVQVEFVSANPTGNLHL


GHARGAAVGDSLSNILAKAGFDVTREYYINDAGKQIYNLAKSVEARYFQALGTDMPLPEDGYYGDDIVEI


GKKLADEYGDRFVHVDEEERLAFFREYGLRYELDKIKNDLAAFRVPFDVWYSETSLYESGKIDEALSTLR


ERGYIYEQDGATWFRSTAFGDDKDRVLIKQDGTYTYLLPDIAYHQDKLRRGFTKLINVWGADHHGYIPRM


KAAIAALGYDPEALEVEIIQMVNLYQNGERVKMSKRTGKAVTMRELMEEVGVDAVRYFFAMRSGDTHLDF


DMDLAVAQSNENPVYYVQYAHARVSSILRQAKEHQLSYEGDVDLHHLVETEKEIELLKALGDFPDVVAEA


ALKRMPHRVTAYAFDLASALHSFYNAEKVLDLDQIEKTKARLALVKAVQITLQNALALIGVSAPEQM





SEQ ID NO. 95


DNA


AsnRS-GsuAsnRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGACGTGTCGATTATTGGAGGGAATGTGTACGTGAAAACGACGATTGCTGAAGTGAACCAATATGTAG


GTCAAGAAGTCACGATCGGCGCTTGGTTGGCGAACAAGCGCTCGAGCGGAAAAATCGCCTTTTTACAGCT


GCGTGATGGGACTGGCTTTATTCAAGGTGTAGTTGAAAAAGCGAACGTCTCAGAAGAGGTATTTCAACGT


GCGAAAACGCTGACGCAAGAAACGTCGCTCTATGTGACCGGCACGGTGCGCGTCGACGAGCGTTCACCGT


TCGGTTATGAGCTTTCGGTGACGAACATACAGGTCATCAATGAAGCGGTCGATTATCCGATTACGCCAAA


AGAACACGGTGTCGAGTTTTTAATGGATCATCGTCACCTTTGGCTTCGTTCGCGGCGCCAACATGCGATC


ATGAAAATCCGCAACGAATTGATCCGTGCGACGTATGAGTTTTTTAACGAACGTGGCTTCGTCAAAGTCG


ATGCGCCGATTTTGACTGGCAGCGCACCGGAAGGAACGACCGAGCTGTTCCATACGAAGTATTTTGACGA


GGATGCCTATTTATCGCAAAGCGGCCAGCTATATATGGAAGCAGCAGCCATGGCGCTCGGTAAAGTGTTT


TCGTTCGGTCCGACATTCCGTGCCGAAAAGTCGAAAACGCGCCGCCATTTGATCGAATTTTGGATGATCG


AGCCTGAAATGGCGTTTTACGAATTTGAAGACAATTTGCGGCTGCAAGAAGAGTATGTCTCTTATCTCGT


ACAGTCGGTGCTTAGCCGTTGCCAACTTGAGCTCGGGCGCCTTGGACGCGACGTCACCAAGCTTGAGCTT


GTCAAGCCGCCGTTTCCGCGTCTAACGTATGACGAAGCGATCAAGCTGCTGCATGACAAAGGGTTTACCG


ATATCGAATGGGGCGATGACTTCGGTGCGCCGCATGAGACAGCCATCGCTGAAAGCTTCGACAAGCCGGT


GTTTATCACTCACTACCCGACGTCGTTAAAGCCGTTTTATATGCAGCCAGATCCGAACCGTCCGGACGTC


GTGCTATGTGCTGATTTAATCGCGCCGGAGGGATACGGGGAGATTATCGGCGGTTCCGAGCGCATTCATG


ATTATGAGCTGCTCAAGCAGCGTCTCGAGGAGCATCATTTGCCGCTTGAAGCATATGAATGGTATTTAGA


TTTGCGCAAATACGGTTCCGTGCCGCACTCCGGATTCGGGCTCGGCCTCGAGCGAACGGTTGCTTGGATT


TGCGGCGTTGAGCATGTACGCGAGACGATCCCGTTTCCGCGGTTGCTCAACCGTCTATACCCG





SEQ ID NO. 96


Amino Acid


AsnRS-GsuAsnRS



Geobacillussubterraneus DSM 13552 (91A1)



MDVSIIGGNVYVKTTIAEVNQYVGQEVTIGAWLANKRSSGKIAFLQLRDGTGFIQGVVEKANVSEEVFQR


AKTLTQETSLYVTGTVRVDERSPFGYELSVTNIQVINEAVDYPITPKEHGVEFLMDHRHLWLRSRRQHAI


MKIRNELIRATYEFFNERGFVKVDAPILTGSAPEGTTELFHTKYFDEDAYLSQSGQLYMEAAAMALGKVF


SFGPTFRAEKSKTRRHLIEFWMIEPEMAFYEFEDNLRLQEEYVSYLVQSVLSRCQLELGRLGRDVTKLEL


VKPPFPRLTYDEAIKLLHDKGFTDIEWGDDFGAPHETAIAESFDKPVFITHYPTSLKPFYMQPDPNRPDV


VLCADLIAPEGYGEIIGGSERIHDYELLKQRLEEHHLPLEAYEWYLDLRKYGSVPHSGFGLGLERTVAWI


CGVEHVRETIPFPRLLNRLYP





SEQ ID NO. 97


DNA


AspRS-GsuAspRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGTTTCAAACACTTGAGCTTCGTCATAAAGTGGCGAAGGCGGTGCGCAACTTTTTAGACGGCGAACGCT


TTTTAGAAGTGGAGACGCCAATGTTGACGAAAAGCACACCGGAAGGGGCGCGCGATTATTTAGTGCCAAG


CCGCGTTCATCCGGGGGAATTTTACGCCTTGCCGCAGTCGCCGCAAATTTTTAAGCAGCTTTTGATGGTC


GGCGGTTTTGAACGCTATTACCAAATCACTCGTTGCTTCCGCGATGAAGATTTGCGCGCTGACCGCCAGC


CAGAGTTTACGCAAATTGACATTGAAATGTCGTTTGTCGACCAAGAAGACATCATCGATTTAACCGAACG


GATGATGGCGGCGGTCGTCAAAGCAACTAAAGGGATTGACATTCCGCGCCCATTTCCACGCATCACGTAT


GACGAAGCGATGAGCCGTTACGGTTCCGATAAGCCGGACGTACGTTTTGGCCTTGAGCTTGTCGATGTGT


CGGAAGCGGTCCGCGGCTCCGCGTTTCAAGTGTTCGCCCGCGCCGTTGAGCAAGGTGGTCAAGTGAAGGC


AATCAACGTAAAAGGAGCGGCGAGCCGTTATTCGCGTAAAGACATTGACGCGTTAGCGGAGTTTGCCGGC


CGCTACGGAGCGAAAGGGCTCGCTTGGTTAAAAGTTGAAGGCGGGGAGCTGAAAGGGCCGATCGCCAAGT


TTTTCGTCGATGATGAGCAAACAGCGCTGCGCCAGCTGCTTGCTGCCGAAGATGGGGATTTGCTGTTGTT


TGTTGCTGACGAGAAGGCGATTGTCGCGGCGGCTCTTGGTGCGTTGCGGTTAAAGCTCGGCAAAGAGCTT


GGCTTGATCGATGAAACGAAGCTCGCTTTTTTATGGGTAACAGATTGGCCGCTTTTAGAGTACGACGAAG


AAGAAGGCCGCTATTACGCCGCCCACCATCCGTTTACGATGCCGGTGCGTGACGATATCCCGCTGCTTGA


GACAAACCCAGGCGCTGTTCGGGCGCAGGCGTATGATTTAGTGTTAAACGGCTATGAGCTTGGCGGCGGT


TCGCTCCGTATTTTTGAGCGCGATGTACAAGAAAAAATGTTCCGCGCTCTAGGATTTGACCAGGAAGAGG


CGCGCCGCCAGTTTGGCTTCCTGCTTGAGGCGTTTGAATATGGCACTCCGCCGCATGGCGGTATCGCCCT


CGGCCTCGATCGACTTGTGATGCTCTTAGCTGGGCGCACAAACTTGCGCGATACGATCGCCTTCCCGAAA


ACTGCGAGCGCCAGCTGCCTGCTTACTGAAGCGCCGGGACCGGTCAGTGAAAAACAACTGAAAGAGTTGC


ATTTGGCTGTGGTGCTTCCCGACCAGCAA





SEQ ID NO. 98


Amino Acid


AspRS-GsuAspRS



Geobacillussubterraneus DSM 13552 (91A1)



MFQTLELRHKVAKAVRNFLDGERFLEVETPMLTKSTPEGARDYLVPSRVHPGEFYALPQSPQIFKQLLMV


GGFERYYQITRCFRDEDLRADRQPEFTQIDIEMSFVDQEDIIDLTERMMAAVVKATKGIDIPRPFPRITY


DEAMSRYGSDKPDVRFGLELVDVSEAVRGSAFQVFARAVEQGGQVKAINVKGAASRYSRKDIDALAEFAG


RYGAKGLAWLKVEGGELKGPIAKFFVDDEQTALRQLLAAEDGDLLLFVADEKAIVAAALGALRLKLGKEL


GLIDETKLAFLWVTDWPLLEYDEEEGRYYAAHHPFTMPVRDDIPLLETNPGAVRAQAYDLVLNGYELGGG


SLRIFERDVQEKMFRALGFDQEEARRQFGFLLEAFEYGTPPHGGIALGLDRLVMLLAGRTNLRDTIAFPK


TASASCLLTEAPGPVSEKQLKELHLAVVLPDQQ





SEQ ID NO. 99


DNA


CysRS-GsuCysRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAAAGGAAGAGCGAATATGAGCAGTATCCGACTTTATAATACGTTGACGCGAAAAAAGGAAACGTTTG


AGCCGCTCGAACCGAACAAAGTGAAAATGTATGTATGTGGCCCGACGGTCTATAATTATATTCATATCGG


CAATGCTCGCGCCGCTATCGTCTTTGATACGATCCGCCGTTATTTAGAGTTCCGCGGTTATGATGTGACG


TATGTATCCAACTTTACTGATGTCGACGACAAGCTAATCAGGGCGGCCCGCGAGCTTGGTGAGAGCGTGC


CGGCGATCGCCGAGCGGTTTATTGAGGCGTATTTTGAGGACATTGAGGCGCTCGGCTGCAAAAAAGCAGA


TATCCATCCGCGCGTGACGGAAAATATCGAAACGATTATCGAATTCATTCAAGCGCTCATTGACAAAGGC


TATGCGTACGAAGTCGATGGTGACGTATACTATCGGACGCGCAAGTTTGATGGCTACGGCAAATTGTCGC


ATCAGTCGATCGATGAGCTACAAGCGGGGGCGCGCATCGAAGTTGGGGAAAAGAAAGATGATCCACTCGA


TTTTGCTCTTTGGAAAGCAGCGAAAGAAGGAGAGATTTCTTGGGACAGCCCATGGGGGAAAGGGCGGCCC


GGCTGGCATATCGAATGTTCAGCGATGGCGCGCAAATATTTAGGAGATACGATCGACATTCATGCTGGCG


GCCAAGACTTAACGTTTCCACACCATGAAAACGAAATTGCCCAATCGGAAGCACTGACCGGCAAACCGTT


TGCGAAATATTGGCTGCACAATGGGTATTTAAATATTAACAATGAAAAAATGTCCAAGTCGCTTGGCAAC


TTTGTACTTGTTCACGATATCATCCGGCAGATTGACCCACAAGTGTTGCGTTTCTTTATGCTGTCGGTGC


ACTATCGCCACCCGATCAACTATAGCGAGGAGCTGCTTGAGAGCGCTCGGCGTGGTCTCGAACGCTTGAG


GACAGCATACGGTAATTTGCAGCACCGGCTTGGGGCGAGCACGAACTTAACCGATAACGACGGCGAGTGG


CTTTCGCGCCTCGCGGATATCCGCGCCTCGTTCATTCGTGAAATGGACGATGATTTCAACACAGCAAACG


GCATTGCGGTCTTGTTCGAGCTCGCCAAACAAGCGAACTTGTATTTGCAGGAGAAAACGACATCCGAGAA


TGTCATTCACGCGTTTTTGCGCGAATTTGAGCAGCTGATGGATGTACTCGGCCTTACTTTGAAACAAGAG


GAGTTGCTTGACGAAGAAATTGAGGCGCTGATCCGCCAGCGCAATGAAGCGCGGAAAAATCGTGACTTTG


CCTTAGCCGACCGCATCCGCGACGAGTTGAAAGCAAAAAATATCATTTTGGAAGATACGCCGCAAGGGAC


GAGATGGAAACGGGGATCG





SEQ ID NO. 100


Amino Acid


CysRS-GsuCysRS



Geobacillussubterraneus DSM 13552 (91A1)



MKGRANMSSIRLYNTLTRKKETFEPLEPNKVKMYVCGPTVYNYIHIGNARAAIVFDTIRRYLEFRGYDVT


YVSNFTDVDDKLIRAARELGESVPAIAERFIEAYFEDIEALGCKKADIHPRVTENIETIIEFIQALIDKG


YAYEVDGDVYYRTRKFDGYGKLSHQSIDELQAGARIEVGEKKDDPLDFALWKAAKEGEISWDSPWGKGRP


GWHIECSAMARKYLGDTIDIHAGGQDLTFPHHENEIAQSEALTGKPFAKYWLHNGYLNINNEKMSKSLGN


FVLVHDIIRQIDPQVLRFFMLSVHYRHPINYSEELLESARRGLERLRTAYGNLQHRLGASTNLIDNDGEW


LSRLADIRASFIREMDDDFNTANGIAVLFELAKQANLYLQEKTTSENVIHAFLREFEQLMDVLGLTLKQE


ELLDEEIEALIRQRNEARKNRDFALADRIRDELKAKNIILEDTPQGTRWKRGS





SEQ ID NO. 101


DNA


GluRS-GsuGluRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGAATTGGAGGTTTGGACGATGGCAAAAAACGTGCGCGTGCGCTATGCGCCGAGCCCGACTGGCCATT


