Systems, methods, and controllers to enhance heavy equipment warning

Information

  • Patent Grant
  • 11965317
  • Patent Number
    11,965,317
  • Date Filed
    Monday, August 28, 2023
    a year ago
  • Date Issued
    Tuesday, April 23, 2024
    8 months ago
  • Inventors
    • Jordan; Kyle D. (Findlay, OH, US)
    • Schimmoeller; Nicholas L. (Findlay, OH, US)
    • Lixey; George M. (Findlay, OH, US)
  • Original Assignees
  • Examiners
    • Lau; Hoi C
    Agents
    • Womble Bond Dickinson (US) LLP
Abstract
Systems and methods to activate one or more indicators, positioned on heavy hydraulic-based equipment to provide indication that the heavy hydraulic-based equipment is in an operation are described herein. The system may include a hydraulic initiation lever positioned proximate an operator's seat of the equipment and configured to be actuatable to an inactive position and an active position, the hydraulic initiation lever when in the active position configured to generate an unlock signal to thereby enable hydraulic operation of the heavy hydraulic-based equipment. The system may include one or more indicators configured to receive the unlock signal, the one or more indicators configured to activate in response to reception of the unlock signal and to deactivate in response to no reception of the unlock signal.
Description
FIELD OF DISCLOSURE

Embodiments of this disclosure relate to indicator installation, mounting, and/or activation systems and methods, and more particularly, to systems and methods to activate one or more indicators via a lever of the equipment during equipment operation and/or while the hydraulics of the equipment is powered on.


BACKGROUND

Operators and other personnel typically utilize caution when working around heavy equipment. While some operators and personnel may recognize when such heavy equipment are powered on and operating, others may not recognize that heavy equipment is powered on or may not notice, due to not being able to recognize operation characteristics of the heavy equipment or lack of attention, that the heavy equipment is active. Some heavy equipment may include lights, however those lights activate only when the heavy equipment vehicle is moving and position of those lights may not be optimal for recognition by others. In some circumstances, an operator or other personnel may not be aware the heavy equipment vehicle is powered on and active until the operator or personnel are too close or may not notice a light that only activates when the equipment is actively moving, as such heavy equipment does not constantly move.


Accordingly, Applicant has recognized a need for a system and methods to activate one or more indicators via actuation of a lever, the one or more indicators to warn or indicate that heavy equipment hydraulic functionality and/or hydraulic operation controls are enabled. The present disclosure is directed to embodiments of such systems and methods.


SUMMARY

The present disclosure is generally directed to systems and methods to activate one or more indicators, in addition to heavy equipment functionality and/or hydraulic functionality, via actuation of a lever or hydraulic initiation lever, the one or more indicators to warn or indicate that heavy equipment is being operated or may be operated at any moment. The one or more indicators may be included on, added to, installed on, or mounted to various selected outer surfaces of heavy equipment. The locations of the outer surfaces may be selected based on visibility (e.g., some areas allow for more illumination and/or unobstructed views). The heavy equipment may include a vehicle or equipment configured and sized to perform a specified construction task. Types of heavy equipment may include one or more of an excavator, a bulldozer, a backhoe, a trencher, a loader, a grader, a paver, a compactor, a crane, a telehandler, a feller buncher, pile boring equipment, pile driving equipment, or other heavy equipment configured to utilize hydraulics.


Each of the one or more indicators may connect to or may be connected to a conductor, a wire, a wire harness, wire assemble, wire harness assembly, cable harness, cable assembly, or cable harness assembly. The conductor, a wire, a wire harness, or cable harness may be passed through a compartment and/or engine compartment of the heavy equipment to the cabin or cab of the heavy equipment. An operator or user may remove the panel of a hydraulic operation control panel. The operator or user may connect the conductor, a wire, a wire harness, or cable harness to a switch or other component (e.g., an electrical or signal communication component) positioned inside the panel of the hydraulic operational control panel.


Once each indicator is connected to the switch or other component, the operator or user may replace or re-attach the panel. The hydraulic operational control panel may include a lever and/or an additional lever. The lever may be actuated to a locked and unlocked position and/or an active or inactive position. When an operator uses the heavy equipment, the operator may first power on the power source (e.g., a battery) and/or an engine of the heavy equipment. Once the heavy equipment is powered on, the operator may actuate the lever. Such actuation may cause the additional lever to move to a horizontal position from a vertical position to thereby prevent the operator from exiting the heavy equipment. Further, the heavy equipment and/or hydraulic functionality may be inoperable until the lever is actuated to the unlocked and/or active position. Once actuated, the hydraulics may be enabled and the one or more indicators may activate.


Accordingly, an embodiment of the disclosure is directed to a system to activate one or more indicators, positioned on heavy hydraulic-based equipment to provide indication that the heavy hydraulic-based equipment is in an operation. The system may include a hydraulic initiation lever positioned proximate an operator's seat of the equipment and configured to be actuatable to an inactive position and an active position. The hydraulic initiation lever may, when in the active position, be configured to generate an unlock signal to thereby enable hydraulic operation of the heavy hydraulic-based equipment. The hydraulic initiation lever may also be configured to enable one of all operations or hydraulic operations of the heavy hydraulic-based equipment when the hydraulic initiation lever is in the active position. The hydraulic initiation lever may also, when in the inactive position, be configured to cease generation of the unlock signal. The hydraulic initiation lever may also be configured to prevent one of all operations or hydraulic operations of the heavy hydraulic-based equipment when the hydraulic initiation lever is in the inactive position. The unlock signal may be a constant value, such as a signal including a constant value of a bit or a constant voltage or low voltage. The unlock signal, in an embodiment, may include power sufficient to activate the one or more indicators. The system may include one or more indicators configured to receive the unlock signal. The one or more indicators may be configured to activate in response to reception of the unlock signal and to deactivate in response to no reception of the unlock signal. The one or more indicators may each include a power source or may receive power from a power source of the heavy equipment. The power source, in response to reception of the unlock signal by the one or more indicator, may power or may provide power to the one or more indicators.


In an embodiment, the one or more indicators may include a beacon positioned at a top and center of a cabin of the heavy hydraulic-based equipment and/or a strip light positioned at the top and rear portion of the heavy hydraulic-based equipment. In such embodiments, the beacon and strip light may be fixedly attached or removably attached to the heavy hydraulic-based equipment. The lights included in a portion of the strip light facing the cabin of the equipment are removed to thereby prevent light shining into the cabin.


In an embodiment, a lock signal may be defined by a lack of the unlock signal. In yet another embodiment, the heavy hydraulic-based equipment may include an engine. In such embodiments, the unlock signal may enable utilization of the engine and the lock signal may prevent utilization of the engine to thereby prevent movement of the heavy hydraulic-based equipment.


Another embodiment of the disclosure is directed to a system to activate one or more indicators positioned on heavy equipment to provide warning that the heavy equipment is in an operation mode. The system may include a hydraulic initiation lever positioned proximate an operator's seat of the heavy equipment and configured to be actuatable to an inactive position and an active position. The hydraulic initiation lever may be configured to, when in the inactive position, configured to prevent hydraulic operation of the heavy equipment and, when in the active position, configured to allow one or more of hydraulic operation and activate proximate hydraulic operation controls. The system may include a power source to provide power to the proximate hydraulic operation controls when the hydraulic initiation lever is in the active position. The system may include one or more indicators configured to provide warning that the heavy equipment is in the operation mode when the hydraulic initiation lever is in the active position. The system may include a switch connected to the power source, the one or more indicators, and the proximate hydraulic operation controls. The hydraulic initiation lever may be configured to close the switch when the hydraulic initiation lever is in the active position and open the switch when the hydraulic initiation lever is in the inactive position. When the switch is closed, the switch may be configured to create a circuit between the power source and the proximate hydraulic operation controls and a circuit between the power source and the one or more indicators to provide warning that the heavy equipment is in the operation mode.


In an embodiment, the switch may be positioned proximate to the hydraulic initiation lever. The hydraulic initiation lever may be positioned within reach of an operator. The one or more indicators may be positioned on one or more locations on an outer surface of the equipment. The one or more indicators may include one or more of one or more lights or one or more audio signals. The one or more lights may include one or more of a strobe light, a directional light, a beacon, underglow lights, undercarriage lights, directional lights, or some combination thereof. In an embodiment, one of the one or more lights may be positioned on a top surface of a cabin of the heavy equipment and may be configured to provide 360 degrees of illumination. The illumination may be sufficient to provide indication that hydraulics of the heavy equipment are operating or being utilized. In another embodiment, one of the one or more lights may be positioned on a top surface of a rear portion of the heavy equipment and comprises a light bar. The lights within the light bar facing towards a cabin of the heavy equipment are removed.


In an embodiment, the one or more indicators may be removeably attached or fixedly attached to the surface of the equipment. The one or more indicators may be attached to the surface of the equipment via one or more of a magnet, fastener, a mechanical bond, or some combination thereof. The one or more conductors may comprise one or more insulated wires positioned to provide an electrical connection between the power source and the one or more indicators. The fastener may include one or more of a screw, a rivet, a nut and bolt, a force fit connector and corresponding base, or some combination thereof.


