A portion of the disclosure of this patent document contains material, which is subject to copyright protection. The copyright owner has no object to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
In U.S. patent application, Ser. No. 10/325,245 and entitled “System and Method for Automatically Building an OLAP Model in a Relational Database and incorporated herein in its entirety by this reference, there is described a system and method for automatically creating OLAP (multidimensional) metadata objects from a relational database. Further, in US Publication 2003/0212667, published Nov. 13, 2003, entitled “Systems and Methods and Computer Program Products to Browse Database Query Information”, incorporated herein in its entirety by this reference, there is described a system to browse query information. Further, in US Publication 2003/0212676, published Nov. 13, 2003, entitled, “System, Methods, and Computer Program Products to Determine Useful Relationships and Dimensions of a Database”, there is described a system to determine useful relationships and dimensions of a database. US Publication 2003/0212676 issued as U.S. Pat. No. 6,947,929 on Sep. 20, 2005, and a Statutory Disclaimer was filed for U.S. Pat. No. 6,947,929 on Jan. 10, 2007. Although not limited thereto, the present invention employs such methods in one of its preferred embodiments.
1. Field of the Invention
present invention is directed to the field of relational database browsing and information mining. It is more particularly directed to computer-implemented discovery of metadata, and generation of multidimensional models in a relational database.
2. Description of the Background Art
A computer-implemented database is a collection of data, organized in the form of tables. A table typically consists of columns that represent data of the same nature, and records that represent specific instances of data associated with the table. A relational database is a database that may be a set of tables containing information that is manipulated in accordance with the relational model associated with the data. For example, the product marketed under the trademarks IBM DB2 stores the data associated with the database in tables, and each table has a name. It will be appreciated that other vendors also provide relational databases.
On-Line Analytical Processing (OLAP) is a computing technique for summarizing, consolidating, viewing, analyzing, applying formulae to, and synthesizing data according to multiple dimensions. OLAP software enables users, such as analysts, managers, and executives, to gain insight into performance of an enterprise through rapid access to a wide variety of data dimensions that are organized to reflect the multidimensional nature of the enterprise performance data, typically be means of hypotheses about possible trends in the data. More particularly, OLAP may be used to analyze corporate data from different viewpoints by identifying interesting associations in the information in a relational database.
Data mining is a technique employing computer-based techniques to enable users to query structured data stored in computers in forms such as, multidimensional relational databases, conventional relational databases, or flat computer files. More particularly, data mining involves extracting computer-based information and enables a user to discover trends about the computer-based information. An increasingly popular data model for OLAP applications is the multidimensional database (MDDB). MDDBs are often used by a data analyst for interactive exploration of data, such as performance data, by techniques such as data mining.
Metadata is information that describes the characteristics of stored data. For instance, data in a relational database may be described by metadata such as the name of associated relational database tables and columns. More particularly, each relational database typically has a set of tables, such as system catalog tables, which are automatically maintained by the computer system and contain information about the tables and other objects that are stored in the relational database. Information about the relational database can be retrieved from the system catalog tables using structured query language (SQL) queries.
SQL is a standardized language for defining and manipulating data in a relational database and may be used during data mining. A query may be an expression whose result is a table, and may be embodied in software structures such as a query statement or a query object. A query searches the records stored in specified tables to find the answer to a question. A query is a request for information from the relational database based on specific conditions such as, which subset of the data should be retrieved and how the data is to be presented. For example, a request for a list of all departments in a DEPARTMENT table whose budget is greater than $10,000 is an example of a query. Further, the SQL query may require analysis of the metadata associated with a relational database.
A browser may be considered a text extender function that enables a user to display text on a computer monitor. Browsing is typically used to examine records in a file, such as a relational database. By means of example, a browser may operate on one computer, such as a client computer and initiate requests to a second computer, such as a server computer so that information from the second computer may be displayed via the first computer. When a user attempts to browse information during OLAP processing, the amount of information may be so large that it is difficult to determine useful information. For example, if a user attempts to browse a relational database and uses SQL queries it may be difficult to discover OLAP trends, such as OLAP cube models, that could be used to facilitate OLAP analysis.
