Systems, methods, and devices for automatic signal detection based on power distribution by frequency over time

Information

  • Patent Grant
  • 11676472
  • Patent Number
    11,676,472
  • Date Filed
    Thursday, April 28, 2022
    2 years ago
  • Date Issued
    Tuesday, June 13, 2023
    a year ago
Abstract
Systems, methods, and devices for automatic signal detection in an RF environment are disclosed. A sensor device in a nodal network comprises at least one RF receiver, a generator engine, and an analyzer engine. The at least one RF receiver measures power levels in the RF environment and generates FFT data based on power level data. The generator engine calculates a power distribution by frequency of the RF environment in real time or near real time, including a first derivative and a second derivative of the FFT data. The analyzer engine creates a baseline based on statistical calculations of the power levels measured in the RF environment for a predetermined period of time, and identifies at least one signal based on the first derivative and the second derivative of the FFT data in at least one conflict situation from comparing live power distribution to the baseline of the RF environment.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention

This present invention relates to systems and methods for automatic signal detection. More particularly, the systems and methods of the present invention are directed to automatic signal detection based on power distribution by frequency over time.


2. Description of the Prior Art

In recent years, demand for real-time information has increased exponentially. Consumers have embraced social media applications and there are now more mobile subscriptions than people on the planet. Studies show that a typical mobile device experiences an average of 10 network interactions per minute (e.g., Facebook push, Twitter download). For example, Facebook on its own is driving 1 billion updates per minute. Rabid consumer demand, combined with the growing needs of government and industry (e.g., 2-way, trunked, IoT), translates into more wireless activities over wider frequency ranges. The activities are often intermittent with short durations of only a few hundred milliseconds. Social media applications and other cellular activities (e.g., background refresh) are even shorter in duration. Until now, the magnitude of activity has been impossible to keep track of and even harder to gain intelligence from.


SUMMARY OF THE INVENTION

The present invention provides systems and methods for automatic signal detection based on power distribution by frequency over time, especially based on change of power and rate of change of power over time.


These and other aspects of the present invention will become apparent to those skilled in the art after a reading of the following description of the preferred embodiment when considered with the drawings, as they support the claimed invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a configuration of a PDFT processor according to one embodiment of the present invention.



FIG. 2 is a flow chart for data processing in a PDFT processor according to one embodiment of the present invention.



FIG. 3 illustrates data analytics in an analyzer engine according to one embodiment of the present invention.



FIG. 4 illustrates a mask according to one embodiment of the present invention.



FIG. 5 illustrates a workflow of automatic signal detection according to one embodiment of the present invention.



FIG. 6 is a screenshot illustrating alarm visualization via a graphical user interface according to one embodiment of the present invention.



FIG. 7 illustrates a comparison of live FFT stream data and a mask considering a db offset according to one embodiment of the present invention.



FIG. 8 is a snippet of the code of the detection algorithm defining a flag according to one embodiment of the embodiment.



FIG. 9 is a snippet of the code of the detection algorithm identifying peak values according to one embodiment of the present invention.



FIG. 10 illustrates a complex spectrum situation according to one embodiment of the present invention.



FIG. 11 is an analysis of the live stream data above the mask in the first alarm duration in FIG. 10.



FIG. 12 is a snippet of the code of the detection algorithm checking the alarm duration according to one embodiment of the present invention.



FIG. 13 is a snippet of the code of the detection algorithm triggering an alarm according to one embodiment of the present invention.



FIG. 14 is a screenshot illustrating a job manager screen according to one embodiment of the present invention.



FIG. 15 illustrates trigger and alarm management according to one embodiment of the present invention.



FIG. 16 is a screenshot illustrating a spectrum with RF signals and related analysis.



FIG. 17 is a screenshot illustrating identified signals based on the analysis in FIG. 16.



FIG. 18 is a diagram of a modular architecture according to one embodiment of the present invention.



FIG. 19 illustrates a communications environment according to one embodiment of the present invention.



FIG. 20 illustrates an UAS interface according to one embodiment of the present invention.



FIG. 21 lists signal strength measurements according to one embodiment of the present invention.



FIG. 22 illustrates a focused jammer in a mobile application according to one embodiment of the present invention.



FIG. 23 illustrates a swept RF interference by a jammer according to one embodiment of the present invention.



FIG. 24 illustrates data collection, distillation and reporting according to one embodiment of the present invention.



FIG. 25 is a comparison of multiple methodologies for detecting and classifying UAS.



FIG. 26 lists capabilities of an RF-based counter-UAS system according to one embodiment of the present invention.



FIG. 27 illustrates an RF-based counter-UAS system deployed as a long-distance detection model according to one embodiment of the present invention.



FIG. 28 illustrates features of drones in the OcuSync family.



FIG. 29 illustrates features of drones in the Lightbridge family.