Another embodiment of the disclosure is directed to a system to activate one or more lights positioned on heavy equipment to provide warning that the heavy equipment is in an operation mode. The system may include a hydraulic initiation lever positioned proximate an operator's seat of the heavy equipment and configured to be actuatable to an inactive position and an active position. The hydraulic initiation lever may be configured to, when in the inactive position, prevent one or more of hydraulic operation of the heavy equipment and, when in the active position, configured to allow one or more of hydraulic operation and activate proximate hydraulic operation controls. The system may include a power source to provide power to the proximate hydraulic operation controls when the hydraulic initiation lever is in the active position. The system may include one or more lights configured to provide illumination to warn that the heavy equipment is in the operation mode when the hydraulic initiation lever is in the active position. The system may include a switch connected to the power source, the one or more lights, and the proximate hydraulic operation controls. The switch may be positioned proximate to the hydraulic initiation lever. The hydraulic initiation lever may be configured to close the switch when the hydraulic initiation lever is in the active position and open the switch when the hydraulic initiation lever is in the inactive position. Further, when the switch is closed, the switch may be configured to create a circuit between the power source and the proximate hydraulic operation controls and a circuit between the power source and the one or more lights to provide warning that the heavy equipment is in the operation mode.


The one or more lights may be positioned on one or more outer surfaces of the heavy equipment vehicle. The one or more outer surfaces may include one or more of a top surface above a cabin of the vehicle or a top surface at a rear of the vehicle. The one or more outer surfaces may include the rear of the vehicle. The one or more lights include a color and lumens sufficient to be visible during daytime and nighttime.


Another embodiment of the disclosure is directed to a method to activate one or more indicators positioned on heavy equipment to provide warning that the heavy equipment is in an operation mode. The method may include initiating power on of a power source on equipment. The method may also include, in response to a hydraulic initiation lever being in an inactive position, actuating the hydraulic initiation lever from the inactive position to an active position. The hydraulic initiation lever may be positioned proximate an arm rest of an operator's seat of the heavy equipment and proximate hydraulic operation controls. The hydraulic initiation lever may be connected to a fixed point within a hydraulic control box and connected to a lever. At least one of the hydraulic initiation lever or the lever may prevent entry and exit into a cabin of the heavy equipment when the lever is in the active position. The lever may depress a switch when the lever is in the active position. The switch may be connected to the power source, the proximate hydraulic operation controls, and one or more indicators. The switch may form a circuit between the power source of the heavy equipment and the proximate hydraulic operation controls when the hydraulic initiation lever is in the active position to thereby activate the proximate hydraulic operation controls. Finally, the switch may form a circuit between the power source of the heavy equipment and the one or more indicators to thereby cause the one or more indicators to power on.


The method may further include, if the hydraulic initiation lever is in an active position, actuating the hydraulic initiation lever from the active position to the inactive position to cause the switch to open thereby disable hydraulic operation controls and to power off the one or more indicators. When the hydraulic initiation lever is in the inactive position one of all operation or hydraulic operation of the heavy equipment may be disabled.


Another embodiment of the disclosure is directed to a kit to provide one or more indicators to warn that heavy equipment is in an operation mode. The kit may include a container. The kit may include one or more indicators positioned in the container. The kit may include one or more wire assemblies positioned in the container. Each of the one or more wire assemblies may correspond to and be configured to connect to the one of the one or more indicators. The one or more wire assemblies may also be configured to pass through a compartment of the heavy equipment to connect to a switch in a hydraulic control compartment. A lever may be positioned on the hydraulic control compartment and accessible to an operator. The lever may be actuatable between an active position and an inactive position. The lever may be configured to, when in the active position, actuate the switch to thereby provide power to the one or more indicators through the wire assemblies to activate the one or more indicators. Finally, the lever may be configured to, when in the inactive position, prevent the operation mode of the heavy equipment.


In an embodiment, the kit may include one or more brackets positioned in the container. Each of the one or more kits may correspond to each of the one or more indicators. The one or more brackets may connect to an outer surface of the heavy equipment. The one or more brackets may connect to the surface of the equipment via one or more fasteners or mechanical connections. In such an embodiment, the kit may include the fasteners. The kit may include one or more signs or stickers positioned in the container and to be added to selected surfaces of the heavy equipment. The kit may include a diagram positioned in the container to indicate where to attach the one or more wire assemblies to the switch.


Another embodiment of the disclosure is transitory machine-readable storage medium storing processor-executable instructions that, when executed by at least one processor, cause the at least one processor to perform an operation or process. The instructions, when executed by the at least one processor, may detect a position of a lever of heavy equipment. The lever of the heavy equipment may be actuatable to an active position from an inactive position and to the inactive position from the active position. The instructions, when executed by the at least one processor, may, in response to detection of the lever when in the active position, (1) activate hydraulic operation controls of the equipment and (2) activate one or more indicators positioned on a surface of the equipment. The instructions, when executed by the at least one processor, may, in response to detection of the lever when in the inactive position, (1) prevent use of the hydraulic operation controls of the equipment and (2) de-activate one or more indicators positioned on a surface of the equipment.


Another embodiment of the disclosure is directed to a non-transitory machine-readable storage medium storing processor-executable instructions that, when executed by at least one processor, cause the at least one processor to perform an operation or process. The instructions, when executed by the at least one processor, may detect a position of a lever of heavy equipment, the lever of the heavy equipment actuatable to an active position from an inactive position and to the inactive position from the active position. The instructions, when executed by the at least one processor, may, in response to detection of the lever in the active position, (1) activate hydraulic operation controls of the heavy equipment and (2) activate a first state of one or more indicators positioned on one or more surfaces of the heavy equipment. The first state may comprise one or more of a first color of a light, activation of a first preselected or specified light, or emitting a specified sound. The instructions, when executed by the at least one processor, may, in response to detection of the lever in the inactive position, (1) prevent use of the hydraulic operation controls of the heavy equipment and (2) de-activate one or more indicators positioned on a surface of the heavy equipment. The instructions, when executed by the at least one processor, may, in response to detection of use of the heavy equipment, activate a second state of one or more indicators to indicate active use of the heavy equipment. The second state may comprise one or more of a second color of a light, activation of a second preselected or specified light, or emitting another specified sound.


Still other aspects and advantages of these embodiments and other embodiments, are discussed in detail herein. Moreover, it is to be understood that both the foregoing information and the following detailed description provide merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Accordingly, these and other implementations, along with advantages and features of the present disclosure herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.





BRIEF DESCRIPTION OF DRAWINGS

These and other features, aspects, and advantages of the disclosure will become better understood with regard to the following descriptions, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the disclosure and, therefore, are not to be considered limiting of the scope of the disclosure.



FIG. 1 is a diagram illustrating heavy equipment with one or more indicators, according to one or more embodiments of the disclosure.



FIG. 2 is another diagram illustrating heavy equipment with one or more indicators, according to one or more embodiments of the disclosure.



FIGS. 3A and 3B are diagrams illustrating an interior of a cabin of the heavy equipment, according to one or more embodiments of the disclosure.



FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E, and FIG. 4F are diagrams illustrating various portions of the heavy equipment, according to one or more embodiments of the disclosure.



FIG. 5A and FIG. 5B are simplified diagrams illustrating a control system for activating one or more indicators and hydraulic operations, according to one or more embodiments of the disclosure.



FIG. 6 is a flow diagram for installing a kit, according to one or more embodiments of the disclosure.



FIG. 7 is a flow diagram for utilizing the one or more indicators, according to one or more embodiments of the disclosure.



FIG. 8A and FIG. 8B are simplified diagrams illustrating a system for activating one or more indicators and hydraulic operations and/or equipment, according to one or more embodiments of the disclosure.



FIG. 9 is a simplified diagram illustrating a kit including one or more indicators, according to one or more embodiments of the disclosure.





DETAILED DESCRIPTION

So that the manner in which the features and advantages of the embodiments of the systems and methods disclosed herein, as well as others that will become apparent, may be understood in more detail, a more particular description of embodiments of systems and methods briefly summarized above may be had by reference to the following detailed description of embodiments thereof, in which one or more are further illustrated in the appended drawings, which form a part of this specification. It is to be noted, however, that the drawings illustrate only various embodiments of the systems and methods disclosed herein and are therefore not to be considered limiting of the scope of the systems and methods disclosed herein as it may include other effective embodiments as well.


The present disclosure, as noted, is generally directed to systems and methods to activate one or more indicators, in addition to heavy equipment functionality and/or hydraulic functionality, via actuation of a lever or hydraulic initiation lever. The one or more indicators may warn or indicate (e.g., via light and/or sound) that heavy equipment is being operated, may be operated at any moment, or that hydraulic operations and/or equipment are enabled and ready for use. The one or more indicators may be included on, added to, installed on, positioned on, or mounted to various selected outer surfaces of heavy equipment. The locations of the outer surfaces where the one or more indicators are positioned may be selected based on visibility (e.g., some areas allow for more illumination and/or unobstructed views).


Each of the one or more indicators may connect to or may be connected to a conductor, a wire, a wire harness, or cable harness. The conductor, a wire, a wire harness, or cable harness may be passed through a compartment and/or engine compartment of the heavy equipment to the cabin or cab of the heavy equipment. An operator or user may remove the panel of a hydraulic operation control panel. The operator or user may connect the conductor, a wire, a wire harness, or cable harness to a switch or other component (e.g., an electrical or signal communication component) positioned inside the panel of the hydraulic operational control panel.


Once each indicator is connected to the switch or other component, the operator or user may replace or re-attach the panel. The hydraulic operational control panel may include a lever and/or an additional lever. The lever may be actuated to a locked and unlocked position and/or an active or inactive position. When an operator uses the heavy equipment, the operator may first power on the power source (e.g., a battery) and/or an engine of the heavy equipment. Once the heavy equipment is powered on, the operator may actuate the lever. Such actuation may cause the additional lever to move to a horizontal position from a vertical position to thereby prevent the operator from exiting the heavy equipment. Further, the heavy equipment and/or hydraulic functionality may be inoperable until the lever is actuated to the unlocked and/or active position. Once actuated, the hydraulics may be enabled and the one or more indicators may activate. Other states may be determined based on other aspects of the heavy equipment, such as actual use of the heavy equipment, actual use of hydraulic equipment, use of equipment actuated or moved by an engine, and/or actuation or placement of other parts of the heavy vehicle (e.g., seatbelt buckled, etc.).