The product marketed under the trademarks IBM DB2 Query Management Facility (QMF) is a multipurpose query program for reporting, data sharing, server resource protection, powerful application development, and native connectivity to DB2 platforms. QMF provides an interface to build queries and business reports by accessing DB2 information, such as information provided in a DB2 catalog. QMF may operate with a browser.
The creation of MDDBs typically requires a large volume of metadata objects that are used to generate OLAP cube multidimensional models when OLAP queries are initiated. A multidimensional model may be a set of rules or a formula for predicting the most-likely data-structure outcome based on existing data. An OLAP cube multidimensional model typically comprises a set of tables that represent facts and dimensions associated with a database, providing an optimized structured presentation of metadata associated with a relational database and thereby enabling efficient mining. In the past, creation of the OLAP multidimensional cube models via the creation of metadata objects required manual, user intervention. This required a user to be extremely knowledgeable of OLAP structures such as metadata. A QMF Query Object is an example of such a metadata object and is typically used to generate a software query, such as an SQL query. Further, user-created metadata objects may be incorrect, having errors such as non-conforming or malformed structures with respect to a particular relational database structure. In the past and to overcome the problems inherent in the use of possibly incorrect user-created metadata objects, the underlying relational database tables were examined during creation of an OLAP cube multidimensional model. This in turn, required that referential integrity constraints were defined for the underlying relational database tables. Referential integrity constraints may operate to ensure that one-to-many and many-to-many relationships, between multidimensional metadata and relational database structures, are enforced within the operation of a relational database schema. Executing such referential integrity constraints requires considerable computer resources.
To overcome such problems of the past, it would be advantageous to automatically discover metadata objects during query mining and query analysis. Further, it would be useful for such automatically discovered metadata objects to conform to the relational database structure.
An embodiment of the present invention relates to systems, methods, and computer program products that include an automated discovery process that discovers useful metadata objects from an intelligent starting point thereby generating at least one multidimensional model for OLAP analysis. Further, generation of the starting point may be derived by use of a multidimensional analysis program that analyzes the results of query mining and query analysis, including at least one query object in a relational database. Such an intelligent starting point used during the OLAP discovery process aids in generating, from at least one multidimensional metadata object, useful OLAP multidimensional models for multidimensional analysis. The preferred embodiment of the present invention determines whether metadata useful for OLAP analysis exists by evaluating patterns found in the queries. The present invention advantageously addresses the need for automated discovery of such useful metadata, used to generate multidimensional (or “cube”) models, when the relational database tables were not created with referential constraints. In addition to using the starting point derived from the results of query mining and query analysis, the preferred embodiment of the present invention may also limit search parameters to narrow the scope of searching for a starting point and thereby both increase the probability of producing an accurate cube multidimensional model and improve the efficiency of determining the starting point over previous techniques.
In the following detailed description and in the several figures of the drawings, like elements are identified with like reference numerals.
As shown in the drawings and for purposes of illustration, an embodiment of the invention relates to systems, methods, and computer program products that automatically discover metadata objects and generate multidimensional models during query mining and query analysis. Further, according to the preferred embodiment of the present invention, the automatically discovered metadata objects and generated multidimensional models advantageously conform to the relational database structure.
In the past, relational database users frequently executed relational database queries conforming to an OLAP structure by manually creating OLAP multidimensional models that could be used to facilitate OLAP analysis. For example, the product marketed under the trademarks IBM DB2 Query Management Facility (QMF) required users to manually create metadata objects for generation of multidimensional models. Other solutions that attempt to discover metadata objects and generate multidimensional models examine the actual tables in the related relational database, and do not examine the queries. Such other solutions require referential integrity constraints to be defined in the relational database tables. These solutions are not optimal for users with large relational databases that were not originally designed for optimal OLAP analysis.
More particularly, the preferred embodiment of the present invention advantageously solves the need for automated discovery of metadata and generation of multidimensional models when the associated relational database tables were not created with referential constraints. The preferred embodiment of the present invention novelly uses the results of query mining and query analysis, such as those available with QMF, to provide intelligent options for starting the process of discovering metadata objects, including at least one fact object, at least one dimension object, and at least one join object, that are used to define optimized OLAP cube multidimensional models.