FIG. 30 illustrates a spectrum monitoring system detecting an anomalous signal in close proximity of critical infrastructure.



FIG. 31 illustrates a system configuration and interface according to one embodiment of the present invention.



FIG. 32 is a screenshot illustrating no alarm going off for an anomalous signal from LMR traffic not in proximity of site according to one embodiment of the present invention.



FIG. 33 illustrates a GUI of a remote alarm manager according to one embodiment of the present invention.



FIG. 34 labels different parts of a front panel of a spectrum monitoring device according to one embodiment of the present invention.



FIG. 35 lists all the labels in FIG. 33 representing different part of the front panel of the spectrum monitoring device according to one embodiment of the present invention.



FIG. 36 illustrates a spectrum monitoring device scanning a spectrum from 40 MHz to 6 GHz according to one embodiment of the present invention.



FIG. 37 lists the capabilities of a spectrum monitoring system according to 5 main on-network mobile phone states plus 1 no-network mobile phone state.



FIG. 38 illustrates a mobile event analysis per one minute intervals according to one embodiment of the present invention.



FIG. 39 is a site cellular survey result according to one embodiment of the present invention.





DETAILED DESCRIPTION

The present invention provides systems and methods for unmanned vehicle recognition. The present invention relates to automatic signal detection, temporal feature extraction, geolocation, and edge processing disclosed in U.S. patent application Ser. No. 15/412,982 filed Jan. 23, 2017, U.S. patent application Ser. No. 15/681,521 filed Aug. 21, 2017, U.S. patent application Ser. No. 15/681,540 filed Aug. 21, 2017, U.S. patent application Ser. No. 15/681,558 filed Aug. 21, 2017, each of which is incorporated herein by reference in their entirety.


In one embodiment of the present invention, automatic signal detection in an RF environment is based on power distribution by frequency over time (PDFT), including the first derivative and the second derivative values. A PDFT processor is provided for automatic signal detection.


In one embodiment, the PDFT processor increments power values in a 2-Dimensional (2D) array from a frequency spectrum over a set length of time. The length of time is user-settable. For example, the length of time is operable to be set at 5 minutes, 1 hour, or 1 day. The length of time is operable to be set as low as 1 second. Typically, the smallest time interval for setting the environment is 5 seconds. A histogram with frequency as the horizontal axis and power as the vertical axis is operable to be used to describe power values across a spectrum during a certain period of time, which is called the Power Bin Occurrence (PBO).


In one embodiment, power levels are collected for a specified length of time, and statistical calculations are performed on the PBO to obtain the power distribution by frequency for a certain time segment (PDFT). The statistical calculations create baseline signals and identify what is normal in an RF environment, and what are changes to the RF environment. PBO data is constantly updated and compared to baseline to detect anything unique in the RF environment.


The PDFT collects power values and describes the RF environment with collected power values by frequency collected over the time range of the collection. For example, the PDFT processor learns what should be present in the RF environment in a certain area during the time segment from 3 μm to 5 pm. If there is a deviation from historical information, the PDFT processor is configured to send an alarm to operators.


In one embodiment, PBO is used to populate a 3-Dimentional (3D) array and create the Second Order Power Bin Occurrence (SOPBO). The time segment of the PBO is a factor of the length of the SOPBO time segment. The first two dimensions are the same as in PBO, but the third dimension in SOPBO describes how often the corresponding frequency bin and power bin is populated over the SOPBO time segment. The result is operable to be described as a collection of several 2D histograms across a percent of occurrence bins such that each histogram represents a different frequency bin and power bin combination. This provides a percentage of utilization of the frequency for non-constant signals such as RADAR, asynchronous data on demand links or push-to-talk voice.


In one embodiment, the PBO, PDFT, and SOPBO data sets are used for signal detection. For example, statistical calculations of PBOs during a certain time segment are used along with a set of detection parameters to identify possible signals. A frequency-dependent noise floor is calculated by taking the spectral mean from the PDFT data and applying a type of median filter over subsets of frequency. For example, but not for limitation, detection parameters include known signals, basic characteristics, databases of telecom signals, and etc. For example, but not for limitation, median filter types include Standard Median Filter (MF), Weighted Median Filter (WMF), Adaptive Median Filter (AMF) and Decision Based Median Filter (DBMF). The noise floor is then assessed for large changes in power, which indicates the noise floor values are following the curvature of possible signals. At these frequencies, the noise floor is adjusted to adjacent values. Power values below the noise floor are ignored in the rest of the signal detection process. To detect signals, the first derivative is calculated from a smoothed PDFT frequency spectrum. Derivative values exceeding a threshold set based on the detection parameters are matched to nearby values along the frequency spectrum that are equal and opposite within a small uncertainty level. Once frequency edges are found, power values are used to further classify signals. The whole process including the noise floor calculation is repeated for different time segments. The detection parameters are adjusted over time based on signals found or not found, allowing the signal detection process to develop as the PDFT processor runs.