As used herein, “heavy equipment” or “heavy equipment vehicle” may refer to machinery and/or vehicles designed to perform construction tasks, such as earth and/or road work operations or other construction related operations. In an embodiment, heavy equipment may be a heavy-duty vehicle, such as equipment or vehicle with a weight limit of twenty-six thousand pounds or more. However, other lighter machinery and/or vehicles may be considered heavy equipment regardless of weight limit. For example, a smaller backhoe may be considered heavy equipment, while having a weight limit less than twenty-six thousand pounds. Types of heavy equipment may include, but not be limited to, an excavator, a bulldozer, a backhoe, a trencher, a loader, a grader, a paver, a compactor, a crane, a telehandler, a feller buncher, pile boring equipment, pile driving equipment, or other heavy equipment configured to utilize hydraulics. The heavy equipment may utilize tracks and/or wheels to move.



FIG. 1 is a diagram illustrating heavy equipment with one or more indicators positioned or installed thereon, according to one or more embodiments of the disclosure. The system 100 may include a heavy equipment vehicle 102, also referred to as hydraulic heavy equipment or hydraulic-based heavy equipment. As illustrated, heavy equipment 102 is an excavator, the bucket and boom not shown, with a scoop attachment at the rear. Other types of heavy equipment may include the same, substantially the same, or similar placement of one or more indicators and the embodiment illustrated in FIG. 1 should not be considered limiting. The heavy equipment vehicle 102 may include an outer surface rear portion 118, an outer surface top portion 126 at the rear of the heavy equipment vehicle 102, and an outer surface top portion 128 of the cabin 130 of the heavy equipment vehicle 102. In such an embodiment, a first light 104 and a second light 106 may be disposed at or positioned on the outer surface rear portion 118 of the heavy equipment vehicle 102. The first light 104 and the second light 106 may shine light 118, 120 in an outwards and rearwards direction and/or, in some embodiments, to either side of the heavy equipment vehicle 102. A third light 108 may be positioned at the outer surface top portion 126 of the rear of the heavy equipment vehicle 102. The third light 108 may be a bar light or a strip light. Further, the third light 108 may be a directional light. In other words, the third light 108 may shine light 122 may shine in a direction that any of the light emitting diodes (LED) or other light emitting sources are facing, such as to the rear and both sides of the heavy equipment vehicle 102. In an embodiment, LEDs or other light emitting sources may be removed from portions of the third light 122 to prevent light from shining through the back window of the, thus preventing operator distraction and/or discomfort. A fourth light 110 may be positioned on an outer surface top portion 128 of the cabin 130 of the heavy equipment vehicle 102. The fourth light 110 may be a beacon. The beacon may provide constant light and/or a strobe effect. Further, light 124 from the fourth light 110 may shine in a 360-degree direction around the heavy equipment vehicle 102 (e.g., in front of, behind, and on both sides of the heavy equipment vehicle 102).


While specific embodiments of each light 104, 106, 108, 110 are described, it will be understood that other types of lights may be used for each light 104, 106, 108, 110, such as a strobe light, a directional light, a beacon, underglow lights, undercarriage lights, directional lights, or some combination thereof. Further, additional lights may be positioned on other outer surfaces of the heavy equipment vehicle 102 (e.g., underneath, on the sides, etc.). Further still, less lights may be positioned on the heavy equipment vehicle 102. For example, lights 106 and 104 may not be installed on the heavy equipment vehicle 102.


Each of the lights 104, 106, 108, 110 positioned on the heavy equipment 102 may be connected, via a conductor or a cable or wire harness, to a switch, controller, or other contact within a hydraulic control panel within the cabin 130 of the heavy equipment vehicle. Such a connection enables control of the lights 104, 106, 108, 110 based on various conditions (e.g., actuation of a lever which also enables hydraulic and/or other operation of the heavy equipment vehicle 102). Each of the lights 104, 106, 108, 110 may be, as noted, positioned or installed on an outer surface of the heavy equipment vehicle 102. In such embodiments, the lights 104, 106, 108, 110 may be connected or attached to an outer surface of the heavy equipment vehicle 102. Such an attachment or connection may be fixed or removable (e.g., fixedly or removable attached). For example, such attachment or connections may be achieved via a magnet, fastener, adhesive, a mechanical bond, or some combination thereof. For example, bolts and nuts may be utilized to mount a light to the outer surface and then the mount of the light may be welded in place. Warning stickers, decals, or other indicators 112, 114, 116 may be positioned on outer surfaces of the back and sides of the heavy equipment 102 to further warn of heavy equipment vehicle 102 operation.


Each of the lights 104, 106, 108, 110 may be configured to use a specific or pre-selected color and lumens to ensure visibility in many conditions (e.g., such as bright, dark, day, night, rain, mist, fog, and/or other environmental conditions). Further, such a configuration may be based on a distance that the lights 104, 106, 108, 110 may be visible from, e.g., 10 feet, 15 feet, 20 feet, 25 feet, 30 feet, or even more in any direction from the heavy equipment vehicle 102.


The lights 104, 106, 108, 110 may be off or de-activated when the heavy equipment vehicle 102 is powered off or when a corresponding lever within the heavy equipment vehicle to enable hydraulic operation of functionality of heavy vehicle 102 is in a locked or in-active position. When the lever is actuated to an unlocked or active position, the lights 104, 106, 108, 110 may receive power and/or a signal indicating that the lights 104, 106, 108, 110 may power on or activate. The lights 104, 106, 108, 110 may include other states that may be transitioned to, based on other actions or events.



FIG. 2 is another diagram illustrating heavy equipment with one or more indicators, according to one or more embodiments of the disclosure. Similar to FIG. 1, the heavy equipment of FIG. 2 may include one or more indicators (e.g., lights 204, 206, 208). As illustrated, a light 204 may be positioned or installed on the outer surface top portion 218 of the rear of the heavy equipment vehicle 202. Such a light 204 may shine light 222 to the rear 216 and sides of the heavy equipment vehicle 202. Another light 206 may be positioned at the outer surface rear portion of the cabin 220 of the heavy equipment vehicle 202. The light 206 may be mounted on a bracket allowing the light 206 to extend above the cabin 220, thus allowing 360 degree range of visibility of the light 224 in relation to the heavy equipment vehicle 202. Another light 208 may be positioned on the outer surface of the side 222 of the heavy equipment vehicle 202. A similar light may be positioned opposite light 208. Light 208 may shine light 226 towards the rear 216 and sides of the heavy equipment vehicle 202. In another embodiment, a light may be positioned or installed on an outer surface of the undercarriage of the heavy equipment vehicle 202. Light 214 from the undercarriage may illuminate the ground in a preselected proximity around or on one or more sides of the heavy equipment vehicle 202.


As noted, other indicators may be positioned or installed on the heavy equipment vehicle 202. For example, a speaker or other audio signal generation device may be positioned or installed at various portions of the heavy equipment vehicle 202. Such a speaker or other audio signal generation device may produce one or more sounds based on an input (e.g., actuation of a lever in the cabin 220, proximity of a person to the heavy equipment vehicle, use of the heavy equipment vehicle 202, and/or use of hydraulics of the heavy equipment vehicle 202). Other indicators may be positioned or installed on the heavy equipment vehicle 202, such as stickers, decals, or other indicators 210, 212.



FIGS. 3A and 3B are diagrams illustrating an interior of a cabin of the heavy equipment, according to one or more embodiments of the disclosure. A hydraulic operations control panel 306 may be positioned within the interior of the cabin 303 of the heavy equipment vehicle 302. The hydraulic operation controls 308 or a joystick may be positioned on the hydraulic operations control panel 306. A lever 304, also referred to as warning initiation lever, a hydraulic initiation lever, a warning and hydraulic initiation lever, etc., may be positioned on the hydraulic operations control panel 306 and proximate the hydraulic operation controls 308 to allow an operator 312 to enable or disable (e.g., based on position of the lever 304) the hydraulic operation controls and one or more indicators and/or other functionality of the heavy equipment vehicle 302. The operator 312 may, prior to all operation and/or hydraulic operation of the heavy equipment vehicle 302, actuate the lever 304, thus enabling hydraulic operations and the one or more indicators. The lever 304 and hydraulic operation controls 308 may be within proximity of the operator's arm/reach 314. Thus, the operator 312 may disable or prevent operation of the heavy equipment vehicle 302 at any time or moment (e.g., lifting the lever 304, as illustrated in FIG. 3A). Further, when the user actuates the lever 304 (e.g., push down the lever 304, as shown in FIG. 3B), another lever 310 may be actuated to thereby cause lever 310 to move to a horizontal position. Thus, the other lever 310 may prevent the operator from exiting the heavy equipment vehicle 302 during operation.


In an embodiment, rather than a lever 304, a switch, knob, or other component configured to actuate may be positioned on the hydraulic operation control panel to enable/disable hydraulic operations and/or the one or more indicators.



FIG. 4A, FIG. 4B, FIG. 4C, FIG. 4D, FIG. 4E, and FIG. 4F are diagrams illustrating portions of the heavy equipment, according to one or more embodiments of the disclosure. As shown, and noted, the system may include the lever 304 and hydraulic operation controls 308 positioned on a hydraulic operation control panel 306 and proximate an armrest 316. In FIG. 4A, the lever 304 may be lifted to an inactive or locked position thereby preventing use of the hydraulic equipment and/or all functionality of the hydraulic equipment. In FIG. 4B, the lever 304 may be pushed down to an active or unlocked position thereby enabling hydraulic operations of the control panel (e.g., by creating a circuit between a power source and the hydraulic operation controls) and activating the one or more indicators (e.g., by, in one example, creating a circuit between the power source and each of the one or more indicators). The actuatable lever may cause the other lever to move to a horizontal position or a vertical position.