TGCATATCGGTGGGGCACGGACAGCGCTGTTTAACTATTTGTTTGCCCGCCATTACGGCGGAAAAATGAT


CGTCCGCATCGAAGATACGGATATTGAACGGAACGTTGAAGGCGGCGAAGAGTCGCAGCTTGAAAACTTA


AAATGGCTTGGCATCGATTATGACGAATCGATTGATAAGGACGGCGGATATGGGCCGTATCGTCAGACGG


AACGGCTCGATATCTATCGGAAGTATGTGAACGAGCTGCTTGAACAAGGGCATGCGTATAAATGTTTTTG


TACACCGGAAGAGCTCGAGCGGGAACGTGAGGAGCAACGGGCGGCAGGTATTGCTGCTCCGCAATACAGC


GGCAAATGCCGCCATTTAACGCCGGAGCAAGTTGCCGAGCTTGAAGCACAAGGAAAACCGTATACGATCC


GCTTGAAAGTGCCGGAAGGGAAAACGTATGAAGTAGATGATTTAGTGCGCGGTAAAGTGACGTTTGAATC


GAAAGACATCGGCGATTGGGTCATTGTGAAGGCGAACGGTATTCCGACGTACAACTTTGCCGTTGTCATT


GATGACCATTTGATGGAAATCAGCCATGTGTTCCGCGGTGAGGAGCATTTATCCAACACGCCGAAACAGC


TAATGGTGTACGAATATTTCGGTTGGGAGCCACCGCAATTCGCCCATATGACATTGATTGTCAACGAGCA


GCGGAAAAAGCTATCCAAGCGCGATGAATCGATTATCCAGTTCGTGTCGCAATATAAAGAGCTCGGCTAT


TTGCCGGAGGCGATGTTCAACTTTTTCGCCCTTCTTGGCTGGTCGCCGGAAGGAGAAGAAGAAATTTTTA


CGAAGGACGAGCTCATCCGCATTTTTGATGTCGCCCGGCTGTCGAAATCGCCGTCGATGTTTGATACGAA


AAAGCTGACATGGATGAACAACCAATATATCAAAAAGCTGGATCTCGACAGGCTTGTCGAGCTGGCGTTG


CCGCATTTAGTGAAAGCCGGACGCCTGCCGGCAGATATGAGTGATGAGCAGCGGCAATGGGCACGCGATT


TGATTGCCTTGTACCAAGAGCAAATGAGCTACGGTGCGGAGATCGTTTCGCTGTCCGAGCTGTTCTTTAA


AGAAGAAGTCGAATACGAAGACGAAGCCCGCCAAGTGCTCGCCGAAGAACAAGTACCGGATGTGCTCTCC


GCCTTTTTGGCGAATGTGCGTGAGCTTGAGCCGTTTACGGCGGATGAGATTAAAGCAGCGATCAAAGCAG


TGCAAAAATCGACAGGGCAAAAAGGCAAGAAGCTGTTTATGCCGATTCGCGCCGCAGTGACTGGGCAAAC


ACACGGACCGGAACTGCCGTTTGCCATCCAACTGCTTGGCAAACAAAAGGTGATTGAACGGCTCGAACGG


GCACTGCATGAAAAATTT





SEQ ID NO. 102


Amino Acid


GluRS-GsuGluRS



Geobacillussubterraneus DSM 13552 (91A1)



MELEVWTMAKNVRVRYAPSPTGHLHIGGARTALFNYLFARHYGGKMIVRIEDTDIERNVEGGEESQLENL


KWLGIDYDESIDKDGGYGPYRQTERLDIYRKYVNELLEQGHAYKCFCTPEELEREREEQRAAGIAAPQYS


GKCRHLTPEQVAELEAQGKPYTIRLKVPEGKTYEVDDLVRGKVTFESKDIGDWVIVKANGIPTYNFAVVI


DDHLMEISHVFRGEEHLSNTPKQLMVYEYFGWEPPQFAHMTLIVNEQRKKLSKRDESIIQFVSQYKELGY


LPEAMFNFFALLGWSPEGEEEIFTKDELIRIFDVARLSKSPSMFDTKKLTWMNNQYIKKLDLDRLVELAL


PHLVKAGRLPADMSDEQRQWARDLIALYQEQMSYGAEIVSLSELFFKEEVEYEDEARQVLAEEQVPDVLS


AFLANVRELEPFTADEIKAAIKAVQKSTGQKGKKLFMPIRAAVTGQTHGPELPFAIQLLGKQKVIERLER


ALHEKF





SEQ ID NO. 103


DNA


GlyRS-GsuGlyRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGAGGAGGATGATGACATGGCTGCAACAATGGAAGAAATCGTTGCCCACGCCAAGCATCGCGGCTTCG


TGTTTCCGGGGTCGGAAATTTACGGTGGGCTGGCGAACACATGGGATTACGGTCCGCTCGGTGTCGAGCT


GAAAAATAACATTAAACGGGCGTGGTGGAAAAAGTTCGTCCAAGAATCGCCACACAATGTCGGTTTGGAC


GCTGCCATTTTAATGAACCCAAAAACGTGGGAAGCATCCGGCCATTTAGGCAACTTCAACGATCCGATGG


TCGACTGCAAACAGTGTAAAGCGCGTCATCGCGCCGACAAGCTGATTGAGCAGGCACTTGAAGAAAAAGG


AATTGAGATGGTCGTTGACGGTTTGCCGCTTGCCAAGATGGAAGAGCTTATCCGTGAATACGACATCGCT


TGTCCAGAATGCGGCAGTCGTGACTTTACGAACGTGCGTCAGTTTAATTTAATGTTCAAAACATACCAAG


GTGTCACCGAATCAAGCGCTAACGAAATTTATTTGCGCCCGGAGACGGCCCAAGGTATTTTTGTCAACTT


TAAAAACGTCCAGCGCACGATGCGCAAAAAATTACCGTTTGGCATCGCGCAAATCGGAAAAAGTTTCCGC


AACGAAATTACGCCAGGGAACTTTACGTTCCGCACACGTGAATTTGAACAAATGGAGCTTGAGTTTTTCT


GCAAACCGGGCGAAGAGCTGAAATGGTTCGACTACTGGAAACAATTTTGCAAGGAATGGCTGTTGTCGCT


CGGCATGAACGAAGAACATATCCGCCTGCGCGACCATACGAAAGAAGAATTATCCCACTATAGTAATGCG


ACGACTGATATCGAGTATCAGTTCCCGTTCGGCTGGGGCGAGCTCTGGGGTATTGCGTCGCGCACCGATT


ACGACTTAAAACAGCATATGGAACACTCCGGTGAGGATTTCCATTATCTTGACCAAGAAACGAATGAGCG


CTACATCCCGTACTGCATTGAGCCGTCGCTCGGTGCCGACCGTGTCACGCTCGCGTTTATGATTGACGCC


TATGACGAGGAAGAGCTCGAAGACGGCACGACCCGGACAGTTATGCATTTGCATCCAGCGCTTGCGCCGT


ACAAAGCAGCTGTCTTGCCGTTATCGAAAAAGCTGGGTGACGGAGCGCGCCGAATTTATGAAGAGCTCGC


GAAGCATTTCATGGTCGACTACGATGAAACAGGTTCGATTGGCAAGCGGTATCGTCGTCAAGATGAAATC


GGCACGCCGTTTTGTATCACGTACGACTTTGAGTCCGAGCAAGATGGCCAAGTAACCGTTCGTGACCGTG


ACACGATGGAACAAGTGCGGTTGCCGATTGGGGAGCTCAAAGCCTTTTTGGATAAAAAAATTGCCTTT





SEQ ID NO. 104


Amino Acid


GlyRS-GsuGlyRS



Geobacillussubterraneus DSM 13552 (91A1)



MEEDDDMAATMEEIVAHAKHRGFVFPGSEIYGGLANTWDYGPLGVELKNNIKRAWWKKFVQESPHNVGLD


AAILMNPKTWEASGHLGNFNDPMVDCKQCKARHRADKLIEQALEEKGIEMVVDGLPLAKMEELIREYDIA


CPECGSRDFTNVRQFNLMFKTYQGVTESSANEIYLRPETAQGIFVNFKNVQRTMRKKLPFGIAQIGKSFR


NEITPGNFTFRTREFEQMELEFFCKPGEELKWFDYWKQFCKEWLLSLGMNEEHIRLRDHTKEELSHYSNA


TTDIEYQFPFGWGELWGIASRTDYDLKQHMEHSGEDFHYLDQETNERYIPYCIEPSLGADRVTLAFMIDA


YDEEELEDGTTRTVMHLHPALAPYKAAVLPLSKKLGDGARRIYEELAKHFMVDYDETGSIGKRYRRQDEI


GTPFCITYDFESEQDGQVTVRDRDTMEQVRLPIGELKAFLDKKIAF





SEQ ID NO. 105


DNA


HisRS-GsuHisRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGCTTTTCAAATTCCAAGAGGGACACAAGATTTATTACCGGGTGAAACGGAAAAATGGCAATATGTCG


AACAAGTGGCCCGCGACCTGTGTAGACGGTACGGCTATGAAGAAATACGGACGCCGATTTTTGAACATAC


GGAGCTGTTTTTACGTGGCGTTGGTGATACGACCGATATCGTCCAAAAAGAGATGTACACGTTTGAAGAC


AAAGGGGGCCGTGCGTTGACGCTCCGTCCGGAAGGAACCGCACCGGTCGTGCGGGCGTTCGTCGAGCATA


AGCTGTACGGCAGCCCGAATCAGCCGGTCAAGTTGTATTATGCGGGACCAATGTTCCGTTATGAGCGGCC


GGAAGCCGGACGGTTCCGCCAATTCGTCCAGTTTGGTGTTGAGGCAATTGGCAGCAGTGATCCGGCGATT


GACGCCGAGGTGATGGCGTTAGCGATGCATATTTATAAGGCGCTTGGTTTAAAACACATCCGGCTCGTAA


TCAACAGTTTAGGCGATGTAGACAGCCGCCGGGCGCATCGCGAAGCGCTTGTCCGCCATTTTTCTGACCG


CATTCATGAACTGTGCCCGGACTGTCAGGCGCGGCTTGAGACGAATCCGCTCCGCATTCTCGATTGTAAA


AAGGACCGCGATCATGAACTGATGGCGTCAGCACCGTCGATTTTAGACTATTTGAATGACGAATCGCGCG


CGTATTTTGAGAAGGTGAAGCAATATTTAACGATGCTTGACATCCCGTTTGTCATTGACTCGCGGCTCGT


GCGCGGCCTCGATTATTACAACCATACGACGTTTGAAATTATGAGCGAGGCTGAAGGATTCGGCGCAGCG


GCGACTCTTTGCGGCGGCGGACGCTATAACGGGCTTGTGCAAGAAATTGGCGGCCCGGAAACGCCTGGCA


TCGGCTTTGCGTTAAGCATTGAACGGCTGCTGGCGGCGCTTGAAGCGGAAGGGATTGAACTGCCGATCCA


TCGAGGAATCGATTGCTATGTTGTCGCTGTCGGTGAGCGGGCAAAAGATGAAACTGTCCGCCTCGTTTAC


GAATTGCGCCGTGCCGGCCTGCGTGTGGAGCAAGACTATTTAGGTCGAAAAATGAAGGCACAGCTGAAGG


CAGCTGACCGTCTTGGCGCATCATTCGTTGCCATCATCGGCGACGAGGAGCTGGAAAAACAGACAGCAGC


TGTGAAACACATGGCGAGCGGCGAGCAAACTGATGTGCCGCTTGGAGAGTTGGCGTCCTTTTTAATAGAA


CGAACAAAACGGGAGGAG





SEQ ID NO. 106


Amino Acid


HisRS-GsuHisRS



Geobacillussubterraneus DSM 13552 (91A1)



MAFQIPRGTQDLLPGETEKWQYVEQVARDLCRRYGYEEIRTPIFEHTELFLRGVGDTTDIVQKEMYTFED


KGGRALTLRPEGTAPVVRAFVEHKLYGSPNQPVKLYYAGPMFRYERPEAGRFRQFVQFGVEAIGSSDPAI


DAEVMALAMHIYKALGLKHIRLVINSLGDVDSRRAHREALVRHFSDRIHELCPDCQARLETNPLRILDCK


KDRDHELMASAPSILDYLNDESRAYFEKVKQYLTMLDIPFVIDSRLVRGLDYYNHTTFEIMSEAEGFGAA


ATLCGGGRYNGLVQEIGGPETPGIGFALSIERLLAALEAEGIELPIHRGIDCYVVAVGERAKDETVRLVY


ELRRAGLRVEQDYLGRKMKAQLKAADRLGASFVAIIGDEELEKQTAAVKHMASGEQTDVPLGELASFLIE


RTKREE





SEQ ID NO. 107


DNA


IleRS-GsuIleRS



Geobacillus subterraneus DSM 13552 (91A1)