The first derivative of the FFT data is used to detect signals, measure power, frequency and bandwidths of detected signals, determine noise floor and variations, and classify detected signals (e.g., wideband signals, narrowband signals). The second derivative of the FFT data is used to calculate velocity (i.e., change of power) and acceleration (i.e., rate of change of power), and identify movements based on changes and/or doppler effect. For example, the second derivative of the FFT data in an RF environment is operable to be used to determine if a signal emitting device is near road or moving with a car. A SOPBO is the second derivative (i.e., a rate of change of power). It tells us if the signal is varying in time. For example, a simplex network has base station signals transmitting at certain time segments and mobile signals in a different time segment. The SOPBO can catch the mobile signals while the first order PBO cannot. For signals that vary in time such as Time Division Duplex (TDD) LTE or a Radar, SOPBO is important.



FIG. 1 illustrates a configuration of a PDFT processor according to one embodiment of the present invention. In one embodiment, a PDFT processor for automatic signal detection comprises a management plane, at least one RF receiver, a generator engine, and an analyzer engine. The management plane is operable to configure, monitor and manage job functions of the PDFT processor. The at least one RF receiver is operable to receive RF data, generate I/Q data based on the received RF data, and perform FFT analysis. The generator engine is configured to perform a PBO process, and generate PDFT data and SOPBO data based on PBO data. The analyzer engine is configured to calculate noise floor, smooth max hold, generate a PDFT baseline, and identify signals. The smooth max hold function is a curve fitting process with a partial differential equation to provide a running average across adjacent points to reject impulse noise that is operable to be present in the FFT data. The analyzer engine is further configured to calculate a SOPBO baseline based on the SOPBO data.



FIG. 2 is a flow chart for data processing in a PDFT processor according to one embodiment of the present invention. A job manifest is created for initial configuration of a PDFT generator engine or updating the configuration of the PDFT generator engine. The job manifest also starts an RF receiver to receive radio data from an RF environment. The received radio data is transmitted to an FFT engine for FFT analysis. The PDFT generator engine pulls FFT data stream from the FFT engine to build up a based PBO and run a PBO process continuously. An SOPBO process and a PDFT process are performed based on PBO data. SOPBO data from the SOPBO process and PDFT data from the PDFT process is published and saved to storage. The data from the PDFT generator engine is transmitted to an PDFT analyzer engine for analytics including signal detection and classification, event detection and environment monitoring, mask creation, and other analyzer services.



FIG. 3 illustrates data analytics in an analyzer engine according to one embodiment of the present invention. Classical RF techniques and new RF techniques are combined to perform data analytics including environment monitoring and signal classification. Classical RF techniques are based on known signals and initial parameters including demodulation parameters, prior knowledge parameters, and user provided parameters. New RF techniques use machine learning to learn signal detection parameters and signal properties to update detection parameters for signal classification. New signals are found and used to update learned signal detection parameters and taught signal properties based on supervised and unsupervised machine learning.


In one embodiment, the automatic signal detection process includes mask creation and environment analysis using masks. Mask creation is a process of elaborating a representation of an RF environment by analyzing a spectrum of signals over a certain period of time. A desired frequency range is entered by a user to create a mask, and FFT streaming data is also used in the mask creation process. A first derivative is calculated and used for identifying maximum power values. A moving average value is created as FFT data is received during a time period selected by the user for mask creation. For example, the time period is 10 seconds. The result is an FFT array with an average of maximum power values, which is called a mask. FIG. 4 illustrates a mask according to one embodiment of the present invention.


In one embodiment, the mask is used for environment analysis. In one embodiment, the mask is used for identifying potential unwanted signals in an RF environment.


Each mask has an analysis time. During its analysis time, a mask is scanned and live FFT streaming data is compared against the mask before next mask arrives. If a value is detected over the mask range, a trigger analysis is performed. Each mask has a set of trigger conditions, and an alarm is triggered into the system if the trigger conditions are met. In one embodiment, there are three main trigger conditions including alarm duration, db offset, and count. The alarm duration is a time window an alarm needs to appear to be considered as one. For example, the time window is 2 seconds. If a signal is seen for 2 seconds, it passes to the next condition. The db offset is the db value a signal needs to be above the mask to be considered as a potential alarm. The count is the number of times the first two conditions need to happen before an alarm is triggered into the system.



FIG. 5 illustrates a workflow of automatic signal detection according to one embodiment of the present invention. A mask definition is specified by a user for an automatic signal detection process including creating masks, saving masks, and performing environment analysis based on the masks created and FFT data stream from a radio server. If trigger conditions are met, alarms are triggered and stored to a local database for visualization.



FIG. 6 is a screenshot illustrating alarm visualization via a graphical user interface (GUI) according to one embodiment of the present invention. In the GUI, current alarms, acknowledged alarms, and dismissed alarms in a certain RF environment are listed with information including types, counts, durations, carrier frequencies, technologies, and band allocations.