Turning to FIGS. 4C and 4D, an internal view of the hydraulic operation control panel is shown. The lever 304 may be attached to a portion of and/or the inside of the hydraulic operation control panel 306 via a pin or other fastener 452. The pin or other fastener 452 may be fixed and the lever 304 may pivot about the pin or fastener 452. The lever 304 may connect to an upper portion of the other lever 310 via a cam 444 and follower 448 (e.g., another fastener or pin). A stop 450 and a spring 448 (e.g., a torsion spring) may be included to prevent the other lever 310 from moving past the vertical position as shown in FIG. 4C. As the lever 304 pushes forward in direction 466 the cam 444 and follower 446 may force the other lever 310 in direction 464 to cause the lever 310 into a horizontal position as shown in FIG. 4D. The torsion spring 448 may additionally keep the other lever 310 in the horizontal position. A second stop 472 may be included to prevent the other lever 310 from moving past a certain position when in the horizontal position. The one or more indicators and the hydraulic operation controls 308 may be connected, via a conductor or wire harness 414, 460, to switch 454. The switch 454 may further be connected to a power source. As the lever 310 pushes on the bar 458 (e.g., a flat, thin, and rigid bar or sheet), a button or protrusion 456 may be depressed. As the button or protrusion 456 is depressed, the switch 454 may create a circuit between the hydraulic operation controls 308 and the power source and may create a circuit between the power source and the one or more indicators. In another embodiment, other components or devices may be included. The other components or devices may generate signals to cause power to flow to the hydraulic operation controls and indicator when the lever 304 is actuated. The signal may be a constant signal. The signal may be a bit or a voltage sufficient to power the one or more indicators and/to the hydraulic operation controls 308.


As noted, the lights or other indicators may be positioned on various outer surfaces of the heavy equipment. For example, a light 404 may be positioned over the top of a cabin 434 of the heavy equipment vehicle. The light 404 may attach to a bracket 406, for example via screws or bolts and nuts 408. The bracket 406 may connect to the back outer surface 430 of the cabin 434 of the heavy equipment vehicle via bolts and nuts 410 or other fasteners. Such a connection may also be fixed (e.g., welded, etc.). The light 404 may include or may connect to one or more conductors or wires 412, 414, 416, 418. Each conductor or wire 412, 414, 416, 418 may be configured to carry a particular signal to the light 404. For example, 412 is a ground conductor or wire and may connect the light 404 to ground. Conductor or wire 414 may provide power or a signal to activate (e.g., if the light 404 includes a separate power source) to the light 404. Other conductors or wires 416, 418 may be included to offer different functionality. For example, the conductors or wires 416, 418, when receiving a specified signal (e.g., a bit or series of bits), may cause the light to alter the operational state. For example, the light may change color, change from strobe/solid to solid/strobe light, and/or alter the frequency of the strobe, among other updates.


In another embodiment and as illustrated in FIG. 4F, light 420 may be positioned on the outer surface top portion 436 of the rear of the heavy equipment. The light 420 may be a bar or strip light. The light 420 may include a series or number of LEDs 422, 424. In an example, the LEDs typically located at the back of the light 420 may be removed to prevent the light from shining into the cabin of the heavy equipment. The connection of the light to the outer surface top portion 436 of the heavy equipment vehicle may be via a fastener 428 through a mounting portion 426 of the light (as illustrated), via a mechanical bond, and/or via other types of connections.



FIG. 5A and FIG. 5B are simplified diagrams illustrating a control system for activating one or more indicators and hydraulic equipment, according to one or more embodiments of the disclosure. A controller 502 may manage operation of the indicators and other aspects of the system 500. The controller 502 may be one or more controllers, a supervisory controller, programmable logic controller (PLC), a computing device (such as a laptop, desktop computing device, and/or a server), an edge server, a cloud based computing device, a user interface and/or computing device of the heavy equipment, and/or other suitable devices. The controller 502 may be located at or near the hydraulic operation control panel. The controller 502 may be located remote from the hydraulic operation control panel. The controller 502, as noted, may be more than one controller. The controller 502 may include a processor 504, or one or more processors, and memory 506. The memory 506 may include instructions. In an example, the memory 506 may be a non-transitory machine-readable storage medium. As used herein, a “non-transitory machine-readable storage medium” may be any electronic, magnetic, optical, or other physical storage apparatus to contain or store information such as executable instructions, data, and the like. For example, any machine-readable storage medium described herein may be any of random access memory (RAM), volatile memory, non-volatile memory, flash memory, a storage drive (e.g., hard drive), a solid state drive, any type of storage disc, and the like, or a combination thereof. As noted, the memory 506 may store or include instructions executable by the processor 504. As used herein, a “processor” may include, for example one processor or multiple processors included in a single device or distributed across multiple computing devices. The processor may be at least one of a central processing unit (CPU), a semiconductor-based microprocessor, a graphics processing unit (GPU), a field-programmable gate array (FPGA) to retrieve and execute instructions, a real time processor (RTP), other electronic circuitry suitable for the retrieval and execution instructions stored on a machine-readable storage medium, or a combination thereof.


As used herein, “signal communication” refers to electric communication such as hard wiring two components together or wireless communication for remote monitoring and control/operation, as understood by those skilled in the art. For example, wireless communication may be Wi-Fi®, Bluetooth®, ZigBee, cellular wireless communication, satellite communication, or forms of near field communications. In addition, signal communication may include one or more intermediate controllers or relays disposed between elements that are in signal communication with one another.


As noted, the controller 502 may include instructions executable by processor 504. The instruction may include instructions 508 to determine a switch 514 position. In an embodiment, the switch 514 may be a depression switch or other type of electro-mechanical switch. The controller 502, in such examples, may receive an indication that the switch 514 is depressed. When the controller 502 is not receiving such a signal, the controller 500 may determine that the switch is not depressed. As noted, other types of switches or electro-mechanical switches may be utilized. In another embodiment, the controller 502 may determine a lever position, rather than or in addition to switch position. In such examples, the controller 502 may receive an indication of position (e.g., active and inactive and/or unlocked and locked) from the lever itself or from an associated device. In an embodiment, such signals may be utilized to either determine switch position and/or the lever positon.


The controller 502 may include instructions 510 to activate indicators 516A, 516B, and up to 516N based on switch position or, in other embodiments, lever position or some other event or signal. In response to reception of a signal indicating or determination that the switch 514 is depressed and/or that the lever is in an active or unlocked position, the controller 502 may activate or transmit a signal to cause activation of the indicators 516A, 516B, 516N. In another embodiment, the position of the switch 514 may cause power to flow to the indicators 516A, 516B, 516N, the power activating the indicators 516A, 516B, 516N (e.g., via creation of a circuit between a power source and the indicators 516A, 516B, 516N).


The controller 502 may include instructions 512 to activate a trigger and/or console 518 (e.g., hydraulic operation controls). The controller 502 may, in response to reception of a signal indicating or determination that the switch is depressed and/or that the lever is in an active or unlocked position, activate or transmit a signal to cause activation of the trigger and/or console 518.


In another embodiment, the controller 502, as illustrated in FIG. 5B may include additional instructions. The controller 502 may include instructions to activate an indicators' 516A, 516B, 516N first state. In an embodiment, the one or more indicators 516A, 516B, 516N may be configured to exhibit or have a plurality of states and to switch from one state to another based on one or more events or actions. For example, a first state may include illuminating a light of a first color based on a first signal and a second state may include illuminating a light of a second color based on a second signal. The indicators 516A, 516B, 516N, in relation to FIG. 5B, may transition to a first state based on a switch position or lever position. In other words, the controller 502 may determine the position of the switch or lever and, based on that position, transmit a corresponding signal to the indicators 516A, 516B, 516N.


In an embodiment, the controller 502 may include instructions 524 to determine whether the heavy equipment and/or whether hydraulics of the heavy equipment is in use. The controller 502, in such embodiments, may receive a signal from the heavy equipment (e.g., via a console, dashboard, or other internal component of the heavy equipment). Based on the signal the received, the controller 502 may determine whether and how the heavy equipment vehicle is in use (e.g., powered on, hydraulics active, hydraulics in use, etc.).


The controller 502 may include instructions 526 to transition the indicators 516A, 516B, 516N to a second state based on the determination that the heavy equipment vehicle is in use. In an embodiment, the controller 502 may transmit a signal to the indicators 516A, 516B, 516N to indicate and/or cause such a transition. In an embodiment, the transition may include changing the color of a light, emitting a sound, or some other indication. If the heavy equipment is not in use, the controller 502 may transmit a signal to transition back to the first state. Thus personnel and/or other users may be sufficiently warned when the heavy equipment is in a first state (e.g., hydraulics enabled) and a second (e.g., hydraulics actively being utilized). In another embodiment, two states may be signaled by the controller 502: a first state to indicate that the heavy equipment is powered on and a second state to indicate that the hydraulics are enabled. In yet another embodiment, a third state may be signaled by the controller 502 to indicate that the hydraulics are actively being utilized.



FIG. 6 is a flow diagram for installing a kit, according to one or more embodiments of the disclosure. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the disclosed methods.


At block 602, an operator or installer may mount indicators to heavy equipment. The operator may mount the indicators to an outer surface of the heavy equipment based on visibility. In another embodiment, the indicators may be included in a kit and the kit may include diagrams and/or schematics. The operator may utilize the schematics or diagrams to mount the indicators to the equipment. The operator may utilize fasteners and/or mechanical bonds to attach or connect the indicator to the outer surface of the heavy equipment.