ATGGACTACAAAGAGACGCTGCTCATGCCGCAAACGGAGTTCCCGATGCGTGGCAACTTGCCGAAGCGGG


AGCCGGAAATGCAAAAAAAATGGGAGGAAATGGACATTTACCGGAAAGTGCAGGAGCGGACGAAAGGACG


GCCGCTGTTTGTGCTGCACGACGGCCCGCCATACGCCAACGGTGATATTCATATGGGCCATGCATTAAAT


AAAATTTTAAAAGATATTATCGTCCGCTACAAGTCGATGAGCGGCTTTTGTGCGCCGTATGTGCCTGGCT


GGGATACACATGGCTTACCGATTGAAACGGCACTGACGAAGCAAGGTGTCGACCGCAAATCGATGAGTGT


CGCTGAGTTCCGCAAGCTGTGCGAACAATACGCGTATGAGCAAATCGACAACCAGCGCCAACAGTTTAAA


CGGCTCGGGGTGCGGGGCGATTGGGACAACCCGTACATTACGCTCAAGCCGGAATACGAAGCCCAGCAAA


TTAAAGTGTTCGGTGAAATGGCGAAAAAAGGGCTCATTTATAAAGGGCTGAAGCCGGTGTATTGGTCGCC


GTCGAGCGAATCGGCGCTCGCCGAAGCGGAAATCGAATATAAAGACAAACGGTCGCCGTCGATTTATGTC


GCGTTCCCAGTTAAAGATGGTAAAGGTGTGCTTCAAGGGGATGAACGAATCGTCATTTGGACGACGACAC


CGTGGACGATTCCAGCGAACTTGGCGATCGCCGTTCACCCGGATTTGGACTACTATATTGTCGAAGCAAA


CGGGCAAAAATACGTTGTTGCTGCGGCCTTGGCGGAATCGGTAGCGAAAGAAGTCGGCTGGGAGGCATGG


TCCGTCGTCAAAACGGTAAAAGGAAAAGAACTTGAGTACGTAGTCGCCAAACATCCGTTTTACGAGCGCG


ACTCGCTTGTCGTCTGCGGCGAGCACGTCACGACCGACGCCGGTACCGGCTGCGTTCATACGGCACCAGG


ACACGGGGAAGACGACTTTATCGTCGGACAAAAATACGGGCTTCCGGTTCTTTGCCCGGTTGATGAGCGC


GGCTATATGACAGAAGAAGCGCCTGGATTTGCAGGGATGTTTTACGACGAGGCGAACAAAGCGATTACAC


AAAAGCTCGAGGAAGTTGGAGCGCTCCTTAAGCTCAGCTTCATTACCCACTCGTATCCGCATGATTGGCG


GACGAAGCAACCGACAATTTTCCGAGCGACGACACAATGGTTTGCCTCCATTGATAAAATTCGTGATCAA


CTTCTTGATGCCATCAAGGAAACGAAATGGGTGCCAGAATGGGGAGAAATCCGCATCCATAACATGGTGC


GCGACCGCGGTGACTGGTGCATCTCCCGCCAACGCGCTTGGGGCGTGCCAATTCCGGTCTTTTACGGCGA


AAACGGCGAGCCGATCATCACAGATGAGACGATCGAGCACGTGTCAAACCTATTCCGCCAGTACGGCTCG


AATGTTTGGTTTGAGCGTGAGGCGAAAGACTTATTGCCGGAAGGATTCACCCATCCGTCCAGCCCGAACG


GCCTCTTTACGAAAGAGACGGATATTATGGACGTCTGGTTTGACTCCGGTTCGTCGCATCAAGCCGTGCT


TGTTGAACGCGATGACCTAGAGCGTCCGGCTGATTTATACTTAGAAGGATCTGACCAATATCGCGGCTGG


TTTAACTCGTCGCTGTCTACAGCCGTTGCCGTCACCGGAAAAGCACCGTATAAAGGGGTGTTAAGCCATG


GCTTCGTTTTAGACGGCGAAGGGCGAAAAATGAGCAAATCGCTCGGCAACGTCGTCGTGCCGGCCAAAGT


CATGGAACAGCTCGGTGCCGACATTTTACGCCTTTGGGTCGCCTCGGTTGACTATCAGGCGGATGTACGC


ATTTCCGATAACATTTTAAAACAAGTGTCCGAAGTGTATCGGAAAATCCGCAATACGTTCCGCTTTATGC


TCGGCAACTTGTTTGATTTTGACCCGAATCAAAACGCTGTGCCGGTTGGGGAGCTTGGCGAAGTCGATCG


CTACATGTTAGCGAAATTAAATAAACTCATCGCTAAAGTGAAAAAGGCGTATGACAGCTATGATTTTGCT


GCTGTTTATCATGAGATGAACCATTTCTGCACCGTCGAGTTAAGCGCATTTTATTTGGATATGGCGAAAG


ACATTTTGTACATCGAAGCGGCCGATTGTCGTGCCCGCCGTGCGGTGCAGACGGTGCTGTATGAAACGGT


TGTCGCCTTGGCGAAGCTCATTGCGCCGATTTTGCCGCACACGGCCGATGAAGTGTGGGAGCATATCCCG


AACCGGAAAGAGCAAGTGGAAAGCGTCCAGCTCACCGACATGCCGGAGTCAATGGCCATCGATGGTGAAG


AAGCGCTGCTTGCGAAATGGGATGCGTTTATGGATGTACGAGATGACATTTTAAAAGCGCTCGAGAATGC


GCGTAATGAAAAAGTGATCGGTAAGTCGCTCACGGCGAGCGTCACTGTTTACCCGAAAGACGAAGTGCGG


GCGCTTTTGGCTTCGATCAACGAGGACTTGCGCCAACTTCTCATCGTTTCCGCGTTTTCGGTCGCCGATG


AATCGTATGACGCCGCGCCAGCCGAAGCAGAACGGCTCAACCATGTGGCCGTCATCGTTCGCCCGGCGGA


AGGTGAGACGTGCGAACGTTGCTGGACGGTGACACCGGACGTCGGACGCGATGAGTCCCACCCGACGCTT


TGTCCGCGCTGCGCACATATTGTGAACGAACATTATTCGGCA





SEQ ID NO. 108


Amino Acid


IleRS-GsuIleRS



Geobacillussubterraneus DSM 13552 (91A1)



MDYKETLLMPQTEFPMRGNLPKREPEMQKKWEEMDIYRKVQERTKGRPLFVLHDGPPYANGDIHMGHALN


KILKDIIVRYKSMSGFCAPYVPGWDTHGLPIETALTKQGVDRKSMSVAEFRKLCEQYAYEQIDNQRQQFK


RLGVRGDWDNPYITLKPEYEAQQIKVFGEMAKKGLIYKGLKPVYWSPSSESALAEAEIEYKDKRSPSIYV


AFPVKDGKGVLQGDERIVIWTTTPWTIPANLAIAVHPDLDYYIVEANGQKYVVAAALAESVAKEVGWEAW


SVVKTVKGKELEYVVAKHPFYERDSLVVCGEHVTTDAGTGCVHTAPGHGEDDFIVGQKYGLPVLCPVDER


GYMTEEAPGFAGMFYDEANKAITQKLEEVGALLKLSFITHSYPHDWRTKQPTIFRATTQWFASIDKIRDQ


LLDAIKETKWVPEWGEIRIHNMVRDRGDWCISRQRAWGVPIPVFYGENGEPIITDETIEHVSNLFRQYGS


NVWFEREAKDLLPEGFTHPSSPNGLFTKETDIMDVWFDSGSSHQAVLVERDDLERPADLYLEGSDQYRGW


FNSSLSTAVAVTGKAPYKGVLSHGFVLDGEGRKMSKSLGNVVVPAKVMEQLGADILRLWVASVDYQADVR


ISDNILKQVSEVYRKIRNTFRFMLGNLFDFDPNQNAVPVGELGEVDRYMLAKLNKLIAKVKKAYDSYDFA


AVYHEMNHFCTVELSAFYLDMAKDILYIEAADCRARRAVQTVLYETVVALAKLIAPILPHTADEVWEHIP


NRKEQVESVQLTDMPESMAIDGEEALLAKWDAFMDVRDDILKALENARNEKVIGKSLTASVTVYPKDEVR


ALLASINEDLRQLLIVSAFSVADESYDAAPAEAERLNHVAVIVRPAEGETCERCWTVTPDVGRDESHPTL


CPRCAHIVNEHYSA





SEQ ID NO. 109


DNA


LeuRS-GsuLeuRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAGGAGGAGTGCGACGATGAGTTTCAACCATCGCGAAATTGAGAAAAAGTGGCAGGATTATTGGGAAC


AGCATAAAACGTTCCGCACCCCGGATGAAAGCGATAAACCGAAGTTTTACGTGTTGGATATGTTTCCGTA


TCCGTCTGGCGCTGGCTTGCACGTCGGCCATCCGGAAGGGTATACGGCGACTGATATTTTGGCGCGCATG


AAGCGGATGCAAGGGTACAATGTCCTTCACCCGATGGGGTGGGACGCGTTCGGATTGCCGGCAGAACAAT


ATGCGCTCGATACCGGCAACGACCCGGCCGAATTTACGCAAAAAAACATCGACAACTTCCGCCGGCAAAT


TAAGTCGCTTGGTTTTTCGTATGACTGGGATCGGGAAATTAACACGACTGATCCGAACTATTACAAATGG


ACGCAATGGATTTTCTTGAAGCTGTATGAAAAAGGGCTCGCCTACATGGACGAAGTACCGGTCAACTGGT


GTCCGGCGCTTGGCACCGTGCTGGCGAACGAAGAAGTCATCAACGGCCGGAGCGAGCGCGGTGGGCATCC


GGTCATCCGCAAGCCAATGCGGCAATGGATGCTGAAAATTACCGCCTATGCCGACCGGCTGCTCGAAGAT


TTGGAGGAGCTTGACTGGCCGGAAAGCATTAAAGAAATGCAACGCAACTGGATCGGCCGTTCGGAAGGAG


CGGAAATTGAGTTTGCTGTCGACGGCCATGACGAGTCGTTCACGGTATTTACGACGCGGCCAGATACGCT


GTTTGGCGCCACGTACGCAGTGTTGGCTCCGGAACATCCGCTTGTTGAGAAAATTACAACGCCGGAGCAA


AAACCAGCCGTTGATGCTTACTTAAAAGAAGTGCAAAGCAAAAGCGACCTCGAGCGCACCGACTTGGCGA


AAGAAAAAACAGGCGTGTTCACTGGTGCGTACGCCATCCATCCAGTTACCGGCGACAAGCTGCCGATTTG


GATCGCCGATTACGTGTTGATGGGCTACGGCACTGGGGCGATCATGGCTGTACCGGCGCATGATGAGCGC


GACTACGAGTTTGCGAAAACATTCAACTTGCCGATCAAAGAAGTCGTTGCCGGCGGGAATGTCGAAAACG


AGCCGTACACTGGCGACGGGGAGCACATCAACTCTGAGTTTTTGAACGGCTTGAACAAACAAGAAGCGAT


CGAAAAAATGATCGCCTGGCTTGAAGAAAACGGAAAAGGACAAAAGAAAGTGTCGTACCGGCTGCGCGAC


TGGTTGTTTAGCCGCCAACGCTACTGGGGTGAGCCGATTCCGGTCATCCATTGGGAAGATGGGACGATGA


CGACGGTGCCGGAAGAAGAATTGCCGCTTGTCTTGCCGAAAACGGATGAAATTAAACCGTCGGGAACGGG


TGAATCGCCGCTCGCCAACATCGAAGAATGGGTCAATGTTGTCGATCCGAAAACCGGGAAAAAAGGGCGG


CGTGAAACAAACACGATGCCGCAATGGGCGGGAAGCTGCTGGTATTATTTGCGCTACATCGACCCGCATA


ACGACAAACAGCTCGCCGATCCGGAAAAGTTGAAACAATGGCTGCCGGTTGACGTCTACATCGGCGGGGC


GGAGCATGCGGTCTTGCACTTGCTGTACGCTCGCTTCTGGCATAAAGTGTTGTACGACCTTGGCATCGTG


CCGACGAAAGAGCCGTTCCAAAAGCTGTTTAACCAAGGGATGATCTTAGGCGAAAACAATGAAAAAATGA


GCAAATCGAAAGGCAATGTCGTCAACCCGGATGATATCGTCGAGAGCCATGGCGCGGATACGTTGCGGCT


GTATGAAATGTTTATGGGGCCGCTTGAAGCGTCGATCGCCTGGTCGACGAAAGGGCTTGACGGAGCGCGC


CGTTTCTTAGAGCGCGTCTGGCGTCTGTTTGTCACCGAAGATGGTCAACTGAACCCGAACATCGTTGACG


AGCCAGCGAACGATACGCTCGAGCGCGTCTACCATCAAACGGTGAAAAAAGTGACGGAAGACTACGAAGC


GCTGCGCTTCAACACCGCCATTTCGCAGCTGATGGTGTTCATTAACGAAGCGTATAAAGCGGAGCAGATG


AAAAAAGAATATATGGAAGGGTTCGTCAAGCTCTTATCGCCGGTTTGCCCGCATATTGGCGAAGAGCTCT


GGCAAAAGCTCGGCCATACTGACACCATCGCCTATGAACCATGGCCGACATATGACGAAGCGAAACTCGT


CGAAGATGTCGTTGAAATCGTGATCCAAATCAACGGCAAAGTGCGGGCGAAACTGAACGTGCCGGCGGAC


TTATCGAAAGAGGCGCTAGAAGAACGGGCGCTCGCCGATGAAAAAATTAAAGAGCAGCTTGCAGGGAAAA


CGGTGCGTAAGGTGATCACTGTCCCTGGTAAGCTCGTCAATATCGTCGCCAAC





SEQ ID NO. 110


Amino Acid


LeuRS-GsuLeuRS



Geobacillussubterraneus DSM 13552 (91A1)



MRRSATMSFNHREIEKKWQDYWEQHKTFRTPDESDKPKFYVLDMFPYPSGAGLHVGHPEGYTATDILARM


KRMQGYNVLHPMGWDAFGLPAEQYALDTGNDPAEFTQKNIDNFRRQIKSLGFSYDWDREINTTDPNYYKW


TQWIFLKLYEKGLAYMDEVPVNWCPALGTVLANEEVINGRSERGGHPVIRKPMRQWMLKITAYADRLLED


LEELDWPESIKEMQRNWIGRSEGAEIEFAVDGHDESFTVFTTRPDTLFGATYAVLAPEHPLVEKITTPEQ


KPAVDAYLKEVQSKSDLERTDLAKEKTGVFTGAYAIHPVTGDKLPIWIADYVLMGYGTGAIMAVPAHDER


DYEFAKTFNLPIKEVVAGGNVENEPYTGDGEHINSEFLNGLNKQEAIEKMIAWLEENGKGQKKVSYRLRD


WLFSRQRYWGEPIPVIHWEDGTMTTVPEEELPLVLPKTDEIKPSGTGESPLANIEEWVNVVDPKTGKKGR


RETNTMPQWAGSCWYYLRYIDPHNDKQLADPEKLKQWLPVDVYIGGAEHAVLHLLYARFWHKVLYDLGIV


PIKEPFQKLFNQGMILGENNEKMSKSKGNVVNPDDIVESHGADTLRLYEMFMGPLEASIAWSTKGLDGAR


RFLERVWRLFVTEDGQLNPNIVDEPANDTLERVYHQTVKKVTEDYEALRFNTAISQLMVFINEAYKAEQM


KKEYMEGFVKLLSPVCPHIGEELWQKLGHTDTIAYEPWPTYDEAKLVEDVVEIVIQINGKVRAKLNVPAD


LSKEALEERALADEKIKEQLAGKTVRKVITVPGKLVNIVAN





SEQ ID NO. 111


DNA


LysRS-GsuLysRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAGCCATGAAGAATTGAACGACCAATTGCGTGTCCGCCGGGAAAAGTTAAAAAAAATCGAAGAGCTAG