The Generate Multidimensional Model Code 120 operates in the client computer system 102 or the server computer system 104 to perform the present invention. For example, information may be communicated to either the server 104 or the client 102 via the user interface 117, such as an invocation to execute the Generate Multidimensional Model Code 120. According to the preferred embodiment of the present invention, the Generate Multidimensional Model Code 120 enables the relational database user to efficiently query and mine data in a relational database 110 by use of multidimensional models 112.
The user interface 117 may communicate with the preferred embodiment of the present invention, either via batch input 119 or user input 118. Further, the relational database 110 may be configured in the memory 1058 of the client 102 or the server 104. Alternatively the relational database 110 may be configured in computer storage such as that of a disk 122. Element 1058 is described with reference to
Metadata objects are typically defined, in part, by use of information about a relational database 110 stored in a relational database catalog 220. Those skilled in the art will appreciate the operation of a relational database catalog 220. QMF 202 typically operates with a variety of objects, such as a query object 204, a form object, and a procedure object. QMF Query Objects 204 typically include SQL instructions. The preferred embodiment of the present invention advantageously uses multidimensional metadata objects 221 having at least one dimension object 222, at least one fact object 224, and at least one join object 226. Those skilled in the art will appreciate that a dimension object 222 typically includes actual data, such as names and addresses; and a fact object 224 typically includes aggregated data that is numerical. Multidimensional metadata objects 221 are typically associated with a particular multidimensional model 112 and reflect a particular view of the multidimensional metadata 210.
Those skilled in the art will appreciate that structured query language (SQL) is a standardized language for defining and manipulating data in a relational database 110. While SQL command lines are used herein by means of example it should not be viewed as limiting. Many other computer-accessible forms of program code may be used to implement embodiments of the present invention.
QMF Query Objects 204 also include a wide-variety of information in addition to the standard SQL query information, because they are stored in QMF Catalog Tables 208. For example, a QMF Query Object 204 typically contains the name of the owner of the query object 204, the type of the query object 204, and time stamp information about the last used and last modified times. This query information is novelly leveraged by the preferred embodiment of the present invention to generate Multidimensional Models 112. More particularly, at least one query object 204 is searched via the Generate Multidimensional Model Code 120, and patterns in the query information are identified that map to multidimensional metadata 210 and multidimensional metadata objects 221. Then the Generate Multidimensional Model Code 120 uses specific multidimensional metadata objects 221 to generate at least one Multidimensional Model 112 that conforms to the relational database querying and mining use pattern.
Information in the query object 204 is novelly used by an embodiment of the present invention to determine a starting point 217 and limit parameters 213 that narrow the scope of the searching and increase the probability of locating useful metadata objects 221 and thereby determining an accurate multidimensional model 112 that reflects the relational database querying and mining use patterns. Query mining may be facilitated by a feature of QMF 202, the Query Management Facility Miner (QMF Miner) 216. Query mining is based on at least one algorithm, which examines a set of query objects 204, searching for patterns, aggregations, and relationships that suggest a combination of certain groups of tables, columns, and joins to generate a multidimensional model 112. The Generate Multidimensional Model Code 120 typically includes a discovery filter 214 that makes recommendations on combinations of tables, columns, and joins of the relational database 110 that should be defined as dimensions, fact tables, or other constructs useful in discovering at least one metadata object 221 and thereby generating the multidimensional model 112.
The results of query mining may be presented to a user via a browser, such as the Query Management Facility Browser (Query Browser) 218, such as is discussed with reference to U.S. patent application, U.S. Publication 2003/0212667, entitled “Systems and Methods and Computer Program Products to Browse Database Query Information”. Those skilled in the art will appreciate that a call from an SQL parser 215, typically implemented as a software code module, separates sections of an SQL statement into related information so that each section may be used to identify patterns, aggregations, and relationships of a relational database 110. The sections of an SQL statement are used by the QMF Miner 216 and by the Generate Multidimensional Model Code 120. It will be appreciated that, while the present embodiment of the invention describes a technique that advantageously works with features of QMF 202, other query management code may be used to practice the invention.