Once each indicator has been mounted to the heavy equipment, at block 604, the operator may attach a first end of a wire harness or assembly to one of the one or more indicators. The wire harness or assembly may include a connector corresponding to a connector disposed on the indicator. In another embodiment, the wire harness or assembly may be pre-connected to the indicators. At block 606, the operator may check for additional indicators or determine whether additional indicators do not include a wire harness or assembly. If an indicator does not include a connected wire harness or assembly, then the operator may attach another wire harness or assembly to such an indicator.


At block 608, the operator may pass the wire harnesses or assemblies through the engine cabin or other compartment to an operator's cabin. Prior to such a process, the operator may bundle each wire harness or assembly together. At block 610, the operator may remove the cover of the equipment console panel or hydraulic operation console panel. At block 612, the operator may connect the second end of each wire harness or assembly to the switch. At block 614, the operator may re-attach the cover of the equipment console panel.



FIG. 7 is a flow diagram for utilizing the one or more indicators, according to one or more embodiments of the disclosure. Heavy equipment and associated components of FIGS. 1-5B may utilize method 700. Further, method 700 may be included in one or more programs, protocols, or instructions loaded into memory of a computing device or controller 502 or may be utilized by one or more users. The order in which the operations are described is not intended to be construed as a limitation, and any number of the described blocks may be combined in any order and/or in parallel to implement the disclosed methods.


At block 702, power for the equipment may be initiated. The power may be initiated by a controller in response to reception of a power on signal. The power on signal may be generated by an operator depressing a power button or switch or turning a key in an ignition.


At block 704, a controller and/or operator may determine whether the lever is in an inactive or locked position. In an embodiment, the lever being in an inactive or locked state may generate a signal indicating such a state. In another embodiment, the lever being in an active or unlocked state may generate a signal, while the inactive or locked state does not generate a signal, e.g., thus the absence of a signal may indicate an inactive or locked position of the lever. If the lever is in an inactive or locked position, then an operator may actuate the lever, at block 706, to an active or unlocked position. Such an action, at block 708, may generate a signal, for example at the controller or at another component, to activate one or more indicators. In another embodiment, such an action may depress or transition states of a switch. In either example, such actions may create a circuit between a power source and the one or more indicators and a circuit between the power source and hydraulic operation controls. Thus, an operator may be able to operate the heavy equipment and the indicators may warn proximate personnel and other users that the heavy equipment is active.


At block 710, the controller or an operator may determine whether the equipment is still in use. In an embodiment, the controller may determine whether the heavy equipment has been idle for a pre-selected period of time. If the heavy equipment has been idle for such a period of time, the controller may determine that the heavy equipment is no longer in use. In another embodiment, the operator may determine that a particular operation is complete and that the equipment is no longer being utilized. If the equipment is still in use, the controller or operator may again determine whether the lever is in an inactive position at block 704.


At block 712, if the equipment is not in use, the lever may be actuated to an inactive or locked position. At block 714, the controller may de-activate the indicators. In another embodiment, the action of actuating the lever may break a circuit between the indicators and power source, thus de-activating the indicators. At block 716, the heavy equipment may be powered off.



FIG. 8A and FIG. 8B are simplified diagrams illustrating a system for activating one or more indicators and hydraulic equipment, according to one or more embodiments of the disclosure. The system may include a power source 802, a switch 804, one or more indicators 806, and hydraulic controls 808. As described above, when a lever is actuated to an active or unlocked state, the lever (e.g., or other component) may cause a switch 804 to be closed. Closure of the switch 804 may cause power to flow to the one or more indicators 806 and hydraulic controls 808. When the lever is actuated to an inactive or locked state, the switch 804 may open, thus breaking the circuit and preventing power from flowing to the one or more indicator 806 and the hydraulic controls 808.



FIG. 9 is a simplified diagram illustrating a kit including one or more indicators, according to one or more embodiments of the disclosure. The kit may include a number of components. The kit may include a container 902. The kit may include one or more lights 402, 420 positioned within the container. The lights 402, 420 may include attached conductors or wire assemblies. In another embodiment, the kit may include conductors or wire assemblies positioned within the container. The kit may include at least on conductor or wire assembly per light 402, 420. The kit may include mounting components positioned within the container 902, such as a bracket or other mount and corresponding fasteners. The kit may include instructions, diagrams, schematics, a document including a link to a website, and/or other user documents 904 positioned within the container 902. Such documents may be in a hardcopy or paper format, and/or a digital format (e.g., DVD, USB key, or other similar media).


This application is a divisional of U.S. Non-Provisional application Ser. No. 18/144,290, filed May 8, 2023, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/848,429, filed Jun. 24, 2022, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” now U.S. Pat. No. 11,686,070, issued Jun. 27, 2023, which claims priority to and the benefit of U.S. Provisional Application No. 63/364,179, filed May 4, 2022, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” the disclosures of which are incorporated herein.


In the drawings and specification, several embodiments of systems and methods to activate indicators have been disclosed, and although specific terms are employed, the terms are used in a descriptive sense only and not for purposes of limitation. Embodiments of systems and methods have been described in considerable detail with specific reference to the illustrated embodiments. However, it will be apparent that various modifications and changes may be made within the spirit and scope of the embodiments of systems and methods as described in the foregoing specification, and such modifications and changes are to be considered equivalents and part of this disclosure.

Claims
  • 1. A system to change an operational state of one or more indicators, positioned on hydraulic equipment, to provide indication that the hydraulic equipment is in operation, the system comprising: a hydraulic initiation lever positioned proximate an operator's seat of the equipment and actuatable to an active position and an inactive position, so that actuation of the hydraulic initiation lever to the active position is configured to cause generation of an unlock signal, thereby to enable hydraulic operation of the hydraulic equipment; andone or more indicators connected to the hydraulic equipment and positioned to receive the unlock signal indicative of the operation when the hydraulic initiation lever is in the active position, thereby to change the one or more indicators from a first operational state to a second operational state in response to reception of the unlock signal and to change the second operational state to the first operational state when the hydraulic initiation lever returns to the inactive position.
  • 2. The system of claim 1, wherein the one or more indicators includes a light, and wherein the change from the first operational state to the second operational state includes one or more of: an activation of the light,a change in a color of the light,an activation or deactivation of a strobe output for the light, oran alteration of a frequency of a strobe output for the light.
  • 3. The system of claim 1, wherein actuation of the hydraulic initiation lever to the inactive position is configured to cease generation of the unlock signal, wherein the unlock signal comprises a constant value, and wherein the unlock signal comprises one of a bit or voltage.
  • 4. The system of claim 1, wherein the one or more indicators includes a beacon positioned on a cabin of the hydraulic equipment and a strip light positioned at an upper rear portion of the hydraulic equipment.
  • 5. The system of claim 4, wherein a first portion of the strip light positioned at the upper rear portion of the hydraulic equipment also is positioned to face the cabin of the equipment, wherein the first portion of the strip light is devoid of lights, thereby to prevent light shining into the cabin, and wherein a second portion of the strip light faces outward from the upper rear portion and illuminates light from the strip light.
  • 6. The system of claim 1, wherein actuation of the hydraulic initiation lever to the inactive position prevents all operation of the hydraulic equipment.
  • 7. The system of claim 6, wherein actuation of the hydraulic initiation lever to the active position enables one of: (a) all operation of the hydraulic equipment; or (b) hydraulic operation of the hydraulic equipment.
  • 8. The system of claim 1, wherein the hydraulic equipment comprises one or more of: an excavator, a bulldozer, a backhoe, a trencher, a loader, a grader, a paver, a compactor, a crane, a telehandler, a feller buncher, pile boring equipment, pile driving equipment, or other hydraulic equipment configured to utilize hydraulics.
  • 9. The system of claim 1, wherein the hydraulic equipment includes an engine, and wherein the unlock signal enables utilization of the engine and a lock signal prevents utilization of the engine, thereby to prevent movement of the hydraulic equipment, and wherein the lock signal is defined by a lack of the unlock signal.
  • 10. The system of claim 1, wherein the hydraulic initiation lever is connected to an additional lever such that actuation of the hydraulic initiation lever to the active position is configured to actuate the additional lever to a position in which the additional lever is configured to prevent an operator from exiting the hydraulic equipment.
  • 11. A system to change an operational state of one or more indicators, positioned on hydraulic equipment, thereby to provide indication that the hydraulic equipment is in operation, the system comprising: a hydraulic initiation lever positioned proximate an operator's seat of the equipment and actuatable to an active position and an inactive position, so that actuation of the hydraulic initiation lever when in the active position causes generation of an unlock signal, thereby to enable hydraulic operation of the hydraulic equipment; andone or more indicators, including one or more lights, connected to the hydraulic equipment and positioned to receive the unlock signal indicative of the hydraulic operation when the hydraulic initiation lever is in the active position, thereby to change the one or more indicators from a first operational state to a second operational state in response to reception of the unlock signal and to change the second operational state to the first operational state when the hydraulic initiation lever returns to the inactive position.
  • 12. The system of claim 11, wherein the change from the first operational state to the second operational state includes one or more of: an activation of the one or more lights,a change in a color of the one or more lights,an activation or deactivation of a strobe output for the one or more lights, oran alteration of a frequency of a strobe output for the 1 one or more lights.
  • 13. The system of claim 11, wherein actuation of the hydraulic initiation lever to the inactive position when in operation ceases generation of the unlock signal, wherein the unlock signal comprises a constant value, and wherein the unlock signal comprises one of a bit or voltage.
  • 14. The system of claim 11, wherein the one or more lights includes a beacon positioned on a cabin of the hydraulic equipment and a strip light positioned at an upper rear portion of the hydraulic equipment.
  • 15. The system of claim 14, wherein a first portion of the strip light positioned at the upper rear portion of the hydraulic equipment also is positioned to face the cabin of the equipment, wherein the first portion of the strip light is devoid of lights, thereby to prevent light shining into the cabin, and wherein a second portion of the strip light faces outward from the upper rear portion and illuminates light from the strip light.
  • 16. The system of claim 11, wherein actuation of the hydraulic initiation lever to the inactive position during operation prevents all operation of the hydraulic equipment.
  • 17. The system of claim 16, wherein actuation of the hydraulic initiation lever to the active position during operation enables one of: (a) all operation of the hydraulic equipment; or (b) hydraulic operation of the hydraulic equipment.
  • 18. The system of claim 11, wherein the hydraulic equipment comprises one or more of: an excavator, a bulldozer, a backhoe, a trencher, a loader, a grader, a paver, a compactor, a crane, a telehandler, a feller buncher, pile boring equipment, pile driving equipment, or other hydraulic equipment configured to utilize hydraulics.
  • 19. The system of claim 11, wherein the hydraulic equipment includes an engine, and wherein the unlock signal enables utilization of the engine and a lock signal prevents utilization of the engine, thereby to prevent movement of the hydraulic equipment, and wherein the lock signal is defined by a lack of the unlock signal.
  • 20. The system of claim 11, wherein the hydraulic initiation lever is connected to an additional lever such that actuation of the hydraulic initiation lever to the active position is configured to actuate the additional lever to a position in which the additional lever is configured to prevent an operator from exiting the hydraulic equipment.
  • 21. A system to change an operational state of one or more indicators positioned on hydraulic equipment, the system comprising: a hydraulic initiation lever positioned proximate an operator's seat of the equipment and actuatable to an active position and an inactive position, so that actuation of the hydraulic initiation lever when in the active position causes generation of an unlock signal, thereby to enable hydraulic operation of the hydraulic equipment and so that actuation of the hydraulic initiation lever to the inactive position causes the generation of the unlock signal to cease; andone or more indicators, including one or more lights, connected to the hydraulic equipment and positioned to receive the unlock signal indicative of the hydraulic operation when the hydraulic initiation lever is in the active position, thereby to change the one or more indicators from a first operational state to a second operational state in response to reception of the unlock signal and to change the second operational state to the first operational state when the hydraulic initiation lever returns to the inactive position.
  • 22. The system of claim 21, wherein the change from the first operational state to the second operational state includes one or more of: an activation of the one or more lights,a change in a color of the one or more lights,an activation or deactivation of a strobe output for the one or more lights, oran alteration of a frequency of a strobe output for the 1 one or more lights.
  • 23. The system of claim 22, wherein the unlock signal comprises a constant value, and wherein the unlock signal comprises one of a bit or voltage.
  • 24. The system of claim 22, wherein the one or more lights includes a beacon positioned on a cabin of the hydraulic equipment and a strip light positioned at an upper rear portion of the hydraulic equipment.
  • 25. The system of claim 24, wherein a first portion of the strip light positioned at the upper rear portion of the hydraulic equipment also is positioned to face the cabin of the equipment, wherein the first portion of the strip light is devoid of lights, thereby to prevent light shining into the cabin, and wherein a second portion of the strip light faces outward from the upper rear portion and illuminates light from the strip light.
  • 26. The system of claim 22, wherein actuation of the hydraulic initiation lever to the inactive position prevents all operation of the hydraulic equipment.
  • 27. The system of claim 26, wherein actuation of the hydraulic initiation lever to the active position during operation enables one of: (a) all operation of the hydraulic equipment; or (b) hydraulic operation of the hydraulic equipment.
  • 28. The system of claim 21, wherein the hydraulic equipment comprises one or more of: an excavator, a bulldozer, a backhoe, a trencher, a loader, a grader, a paver, a compactor, a crane, a telehandler, a feller buncher, pile boring equipment, pile driving equipment, or other hydraulic equipment configured to utilize hydraulics.
  • 29. The system of claim 22, wherein the hydraulic equipment includes an engine, and wherein the unlock signal enables utilization of the engine and a lock signal prevents utilization of the engine, thereby to prevent movement of the hydraulic equipment.
  • 30. The system of claim 22, wherein the hydraulic initiation lever is connected to an additional lever such that actuation of the hydraulic initiation lever to the active position is configured to actuate the additional lever to a position in which the additional lever is configured to prevent an operator from exiting the hydraulic equipment.
PRIORITY CLAIM