In one embodiment, a detection algorithm is used for alarm triggering. The detection algorithm detects power values over the mask considering the db offset condition, but does not trigger an alarm yet. FIG. 7 illustrates a comparison of live FFT stream data and a mask considering a db offset according to one embodiment of the present invention. The db offset is 5 db, so the detection algorithm only identifies power values that are at least 5 db higher than the mask.


The detection algorithm then identifies peaks for power values above the mask after considering the db offset. In embodiment of the present invention, a flag is used for identifying peak values. A flag is a Boolean value used for indicating a binary choice. FIG. 8 is a snippet of the code of the detection algorithm defining a flag according to one embodiment of the embodiment. If the flag is TRUE, the detection algorithm keeps looking for peak values. A for Each function analyzes each value to find the next peak. Once reaching a peak value, it goes down to the value nearest to the mask, and the flag is set to FALSE. FIG. 9 is a snippet of the code of the detection algorithm identifying peak values according to one embodiment of the present invention.


In one embodiment, live FFT stream data has multiple peaks before falling under the mask. FIG. 10 illustrates a complex spectrum situation according to one embodiment of the present invention. Live FFT stream data in two alarm durations have multiple peaks before falling under the mask. FIG. 11 is an analysis of the live FFT stream data above the mask in the first alarm duration in FIG. 10 according to one embodiment of the present invention. A first peak is identified, and the power value starts to decrease. A first value nearest to the mask after the first peak is identified, the flag is still TRUE after comparing the first value nearest to the mask and mask, so the detection algorithm keeps looking for peaks. Then, a second peak is identified, and the power value starts to decrease. A second value nearest to the mask after the second peak is identified. The second value is greater than the first value, the flag is still TRUE, so the detection algorithm keeps looking for peak values. Then a third peak value is identified and a third value nearest to the mask is also identified. The third value is on the mask considering the offset value, and the flag is set to FALSE. By comparison, the third peak value is considered as the real peak value for the power values above the mask in the first alarm duration of FIG. 10. Once all the peaks are found, the detection algorithm checks the alarm duration, which is a time window where a signal needs to be seen in order to be considered for alarm triggering. The first time that the detection algorithm sees the peak, it saves the time in memory. If the signal is still present during the time window, or appears and disappears during that time, the detection algorithm is to consider triggering an alarm. If the condition is not met, a real-time alarm is not sent to a user, however the detected sequence is recorded for future analysis. FIG. 12 is a snippet of the code of the detection algorithm checking the alarm duration according to one embodiment of the present invention.


If both the db offset condition and the alarm duration condition are met, the detection algorithm analyzes the count condition. If the amount of times specified in the count condition is met, the detection algorithm triggers the alarm. In one embodiment, all alarms are returned as a JSON array, and a for Each function creates the structure and triggers the alarm. FIG. 13 is a snippet of the code of the detection algorithm triggering an alarm according to one embodiment of the present invention.


The present invention provides spectrum monitoring and management, spectrum utilization improvements, critical asset protection/physical security, interference detection and identification, real time situational awareness, drone threat management, and signal intelligence (SigINT). Advantageously, the automatic signal detection in the present invention provides automated and real-time processing, environmental learning, autonomous alarming and operations (e.g., direction finding, demodulation), wideband detection, etc. The automatic signal detection in the present invention is of high speed and high resolution with low backhaul requirements, and can work in both portal and fixed modes with cell and land mobile radio (LMR) demodulation capability. The automatic signal detection system in the present invention is operable to integrate with third party architecture, and is operable to be configured with distributed architecture and remote management. In one embodiment, the automatic signal detection of the present invention is integrable with any radio server including any radio and software defined radio, for example, Ettus SDR radio products.


Specifically, spectrum solutions provided by the automatic signal detection technology in the present invention have the following advantages: task automation, edge processing, high-level modular architecture, and wideband analysis.


Task automation simplifies the work effort required to perform the following tasks, including receiver configuration, process flow and orchestration, trigger and alarm management, autonomous identification of conflicts and anomalous signal detection, automated analytics and reporting, system health management (e.g., system issues/recovery, software update, etc.). FIG. 14 is a screenshot illustrating a job manager screen according to one embodiment of the present invention. FIG. 15 illustrates trigger and alarm management according to one embodiment of the present invention.