If the information is formatted to accommodate the constraints of a particular operating system, such as a mainframe operating system 320, the nickname-generating module 324 maps information for use by another operating system 322. For example, the mainframe operating system 320 may represent the product marketed under the trademarks IBM OS/390. The nickname-generating module 324 may then use federated support 326 to map the information from the query objects 204 into a format that may be used by the another operating system 322, such as a personal-computer operating system. Then, the Generate Multidimensional Model Code 120 may use the metadata-generating module 328 to present information from the query objects 204 on a computer that operates with the another operating system 322.
Those skilled in the art will appreciate that a call from an SQL parser 215 separates sections of an SQL statement into related information that is novelly used by the preferred embodiment of the present invention. A query object 204 used in the preferred embodiment of the present invention is associated with a SELECT statement and returns results. Therefore and more particularly as shown in element 401, a query object 204 is analyzed by use of calls from the SQL parser 215. The following distinct information is analyzed: at least one column that is selected in at least one SELECT clause and any aggregate functions applied to each selected column, at least one table identified in the FROM clause, any join conditions or subset join conditions specified in the WHERE clause, any grouping conditions specified in the GROUP BY clause, and the order conditions specified in the ORDER BY clause such as ASC (ascending) or DESC (descending) order conditions. Element 215 is described with reference to
Further, objects and other constructs may be created to reference and count instances of the various elements included in the query object 204. In the preferred embodiment of the present invention, the process of mapping SQL constructs to multidimensional metadata 210 will adhere to the techniques described in U.S. patent application Ser. No. 10/325,245, entitled “System and Method for Automatically Building an OLAP Model in a Relational Database”. For example, data in a column maps to a WHERE statement or a measure, and data from a table maps to a dimension object 222 or a fact object 224. The preferred embodiment of the present invention will operate by use of a starting point 217 and certain thresholds or limit parameters 213. The limit parameters 213 define default values or user-specified values that are used to limit the operation of the Generate Multidimensional Model Code 120 thereby efficiently identifying at least one candidate for at least one OLAP multidimensional model 112. Element 120 is described with reference to
Also, the results of the operation of the discovery filter 214 may be generated from the results produced by the QMF Miner 216 operating with at least one QMF Catalog Table 208. More particularly, when QMF 202 is installed, at least one QMF Catalog Table 208 is generated. The QMF Miner 216 interacts with the QMF Catalog Table 208 to create query objects 204. According to the method of the preferred embodiment of the present invention, discovery filters 214 operate by use of heuristics associated with user-generated relational database querying and mining. Use of such heuristics limits the information accessed in a query object 204. Elements 208 and 216 are described with reference to
Such heuristics may be based on user-specified attributes of a particular filter and whether the particular filter is applied to the information in a query object 204. For example, a user can choose to analyze only queries with the schema name “Q” and all nonconforming queries would be ignored. Therefore, a user can describe attributes of a particular filter. According to the preferred embodiment of the present invention, the description of filters can greatly affect the value of the queries that are produced. Therefore and as shown in element 412, the Generate Multidimensional Model Code 120 and the discovery filter 214 match patterns associated with the query objects 204.
As an alternative embodiment of the present invention, a visual reference related to a potential join may be provided to help the user chose a starting point 217 for use by the Generate Multidimensional Model Code 120. The join information may be obtained from a WHERE clause. This representation of a join condition may be determined during the operation of the QMF Miner 216 by comparing the table associated with each paired column during the operation of a WHERE clause.
Turning now to
Turning now to
Returning to
Turning now to
Returning to
Returning to
By means of further example, if a query object 204 is the starting point 217 and the maximum depth level is seven, the Generate Multidimensional Model Code 120 will continue for seven levels and across each table referenced in the starting query object 204. In this case, n*max_depth_level levels will be produced, with “n” denoting the number of tables referenced by the starting query object 204. Based upon test results, the optimal default maximum depth level will also be available for the user to select.