This application is a divisional of U.S. Non-Provisional application Ser. No. 18/144,290, filed May 8, 2023, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/848,429, filed Jun. 24, 2022, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” now U.S. Pat. No. 11,686,070, issued Jun. 27, 2023, which claims priority to and the benefit of U.S. Provisional Application No. 63/364,179, filed May 4, 2022, titled “SYSTEMS, METHODS, AND CONTROLLERS TO ENHANCE HEAVY EQUIPMENT WARNING,” the disclosures of which are incorporated herein.

US Referenced Citations (369)
Number Name Date Kind
2626627 Jung et al. Jan 1953 A
2864252 Schaschl Dec 1958 A
3087311 Rousseau Apr 1963 A
3303525 Peoples Feb 1967 A
3398071 Bagno Aug 1968 A
3504686 Cooper et al. Apr 1970 A
3593555 Grosko Jul 1971 A
3608869 Woodle Sep 1971 A
3672180 Davis Jun 1972 A
3725669 Tatum Apr 1973 A
3807433 Byrd Apr 1974 A
3809113 Grove May 1974 A
3925592 Webb Dec 1975 A
3961493 Nolan, Jr. Jun 1976 A
4010779 Pollock et al. Mar 1977 A
4073303 Foley, Jr. Feb 1978 A
4109677 Burnside Aug 1978 A
4202351 Biche May 1980 A
4229064 Vetter et al. Oct 1980 A
4242533 Cott Dec 1980 A
4289163 Pierson Sep 1981 A
4294378 Rabinovich Oct 1981 A
4320775 Stirling et al. Mar 1982 A
4357576 Hickam et al. Nov 1982 A
4420008 Shu Dec 1983 A
4457037 Rylander Jul 1984 A
4481474 Gerrit Nov 1984 A
4488570 Jiskoot Dec 1984 A
4630685 Huck et al. Dec 1986 A
4690587 Petter Sep 1987 A
4744305 Lim et al. May 1988 A
4788093 Murata et al. Nov 1988 A
4794331 Schweitzer, Jr. Dec 1988 A
4848082 Takahashi Jul 1989 A
4897226 Hoyle et al. Jan 1990 A
4904932 Schweitzer, Jr. Feb 1990 A
4964732 Cadeo et al. Oct 1990 A
5050064 Mayhew Sep 1991 A
5095977 Ford Mar 1992 A
5129432 Dugger Jul 1992 A
5191537 Edge Mar 1993 A
5367882 Lievens et al. Nov 1994 A
5383243 Thacker Jan 1995 A
5469830 Gonzalez Nov 1995 A
5533912 Fillinger Jul 1996 A
5562133 Mitchell Oct 1996 A
5595709 Klemp Jan 1997 A
5603360 Teel Feb 1997 A
5627749 Waterman et al. May 1997 A
5661623 McDonald Aug 1997 A
5783916 Blackburn Jul 1998 A
5814982 Thompson et al. Sep 1998 A
5832967 Andersson Nov 1998 A
5873916 Cemenska et al. Feb 1999 A
5895347 Doyle Apr 1999 A
5906648 Zoratti et al. May 1999 A
5906877 Popper et al. May 1999 A
5939166 Cheng et al. Aug 1999 A
5962774 Mowry Oct 1999 A
5973593 Botella Oct 1999 A
5993054 Tan et al. Nov 1999 A
6022421 Bath Feb 2000 A
6050844 Johnson Apr 2000 A
6065903 Doyle May 2000 A
6077340 Doyle Jun 2000 A
6077418 Iseri et al. Jun 2000 A
6098601 Reddy Aug 2000 A
6111021 Nakahama et al. Aug 2000 A
6149351 Doyle Nov 2000 A
6186193 Phallen et al. Feb 2001 B1
6243483 Petrou et al. Jun 2001 B1
6333374 Chen Dec 2001 B1
6346813 Kleinberg Feb 2002 B1
6383237 Langer et al. May 2002 B1
6478353 Barrozo Nov 2002 B1
6679302 Mattingly et al. Jan 2004 B1
6719921 Steinberger et al. Apr 2004 B2
6799883 Urquhart et al. Oct 2004 B1
6834531 Rust Dec 2004 B2
6840292 Hart et al. Jan 2005 B2
6851916 Schmidt Feb 2005 B2
6980647 Daugherty et al. Dec 2005 B1
6987877 Paz-Pujalt et al. Jan 2006 B2
7032629 Mattingly et al. Apr 2006 B1
7091421 Kukita et al. Aug 2006 B2
7186321 Benham Mar 2007 B2
7258710 Caro et al. Aug 2007 B2
7275366 Powell et al. Oct 2007 B2
7294913 Fischer et al. Nov 2007 B2
7385681 Ninomiya et al. Jun 2008 B2
7444996 Potier Nov 2008 B2
7459067 Dunn et al. Dec 2008 B2
7564540 Paulson Jul 2009 B2
7631671 Mattingly et al. Dec 2009 B2
7729561 Boland et al. Jun 2010 B1
7749308 McCully Jul 2010 B2
7810988 Kamimura et al. Oct 2010 B2
7815744 Abney et al. Oct 2010 B2
7832338 Caro et al. Nov 2010 B2
7879204 Funahashi Feb 2011 B2
8075651 Caro et al. Dec 2011 B2
8282265 Breithhaupt Oct 2012 B2
8299811 Wing Oct 2012 B2
8312584 Hodde Nov 2012 B2
8327631 Caro et al. Dec 2012 B2
8368405 Siebens Feb 2013 B2
8376432 Halger et al. Feb 2013 B1
8402746 Powell et al. Mar 2013 B2
8413484 Lubkowitz Apr 2013 B2
8414781 Berard Apr 2013 B2
8577518 Linden et al. Nov 2013 B2
8597380 Buchanan Dec 2013 B2
8632359 Grimm Jan 2014 B2
8647162 Henriksson et al. Feb 2014 B2
8748677 Buchanan Jun 2014 B2
8808415 Caro et al. Aug 2014 B2
8979982 Jordan et al. Mar 2015 B2
9038855 Lurcott et al. May 2015 B2
9162944 Bennett et al. Oct 2015 B2
9175235 Kastner Nov 2015 B2
9222480 Younes et al. Dec 2015 B2
9310016 Hodde Apr 2016 B2
9329066 Skarping May 2016 B2
9363462 Yoel Jun 2016 B2
9388350 Buchanan Jul 2016 B2
9518693 Hodde Dec 2016 B2
9550247 Smith Jan 2017 B2
9643135 Mazzei et al. May 2017 B1
9945333 Kopinsky Apr 2018 B2
10001240 Dray et al. Jun 2018 B1
10012340 Dray et al. Jul 2018 B1
10024768 Johnsen Jul 2018 B1
10094508 Dray et al. Oct 2018 B1
10168255 Johnsen Jan 2019 B1
10196243 Wells Feb 2019 B1
10197206 Dray et al. Feb 2019 B1
10247643 Johnsen Apr 2019 B1
10287940 Tonsich May 2019 B2
10345221 Silverman Jul 2019 B1
10364718 Eddaoudi et al. Jul 2019 B2
10386260 Dudek Aug 2019 B2
10408377 Dray et al. Sep 2019 B1
10486946 Wells Nov 2019 B1
10501385 Buckner et al. Dec 2019 B1
10563555 Hamad Feb 2020 B2
10570581 Faivre Feb 2020 B2
10605144 Kobayashi Mar 2020 B2
10633830 Shibamori Apr 2020 B2
10655774 Dray et al. May 2020 B1
10657443 Araujo et al. May 2020 B2
10688686 Fadhel et al. Jun 2020 B2
10756459 Jongsma Aug 2020 B2
10833434 Tassell, Jr. Nov 2020 B1
10943357 Badawy et al. Mar 2021 B2
10948471 MacMullin et al. Mar 2021 B1
10953960 Sharp Mar 2021 B1
10962437 Nottrott et al. Mar 2021 B1
10970927 Sharp Apr 2021 B2
10990114 Miller Apr 2021 B1
10997707 Katz et al. May 2021 B1
11010608 Adam et al. May 2021 B2
11112308 Kreitinger et al. Sep 2021 B2
11125391 Al Khowaiter et al. Sep 2021 B2
11132008 Miller Sep 2021 B2
11164406 Meroux et al. Nov 2021 B2
11221107 Du et al. Jan 2022 B2
11247184 Miller Feb 2022 B2
11325687 Sharp May 2022 B1
11332070 Holden et al. May 2022 B2
11345455 Sharp May 2022 B2
11416012 Miller Aug 2022 B2