Task automation enables an operator to send a job to one or multiple systems distributed across a geography. Each job contains a pre-built, editable manifest, which can configure receivers and outline alarm conditions with appropriate actions to execute. As an example, for a baseline analysis task, the system automatically scans multiple blocks of spectrum in UHF, VHF, Telco bands and ISM bands such as 2.4 GHz and 5.8 GHz, stores multiple derivatives regarding signal and noise floor activity, produces an automated report showing activity and occupancy over a specified time, analyzes signal activity to correctly channelize activity by center frequency and bandwidth, and combines customer supplied or nationally available databases with data collected to add context (e.g., license, utilization, etc.). The baseline analysis task provides an operator with a view into a spectral environment regarding utilization and occupancy. This is operable to be of assistance when multiple entities (local, state and federal agencies) have coverage during a critical event and need to coordinate frequencies. Multiple radios along with multiple systems across a geography are operable to be commanded to begin gathering data in the appropriate frequency bands. Resolution bandwidth and attenuation levels are adjustable, coordination is made simple, and actionable information is returned without significant manual effort.


The systems provided in the present invention is operable to process RF data and perform data manipulation directly at the sensor level. All data is operable to be pushed to a server, but by processing the data first at the sensor, much like in IoT applications, more is operable to be done with less. Overall, edge processing makes information more actionable and reduces cost. The systems of the present invention also leverage machine learning to drive automation at the edge to a higher level, which makes solutions provided by the present invention more intuitive, with greater capability than other remote spectrum monitoring solutions. Edge processing also reduces the bandwidth requirements for the network by distilling data prior to transfer. A reduction in storage requirements, both on the physical system and for a data pipe, enables more deployment options and strategies. For example, different deployment options and strategies include vehicle mounted (e.g., bus or UPS trucks mapping a geography with cellular backhaul), transportable (e.g., placed in a tower on a limited basis) where ethernet is not available, and man portable (e.g., interactive unit connected to other mobile or fixed units for comparative analysis).


Core capabilities processed on the node at the edge of the network include spectrum reconnaissance, spectrum surveillance with tip and cue, and signal characterization. Spectrum reconnaissance includes automatic capture and production of detail regarding spectrum usage over frequency, geography and time. More actionable information is provided with edge processing, distributed architecture and intelligent data storage. Spectrum surveillance includes automated deconfliction over widebands by comparing real-time data to user supplied, regional and learned data sets and producing alarms. Nodes can also work with third party systems, such as cameras, making them smarter. Signal characterization provides actionable information. Signals of interest are decoded and demodulated by the system, with location approximation or direction, to improve situational intelligence.


In one embodiment, edge processing of the present invention includes four steps. At step one, first and second derivative FFT analysis is performed in near real time, providing noise floor estimates and signal activity tracking. FIG. 16 is a screenshot illustrating a spectrum with RF signals and related analysis. FIG. 17 is a screenshot illustrating identified signals based on the analysis in FIG. 16. Spectrum in the pink areas and blue areas in FIG. 17 are identified as signals. At step two, analysis is aggregated, signal bandwidths and overall structure are defined, and data is stored to create baselines and be used in reporting. At step three, incoming FFT is compared to existing baselines to find potential conflicts to the baseline. When conflicts are detected, parameters are sent to an event manager (e.g., a logic engine). At step four, the event manager utilizes user supplied knowledge, publicly available data, job manifests and learned information to decide appropriate actions. Action requests such as creating an alarm, sending an e-mail, storing I/Q data, or performing DF are sent to a controller.


A modular approach to system design and distributed computing allows for proper resource management and control when enabled by the right system control solution, which maximizes performance while keeping per-unit cost down. A loosely coupled solution architecture also allows for less costly improvements to the overall network. Parallel processing also enables multiple loosely coupled systems to operate simultaneously without inhibiting each other's independent activities. FIG. 18 is a diagram of a modular architecture according to one embodiment of the present invention. A modular design enables different components to be integrated and updated easily, without the need for costly customization or the never-ending purchase of new equipment, and makes it easier to add in additional hardware/software modules.


Compared to the industry standard tightly coupled architectures increasing complexity and reducing scalability, reliability and security over time, the loosely coupled modular approach provides standardization, consolidation, scalability and governance while reducing cost of operation.


The spectrum monitoring solutions provided in the present invention significantly enhance situational intelligence and physical security, reduces utility complexity and project risk.


The spectrum management systems provided in the present invention are operable to detect and report on incidents in near real time. Remote sensors are placed at site with the capability of capturing and processing RF activity from 40 MHz to 6 GHz. Highly accurate baselines are constructed for automated comparison and conflict detection. Systems are connected to a centralized monitoring and management system, providing alarms with details to a network operations center. On-site systems can also provide messages to additional security systems on-site, such as cameras, to turn them to the appropriate azimuths.


In one embodiment, information such as the presence of a transmission system is operable to be used in an unmanned vehicle recognition system (UVRS) to detect the presence of an unmanned vehicle. The unmanned vehicle is operable to be air-borne, land-based, water-borne, and/or submerged. The detection of certain modulation schemes is operable to be used to identify the presence of mobile phones or mobile radios. This information, coupled with direction finding, provides situational intelligence for informed decision making and rapid response. Measurements and signal intelligence regarding an RF spectrum assist in reducing the risk of financial losses due to theft, vandalism, and power disruptions, providing additional safety for employees and visitors, making other security technologies, such as thermal cameras and IP videos smarter by working in tandem to identify and locate the presence of threats, and capturing and storing I/Q data, which is operable to be utilized as evidence for legal proceedings.