In a typical relational database 110 designed or utilized for OLAP, tables with a large number of measures are normally fact tables. Since the notion of a large number of measures could vary greatly by relational database 110, users will also have the ability to indicate as a limit parameter 213, the number of measures for a dimension table. Tables with measure columns above this limit will be considered fact tables. In the same manner, dimension tables will normally have less rows then fact tables in a typical OLAP environment. Since the notion of a large number of relational database rows could greatly vary by relational database 110, users will have the ability to specify a limit parameter 213 for number of rows for a dimension table. A table exceeding the row limit would be considered a fact table. Testing should provide optimal default values for these limit parameters 213.
Turning now to
Returning to
Alternatively and in the method of the preferred embodiment of the present invention, if the result of the test of element 405 is “YES”, then the metadata is presented to a user in a ordered list of OLAP multidimensional models 112 that are populated by the metadata in a user-chosen OLAP multidimensional model 112, as shown in element 407.
As shown in
The RAM 1040, the data storage device 122 and the ROM 1050, are memory components 1058 that store data and instructions for controlling the operation of the processor 1055, which may be configured as a single processor or as a plurality of processors. The processor 1055 executes a program 1042, such as the Generate Multidimensional Model Code 120 to perform the methods of the present invention, as described herein. Element 120 is described with reference to
While the program 1042 is indicated as loaded into the RAM 1040, it may be configured on a storage media 1030 for subsequent loading into the data storage device 122, the ROM 1050, or the RAM 1040 via an appropriate storage media interface 1035. Storage media 1030 can be any conventional storage media such as a magnetic tape, an optical storage media, a compact disk, or a floppy disk. Alternatively, storage media 1030 can be a random access memory 1040, or other type of electronic storage, located on a remote storage system.
Generally, the computer programs and operating systems are all tangibly embodied in a computer usable device or medium, such as the memory 1058, the data storage device 122, or the data transmission devices 1045, thereby making an article of manufacture, such as a computer program product, according to the invention. As such, the terms “computer program product” as used herein are intended to encompass a computer program accessible from any computer usable device or medium.
Moreover, the computer programs 1042 and operating systems are comprised of instructions which, when read and executed by the server computer system 104 and the client computer system 102, cause the server computer system 104 and the client computer system 102 to perform the steps necessary to implement and use the present invention. Under control of the operating system, the computer programs 1042 may be loaded from the memory 1058, the data storage device 122, or the data transmission devices 1045 into the memories 1058 of the server computer system 104 and the client computer system 102 for use during actual operations.
User interface 1005 is an input device, such as a keyboard or speech recognition subsystem, for enabling a user to communicate information and command selections to the processor 1055. The user can observe information generated by the system 1000 via the display 1015 or the printer 1020. The user input device 1010 is a device such as a mouse, track-ball, or joy stick that allows the user to manipulate a cursor on the display 1015 for communicating additional information and command selections to the processor 1055.
Those skilled in the art will recognize many modifications may be made to this configuration without departing from the scope of the present invention. When operating in accordance with one embodiment of the present invention, the system efficiently automates the discovery process that allows the user to select an intelligent starting point 217 for OLAP analysis by discovering at least one metadata object 221. The processor 1055 and the program 1042 collectively operate as a module, such as the Generate Multidimensional Model Code 120. It will be appreciated that the present invention offers many advantages over prior art techniques. Elements 217 and 221 are described with reference to
The present invention is typically implemented using one or more computer programs, each of which executes under the control of an operating system and causes the server computer system 104 and the client computer system 102 to perform the desired operations as described herein. Thus, using the present specification, the invention may be implemented as a machine, process, method, system, or article of manufacture by using standard programming and engineering techniques to produce software, firmware, hardware or any combination thereof. Thus the article of manufacture may comprise a computer program usable medium embodying one or more instructions executable by the computer.