11428600 Dankers et al. Aug 2022 B2
11447877 Ell Sep 2022 B1
11559774 Miller Jan 2023 B2
11565221 Miller Jan 2023 B2
11578638 Thobe Feb 2023 B2
11578836 Thobe Feb 2023 B2
11596910 Miller Mar 2023 B2
11607654 Miller Mar 2023 B2
11655748 Thobe May 2023 B1
11655940 Thobe May 2023 B2
11662750 Miller May 2023 B2
11686070 Jordan Jun 2023 B1
11715950 Miller et al. Aug 2023 B2
11720526 Miller et al. Aug 2023 B2
11739679 Thobe Aug 2023 B2
11752472 Miller Sep 2023 B2
11754225 Thobe Sep 2023 B2
11774042 Thobe Oct 2023 B2
11794153 Miller Oct 2023 B2
11807945 Ell Nov 2023 B2
11808013 Jordan Nov 2023 B1
11815227 Thobe Nov 2023 B2
20020014068 Mittricker et al. Feb 2002 A1
20020178806 Valentine Dec 2002 A1
20030041518 Wallace et al. Mar 2003 A1
20030121481 Dodd et al. Jul 2003 A1
20030158630 Pham et al. Aug 2003 A1
20030167660 Kondou Sep 2003 A1
20030178994 Hurlimann et al. Sep 2003 A1
20030188536 Mittricker Oct 2003 A1
20030197622 Reynard et al. Oct 2003 A1
20030227821 Bae et al. Dec 2003 A1
20040057334 Wilmer et al. Mar 2004 A1
20040058597 Matsuda Mar 2004 A1
20040067126 Schmidt Apr 2004 A1
20040125688 Kelley et al. Jul 2004 A1
20040249105 Nolte et al. Dec 2004 A1
20040265653 Buechi et al. Dec 2004 A1
20050007450 Hill et al. Jan 2005 A1
20050058016 Smith et al. Mar 2005 A1
20050146437 Ward Jul 2005 A1
20050150820 Guo Jul 2005 A1
20050154132 Hakuta et al. Jul 2005 A1
20050284333 Falkiewicz Dec 2005 A1
20060125826 Lubkowitz Jun 2006 A1
20060278304 Mattingly et al. Dec 2006 A1
20070175511 Doerr Aug 2007 A1
20080092625 Hinnrichs Apr 2008 A1
20080113884 Campbell et al. May 2008 A1
20080115834 Geoffrion et al. May 2008 A1
20080149481 Hurt Jun 2008 A1
20080283083 Piao Nov 2008 A1
20090009308 Date et al. Jan 2009 A1
20090107111 Oliver Apr 2009 A1
20090175738 Shaimi Jul 2009 A1
20090183498 Uchida et al. Jul 2009 A1
20090188565 Satake Jul 2009 A1
20090197489 Caro Aug 2009 A1
20100031825 Kemp Feb 2010 A1
20100049410 McKee Feb 2010 A1
20100058666 Kim Mar 2010 A1
20110265449 Powell Nov 2011 A1
20120092835 Miller Apr 2012 A1
20120143560 Tabet et al. Jun 2012 A1
20120185220 Shippen Jul 2012 A1
20120276379 Daniels et al. Nov 2012 A1
20120304625 Daikoku Dec 2012 A1
20130035824 Nakamura Feb 2013 A1
20130048094 Ballantyne Feb 2013 A1
20130062258 Ophus Mar 2013 A1
20130125323 Henderson May 2013 A1
20130176656 Kaisser Jul 2013 A1
20130186671 Theis Jul 2013 A1
20130201025 Kamalakannan et al. Aug 2013 A1
20130245524 Schofield Sep 2013 A1
20130293884 Lee et al. Nov 2013 A1
20130299500 McKinnon Nov 2013 A1
20140002639 Cheben et al. Jan 2014 A1
20140008926 Allen Jan 2014 A1
20140062490 Neuman et al. Mar 2014 A1
20140090379 Powell et al. Apr 2014 A1
20140121622 Jackson et al. May 2014 A1
20140158616 Govind et al. Jun 2014 A1
20140158632 Govind et al. Jun 2014 A1
20140171538 Daniels et al. Jun 2014 A1
20140176344 Littlestar Jun 2014 A1
20140190691 Vinegar Jul 2014 A1
20140194657 Wadhwa et al. Jul 2014 A1
20140299039 Trollux Oct 2014 A1
20140345370 Marotta Nov 2014 A1
20140356707 Kwon et al. Dec 2014 A1
20150081165 Yamashita et al. Mar 2015 A1
20150144468 Skolozdra May 2015 A1
20150183102 Breschi et al. Jul 2015 A1
20150198518 Borin et al. Jul 2015 A1
20150244087 Wing Aug 2015 A1
20150323119 Giunta Nov 2015 A1
20160091467 Morris Mar 2016 A1
20160139355 Petersen May 2016 A1
20160169098 Makita Jun 2016 A1
20160169436 Sander et al. Jun 2016 A1
20160175634 Radian Jun 2016 A1
20160238194 Adler et al. Aug 2016 A1
20160252650 Hirst, Sr. Sep 2016 A1
20160363249 Disher Dec 2016 A1
20160369930 Poe et al. Dec 2016 A1
20170051472 Mochimaru Feb 2017 A1
20170088401 Clements et al. Mar 2017 A1
20170122174 Patel May 2017 A1
20170131728 Lambert et al. May 2017 A1
20170158303 Michaelis et al. Jun 2017 A1
20170248569 Lambert et al. Aug 2017 A1
20170253737 Auld et al. Sep 2017 A1
20170253738 Auld et al. Sep 2017 A1
20170253806 Auld et al. Sep 2017 A1
20170254481 Cadogan et al. Sep 2017 A1
20170259229 Chou et al. Sep 2017 A1
20170306428 Helgason et al. Oct 2017 A1
20170326474 Olovsson Nov 2017 A1
20170367346 Rees et al. Dec 2017 A1
20180002617 Umansky et al. Jan 2018 A1
20180003116 Fersman et al. Jan 2018 A1
20180037452 Gray et al. Feb 2018 A1
20180080356 Fukui Mar 2018 A1
20180119882 Allidieres et al. May 2018 A1
20180143734 Ochenas et al. May 2018 A1
20180186528 Tonn Jul 2018 A1
20180223202 Fransham et al. Aug 2018 A1
20180245313 Shibamori et al. Aug 2018 A1
20180259064 McLemore Sep 2018 A1
20190016963 Auld et al. Jan 2019 A1
20190121373 Panigrahi Apr 2019 A1
20190367732 Helgason et al. May 2019 A1
20190270500 Hamaoka Sep 2019 A1
20190338203 Umansky et al. Nov 2019 A1
20190359899 Umansky et al. Nov 2019 A1
20190136060 Helgason et al. Dec 2019 A1
20190368054 Gummow et al. Dec 2019 A1
20190368156 Faivre Dec 2019 A1
20200118413 Kanukurthy et al. Apr 2020 A1
20200232191 Prior Jul 2020 A1
20200245551 Hoffman et al. Aug 2020 A1
20200245552 Hoffman et al. Aug 2020 A1
20200245553 Hoffman et al. Aug 2020 A1
20200292445 Morimoto Sep 2020 A1
20200325742 Astudillo et al. Oct 2020 A1
20210053011 Sugiyama et al. Feb 2021 A1
20210062697 Yokoyama et al. Mar 2021 A1
20210073692 Saha et al. Mar 2021 A1
20210076006 O'Neill et al. Mar 2021 A1
20210123211 Miller et al. Apr 2021 A1
20210138399 Yokoyama et al. May 2021 A1
20210197151 Miller Jul 2021 A1
20210207772 Norton et al. Jul 2021 A1
20210215925 Kim et al. Jul 2021 A1
20210216852 Reece et al. Jul 2021 A1
20210232163 Miller Jul 2021 A1
20210232741 Ogiso et al. Jul 2021 A1
20210362637 Hanis et al. Nov 2021 A1
20210381920 Jacobsz et al. Dec 2021 A1
20220001969 Pugnetti Jan 2022 A1
20220010707 Sharma et al. Jan 2022 A1
20220048606 Singh Feb 2022 A1
20220081261 Karbassi Mar 2022 A1
20220087099 Hoffman Mar 2022 A1
20220154427 Misaki May 2022 A1
20220178114 Takahama Jun 2022 A1
20220186470 Chiba et al. Jun 2022 A1