Wireless devices are operable to be utilized across multiple bands. While other monitoring systems are limited on bandwidth (i.e., limited focus) or resolution (making it difficult to see narrowband signals), the systems in the present invention are designed to be more flexible and adaptable and capable of surveying the entire communications environments looking for illicit activity. FIG. 19 illustrates a communications environment according to one embodiment of the present invention.


In one embodiment, a signal characterization engine is configured to provide information including location information and direction, operator name, drone transmission type, and MAC address. All these are actionable information enabling swift resolution. FIG. 20 illustrates an UVRS interface with positive detections, according to one embodiment of the present invention. FIG. 21 lists signal strength measurements according to one embodiment of the present invention.


In one embodiment, the systems of the present invention are operable to be used for mitigating drone threats, identifying and locating jammers, and ensuring communications. The systems of the present invention are designed to identify illicit activity involving use of the electromagnetic spectrum such as drone threats, directed energy/anti-radiation weapons aimed at degrading combat capability (e.g., jammers). The systems of the present invention also bring structure to largely unstructured spectral data enabling clearer communications (interference reduction) and efficient communication mission planning.


Jammers are becoming more prevalent and are operable to be deployed on-site or off premises, making them very difficult to locate. The solutions provided by the present invention automatically send alerts as to the presence of wideband jammers interfering with critical parts of the communications spectrum, and assist in the location of focused jammers which are operable to be very difficult to find. The ability to proactively and rapidly locate jamming devices reduces disruptions in communications, and improves overall security and limits the potential for financial loss. FIG. 22 illustrates a focused jammer in a mobile application according to one embodiment of the present invention. FIG. 23 illustrates a swept RF interference by a jammer according to one embodiment of the present invention.


To maintain security and coordinate operations, consistent and quality communications are imperative. The systems provided in the present invention have multiple deployment strategies and data is operable to be collected and distilled into strength and quality metrics. The data is easy to access in reports. FIG. 24 illustrates data collection, distillation and reporting according to one embodiment of the present invention.


The systems provided in the present invention have the capability of building baselines, detecting when signals exist which are not common for the environment, and creating alerts and automatically starting processes such as direction finding.


The systems provided in the present invention are operable to be used for countering unmanned vehicles, including but not limited to unmanned aerial systems, land-based vehicles, water-borne vehicles, and submerged vehicles. FIG. 25 is a comparison of multiple methodologies for detecting and classifying UAS. Of the methods listed in FIG. 25, RF detection provides the highest level of accuracy in classifying an object as a UAS.


An RF-based counter-UAS system comprises multiple receivers in a single platform. In one embodiment, there are four receivers. Each receiver is operable to scan multiple bands of spectrum looking for UAS signatures. For example, the multiple bands of spectrum include 433 MHz, 900 MHz, 2.4 GHz, 3.5 GHz, and 5.8 GHz Base. Each receiver has the capability of scanning a spectrum from 40 MHz to 6 GHz. The receivers are capable of working in tandem for DF applications. Multiple RF-based counter-UAS systems can communicate with each other to extend range of detection and enhance location finding accuracy. The RF-based counter-UAS systems of the present invention comprise proprietary intelligence algorithm on one or multiple GPUs with execution time less than 10 ms. FIG. 26 lists capabilities of an RF-based counter-UAS system according to one embodiment of the present invention. The capabilities of an RF-based counter-UAS system include detection, classification, direction finding, and message creation.


In one embodiment, an RF-based counter-UAS system is operable to be deployed as a long-distance detection model as illustrated in FIG. 27. Four omni-directional antennas are used to create an array for detection and direction finding. In one embodiment, Gimbal-mounted (rotating) defeat antenna is operable to be added. The long-distance detection model is simple to install. In one embodiment, extremely long-distance detection is operable to be obtained with arrays utilizing masts with a height of 8 to 10 meters.



FIG. 28 illustrates features of drones in the OcuSync family. FIG. 29 illustrates features of drones in the Lightbridge family. The long ranges, adaptability, and ubiquity of OcuSync and Lightbridge systems make them potentially very dangerous. The RF-based counter-UAS systems in the present invention are operable to detect and defeat UASs using these systems.


The RF-based counter-UAS systems in the present invention are operable to detect UASs over a distance of 1.5 kilometers with direction. UASs are operable to be detected and categorized faster than other systems. The RF-based counter-UAS systems can easily integrated into third party systems (e.g., RADAR and camera systems), or act as the common operating platform for other systems for command and control. The RF-based counter-UAS systems are capable for wideband detection from 70 MHz to 6 GHz, enabling detection of UASs at 433 MHz, 900 MHz, 2.4 GHz, 3.5 GHz, and 5.8 GHz. The RF-based counter-UAS systems are capable of detecting and direction finding UAS controllers. In one embodiment, unknown and anomalous signals can be categorized as UAS.