GTGTCGACCCGTTTGGCAAACGGTTCGAGCGCACGCATAAAGCAGAAGAGCTGTTTAAACTGTACGGCGA


TTTGTCCAAAGAAGAACTTGAAGATCAGCAAATTGAAGTCGCTGTCGCCGGCCGCATTATGACGAAACGC


GGTAAAGGAAAAGCAGGATTTGCTCACATTCAAGACGTCACAGGGCAAATTCAAATTTATGTCCGCCAAG


ACGATGTCGGTGAACAGCAATATGAGCTGTTTAAAATCTCTGACCTTGGTGATATCGTCGGTGTGCGCGG


CACTATGTTCAAAACAAAAGTCGGCGAGCTTTCCATCAAAGTGTCATCATATGAATTTTTAACAAAAGCA


TTGCGTCCATTGCCGGAAAAATACCATGGTTTAAAGGACGTCGAACAACGTTACCGCCAACGTTATCTCG


ACTTAACTATGAATCCGCAAAGTAAGCAGACGTTTATCACCCGTAGTCTCATTATTCAATCGATGCGGCG


TTATCTCGACAGCCAAGGTTATTTGGAAGTCGAAACACCGATGATGCACGCCATAGCAGGTGGTGCGGCT


GCACGTCCGTTTATTACGCACCATAATGCCCTTGATATGACACTTTATATGCGAATCGCCATCGAACTCC


ATTTAAAACGGCTCATCGTCGGCGGTTTGGAAAAAGTGTATGAAATCGGACGCGTCTTCCGGAATGAGGG


GATTTCCACCCGTCACAATCCGGAGTTTACGATGCTTGAACTGTACGAGGCATATGCCGACTTCCGTGAC


ATCATGAAATTGACAGAAAACTTAATTGCTCACATTGCCACGGAAGTGCTTGGCACGACGAAAATTCAAT


ACGGCGAACATACCGTCGATTTAACGCCTGAATGGCGGCGACTTCATATGGTCGATGCGATTAAAGAATA


CGTCGGCGTTGATTTCTGGCGGCACATGGACGACGAGGAAGCGCGGGCGTTGGCGAAAGAACATGGGGTC


GAAATCGCCCCGCACATGACGTTTGGTCATATCGTCAATGAATTTTTTGAACAAAAAGTCGAGTCGCAAC


TCATCCAACCGACGTTCATTTATGGCCACCCTGTCGAAATTTCGCCGTTAGCTAAGAAAAACCCGGACGA


TCCACGCTTTACCGATCGATTTGAGCTATTTATCGTTGGACGTGAACATGCGAACGCGTTTACGGAACTA


AACGATCCGATCGACCAGCGCCAACGTTTCGAAGCACAGTTGAAAGAACGTGAACAAGGGAACGATGAAG


CGCACGAAATGGACGAAGATTTCCTCGAAGCGCTCGAGTACGGTATGCCTCCAACAGGCGGACTCGGCAT


CGGCGTTGACCGTCTAGTCATGCTCTTGACTAACTCTCCGTCCATTCGGGATGTGTTACTCTTCCCGCAA


ATGCGTCATAAA





SEQ ID NO. 112


Amino Acid


LysRS-GsuLysRS



Geobacillussubterraneus DSM 13552 (91A1)



MSHEELNDQLRVRREKLKKIEELGVDPFGKRFERTHKAEELFKLYGDLSKEELEDQQIEVAVAGRIMTKR


GKGKAGFAHIQDVTGQIQIYVRQDDVGEQQYELFKISDLGDIVGVRGTMFKTKVGELSIKVSSYEFLTKA


LRPLPEKYHGLKDVEQRYRQRYLDLTMNPQSKQTFITRSLIIQSMRRYLDSQGYLEVETPMMHAIAGGAA


ARPFITHHNALDMTLYMRIAIELHLKRLIVGGLEKVYEIGRVFRNEGISTRHNPEFTMLELYEAYADFRD


IMKLTENLIAHIATEVLGTTKIQYGEHTVDLTPEWRRLHMVDAIKEYVGVDFWRHMDDEEARALAKEHGV


EIAPHMTFGHIVNEFFEQKVESQLIQPTFIYGHPVEISPLAKKNPDDPRFTDRFELFIVGREHANAFTEL


NDPIDQRQRFEAQLKEREQGNDEAHEMDEDFLEALEYGMPPTGGLGIGVDRLVMLLTNSPSIRDVLLFPQ


MRHK





SEQ ID NO. 113


DNA


MetRS-GsuMetRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGAGAAAAAGACGTTTTATTTGACGACGCCGATTTATTATCCGAGCGACAAATTGCACATCGGCCATG


CTTATACAACAGTGGCGGGGGATACGCTAGCGCGCTATAAACGGATGCGCGGTTACGATGTTATGTATTT


GACGGGAACCGATGAGCACGGGCAAAAAATTCAACGCAAGGCGGAGGAAAAAGGAGTAACGCCGCAGCAA


TATGTCGATGAGATCGTCGCTGGCATTCAGGAGCTATGGAAAAAGCTCGACATTTCTTATGACGATTTCA


TCCGTACAACGCAGGAGCGGCATAAAAAAGTAGTCGAAAAGATTTTCGCGCGTCTTGTCGAACAAGGGGA


TATTTATTTAGGTGAATATGAAGGATGGTATTGCACGCCATGCGAATCGTTTTACACTGAGCGACAGCTT


GTCGACGGCAACTGCCCGGACTGTGGTCGTCCGGTTGAAAAAGTGAAAGAGCAGTCGTACTTTTTCCGAA


TGAGCAAATACGTCGACCGTTTGCTTCAATATTATGAGGAAAATCCAGATTTCATCCAGCCGGAATCGCG


GAAAAACGAAATGATTAACAATTTTATTAAGCCGGGGCTTGAAGATTTAGCTGTGTCGCGGACGACGTTT


GACTGGGGCATTAAAGTGCCGGGCGATCCGAAACATGTCATTTACGTCTGGATTGACGCGCTTGCCAACT


ATATTACAGCGCTCGGTTACGGCACGGACAATGATGAAAAGTTCCGCAAATATTGGCCGGCCGATGTCCA


TTTAGTCGGCAAGGAAATCATCCGCTTTCATACGATTTATTGGCCGATTATGCTCATGGCGCTTGACTTG


CCGCTGCCGAAAAAAGTATTCGGTCATGGCTGGCTGCTCATGAAAGACGGGAAAATGTCGAAATCGAAAG


GCAATGTCGTTGACCCGGTGACGTTGATCGATCGATACGGACTCGATGCGCTTCGTTATTATTTACTCAG


GGAAGTGCCGTTCGGTTCTGACGGCGTATTCACGCCGGAAGGATTTATTGAGCGCATCAACTACGATTTA


GCCAATGACCTAGGCAATTTATTGAATCGTACAGTAGCGATGATTAAGAAATATTTTGATGGGGTGATTC


CGCCGTACCGCGGTCCGAAAACGCCGTTTGACGAAGAGCTGGTACAAACGGCGCGTGAGGTGGTCCGTCA


GTATGAGGAAGCGATGGAACGGATGGAGTTTTCCGTTGCCCTTGCTTCGGTTTGGCAACTGATTGGCCGG


ACGAACAAATACATTGATGAGACGCAGCCATGGGTATTGGCCAAAGATGAAAGCAAACGGGAAGAGCTTG


CTTCTGTCATGACCCACCTAGCCGAGTCGCTCCGCCATACGGCAGTGCTGTTGCAGCCGTTTTTGACACG


CACGCCAGAGCGCATTTTTGCCCAGCTCGGCATTGCCGACCGTTCATTAAAAGAGTGGGATAGCTTGTAC


GAGTTCGGGCTCATTCCGGAAGGAACAAACGTGCAAAAAGGAGAACCACTGTTCCCGCGCCTTGATATTG


AAGCGGAAGTCGAGTACATTAAGGCGCATATGCAAGGCGGCAAGCCGGCGGTGGAACCCGTTAAAGAGGA


GAAGCAAGCGGCTGAGACGGCCGAAATCTCAATTGATGAGTTTGCCAAAGTTGACTTGCGCGTTGCTGAA


GTCGTGCATGCTGAACGGATGAAAAACGCCAATAAGCTGTTGAAGCTCCAACTTGATCTTGGCGGCGAGA


AACGGCAAGTCATCTCTGGTATCGCTGAATTTTACAAACCAGAGGAACTCATCGGCAAAAAGGTCATTTG


CGTCGCCAATTTAAAACCGGCCAAACTGCGCGGTGAGTGGTCGGAAGGAATGATTTTGGCCGGCGGTAAC


GGCGGAGAGTTTTCACTGGCGACCGTCGATCAACATGTGCCAAACGGAACAAAAATTAAA





SEQ ID NO. 114


Amino Acid


MetRS-GsuMetRS



Geobacillussubterraneus DSM 13552 (91A1)



MEKKTFYLTTPIYYPSDKLHIGHAYTTVAGDTLARYKRMRGYDVMYLTGTDEHGQKIQRKAEEKGVTPQQ


YVDEIVAGIQELWKKLDISYDDFIRTTQERHKKVVEKIFARLVEQGDIYLGEYEGWYCTPCESFYTERQL


VDGNCPDCGRPVEKVKEQSYFFRMSKYVDRLLQYYEENPDFIQPESRKNEMINNFIKPGLEDLAVSRTTF


DWGIKVPGDPKHVIYVWIDALANYITALGYGTDNDEKFRKYWPADVHLVGKEIIRFHTIYWPIMLMALDL


PLPKKVFGHGWLLMKDGKMSKSKGNVVDPVTLIDRYGLDALRYYLLREVPFGSDGVFTPEGFIERINYDL


ANDLGNLLNRTVAMIKKYFDGVIPPYRGPKTPFDEELVQTAREVVRQYEEAMERMEFSVALASVWQLIGR


INKYIDETQPWVLAKDESKREELASVMTHLAESLRHTAVLLQPFLTRTPERIFAQLGIADRSLKEWDSLY


EFGLIPEGTNVQKGEPLFPRLDIEAEVEYIKAHMQGGKPAVEPVKEEKQAAETAEISIDEFAKVDLRVAE


VVHAERMKNANKLLKLQLDLGGEKRQVISGIAEFYKPEELIGKKVICVANLKPAKLRGEWSEGMILAGGN


GGEFSLATVDQHVPNGTKIK





SEQ ID NO. 115


DNA


Phe-aRS-GsuPhe-aRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAGGGACGGGTTTTTTTATTTTGTTAGAGGAGGGATTGGCGTGAAAGAACGGTTGCATGAGCTTGAAC


GAGAAGCGCTTGAAAAAATTGAACAAGCTGGCGATTTAAAAGCGCTCAACGATGTGCGTGTCGCCTATTT


AGGCAAAAAAGGGCCGATTACCGAAGTGCTGCGCGGCATGGGAGCATTGCCGTCAGAAGAGCGTCCGAAA


ATTGGTGCGCTTGCCAATGAGGTAAGAGAGGCGATCCAAAAGGCGCTCGAAGCAAAACAAACGAAACTGG


AAGAAGAAGAAGTCGAGCGGAAGTTGGCGGCTGAAGCGATCGATGTGACGCTTCCGGGCCGTCCGGTGAA


ACTGGGGAATCCTCATCCGCTGACGCGCGTCATCGAGGAAATTGAAGATTTGTTTATCGGCATGGGCTAT


ACGGTCGCCGAAGGTCCGGAAGTCGAGACCGATTATTACAATTTTGAGGCGCTCAATTTGCCGAAAGGAC


ACCCGGCCCGCGATATGCAAGATTCGTTTTATATTACGGAAGAAATTCTGCTTCGCACCCACACGTCGCC


GATGCAGGCACGGACGATGGAAAAACATCGCGGGCGCGGTCCGGTAAAAATCATTTGCCCGGGGAAAGTG


TATCGCCGCGATACCGATGATGCGACCCATTCACATCAGTTTACGCAAATTGAAGGATTGGTTGTTGACC


GCAACATCCGGATGAGCGATTTAAAAGGGACGCTGCGCGAATTTGCCCGCAAGCTGTTCGGTGAAGGGCG


CGACATCCGTTTTCGTCCGAGCTTTTTCCCGTTTACCGAGCCTTCAGTCGAGGTCGATGTGTCCTGCTTC


CGCTGCGAAGGGCACGGCTGCAGCGTTTGCAAAGGTACGGGCTGGATTGAAATTTTAGGCGCTGGCATGG


TGCACCCGAACGTGCTTGAGATGGCCGGCTTTGATTCGAAAACGTATACCGGATTTGCGTTCGGCATGGG


GCCGGAGCGGATCGCGATGTTGAAATACGGCATTGATGACATCCGCCATTTCTATCAGAACGATCTTCGT


TTCTTGCAACAATTTTTGCGTGTC





SEQ ID NO. 116


Amino Acid


Phe-aRS-GsuPhe-aRS



Geobacillussubterraneus DSM 13552 (91A1)



MRDGFFYFVRGGIGVKERLHELEREALEKIEQAGDLKALNDVRVAYLGKKGPITEVLRGMGALPSEERPK


IGALANEVREAIQKALEAKQTKLEEEEVERKLAAEAIDVTLPGRPVKLGNPHPLTRVIEEIEDLFIGMGY


TVAEGPEVETDYYNFEALNLPKGHPARDMQDSFYITEEILLRTHTSPMQARTMEKHRGRGPVKIICPGKV


YRRDTDDATHSHQFTQIEGLVVDRNIRMSDLKGTLREFARKLFGEGRDIRFRPSFFPFTEPSVEVDVSCF


RCEGHGCSVCKGTGWIEILGAGMVHPNVLEMAGFDSKTYTGFAFGMGPERIAMLKYGIDDIRHFYQNDLR


FLQQFLRV





SEQ ID NO. 117


DNA


Phe-bRS-GsuPhe-bRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGCTCGTTTCTTATCGTTGGCTAGGCGAATACGTCGATTTGACGGGCGTGACGGCGGAACAACTCGCTG