20220213603 Al Eid et al. Jul 2022 A1
20220221368 Bergeron Jul 2022 A1
20220228345 Case Jul 2022 A1
20220282651 Reynolds et al. Sep 2022 A1
20220290411 Anahara et al. Sep 2022 A1
20220343229 Gruber et al. Oct 2022 A1
20220401899 Miller Dec 2022 A1
20220404272 Kendall et al. Dec 2022 A1
20230015077 Kim Jan 2023 A1
20230061824 Ell Mar 2023 A1
20230078852 Campbell et al. Mar 2023 A1
20230129513 Miller Apr 2023 A1
20230259080 Whikehart et al. Aug 2023 A1
20230259088 Borup et al. Aug 2023 A1
20230332532 Thobe Oct 2023 A1
20230333577 Miller Oct 2023 A1
20230333578 Miller Oct 2023 A1
20230341092 Thobe Oct 2023 A1
20230347303 Miller Nov 2023 A1
20230358023 Jordan Nov 2023 A1
20230366510 Thobe Nov 2023 A1
20230383416 Ell Nov 2023 A1
20230383417 Ell Nov 2023 A1
20230383418 Ell Nov 2023 A1
20230392536 Thobe Dec 2023 A1
20230399818 Jordan Dec 2023 A1
20230407488 Ell Dec 2023 A1
20230415106 Miller Dec 2023 A1
20240003016 Ell Jan 2024 A1
20240060189 Ell Feb 2024 A1
Foreign Referenced Citations (98)
Number Date Country
2010241217 Nov 2010 AU
2013202839 May 2014 AU
2702151 Oct 2007 CA
2637421 Jan 2010 CA
2642295 Jan 2010 CA
2736733 Oct 2011 CA
2958443 Apr 2017 CA
2995532 Apr 2017 CA
2916141 Jun 2017 CA
2092562 Jan 1992 CN
200958686 Oct 2007 CN
100348970 Nov 2007 CN
102997052 Mar 2013 CN
103106764 May 2013 CN
103497804 Jan 2014 CN
102997061 May 2015 CN
204824775 Dec 2015 CN
205640252 Oct 2016 CN
106764463 Jan 2019 CN
110513604 Nov 2019 CN
210176958 Mar 2020 CN
111537157 Aug 2020 CN
114001278 Feb 2022 CN
114877263 Apr 2023 CN
2602609 Jun 2013 EP
3076461 Oct 2016 EP
3101411 Dec 2016 EP
3112011 Jan 2017 EP
2994626 Jan 2018 EP
3285759 Feb 2018 EP
2398302 Mar 2013 ES
2388762 Nov 1978 FR
2689241 Oct 1993 FR
1179978 Feb 1970 GB
2097687 Nov 1982 GB
2545207 Jun 2017 GB
2559149 Apr 2022 GB
202141001384 Jan 2021 IN
201900008235 Dec 2020 IT
2004125039 Apr 2004 JP
2007204023 Aug 2007 JP
2008097832 Apr 2008 JP
2012002159 Nov 2014 JP
2016078893 May 2016 JP
20110010316 Feb 2011 KR
20130038986 Apr 2013 KR
102129951 Jul 2020 KR
102169280 Oct 2020 KR
102281640 Jul 2021 KR
2760879 Dec 2021 RU
1996006685 May 1996 WO
1997006004 Feb 1997 WO
1997006298 Feb 1997 WO
1998003711 Jan 1998 WO
2000063108 Oct 2000 WO
2002030551 Apr 2002 WO
2003003002 Jan 2003 WO
2003066423 Aug 2003 WO
2004003293 Jan 2004 WO
2004092307 Oct 2004 WO
2005018300 Mar 2005 WO
2007107652 Sep 2007 WO
2007112335 Oct 2007 WO
2007149851 Dec 2007 WO
2009013544 Jan 2009 WO
2009055024 Apr 2009 WO
2010042704 Apr 2010 WO
2010103260 Sep 2010 WO
2013112274 Aug 2013 WO
2014089443 Jun 2014 WO
2014173672 Oct 2014 WO
2015061868 May 2015 WO
2015153607 Oct 2015 WO
2016004107 Jan 2016 WO
2016026043 Feb 2016 WO
2016146404 Sep 2016 WO
2017074985 May 2017 WO
2017083778 May 2017 WO
2017087731 May 2017 WO
2017152269 Sep 2017 WO
2018005141 Jan 2018 WO
2018102378 Jun 2018 WO
2020044026 Mar 2020 WO
2020118020 Jun 2020 WO
2020132632 Jun 2020 WO
2020223803 Nov 2020 WO
2020237112 Nov 2020 WO
2021062563 Apr 2021 WO
2021100054 May 2021 WO
2022043197 Mar 2022 WO
2022126092 Jun 2022 WO
2022149501 Jul 2022 WO
2023287276 Jan 2023 WO
2023038579 Mar 2023 WO
2023137304 Jul 2023 WO
2023164683 Aug 2023 WO
9606765 Feb 1998 ZA
200610366 Jan 2008 ZA
Non-Patent Literature Citations (17)
Entry
Skelton et al., Onboard Refueling Vapor Recovery Systems Analysis of Widespread Use, Nescaum, Boston MA, Aug. 20, 2007.
Membrane Technology and Research, Inc., Gasoline Vapor Recovery, 2018.
Jordan Technologies, Aereon, Recovering More Vapor = Increased Profits, 2015.
EPFL, Capturing CO2 from trucks and reducing their emissions by 90%, Dec. 23, 2019.
Sharma, Shivom et al., Carbon Dioxide Capture from Internal Combustion Engine Exhaust Using Temperature Swing Adsorption, Front. Energy Res., Sec. Carbon Capture, Utilization and Storage, Dec. 16, 2019.
Information Disclosure Declaration by Kyle E. Miller, Dec. 18, 2020.
Cott Manufacturing Company, FinkLet®/FinkPlate® Cathodic Proection Test Stations, Wayback Machine, May 22, 2000.
Alexandrakis et al., “Marine Transportation for Carbon Capture and Sequestration (CCS)”, Department of Civil and Environmental Engineering, Thesis, Massachusetts Institute of Technology, Jun. 2010.
Datta et al., “Advancing carbon management through the global commoditization of CO2: the case for dual-use LNG-CO2 shipping”, Carbon Management, 2020, vol. 11, No. 6, 611-630.
Ibitoye et al., “Poster Abstract: A Convolutional Neural Network Based Solution for Pipeline Leak Detection”, School of Information Technology, Carleton University, Ottawa, Canada, Nov. 2019.
IntelliView, “Thermal Imaging Provides Early Leak Detection in Oil and Gas Pipelines”, Petro Industry News, www.Petro-Online.com, Aug./Sep. 2018.
Southwest Research Institute, “Methane Leak Detection”, 2021.
Masterduct, “Case Studies: High temp marine grade ship engine exhaust fume hose”, retrieved at https://www.masterduct.com/CaseStudies/Hightempshipengineexhaustfumehose.aspx.
ACTI, “Advanced Maritime Emissions Control System (AMECS)”, retrieved at https://sustainableworldports.org/wp-content/uploads/presentation-on-AMECS.pdf.
Neutrik XXR-2 XX Series, https://www.parts-express.com/Neutrik-XXR-2-XX-Series-Color-Coding_Ring-Red, 2022.
Hou, Qingmin, An FBG Strain Sensor-Based NPW Method for Natural Gas Pipeline Leakage Detection, Hindawi, Mathematical Problems in Engineering, vol. 2021, Article ID 5548503, pp. 1-8.
Lloyd's Register, Using technology to trace the carbon intensity of sustainable marine fuels, Feb. 15, 2023.
Related Publications (1)
Number Date Country
20230399817 A1 Dec 2023 US
Provisional Applications (1)
Number Date Country
63364179 May 2022 US
Divisions (1)
Number Date Country
Parent 18144290 May 2023 US
Child 18238832 US
Continuations (1)
Number Date Country
Parent 17848429 Jun 2022 US
Child 18144290 US