In one embodiment, the RF-based counter-UAS systems in the present invention are operable to be used for detecting other unmanned vehicles such as land-based, water-borne, or submerged unmanned vehicles in addition to detecting unmanned aerial vehicles.


In one embodiment, the present invention provides an autonomous and intelligent spectrum monitoring system capable of detecting the presence of wireless activity across extremely wide bands, capturing and performing analysis on highly intermittent signals with short durations automatically, and converting RF data from diverse wireless mobile communication services (e.g., cellular, 2-way, trunked) into knowledge. The autonomous and intelligent spectrum monitoring system of the present invention are advantageous with edge processing, modular architecture, job automation, and distributed sensor network.


Edge processing enables the delivery of a truly autonomous sensor for automated signal recognition and classification and near real-time alarming 24/7, equipped with machine learning algorithms.


A modular architecture increases speed and efficiency, enables more bandwidth to be analyzed (with superior resolution), reduces latency and network traffic (i.e., low backhaul requirements). Logic engines produce relevant alarms, thus limiting false positives.


Job automation allows hardware solutions to be customized to meet operational needs with inclusion of additional receivers and GPUs, cloud or client hosted backend, and third-party integration.


A distributed sensor network supports feature specific applications such as direction finding and drone threat management, capable of LMR and cellular demodulation and assisting prosecution efforts with data storage.


The spectrum monitoring system of the present invention represents a paradigm shift in spectrum management. Edge processing migrates away from the inefficiencies of manual analysis, or the time delays of backhauling large data sets. The spectrum monitoring system of the present invention performs real-time, automated processing at the device level, providing knowledge faster, reducing network traffic and improving application performance with less latency. Modular architecture makes additional development, integration of new features and the incorporation of third party systems easy, and also future-proof capital expenditure. Job automation simplifies operations (e.g., data collection, setting triggers) by enabling the execution of multiple complex tasks, with one click on a user interface. Distributed sensors provide security to critical assets spread across large geographies, linked to a network operations center. Data is operable to be shared to perform location finding and motion tracking.


For critical assets, only certain types of transmitting devices (e.g., radios, phones, sensors) should be present on specified frequencies. The spectrum monitoring system of the present invention learns what is common for a communications environment and creates alarms when an anomalous signal is detected in close proximity. Alerts, along with details such as signal type (e.g., LMR, Mobile, Wi-Fi) and unique characteristics (e.g., radio ID) are posted to a remote interface for further investigation. The spectrum monitoring system of the present invention which is capable of learning, analyzing and creating alarms autonomously provides a heightened level of security for critical assets and infrastructure. FIG. 30 illustrates a spectrum monitoring system detecting an anomalous signal in close proximity of critical infrastructure.


The spectrum monitoring system derives intelligence by collecting, processing, and analyzing spectral environments in near real time. The unique characteristics and signatures of each transmitter are compared automatically to either user supplied or historical data sets. Potential threats are identified quickly and proactively, reducing acts of vandalism, theft and destruction. Advantageously, the spectrum monitoring system of the present invention reduces the risk of financial losses due to theft, vandalism, and power disruptions, provides additional safety for employees and visitors, makes other security technologies including thermal cameras and IP video smarter by working in tandem to identify and locate the presence of threats (with DF functionality), and captures and stores data, which is operable to be utilized as evidence for legal proceedings.


Node devices in the spectrum monitoring system of the present invention are operable to be deployed across large geographies. The spectrum monitoring system is built to interact with third party systems including cameras and big data platforms, providing additional intelligence. All these systems send pre-processed data to a cloud platform and are visualized efficiently on a single interface. FIG. 31 illustrates a system configuration and interface according to one embodiment of the present invention.


Alarms generated at the site are sent to a remote interface, enabling perimeters to be monitored 24/7 from anywhere. Alarm details including transmitter type (e.g., mobile phone), unique identifiers (e.g., radio ID), UAV type, and directions are presented on the interface.


Job automation restructures work flow and the need for configuration management, greatly reducing manual efforts regarding receiver configuration, trigger and alarm management, analytics and reporting, system health management, and conflict and anomalous signal detection.


Not all activity observed in a spectral environment represents a threat. Even in remote locations, LMR radios are operable to be observed. Pedestrians may also be in the area utilizing mobile devices. The spectrum monitoring system of the present invention is equipped with logic to determine the typical makeup of an environment (e.g., common signals based on time of day), proximity, and duration (e.g., time on site). The logic limits false positives to produce alarms that are meaningful. Parameters are operable to be adjusted as required.