ATCGCATTACAAAAAGCGGCATTGAAGTCGAGCGGGTTGAAGCGCTTGAGCGGGGAATGAAAGGAGTCGT


CATCGGCCATGTGCTCGAATGCGAGCCACACCCAAACGCCGATAAACTGCGGAAATGTCTTGTTGATCTT


GGCGAAGGAGAGCCGGTGCAAATCATTTGCGGTGCCCCGAACGTCGCCAAGGGGCAAAAAGTTGCTGTAG


CGAAAGTTGGAGCGAGACTGCCGGGCAATTTTAAAATCAAACGGGCGAAGCTGCGCGGCGAAGAGTCGAA


CGGCATGATTTGCTCGCTCCAAGAACTCGGTGTTGAAACAAAAGTCGTGCCGAAAGAATACGCCGAAGGC


ATTTTCGTCTTCCCAAGCGACGCGCCGGTCGGCGCTGATGCGCTTGAATGGCTCGGCTTGCACGATGAAG


TGCTCGAACTCGCCTTGACGCCGAATCGCGCCGATTGCTTAAGCATGCTTGGCGTTGCCTACGAAGTCGC


TGCGATTCTCGGCCGCGATGTGAAGTTGCCGGAAACGGCGGTGAACGAAAATGAAGAAAGCGTCCATGAC


TACATTTCTGTCCGTGTCGAGGCGCCGGAAGACAATCCGCTGTACGCCGGACGGATCGTGAAAAACGTCC


AAATCGGCCCGTCGCCGCTTTGGATGCAAGCGCGCTTGATGGCGGCCGGCATTCGTCCACACAACAATGT


TGTCGATATCACCAACTACATTTTGCTTGAGTACGGCCAGCCGCTTCACGCGTTTGACTACGACCGTCTC


GGTTCGAAGGAGATCGTCGTTCGTCGTGCCAAGGCGGGAGAAATGATCGTGACGCTTGACGATGTCGAGC


GGAAGCTGACTGAAGATCATCTCGTCATCACAAACGGCCGTGAGCCGGTCGCCTTAGCCGGTGTGATGGG


CGGAGCGAACTCGGAAGTGCAGGATGACACGAAAACAGTGTTCATCGAAGCCGCGTATTTTACGAGCCCG


GTCATCCGCCAGGCGGTGAAAGACCACGGGTTGCGCAGCGAAGCGAGCACCCGGTTTGAAAAAGGGATTG


ATCCGGCGCGGACGAAAGAAGCGCTCGAGCGCGCTGCTGCTTTGATGGCAGAATACGCCGGCGGCGAGGT


CGTCAGCGGTATCGTGGAAGCTAATACATGGAAAGAAGAGCCGGTTGTCGTAACGGTGGCGCTGGAACGC


ATCAACGGCGTCCTCGGCACAGCGATGACGAAAGAGGAAGTAGCTGGCATTCTTTCAAACTTGCAATTCT


CGTTTACGGAAGATAATGGAACGTTTACAATCCATGTTCCATCGCGCCGCCGCGATATTACGATCGAAGA


AGATATTATCGAGGAAGTCGCCCGTTTGTATGGCTACGACCATTTGCCAGCGACTTTGCCGGTGGCCGAA


GCAAAACCGGGCGAGTTGACACCGTACCAAGCGAAACGCCGCCGTGTCCGCCGCTATTTCGAAGGCGCGG


GCTTGTTCCAGGCGATCACGTATTCGCTTACCAGTCCGGACAAAGCGACGCGGTTTGCTTTGGAGACAAC


CGAACCAGTCCGCTTGGCGTTGCCGATGAGTGAGGAGCGGAGCGTTCTCCGGCAAAGCTTGGTGCCGCAT


TTGCTCGAAGCGGCGAGCTACAACCGTGCCCGCCAAGTTGAGAACGTCGCGCTATATGAAATCGGCTCTG


TCTATTTGTCCAAGGGGGAAAATGTCCAACCGGCGGAAAAAGAACGGCTCGCCGGCGTCATCACCGGTTT


ATGGCATGCCCACCTTTGGCAAGGAGAGAAAAAAGCAGCTGATTTCTATGTTGCAAAAGGCGTGCTTGAC


GGCTTGTTCGCCCTGCTTGGGCTGTCTGATCGCATCAGCTACCGTCCGGCGAAGCGTGCTGATTTGCATC


TGGGGCGGACAGCGGAGATTGTGCTTGACGGCAAAGAGATCGGCTTTGTCGGCCAGCTCCATCCGGCTGT


ACAAAAAGAGTACGATTTGAAAGAAACGTATGTCTTTGAACTCGCCTTCGCTGAGCTACTGAATACAGAA


GGCGAAACGATCCGTTACGAGTCGATTCCGCGCTTCCCGTCAGTCGTGCGCGACATCGCTTTAGTCGTCG


ACGACAATGTCGAAGCAGGTGCTCTCAAGCAGGCGATCGCCGAAGCGGGGAACCCGCTATTAAAAGACGT


GGCCCTCTTTGACGTCTATAAAGGCGACCGTCTGCCGGCCGGGAAAAAATCGCTCGCCTTCTCGCTCCGC


TACTACGATCCGGAACGGACGCTCACTGATGAGGAAGTTACTGCCGTCCATGAACGGGTTTTGGCAGCGG


TCGAGGAGCAGTTTGGCGCGGTGTTGCGCGGG





SEQ ID NO. 118


Amino Acid


Phe-bRS-GsuPhe-bRS



Geobacillussubterraneus DSM 13552 (91A1)



MLVSYRWLGEYVDLTGVTAEQLADRITKSGIEVERVEALERGMKGVVIGHVLECEPHPNADKLRKCLVDL


GEGEPVQIICGAPNVAKGQKVAVAKVGARLPGNFKIKRAKLRGEESNGMICSLQELGVETKVVPKEYAEG


IFVFPSDAPVGADALEWLGLHDEVLELALTPNRADCLSMLGVAYEVAAILGRDVKLPETAVNENEESVHD


YISVRVEAPEDNPLYAGRIVKNVQIGPSPLWMQARLMAAGIRPHNNVVDITNYILLEYGQPLHAFDYDRL


GSKEIVVRRAKAGEMIVTLDDVERKLTEDHLVITNGREPVALAGVMGGANSEVQDDTKTVFIEAAYFTSP


VIRQAVKDHGLRSEASTRFEKGIDPARTKEALERAAALMAEYAGGEVVSGIVEANTWKEEPVVVTVALER


INGVLGTAMTKEEVAGILSNLQFSFTEDNGTFTIHVPSRRRDITIEEDIIEEVARLYGYDHLPAILPVAE


AKPGELTPYQAKRRRVRRYFEGAGLFQAITYSLTSPDKATRFALETTEPVRLALPMSEERSVLRQSLVPH


LLEAASYNRARQVENVALYEIGSVYLSKGENVQPAEKERLAGVITGLWHAHLWQGEKKAADFYVAKGVLD


GLFALLGLSDRISYRPAKRADLHLGRTAEIVLDGKEIGFVGQLHPAVQKEYDLKETYVFELAFAELLNTE


GETIRYESIPRFPSVVRDIALVVDDNVEAGALKQAIAEAGNPLLKDVALFDVYKGDRLPAGKKSLAFSLR


YYDPERTLTDEEVTAVHERVLAAVEEQFGAVLRG





SEQ ID NO. 119


DNA


ProRS-GsuProRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGACATTCAAAAATTCTTCCTATAATGAAAGAGAGAAAACGAGGTGGCTATTGATGAGACAAAGTCAAG


GGTTTATTCCGACATTGCGCGAAGTGCCGGCGGACGCGGAAGTGAAAAGCCATCAGCTCCTGTTGCGGGC


CGGCTTCGTCCGCCAAAGCGCAAGCGGCGTCTACACGTTTTTGCCGCTCGGGCAACGTGTTTTGCAAAAA


GTGGAAGCGATTATTCGTGAGGAGATGAATCGCGCCGGAGCATTGGAGCTTCTCATGCCTGCTTTGCAGC


CGGCTGAGCTTTGGCAGCAGTCCGGGCGCTGGTATTCGTATGGACCGGAGCTCATGCGCCTGAAAGACCG


TCACGAGCGCGATTTCGTTCTCGGACCGACACACGAAGAGATGATTACTACGATCGTTCGCGATGAAGTG


AAAACGTATAAGCGGCTGCCGCTTATCTTGTATCAAATTCAAACGAAATTCCGTGATGAAAAACGTCCGC


GTTTCGGGCTGTTGCGCGGTCGCGAGTTCATCATGAAAGATGCGTATTCATTCCACACATCGCAGGAAAG


TTTGGACGAAACGTACAATAAAATGTATGAAGCGTACGCGAACATTITCCGCCGCTGCGGCTTAAATTIC


CGCGCTGTCATTGCTGACTCCGGAGCGATGGGCGGCAAAGATACGCACGAGTTTATGGTGCTGTCTGATA


TTGGCGAGGATACGATCGCTTATTCCGATGCGTCCGACTATGCGGCCAACATTGAAATGGCACCGGTCGT


CACTACGTATGAAAAAAGCAGTGAGCCGCTGGTGGAACTGAAAAAAGTGGCGACCCCGGAGCAAAAAACG


ATTGCTGAAGTTGCTTCGTATTTGCAAGTAGCACCGGAACGTTGCATTAAATCGCTTTTATTTAACGTTG


ATGGCCGCTACGTGCTCGTTCTGGTGCGCGGCGATCATGAAGCGAATGATGTGAAAGTGAAAAATGTGCT


TGATGCGACTGTCGTGGAGCTGGCGACACCGGAAGAAACAGCACGAGTGATGAACTGCCCGGTTGGTTCG


CTCGGCCCGATTGGCGTCAGCGAAGAGGTGACGATTATCGCCGATCATGCTGTCGCGGCGATCGTAAACG


GCGTCTGCGGCGCCAATGAGGAAGGATACCATTATACGGGTGTCAATCCAGACCGCGATTTTGCCGTCAG


TCAATATGCGGATTTGCGTTTCGTCCAAGAAGGCGACCCTTCTCCGGATGGCAACGGGACGATCCGCTTC


GCTCGTGGCATTGAAGTTGGACATGTGTTTAAGCTCGGTACGAAATATAGCGAGGCGATGAACGCCGTTT


ACCTCGACGAAAATGGTCGGACACAGACGATGATTATGGGTTGCTACGGCATTGGCGTCTCTAGGCTCGT


TGCGGCGATCGCCGAGCAGTTCGCCGATGAGAACGGGCTTGTATGGCCGGTTTCGGTCGCACCGTTTCAC


GTTCATTTGCTGACGGCGAACGCGAAAAGCGATGAACAGCGCATGCTGGCTGAAGAGTGGTACGAAAAAC


TCGGACAGGCCGGATTTGACGTGTTGTATGATGACCGTCCGGAACGGGCCGGGGTGAAGTTTGCCGACAG


CGATTTGATCGGCATCCCGCTCCGCGTCACCGTTGGCAAGCGGGCAAGTGAAGGTGTGGTCGAAGTAAAA


GTTCGGAAAACAGGCGAGACGTTTGACGTGCCGGTCGGTGAGCTGATCGAAACAGTGCGCCGTCTTTTGC


AAGGA





SEQ ID NO. 120


Amino Acid


ProRS-GsuProRSt



Geobacillussubterraneus DSM 13552 (91A1)



MTFKNSSYNEREKTRWLLMRQSQGFIPTLREVPADAEVKSHQLLLRAGFVRQSASGVYTFLPLGQRVLQK


VEAIIREEMNRAGALELLMPALQPAELWQQSGRWYSYGPELMRLKDRHERDFVLGPTHEEMITTIVRDEV


KTYKRLPLILYQIQTKFRDEKRPRFGLLRGREFIMKDAYSFHTSQESLDETYNKMYEAYANIFRRCGLNF


RAVIADSGAMGGKDTHEFMVLSDIGEDTIAYSDASDYAANIEMAPVVTTYEKSSEPLVELKKVATPEQKT


IAEVASYLQVAPERCIKSLLFNVDGRYVLVLVRGDHEANDVKVKNVLDATVVELATPEETARVMNCPVGS


LGPIGVSEEVTIIADHAVAAIVNGVCGANEEGYHYTGVNPDRDFAVSQYADLRFVQEGDPSPDGNGTIRF


ARGIEVGHVFKLGTKYSEAMNAVYLDENGRTQTMIMGCYGIGVSRLVAAIAEQFADENGLVWPVSVAPFH


VHLLTANAKSDEQRMLAEEWYEKLGQAGFDVLYDDRPERAGVKFADSDLIGIPLRVTVGKRASEGVVEVK


VRKTGETFDVPVGELIETVRRLLQG





SEQ ID NO. 121


DNA


SerRS-GsuSerRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGGTGGATAAGGAGGTAAAGCGAATGCTGGATGTGAAATTACTACGCACCCAATTTCAAGAGGTGAAAG


AAAAACTGCTGCAGCGCGGCGACGACTTGGCCAACATCGACCGGTTTGAGCAGCTTGATAAAGAGCGTCG


TCGTTTGATCGCTCAGGTGGAGGAGTTAAAAAGCAAGCGCAATGAGGTGTCGCAACAAATTGCTGTCTTA


AAGCGTGAAAAAAAGGACGCCGAGTCGTTGATCGTCGAAATGCGCGAAGTCGGCGACCGCATTAAACAAA


TGGACGAGCAAATTCGCCAACTTGAAGAAGAGCTCGACAGCCTTCTGTTATCGATTCCGAATGTACCGCA


TGAGTCAGTGCCAGTCGGTCAGTCGGAAGAAGATAATGTCGAAGTGCGAAGATGGGGGGAACCGCGTTCG


TTCTCGTTCGAACCGAAGCCACATTGGGACATTGCTGACCAACTCGGTTTGCTCGATTTTGAGCGGGCTG


CCAAAGTGGCAGGAAGTCGGTTTGTGTTTTACAAAGGACTAGGGGCTCGTCTTGAGCGGGCATTAATCAA


CTTTATGCTCGACATCCATCTCGATGAATTTGGCTATCAAGAGGTGTTGCCGCCATACTTAGTGAACCGG


GCGAGCATGATCGGAACAGGGCAATTGCCAAAATTTGCGGAAGACGCGTTCCACTTGGACAATGAAGACT


ATTTTCTCATTCCAACAGCGGAAGTGCCTGTGACGAATTTGCATCGCGATGAAATTTTAACGGCTGATGA


CTTGCCGCTTTACTATGCGGCTTACAGCGCGTGCTTCCGCGCCGAAGCTGGCTCGGCTGGCCGTGACACG


CGGGGGCTCATCCGCCAGCACCAATTCAATAAAGTGGAGCTCGTCAAGTTCGTCAAGCCGGAGGATTCAT


ATGACGAGTTGGAAAAATTGACGCACCAAGCCGAAACGATCCTGCAACGGCTCGGACTTCCGTATCGCGT


CGTAGCCTTGTGTACAGGGGATCTGGGATTTTCAGCGGCGAAGACGTATGATATTGAGGTGTGGCTGCCA


AGCTATGGAACGTATCGGGAAATTTCGTCGTGCAGCAACTTTGAGGCGTTCCAGGCGCGCCGAGCTAATA


TCCGCTTCCGTCGCGAGCCGAAAGCAAAGCCAGAATATGTGCATACGCTAAACGGTTCGGGGCTAGCCAT


CGGCCGCACGGTTGCTGCCATTTTGGAAAACTACCAACAAGAAGACGGATCGGTCGTCATCCCGGAAGCG


CTCCGTCCATATATGGGGAATCGGGATGTCATTCGC





SEQ ID NO. 122


Amino Acid


SerRS-GsuSerRS



Geobacillussubterraneus DSM 13552 (91A1)