It will be understood that various alternatives and modifications may be devised by those skilled in the art. However, these should not be viewed as limitations upon the practice of these teachings, as those skilled in the art, when guided by the foregoing teachings, may derive other suitable characteristics of a similar or different nature. The present invention is intended to embrace all such alternatives, modifications and variances that fall within the scope of the appended claims
IBM, DB2, OS/390, and QMF are trademarks of International Business Machines Corporation in the United States, other countries, or both.
Number | Name | Date | Kind |
---|---|---|---|
5537524 | Aprile | Jul 1996 | A |
5594897 | Goffman | Jan 1997 | A |
5692107 | Simoudis et al. | Nov 1997 | A |
5692175 | Davies et al. | Nov 1997 | A |
5748188 | Hu et al. | May 1998 | A |
5767854 | Anwar | Jun 1998 | A |
5832475 | Agrawal et al. | Nov 1998 | A |
5832496 | Anand et al. | Nov 1998 | A |
5870746 | Knutson et al. | Feb 1999 | A |
5905985 | Malloy et al. | May 1999 | A |
5918232 | Pouschine et al. | Jun 1999 | A |
5926815 | James, III | Jul 1999 | A |
5926818 | Malloy | Jul 1999 | A |
5943668 | Malloy et al. | Aug 1999 | A |
5960423 | Chaudhuri et al. | Sep 1999 | A |
5978788 | Castelli et al. | Nov 1999 | A |
5991754 | Raitto et al. | Nov 1999 | A |
6003024 | Bair et al. | Dec 1999 | A |
6003036 | Martin | Dec 1999 | A |
6031977 | Pettus | Feb 2000 | A |
6092064 | Aggarwal et al. | Jul 2000 | A |
6115547 | Ghatate et al. | Sep 2000 | A |
6122636 | Malloy et al. | Sep 2000 | A |
6134532 | Lazarus et al. | Oct 2000 | A |
6144962 | Weinberg et al. | Nov 2000 | A |
6175836 | Aldred | Jan 2001 | B1 |
6205447 | Malloy | Mar 2001 | B1 |
6226647 | Venkatasubramanian et al. | May 2001 | B1 |
6249791 | Osborn et al. | Jun 2001 | B1 |
6292797 | Tuzhilin et al. | Sep 2001 | B1 |
6308168 | Dovich et al. | Oct 2001 | B1 |
6317750 | Tortolani et al. | Nov 2001 | B1 |
6324533 | Agrawal et al. | Nov 2001 | B1 |
6327574 | Kramer et al. | Dec 2001 | B1 |
6339776 | Dayani-Fard et al. | Jan 2002 | B2 |
6362823 | Johnson et al. | Mar 2002 | B1 |
6366903 | Agrawal et al. | Apr 2002 | B1 |
6374234 | Netz | Apr 2002 | B1 |
6385604 | Bakalash et al. | May 2002 | B1 |
6385609 | Barshefsky et al. | May 2002 | B1 |
6408292 | Bakalash et al. | Jun 2002 | B1 |
6418428 | Bosch et al. | Jul 2002 | B1 |
6421665 | Brye et al. | Jul 2002 | B1 |
6438537 | Netz et al. | Aug 2002 | B1 |
6449609 | Witkowski | Sep 2002 | B1 |
6477536 | Pasumansky et al. | Nov 2002 | B1 |
6480836 | Colby et al. | Nov 2002 | B1 |
6484179 | Roccaforte | Nov 2002 | B1 |
6539371 | Bleizeffer et al. | Mar 2003 | B1 |
6542895 | DeKimpe et al. | Apr 2003 | B1 |
6546381 | Subramanian et al. | Apr 2003 | B1 |
6546395 | DeKimpe et al. | Apr 2003 | B1 |
6567796 | Yost et al. | May 2003 | B1 |