MVDKEVKRMLDVKLLRTQFQEVKEKLLQRGDDLANIDRFEQLDKERRRLIAQVEELKSKRNEVSQQIAVL


KREKKDAESLIVEMREVGDRIKQMDEQIRQLEEELDSLLLSIPNVPHESVPVGQSEEDNVEVRRWGEPRS


FSFEPKPHWDIADQLGLLDFERAAKVAGSRFVFYKGLGARLERALINFMLDIHLDEFGYQEVLPPYLVNR


ASMIGTGQLPKFAEDAFHLDNEDYFLIPTAEVPVTNLHRDEILTADDLPLYYAAYSACFRAEAGSAGRDT


RGLIRQHQFNKVELVKFVKPEDSYDELEKLTHQAETILQRLGLPYRVVALCTGDLGFSAAKTYDIEVWLP


SYGTYREISSCSNFEAFQARRANIRFRREPKAKPEYVHTLNGSGLAIGRTVAAILENYQQEDGSVVIPEA


LRPYMGNRDVIR





SEQ ID NO. 123


DNA


ThrRS-GsuThrRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGCCAGACGTTATTCGCATTACGTTCCCGGACGGGGCGAAAAAGGAGTTTCCGAGCGGAACGTCAACTG


AGGACATCGCTGCCTCGATCAGTCCGGGATTGAAGAAAAAAGCGATTGCCGGGAAACTGAACGGCCGGTT


TGTTGATTTACGCACGCCGCTTCAAGAAGACGGCGAGCTTGTCATTATTACCCAGGACATGCCTGAGGCA


CTTGATATTTTGCGTCATAGCACCGCCCATTTAATGGCGCAAGCGATCAAGCGGCTGTATGACAACGTCA


AGCTTGGCGTCGGCCCGGTCATTGAAAACGGCTTCTACTATGATATTGATATGGAACATAAGCTGACGCC


GGATGATTTGCCGAAAATTGAGGCGGAAATGCGCAAAATCGTAAAGGAAAATCTTGACGTTGTTCGCAAA


GAGGTGAGCCGTGACGAGGCGATTCGCCTGTATGAAAAAATTGGTGATCACTTGAAACTGGAGCTCATCA


ACGATATTCCGGAAGGCGAGACGATTTCCATTTACGAGCAAGGCGAGTTTTTCGATCTTTGTCGGGGTGT


GCACGTGCCGTCGACCGGGAAAATCAAAGAGTTCAAGCTGCTCAGCATCTCGGGGGCCTACTGGCGCGGT


GACAGCAACAACAAAATGCTGCAGCGTATTTACGGTACGGCGTTTTTCAAAAAAGAAGATCTGGACCATT


ATTTGCAGTTGCTCGAAGAGGCGAAAGAGCGCGATCATCGCAAATTGGGCAAAGAGCTTGAGCTATTTAC


GACATCACAAAAAGTCGGACAAGGACTGCCGCTTTGGTTGCCGAAAGGGGCGACGATCCGTCGCTTGATT


GAACGGTACATTGTCGATAAAGAAATCGCCCTTGGTTATGATCATGTATATACGCCGGTGCTCGGCAGTG


TGGAGCTGTATAAAACCTCAGGACACTGGGACCATTATAAAGAAAACATGTTCCCACCGATGGAAATGGA


TAACGAAGAGCTCGTGCTGCGGCCGATGAACTGCCCGCACCATATGATGATTTATAAAAGCAAGCTTCAT


AGCTACCGTGAGCTGCCGATCCGCATCGCCGAGCTCGGCACGATGCATCGCTACGAAATGTCCGGGGCGC


TTACTGGACTGCAGCGTGTCCGCGGCATGACGCTCAACGACGCCCATATTTTCGTGCGCCCGGATCAAAT


TAAAGACGAGTTTAAGCGCGTCGTTAATTTGATTTTGGAAGTATACAAAGACTTTGGGCTGGACGAATAT


TCGTTCCGCCTGTCGTACCGCGACCCACAAGATAAAGAAAAATATTACGACGACGACGAGATGTGGGAAA


AGGCGCAACGCATGCTGCGCGAGGCGATGGATGAACTTGGCCTCGATTACTACGAAGCGGAAGGGGAAGC


AGCGTTTTACGGACCGAAGCTCGATGTGCAAGTGCGCACGGCACTCGGCAAAGATGAGACGCTGTCGACT


GTACAGCTTGACTTCCTCTTGCCGGAGCGGTTTGACTTAACATATATCGGCGAAGATGGAAAACCGCACC


GCCCGGTCGTCATCCACCGCGGCGTTGTTTCCACGATGGAACGGTTTGTCGCCTTCTTGATCGAAGAATA


CAAAGGGGCATTTCCAACGTGGCTCGCCCCGGTGCAAGTGGAAGTCATCCCGGTATCGTCGGAAGCCCAT


CTCGATTATGCGTATGAAGTGAAACAAGCGCTGCAAGTAAACGGCTTCCGCGTCGAAGTCGACGAACGGG


ATGAAAAAATCGGCTATAAAATCCGCGAAGCGCAAATGCAAAAAATTCCTTATATGCTCGTTGTCGGCGA


CAAAGAAGCGGCCGAGCGAGCGGTCAACGTCCGCCGCTACGGTGAAAAAGAAAGCGAGACTGTGGCGCTT


GACAAGTTTATCGCGATGCTAGAAGAAGATGTGCGGCAAAAACGAGTGAAAAAACGA





SEQ ID NO. 124


Amino Acid


ThrRS-GsuThrRS



Geobacillussubterraneus DSM 13552 (91A1)



MPDVIRITFPDGAKKEFPSGTSTEDIAASISPGLKKKAIAGKLNGRFVDLRTPLQEDGELVIITQDMPEA


LDILRHSTAHLMAQAIKRLYDNVKLGVGPVIENGFYYDIDMEHKLTPDDLPKIEAEMRKIVKENLDVVRK


EVSRDEAIRLYEKIGDHLKLELINDIPEGETISIYEQGEFFDLCRGVHVPSTGKIKEFKLLSISGAYWRG


DSNNKMLQRIYGTAFFKKEDLDHYLQLLEEAKERDHRKLGKELELFTTSQKVGQGLPLWLPKGATIRRLI


ERYIVDKEIALGYDHVYTPVLGSVELYKTSGHWDHYKENMFPPMEMDNEELVLRPMNCPHHMMIYKSKLH


SYRELPIRIAELGTMHRYEMSGALTGLQRVRGMTLNDAHIFVRPDQIKDEFKRVVNLILEVYKDFGLDEY


SFRLSYRDPQDKEKYYDDDEMWEKAQRMLREAMDELGLDYYEAEGEAAFYGPKLDVQVRTALGKDETLST


VQLDFLLPERFDLTYIGEDGKPHRPVVIHRGVVSTMERFVAFLIEEYKGAFPTWLAPVQVEVIPVSSEAH


LDYAYEVKQALQVNGFRVEVDERDEKIGYKIREAQMQKIPYMLVVGDKEAAERAVNVRRYGEKESETVAL


DKFIAMLEEDVRQKRVKKR





SEQ ID NO. 125


DNA


TrpRS-GsuTrpRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAAAACCATTTTTTCTGGCATTCAGCCAAGCGGCGTCATTACCCTTGGCAACTACATTGGTGCGATGC


GACAATTTGTCGAACTGCAGCATGAGTACAACTGCTATTTTTGCATTGTCGACCAACATGCCATTACTGT


TCCGCAAAATCCGAACGAACTGCAACAAAACATTCGCCGTCTCGCTGCCTTATATTTGGCAGTCGGCATC


GATCCTAAACAGGCGACGCTGTTCGTTCAATCGGAGGTGCCGGCGCACGCCCAAGCGGCTTGGATGCTGC


AATGCATCGTCTATATCGGCGAACTGGAGCGGATGACGCAGTTTAAAGACAAATCAGCCGGTAAAGAGGC


GGTCAGTGCCGGGTTGCTCACGTATCCACCGCTTATGGCAGCCGACATTTTGCTTTACAACACGGACATT


GTCCCAGTCGGCGAAGACCAAAAGCAGCACATCGAGCTGACGCGCGATTTAGCTGAGCGCTTCAACAAAC


GGTACGGCGAGCTGTTCACTATCCCGGAAGCGCGCATCCCGAAAATCGGCGCCCGCATTATGTCGCTTAC


CGATCCGACGAAAAAAATGAGCAAATCTGACCCAAACCCGAAATCGTTTATTACGCTGCTTGACGACGCC


AAAACGATTGAAAAGAAAATTAAAAGTGCTGTGACCGATTCAGAAGGAACGATTCGCTATGACAAGGAAG


CGAAACCGGGCATTTCGAACTTGCTCAACATTTATTCGATTTTATCGGGTCAGCCGATTGACGAACTTGA


GCGGCAATACGAAGGAAAAGGATACGGGGTCTTTAAATCCGATTTGGCCCAAGTGGTCATTGAAACGCTC


CAACCGATCCAAGAGCGGTATTATCATTGGCTCGAAAGTGAAGAGCTCGACCGCGTCCTAGACGAAGGGG


CGGAAAAAGCGAACCGTGTCGCCTCGGAAATGGTGCGCAAAATGGAACAAGCCATGGGGCTTGGGCGGCG


TCGG





SEQ ID NO. 126


Amino Acid


TrpRS-GsTrpRS



Geobacillussubterraneus DSM 13552 (91A1)



MKTIFSGIQPSGVITLGNYIGAMRQFVELQHEYNCYFCIVDQHAITVPQNPNELQQNIRRLAALYLAVGI


DPKQATLFVQSEVPAHAQAAWMLQCIVYIGELERMTQFKDKSAGKEAVSAGLLTYPPLMAADILLYNTDI


VPVGEDQKQHIELTRDLAERFNKRYGELFTIPEARIPKIGARIMSLTDPTKKMSKSDPNPKSFIILLDDA


KTIEKKIKSAVTDSEGTIRYDKEAKPGISNLLNIYSILSGQPIDELERQYEGKGYGVFKSDLAQVVIETL


QPIQERYYHWLESEELDRVLDEGAEKANRVASEMVRKMEQAMGLGRRR





SEQ ID NO. 127


DNA


TyrRS-GsuTyrRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAACCTGCTTGAAGAACTGCAATGGCGCGGACTTGTCAATCAAACGACGGATGAGGATGGGCTTCGAA


AGCTCCTGAATGAGGAGAAGGTGACGCTTTATTGCGGGTTTGACCCGACAGCAGACAGCTTGCATATCGG


CCATTTGGTCACGATCATGACCTTGCGTCGTTTCCAACAGGCGGGGCATCAACCGATCGCCTTAGTCGGC


GGCGCCACCGGGTTGATCGGCGATCCGAGTGGCAGAAAAAGCGAGCGCACGCTCAACGCCAAGGAGACGG


TCGAGACGTGGAGCGCCCGAATCAAAGCGCAACTCGAGCGGTTTCTTGATTTTGAGGCTGAGAGCAATCC


AGCGAAAATCAAAAACAACTACGACTGGATCGGGCCGCTTGATGTCATCTCGTTTTTGCGTGACATCGGC


AAGCATTTCAGCGTCAATTACATGCTTGCGAAAGAATCGGTGCAGTCGCGCATTGAAATGGGCATTTCGT


TTACCGAGTTCAGCTATATGATGCTGCAGGCGTACGACTTCCTCAACTTGTACGAAACGGAAGGTTGCCG


ACTACAAATCGGTGGCAGCGACCAATGGGGCAACATCACGGCGGGGCTTGAGCTCATCCGCAGAACGAAA


GGTGAGGCGAAAGCATTTGGTTTGACGGTTCCGCTCGTGACGAAAGCCGATGGGACGAAGTTCGGAAAAA


CGGAAAGCGGCGCGGTTTGGCTCGATCCGGAAAAAACGTCGCCGTATGAGTTTTACCAGTTCTGGATCAA


CACCGATGACCGCGATGTGATCCGTTACTTAAAATATTTCACGTTCTTGACAAAAGAAGAGATCGACGCG


CTTGAACAAGAGCTGCGCGAAGCGCCGGAGAAGCGGGTGGCGCAAAAAACGCTTGCTTCCGAAGTGACGA


AGCTCGTGCATGGCGAAGAGGCGCTCAATCAAGCGATTCGTATTTCAGAAGCACTCTTTAGCGGCGACAT


TGCCGAACTGACGGCTGCGGAAATCGAGCAAGGGTTTAAAAACGTGCCGTCGTTTGTCCATGAAGGAGGC


GACGTCCCGCTCGTCGAGCTGCTCGTAGCTGCCGGCATCTCGCCATCGAAGCGGCAGGCGCGCGAAGATG


TTCAAAACGGTGCGATTTATGTCAACGGCGAGCGCATCCAAGATGTCGGCGCTGTCTTAACGGCCGAACA


CCGTTTGGAAGGGCGGTTTACCGTGATCCGCCGCGGCAAGAAGAAGTATTATTTAATCCGCTACGCT





SEQ ID NO. 128


Amino Acid


TyrRS-GsuTyrRS



Geobacillussubterraneus DSM 13552 (91A1)



MNLLEELQWRGLVNQTTDEDGLRKLLNEEKVTLYCGFDPTADSLHIGHLVTIMTLRRFQQAGHQPIALVG


GATGLIGDPSGRKSERTLNAKETVETWSARIKAQLERFLDFEAESNPAKIKNNYDWIGPLDVISFLRDIG


KHFSVNYMLAKESVQSRIEMGISFTEFSYMMLQAYDFLNLYETEGCRLQIGGSDQWGNITAGLELIRRTK


GEAKAFGLTVPLVTKADGTKFGKTESGAVWLDPEKTSPYEFYQFWINTDDRDVIRYLKYFTFLTKEEIDA


LEQELREAPEKRVAQKTLASEVTKLVHGEEALNQAIRISEALFSGDIAELTAAEIEQGFKNVPSFVHEGG


DVPLVELLVAAGISPSKRQAREDVQNGAIYVNGERIQDVGAVLTAEHRLEGRFTVIRRGKKKYYLIRYA





SEQ ID NO. 129


DNA


ValRS-GsuValRS



Geobacillussubterraneus DSM 13552 (91A1)



ATGAAAGGGGCTTTTTTGCTTGCCTATCGGACGGTTGATCCTGTAGGCAACACAGCCATTGTTTATCACA


TGAAGGAGGGAATAAAAGTGGCACAGCATGAAGTGTCGATGCCGCCAAAATACGATCACCGCGCTGTTGA


AGCGGGGCGCTATGACTGGTGGCTGAAAGGCAAGTTTTTTGAAACGACCGGCGATCCGGACAAACAACCG


TTTACGATCGTTATCCCACCGCCGAACGTCACAGGCAAACTGCATTTGGGCCATGCGTGGGATACGACGC


TGCAAGACATCATTACGCGCATGAAGCGGATGCAAGGGTATGATGTCCTATGGCTTCCGGGTATGGACCA


TGCCGGCATCGCCACCCAGGCGAAAGTGGAAGAAAAATTGCGCCAACAAGGACTGTCCCGCTACGATTTA


GGACGGGAAAAATTTTTGGAAGAAACGTGGAAATGGAAAGAAGAATATGCCGGCCATATCCGCAGCCAAT


GGGCAAAATTAGGGCTCGGCCTCGATTACACGCGCGAGCGGTTTACGCTTGATGAAGGGCTGTCAAAAGC


CGTACGCGAAGTGTTCGTCTCGCTTTACCGGAAAGGGCTCATTTACCGCGGTGAATACATTATCAACTGG


GATCCGGCGACCAAAACCGCCTTGTCCGACATCGAGGTCATTTACAAGGAAGTGAAAGGTGCGCTTTATC


ATTTGCGCTATCCGCTCGCTGACGGCTCGGGCTACATTGAAGTAGCGACAACCCGTCCAGAAACGATGCT


CGGTGACACGGCCGTCGCGGTTCATCCGGATGACGAGCGGTATAAACACTTGATCGGCAAGATGGTGAAA


TTGCCAATCGTTGGCCGGGAAATTCCGATCATCGCTGATGAGTATGTCGATATGGAATTCGGTTCCGGCG


CGGTAAAAATTACACCGGCACACGATCCGAACGACTTTGAAGTTGGCAACCGCCACAACTTGCCGCGCAT


TCTCGTCATGAACGAAGACGGTACAATGAACGAAAACGCATTGCAATATCAAGGGCTTGACCGGTTTGAA


TGCCGGAAGCAAATCGTCCGTGATTTACAAGAGCAAGGCGTCCTCTTTAAAATTGAGGAACACGTCCACT


CGGTCGGGCACAGTGAACGGAGCGGCGCCGTTGTTGAACCGTATTTGTCGACACAATGGTTCGTAAAAAT


GAAGCCGCTCGCGGAAGCTGCCATCAAGATGCAGCAAACAGAAGGAAAAGTGCAATTTGTGCCGGAGCGG


TTTGAAAAAACGTACTTGCACTGGCTTGAGAACATTCGCGACTGGTGCATTTCGCGTCAGCTTTGGTGGG


GGCACCGCATTCCGGCGTGGTACCATAAAGAAACGGGTGAAATTTACGTCGACCACGAGCCGCCGGCAGA


CATTGAAAATTGGGAGCAAGACCCGGATGTGCTTGATACATGGTTCAGCTCGGCACTCTGGCCGTTCTCC


ACAATGGGGTGGCCGGATACGGAAGCGCCGGACTACAAGCGCTATTACCCGACCGATGTGCTTGTCACCG


GCTATGACATCATTTTCTTCTGGGTGTCGCGCATGATTTTCCAAGGGCTTGAGTTCACTGGGAAGAGACC


GTTTAAAGATGTGTTGATCCACGGCCTCGTCCGCGACGCTCAAGGAAGAAAAATGAGCAAGTCGCTCGGC


AACGGTGTCGACCCGATGGATGTCATTGACCAATACGGCGCCGATGCGCTCCGCTACTTCCTAGCGACCG


GTAGCTCGCCAGGACAAGATTTGCGCTTTAGCACGGAAAAAGTTGAGGCGACGTGGAATTTTGCTAACAA


AATTTGGAACGCTTCACGTTTCGCCTTAATGAACATGGGCGGCATGACATATGAGGAGCTCGATTTGAGC


GGCGAAAAAACGGTCGCCGACCATTGGATTTTAACGCGCTTAAATGAAACGATCGACACGGTGACGAAGC


TCGCCGACAAATACGAGTTTGGTGAAGTCGGTCGCACGTTGTACAACTTTATTTGGGACGATTTGTGCGA


CTGGTACATTGAAATGGCGAAGCTGCCGCTTTACGGCGATGATGAGACAGCGAAAAAGACGACGCGTTCA


GTTTTAGCGTATGTGCTTGACAATACGATGCGCTTGTTGCATCCATTCATGCCGTTCATTACCGAGGAAA


TTTGGCAAAACTTGCCGCATGACGGCGAATCGATTACCGTTGCCTCGTGGCCGCAAGTGCGTCCGGAGCT


GTCAAACGAAGAAGCGGCGGAAGAAATGCGGATGCTCGTTGACATTATCCGCGCGGTCCGAAACGTTCGT


GCCGAAGTCAATACGCCGCCGAGCAAACCGATTGCGCTCTACATTAAGACAAAAGACGAACAAGTGCGCG


CAGCGCTTATGAAAAACCGCGCTTATCTCGAACGGTTCTGCAATCCGAGCGAATTGATCATTGACACGGA


TGTTCCGGCGCCAGAAAAAGCGATGACTGCTGTCGTCACAGGGGCAGAGCTCATTTTGCCGCTTGAAGGA


CTCATCAATATCGAAGAAGAAATCAAGCGGCTTGAGAAAGAGCTCGACAAATGGAACAAAGAAGTCGAGC


GTGTCGAAAAGAAACTGGCGAACGAAGGCTTTTTGGCAAAAGCGCCGGCTCATGTCGTCGAGGAAGAGCG


GCGCAAGCGGCAAGATTACATCGAAAAACGCGAAGCAGTGAAAGCGCGTCTTGCCGAGTTGAAACGG





SEQ ID NO. 130


Amino Acid


ValRS-GsuValRS



Geobacillussubterraneus DSM 13552 (91A1)



MKGAFLLAYRTVDPVGNTAIVYHMKEGIKVAQHEVSMPPKYDHRAVEAGRYDWWLKGKFFETTGDPDKQP


FTIVIPPPNVTGKLHLGHAWDTTLQDIITRMKRMQGYDVLWLPGMDHAGIATQAKVEEKLRQQGLSRYDL


GREKFLEETWKWKEEYAGHIRSQWAKLGLGLDYTRERFTLDEGLSKAVREVFVSLYRKGLIYRGEYIINW


DPATKTALSDIEVIYKEVKGALYHLRYPLADGSGYIEVATTRPETMLGDTAVAVHPDDERYKHLIGKMVK


LPIVGREIPIIADEYVDMEFGSGAVKITPAHDPNDFEVGNRHNLPRILVMNEDGTMNENALQYQGLDRFE


CRKQIVRDLQEQGVLFKIEEHVHSVGHSERSGAVVEPYLSTQWFVKMKPLAEAAIKMQQTEGKVQFVPER


FEKTYLHWLENIRDWCISRQLWWGHRIPAWYHKETGEIYVDHEPPADIENWEQDPDVLDTWFSSALWPFS


TMGWPDTEAPDYKRYYPTDVLVTGYDIIFFWVSRMIFQGLEFTGKRPFKDVLIHGLVRDAQGRKMSKSLG


NGVDPMDVIDQYGADALRYFLATGSSPGQDLRFSTEKVEATWNFANKIWNASRFALMNMGGMTYEELDLS


GEKTVADHWILTRLNETIDTVTKLADKYEFGEVGRTLYNFIWDDLCDWYIEMAKLPLYGDDETAKKTTRS


VLAYVLDNTMRLLHPFMPFITEEIWQNLPHDGESITVASWPQVRPELSNEEAAEEMRMLVDIIRAVRNVR


AEVNTPPSKPIALYIKTKDEQVRAALMKNRAYLERFCNPSELIIDTDVPAPEKAMTAVVTGAELILPLEG


LINIEEEIKRLEKELDKWNKEVERVEKKLANEGFLAKAPAHVVEEERRKRQDYIEKREAVKARLAELKR





SEQ ID NO. 131


DNA


MTF-GsuMTF



Geobacillussubterraneus DSM 13552 (91A1)



ATGCTGATGACGAACATTGTCTTTATGGGAACGCCTGATTTTGCGGTGCCGGTTTTACGGCAGCTGCTTG


ATGACGGGTATCGGGTTGTTGCCGTTGTTACGCAGCCGGACAAGCCGAAAGGGCGAAAGCGCGAGCTTGT


TCCGCCCCCCGTTAAGGTCGAGGCGCAAAAACACGGCATCCCGGTATTGCAACCGACGAAAATTCGTGAA


CCGGAACAATACGAACAAGTGCTGGCGTTTGCGCCTGACTTGATCGTGACCGCGGCATTTGGACAAATTT


TGCCTAAGGCTCTGCTTGACGCTCCCAAATATGGCTGCATTAATGTTCACGCCTCGCTTCTTCCCGAGCT


GCGCGGCGGTGCGCCGATCCATTATGCCATTTGGCAAGGGAAAACGAAAACAGGTGTCACGATTATGTAT


ATGGCGGAAAAGTTGGATGCCGGCGACATGTTGACGCAAGTCGAAGTGCCGATTGAAGAAACCGATACCG


TCGGCACACTGCATGATAAATTGAGCGCTGCCGGGGCTAAACTATTATCAGAAACGCTCCCGCTTTTATT


GGAAGGTAACCTTGCGCCTATTCCGCAAGAGGAAGAGAAAGCGACATATGCTCCGAATATCCGGCGTGAA


CAAGAGCGGATTGACTGGGCGCAGCCTGGTGAGGCGATTTACAACCATATCCGTGCTTTTCATCCGTGGC


CGGTTACGTATACGACATACGACGGGAACGTTTGGAAAATCTGGTGGGGCGAAAAAGTGCCGGCGCCAAG


CTTAGCGTCGCCAGGCACGATTTTATCGCTTGAGGAAGACGGCATCGTCGTCGCCACCGGCAGTGAGACG


GCCATTAAAATTACTGAATTGCAGCCGGCCGGCAAAAAGCGAATGGCGGCCAGCGAGTTTTTGCGCGGTG


CTGGCAGCCGGCTTGCGGTCGGCACGAAGCTAGGAGAGAACAATGAACGTACG





SEQ ID NO. 132


Amino Acid


MTF-GsuMTF



Geobacillussubterraneus DSM 13552 (91A1)