6574619 | Reddy et al. | Jun 2003 | B1 |
6574791 | Gauthier et al. | Jun 2003 | B1 |
6581054 | Bogrett | Jun 2003 | B1 |
6581068 | Bensoussan et al. | Jun 2003 | B1 |
6604110 | Savage et al. | Aug 2003 | B1 |
6609123 | Cazemier et al. | Aug 2003 | B1 |
6615201 | Seshadri et al. | Sep 2003 | B1 |
6628312 | Rao et al. | Sep 2003 | B1 |
6633882 | Fayyad et al. | Oct 2003 | B1 |
6633885 | Agrawal et al. | Oct 2003 | B1 |
6636845 | Chau et al. | Oct 2003 | B2 |
6636853 | Stephens, Jr. | Oct 2003 | B1 |
6643633 | Chau et al. | Nov 2003 | B2 |
6643661 | Polizzi et al. | Nov 2003 | B2 |
6651055 | Kilmer et al. | Nov 2003 | B1 |
6654764 | Kelkar et al. | Nov 2003 | B2 |
6665682 | DeKimpe et al. | Dec 2003 | B1 |
6671689 | Papierniak | Dec 2003 | B2 |
6681223 | Sundaresan | Jan 2004 | B1 |
6684207 | Greenfield et al. | Jan 2004 | B1 |
6694322 | Warren et al. | Feb 2004 | B2 |
6697808 | Hurwood et al. | Feb 2004 | B1 |
6707454 | Barg et al. | Mar 2004 | B1 |
6711579 | Balakrishnan | Mar 2004 | B2 |
6711585 | Copperman et al. | Mar 2004 | B1 |
6714940 | Kelkar | Mar 2004 | B2 |
6768986 | Cras et al. | Jul 2004 | B2 |
6775662 | Witkowski et al. | Aug 2004 | B1 |
6801992 | Gajjar et al. | Oct 2004 | B2 |
6823334 | Vishnubhotla et al. | Nov 2004 | B2 |
6831668 | Cras et al. | Dec 2004 | B2 |
6842758 | Bogrett | Jan 2005 | B1 |
6865573 | Hornick et al. | Mar 2005 | B1 |
6871140 | Florance et al. | Mar 2005 | B1 |
6898603 | Petculescu et al. | May 2005 | B1 |
6931418 | Barnes | Aug 2005 | B1 |
6947929 | Bruce et al. | Sep 2005 | B2 |
6957225 | Zait et al. | Oct 2005 | B1 |
6996556 | Boger et al. | Feb 2006 | B2 |
7007039 | Chaudhuri et al. | Feb 2006 | B2 |
7051038 | Yeh et al. | May 2006 | B1 |
7139764 | Lee | Nov 2006 | B2 |
7149983 | Robertson et al. | Dec 2006 | B1 |
7162464 | Miller et al. | Jan 2007 | B1 |
7181450 | Malloy et al. | Feb 2007 | B2 |
7188090 | Kim et al. | Mar 2007 | B2 |
7191169 | Tao | Mar 2007 | B1 |
7203671 | Wong | Apr 2007 | B1 |
7246116 | Barsness et al. | Jul 2007 | B2 |
7266565 | Diab | Sep 2007 | B2 |
7275024 | Yeh et al. | Sep 2007 | B2 |
7346601 | Chaudhuri et al. | Mar 2008 | B2 |
7430562 | Bedell et al. | Sep 2008 | B1 |
7447687 | Andersch et al. | Nov 2008 | B2 |
7472127 | Malloy et al. | Dec 2008 | B2 |
7480663 | Colossi et al. | Jan 2009 | B2 |
20010026276 | Sakamoto et al. | Oct 2001 | A1 |
20010037228 | Ito et al. | Nov 2001 | A1 |
20010037327 | Haas et al. | Nov 2001 | A1 |
20010047355 | Anwar | Nov 2001 | A1 |
20010047364 | Proctor | Nov 2001 | A1 |
20010051947 | Morimoto et al. | Dec 2001 | A1 |
20010055018 | Yaginuma et al. | Dec 2001 | A1 |
20020002469 | Hillstrom | Jan 2002 | A1 |
20020029207 | Bakalash et al. | Mar 2002 | A1 |
20020073088 | Beckmann et al. | Jun 2002 | A1 |
20020078039 | Cereghini et al. | Jun 2002 | A1 |