MLMTNIVFMGTPDFAVPVLRQLLDDGYRVVAVVTQPDKPKGRKRELVPPPVKVEAQKHGIPVLQPTKIRE


PEQYEQVLAFAPDLIVTAAFGQILPKALLDAPKYGCINVHASLLPELRGGAPIHYAIWQGKTKTGVTIMY


MAEKLDAGDMLTQVEVPIEETDTVGTLHDKLSAAGAKLLSETLPLLLEGNLAPIPQEEEKATYAPNIRRE


QERIDWAQPGEAIYNHIRAFHPWPVTYTTYDGNVWKIWWGEKVPAPSLASPGTILSLEEDGIVVATGSET


AIKITELQPAGKKRMAASEFLRGAGSRLAVGTKLGENNERT





SEQ ID NO. 133


Amino Acid


RF-1-Mut-GsRF-1-EcOpt



Geobacillusstearothermophilus



MFDRLEAVEQRYEKLNELLMEPDVINDPKKLRDYSKEQADLGETVQTYREYKSVREQLAEAKAMLEEKLE


PELREMVKEEIGELEEREEALVEKLKVLLLPKDPNDEKNVIMEIRAAAGGEEAALFAGDLYRMYTRYAES


QGWKTEVIEASPTGLGGYKEIIFMINGKGAYSKLKFENGAHRVQRVPETESGGRIHTSTATVACLPEMEE


IEVEINEKDIRVDTFASSGPGGQSVNTTMSAVRLTHIPTGIVVICQDEKSQIKNKEKAMKVLRARIYDKY


QQEARAEYDQTRKQAVGTGDRSERIRTYNFPQNRVIDHRIGLTIQKLDQVPDGHLDEIIEALILDDQAKK


LEQANDAS





SEQ ID NO. 134


Amino Acid


muGFP + His6 tag + C-tag



Aequoreavictoria



MRGSHHHHHHGSSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTIGKLPVPWPT


LVTTLTYGVLCFSRYPDHMKRHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGID


FKEDGNILGHKLEYNFNSHNVYITADKQKNGIKAYFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNH


YLSTQSVLSKDPNEKRDHMVLLEDVTAAGITHGMDELYKGSEPEA





SEQ ID NO. 135


Amino Acid


deGFP



Aequoreavictoria



MELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRY


PDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYN


YNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEK


RDHMVLLEFVTAAGI





SEQ ID NO. 136


Amino Acid


T7 RNA Polymerase


T7 Bacteriophage


MNTINIAKNDFSDIELAAIPFNTLADHYGERLAREQLALEHESYEMGEARFRKMFERQLKAGEVADNAAA


KPLITILLPKMIARINDWFEEVKAKRGKRPTAFQFLQEIKPEAVAYITIKTTLACLTSADNITVQAVASA


IGRAIEDEARFGRIRDLEAKHFKKNVEEQLNKRVGHVYKKAFMQVVEADMLSKGLLGGEAWSSWHKEDSI


HVGVRCIEMLIESTGMVSLHRQNAGVVGQDSETIELAPEYAEAIATRAGALAGISPMFQPCVVPPKPWTG


ITGGGYWANGRRPLALVRTHSKKALMRYEDVYMPEVYKAINIAQNTAWKINKKVLAVANVITKWKHCPVE


DIPAIEREELPMKPEDIDMNPEALTAWKRAAAAVYRKDKARKSRRISLEFMLEQANKFANHKAIWFPYNM


DWRGRVYAVSMFNPQGNDMTKGLLTLAKGKPIGKEGYYWLKIHGANCAGVDKVPFPERIKFIEENHENIM


ACAKSPLENTWWAEQDSPFCFLAFCFEYAGVQHHGLSYNCSLPLAFDGSCSGIQHFSAMLRDEVGGRAVN


LLPSETVQDIYGIVAKKVNEILQADAINGTDNEVVTVTDENTGEISEKVKLGTKALAGQWLAYGVTRSVT


KRSVMTLAYGSKEFGFRQQVLEDTIQPAIDSGKGLMFTQPNQAAGYMAKLIWESVSVTVVAAVEAMNWLK


SAAKLLAAEVKDKKTGEILRKRCAVHWVTPDGFPVWQEYKKPIQTRLNLMFLGQFRLQPTINTNKDSEID


AHKQESGIAPNFVHSQDGSHLRKTVVWAHEKYGIESFALIHDSFGTIPADAANLFKAVRETMVDTYESCD


VLADFYDQFADQLHESQLDKMPALPAKGNLNLRDILESDFAFA








Claims
  • 1. A system for recombinant cell-free expression comprising: a core recombinant protein mixture having at least the following components: a plurality of initiation factors (IFs);a plurality of elongation factors (EFs);a plurality of peptide release factors (RFs);at least one ribosome recycling factor (RRF);a plurality of aminoacyl-tRNA-synthetases (RSs); andat least one methionyl-tRNA transformylase (MTF);at least one nucleic acid synthesis template;a reaction mixture having cell-free reaction components necessary for in vitro macromolecule synthesis; andwherein the above components are situated in a bioreactor configured for cell-free expression of macromolecules.
  • 2. The system of claim 1, wherein the components of said core recombinant protein mixture comprises a core recombinant protein mixture derived from a bacteria.
  • 3. The system of claim 2, wherein said core recombinant protein mixture derived from bacteria comprises a core recombinant protein mixture wherein at least one components is derived from a thermophilic bacteria.
  • 4. The system of any one of claims 2, and 3, wherein said thermophilic bacteria comprises a thermophilic Bacillaceae bacteria, or Geobacillus thermophilic bacteria.
  • 5. The system of claim 4, wherein said Geobacillus thermophilic bacteria is selected from the group consisting of: Geobacillus subterraneus, and Geobacillus stearothermophilus.
  • 6. The system of claim 1, wherein said core recombinant protein mixture derived from bacteria comprises a core recombinant protein mixture wherein at least one components is derived from a non-thermophilic bacteria, or a combination of non-thermophilic and thermophilic bacteria.
  • 7. The system of claim 6, wherein said non-thermophilic bacteria comprise Escherichia coli.
  • 8. The system of claim 1, wherein said plurality of initiation factors (IFs) comprises a plurality of initiation factors derived from thermophilic bacteria.
  • 9. The system of any one of claims 1, and 8, wherein said plurality of initiation factors derived from thermophilic bacteria comprise IF1, IF2, IF3, or a fragment or variant of any of the same.
  • 10. The system of any one of claims 1, 8, and 9, wherein the plurality of initiation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 2, 4, 6, 70, 72, and 74, or a sequence having at least 90% sequence identity.
  • 11. The system of claim 1, wherein said plurality of elongation factors (EFs) comprises a plurality of elongation factors derived from thermophilic bacteria.
  • 12. The system of any one of claims 1, and 11, wherein said plurality of elongation factors derived from thermophilic bacteria comprise EF-G; EF-Tu; EF-Ts; EF-4; EF-P, or a fragment or variant of any of the same.
  • 13. The system of any one of claims 1, 11, and 12, wherein the plurality of elongation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84, or a sequence having at least 90% sequence identity.
  • 14. The system of claim 1, wherein said plurality of peptide release factors (RFs) comprises a plurality of peptide release factors is derived from thermophilic bacteria, or a Bacillus bacteria.
  • 15. The system of any one of claims 1, and 14, wherein said plurality of peptide release factors derived from a thermophilic bacteria comprise RF1, RF2, and RF3, or a fragment or variant of any of the same.
  • 16. The system of any one of claims 1, 14, and 15, wherein the plurality of peptide release factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 18, 20, 22, 86, 88, or a sequence having at least 90% sequence identity.
  • 17. The system of claim 1, wherein said ribosome recycling factor (RRF) comprises a ribosome recycling factor derived from thermophilic bacteria.
  • 18. The system of any one of claims 1, and 17, wherein said ribosome recycling factor is derived from Geobacillus.
  • 19. The system of any one of claims 1, 17, and 18, wherein the ribosome recycling factor comprises a ribosome recycling factor according to amino acid sequences SEQ ID NOs. 14, and 90, or a sequence having at least 90% sequence identity.
  • 20. The system of claim 1, wherein said plurality of aminoacyl-tRNA-synthetases (RSs) comprises a plurality of aminoacyl-tRNA-synthetases derived from thermophilic bacteria, or E. Coli.
  • 21. The system of any one of claims 1, and 20, wherein the plurality of aminoacyl-tRNA-synthetases comprises AlaRS; ArgRS; AsnRS; AspRS; CysRS; GlnRS; GluRS; GlyRS; HisRS; IleRS; LeuRS; LysRS; MetRS; PheRS (a); PheRS (b); ProRS; SerRS; ThrRS; TrpRS; TyrRS; and ValRS, or a fragment or variant of any of the same.
  • 22. The system of any one of claims 1, 20, and 21, wherein said plurality of aminoacyl-tRNA-synthetases are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130, or a sequence having at least 90% sequence identity
  • 23. The system of claim 1, wherein said methionyl-tRNA transformylase (MTF) comprises a methionyl-tRNA transformylase derived from thermophilic bacteria.
  • 24. The system of claims 1, and 23, wherein said methionyl-tRNA transformylase is derived from Geobacillus.
  • 25. The system of any one of claims 1, 23, and 24, wherein the methionyl-tRNA transformylase comprises a methionyl-tRNA transformylase according to amino acid sequences SEQ ID NOs. 68, and 132, or a sequence having at least 90% sequence identity.
  • 26. The system of claim 1, wherein said nucleic acid synthesis template comprises a DNA template.
  • 27. The system of claim 26, wherein said DNA template comprises a linear DNA template having: at least one target sequence operably linked to a promoter, and wherein said target sequence may optionally be codon optimized;at least one ribosome binding site (RBS);at least one expression product cleavage site; andat least one tag.
  • 28. The system of claim 1, wherein said nucleic acid synthesis template comprises an RNA template.
  • 29. The system of claim 1, wherein said reaction mixture comprises one or more of the following components: a quantity of ribosomes, and optionally a quantity of ribosomes derived from thermophilic bacteria;a quantity of RNase inhibitor;a quantity of RNA polymerase;a quantity of tRNAs, and optionally a quantity of tRNAs derived from thermophilic bacteria;a buffer; anda quantity of amino acids.
  • 30. The system of claim 29, wherein said reaction mixture further comprises one or more of the following components: Tris-Acetate;Mg(OAc)2;K+-glutamate;amino-acetate;NaCl;KCl;MgCl2;DTT;octyl-b-glycoside;NAD;NADP;sorbitol;FADH;CoA;PLP; andSAM.
  • 31. The system of any of claims 1, and 29, and further comprising an energy source.
  • 32. The system of claim 32, wherein said energy source comprises a quantity of nucleotide tri-phosphates (NTPs).
  • 33. The system of claim 32, wherein said nucleotide tri-phosphates comprise one or more of the nucleotide tri-phosphates selected from the group consisting of: adenine triphosphate (ATP); Guanosine triphosphate (GTP), Uridine triphosphate UTP, and Cytidine triphosphate (CTP).
  • 34. The system of any of claims 31, 32, and 33, wherein said energy source comprises an inorganic polyphosphate-based energy regeneration system.
  • 35. The system of claim 34, wherein said inorganic polyphosphate-based energy regeneration system comprises: a cellular adenosine triphosphate (ATP) energy regeneration system comprising: a quantity of Adenosyl Kinase (Gst AdK) enzyme;a quantity of Polyphosphate Kinase (Taq PPK) enzyme;a quantity of inorganic polyphosphate (PPi); anda quantity of adenosine monophosphate (AMP);wherein said AdK and PPK enzymes work synergistically to regenerate cellular ATP energy from PPi and AMP.
  • 36. The system of claim 1, wherein said bioreactor comprises a continuous flow bioreactor.
  • 37. A recombinant cell-free expression reaction mixture comprising: a plurality of initiation factors (IFs);a plurality of elongation factors (EF);a plurality of release factors (RF)at least one ribosome recycling factor (RRF);a plurality of aminoacyl-tRNA-synthetases (RSs); andat least one methionyl-tRNA transformylase (MTF);
  • 38. The system of claim 37, wherein said plurality of initiation factors (IFs) comprise a plurality of initiation factors derived from thermophilic bacteria.
  • 39. The system of any one of claims 37, and 38, wherein said plurality of initiation factors derived from thermophilic bacteria comprise IF1, IF2, IF3, or a fragment or variant of any of the same.
  • 40. The system of any one of claims 37, 38, and 39, wherein the plurality of initiation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 2, 4, 6, 70, 72, and 74, or a sequence having at least 90% sequence identity.
  • 41. The system of claim 37, wherein said plurality of elongation factors (EFs) comprise a plurality of elongation factors derived from thermophilic bacteria.
  • 42. The system of any one of claims 37, and 41, wherein said plurality of elongation factors derived from a thermophilic bacteria comprises EF-G, EF-Tu, EF-Ts, EF-4, EF-P, or a fragment or variant of any of the same.
  • 43. The system of any one of claims 37, 41, and 42, wherein the plurality of elongation factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84, or a sequence having at least 90% sequence identity.
  • 44. The system of claim 37, wherein said plurality of peptide release factors (RFs) comprise a plurality of release factors derived from thermophilic bacteria, or a Bacillus sp. bacteria.
  • 45. The system of any one of claims 37, and 44, wherein the plurality of peptide release factors comprises RF1, RF2, and RF3, or a fragment or variant of any of the same.
  • 46. The system of any one of claims 37, 44, and 45, wherein the plurality of peptide release factors are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 18, 20, 22, 86, 88, or a sequence having at least 90% sequence identity.
  • 47. The system of claim 37, wherein said ribosome recycling factor (RRF) comprise a ribosome recycling factor derived from thermophilic bacteria.
  • 48. The system of any one of claims 37, and 47, wherein said ribosome recycling factor derived from Geobacillus.
  • 49. The system of any one of claims 37, 47, and 48, wherein the ribosome recycling factor comprise a ribosome recycling factor according to amino acid sequence SEQ ID NOs. 14, and 90, or a sequence having at least 90% sequence identity.
  • 50. The system of claim 37, wherein said plurality of aminoacyl-tRNA-synthetases (RSs) comprise a plurality of aminoacyl-tRNA-synthetases wherein at least one is derived from thermophilic bacteria.
  • 51. The system of any one of claims 37, and 50, wherein the plurality of aminoacyl-tRNA-synthetases comprise AlaRS; ArgRS; AsnRS; AspRS; CysRS; GlnRS; GluRS; GlyRS; HisRS; IleRS; LeuRS; LysRS; MetRS; PheRS (a); PheRS (b); ProRS; SerRS; ThrRS; TrpRS; TyrRS; and ValRS, or a fragment or variant of any of the same.
  • 52. The system of any one of claims 37, 50, and 51, wherein said plurality of aminoacyl-tRNA-synthetases are selected from the group of amino acid sequences consisting of: SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130, or a sequence having at least 90% sequence identity
  • 53. The system of any one of claims 37, wherein said methionyl-tRNA transformylase (MTF) comprises a methionyl-tRNA transformylase derived from thermophilic bacteria.
  • 54. The system of any one of claims 37, and 53, wherein said methionyl-tRNA transformylase derived from Geobacillus.
  • 55. The system of any one of claims 37, 53, and 54, wherein the methionyl-tRNA transformylase comprises a methionyl-tRNA transformylase according to amino acid sequence SEQ ID NOs. 68, and 132, or a sequence having at least 90% sequence identity.
  • 56. An isolated nucleotide comprising a nucleotide selected from the group consisting of: SEQ ID NOs. 1, 3, 5 69, 71, and 73;SEQ ID NOs. 7, 9, 11, 13, 15, 75, 77, 79, 81, and 83;SEQ ID NOs. 17, 19, 21, 85, and 87;SEQ ID NOs. 23, and 89; andSEQ ID NO. 25, 27, 29, 31, 33, 35,37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 and 131.
  • 57. An expression vector comprising at least one of the nucleotide sequences of claim 56, operably linked to a promoter.
  • 58. A bacteria transformed by one of the expression vectors of claim 57.
  • 59. The transformed bacteria of claim 58, wherein said bacteria comprises E. coli.
  • 60. A peptide comprising an amino acid sequence selected from the group consisting of: SEQ ID NOs. 2, 4, 6, 70, 72 and 74;SEQ ID NOs. 8, 10, 12, 14, 16, 76, 78, 80, 82, and 84;SEQ ID NOs. 18, 20, 22, 86, 88;SEQ ID NOs. 14, and 90;SEQ ID NOs. 26, 28. 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 94, 96, SEQ ID NOs. 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, and 130; andSEQ ID NOs. 68, and 132, or a fragment or variant of any of the same.
  • 61. A cell-free expression system using at least one of the peptides of claim 60.
Parent Case Info

This application claims the benefit of and priority to U.S. Provisional Application No. 62/833,555, filed Apr. 12, 2019. The entire specification and figures of the above-referenced application are hereby incorporated, in their entirety by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US20/28005 4/13/2020 WO
Provisional Applications (1)
Number Date Country
62833555 Apr 2019 US