20020087516 | Cras et al. | Jul 2002 | A1 |
20020091679 | Wright | Jul 2002 | A1 |
20020091681 | Cras et al. | Jul 2002 | A1 |
20020095430 | Egilsson et al. | Jul 2002 | A1 |
20020122078 | Markowski | Sep 2002 | A1 |
20020123993 | Chau et al. | Sep 2002 | A1 |
20020124002 | Su et al. | Sep 2002 | A1 |
20020129003 | Bakalash et al. | Sep 2002 | A1 |
20020129032 | Bakalash et al. | Sep 2002 | A1 |
20020138316 | Katz et al. | Sep 2002 | A1 |
20020143783 | Bakalash et al. | Oct 2002 | A1 |
20020188587 | McGreevy | Dec 2002 | A1 |
20020188599 | McGreevy | Dec 2002 | A1 |
20030004914 | McGreevy | Jan 2003 | A1 |
20030004942 | Bird | Jan 2003 | A1 |
20030014397 | Chau et al. | Jan 2003 | A1 |
20030033277 | Bahulkar et al. | Feb 2003 | A1 |
20030055813 | Chaudhuri et al. | Mar 2003 | A1 |
20030055832 | Roccaforte | Mar 2003 | A1 |
20030061207 | Spektor | Mar 2003 | A1 |
20030071814 | Jou et al. | Apr 2003 | A1 |
20030078852 | Shoen et al. | Apr 2003 | A1 |
20030078913 | McGreevy | Apr 2003 | A1 |
20030081002 | De Vorchik et al. | May 2003 | A1 |
20030093424 | Chun et al. | May 2003 | A1 |
20030101202 | Kelkar et al. | May 2003 | A1 |
20030115183 | Abdo et al. | Jun 2003 | A1 |
20030115207 | Bowman et al. | Jun 2003 | A1 |
20030126144 | O'Halloran et al. | Jul 2003 | A1 |
20030184588 | Lee | Oct 2003 | A1 |
20030206201 | Ly | Nov 2003 | A1 |
20030212667 | Andersch et al. | Nov 2003 | A1 |
20030212676 | Bruce et al. | Nov 2003 | A1 |
20030225768 | Chaudhuri et al. | Dec 2003 | A1 |
20040006574 | Witkowski et al. | Jan 2004 | A1 |
20040010505 | Vishnubhotla | Jan 2004 | A1 |
20040059705 | Wittke et al. | Mar 2004 | A1 |
20040098415 | Bone et al. | May 2004 | A1 |
20040122646 | Colossi et al. | Jun 2004 | A1 |
20040122844 | Malloy et al. | Jun 2004 | A1 |
20040128287 | Keller et al. | Jul 2004 | A1 |
20040128314 | Katibah et al. | Jul 2004 | A1 |
20040139061 | Colossi et al. | Jul 2004 | A1 |
20040181502 | Yeh et al. | Sep 2004 | A1 |
20040181538 | Lo et al. | Sep 2004 | A1 |
20040215626 | Colossi et al. | Oct 2004 | A1 |
20040267774 | Lin et al. | Dec 2004 | A1 |
20050027754 | Gajjar et al. | Feb 2005 | A1 |
20050033730 | Chaudhuri et al. | Feb 2005 | A1 |
20050267868 | Liebl et al. | Dec 2005 | A1 |
20050283494 | Colossi et al. | Dec 2005 | A1 |
20080133582 | Andersch et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
09106331 | Apr 1997 | JP |
09146962 | Jun 1997 | JP |
10247197 | Sep 1998 | JP |
2001243242 | Sep 2001 | JP |
2001243244 | Sep 2001 | JP |
20027435 | Jan 2002 | JP |
2002007435 | Jan 2002 | JP |
2002123530 | Apr 2002 | JP |
0022493 | Apr 2000 | WO |
0129690 | Apr 2000 | WO |
WO0022493 | Apr 2000 | WO |
0065479 | Nov 2000 | WO |
0072165 | Nov 2000 | WO |
WO0065479 | Nov 2000 | WO |
0109768 | Feb 2001 | WO |
WO0129690 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050278290 A1 | Dec 2005 | US |