FIG. 32 is a screenshot illustrating no alarm going off for an anomalous signal from LMR traffic not in proximity of site according to one embodiment of the present invention.


In one embodiment, the spectrum monitoring system of the present invention enables 24/7 scanning of a local environment, identification of new activities (e.g., LMR, cellular, Wi-Fi), threat assessment capability (e.g., proximity and duration analysis), and alarm creation with details sent via email and posted to a user interface.


In one embodiment, the spectrum monitoring system of the present invention supports a powerful user interface simplifying remote monitoring, greatly improves receiver sensitivity and processing enabling identification of intermittent signals with millisecond durations (e.g., registration events, WhatsApp messaging, background applications), and provides an enhanced logic engine which is operable to identify both signals with long durations (e.g., voice calls, video streaming, data sessions) and repetitive short bursts (e.g., Facebook updates).


In one embodiment, the spectrum monitoring system of the present invention is capable of mobile phone identification from 800-2600 MHz (covering all mobile activity at site), recognition of intermittent and bursting signals associated with cellular applications, identification of LMR, Wi-Fi, and UAV activity, and determining proximity and limiting false alarms with logic engines.


Node devices in a spectrum monitoring system of the present invention are operable to produce data sets tagged with geographical node location and time. The data sets are operable to be stored on the node devices, or fed to a cloud-based analytics system for historical trend analysis, prediction models, and customer driven deep learning analytics.


Analytics provided by the spectrum monitoring system of the present invention are operable to be used to identify the presence of constant or periodic signals. For example, recognition of the presence of wireless cameras can indicate potential surveillance of a critical asset site. Also for example, the presence of constant or periodic signals can indicate existence of organized groups, attempting to determine normal access patterns for the purpose of espionage or theft.


Analytics provided by the spectrum monitoring system of the present invention can also be used to review patterns before and during an intrusion at several sites and predict next targeted sites.


Analytics provided by the spectrum monitoring system of the present invention can also be used to track contractor and employee visits, both planned and unplanned to the site, to augment data for work flow improvements.



FIG. 33 illustrates a GUI of a remote alarm manager according to one embodiment of the present invention.



FIG. 34 labels different parts of a front panel of a spectrum monitoring device according to one embodiment of the present invention.



FIG. 35 lists all the labels in FIG. 33 representing different part of the front panel of the spectrum monitoring device according to one embodiment of the present invention.



FIG. 36 illustrates a spectrum monitoring device scanning a spectrum from 40 MHz to 6 GHz according to one embodiment of the present invention.



FIG. 37 lists the capabilities of a spectrum monitoring system according to 5 main on-network mobile phone states plus 1 no-network mobile phone state.


A mobile phone in the first main state is active on network, and activities also include short-duration (e.g., milliseconds) activities (e.g., text messages, WhatsApp messages and registration events) besides completing a voice call, engaging in a data session, and streaming video. The first main state lasts 6 to 8 hours typically. Receiver sensitivity for speed and bandwidth and processing are enhanced to enable the capability of intercepting these activities and producing an alarm by the spectrum monitoring system of the present invention.


In the second main state, there are background applications running. To conserve battery life, a mobile phone does not constantly monitor the network, but does “wake up” and check for messages (e.g., every 10 seconds). The mobile phone checks applications including Facebook, SMS, voicemail, email, Twitter, and game challenge notifications. A typical phone sends an update notice (e.g., a request to pull down emails, Facebook messages, etc.) every 90 seconds on average. Background applications such as social media updates are extremely short in duration. To capture these events, receivers in the spectrum monitoring system are doubled (e.g., 2 to 4), the bandwidth of each receiver is doubled (e.g., 40 MHz to 80 MHz), and software is developed to enhance the system to process the increase in sample (e.g., 10×).



FIG. 38 illustrates a mobile event analysis per one minute intervals according to one embodiment of the present invention.


Events on a mobile phone include background apps (e.g., Facebook, Email, location services, sync apps) with a probability of 90%, active apps (e.g., mobile search, gaming) with a probability of 30%, messaging (e.g., SMS, WhatsApp, Snapchat) with a probability of 15%, voice calls with a probability of 10%. The combined probability gets to 95%.



FIG. 39 is a site cellular survey result according to one embodiment of the present invention. The site cellular survey result reveals there is not active GSM network on site, which means the vast majority of the mobile phones need to be UMTS and LTE capable to have service.


The present invention provides systems, methods and apparatus for automatic signal detection in a radio-frequency (RF) environment. A multiplicity of sensor devices constructed and configured for cross-communication in a nodal network. Each of the multiplicity of sensor devices comprises at least one RF receiver, a generator engine, and an analyzer engine. The at least one RF receiver is configured to measure power levels in the RF environment in real time or near real time and generate fast Fourier transform (FFT) data based on power level data. The generator engine is configured to calculate a power distribution by frequency of the RF environment in real time or near real time, including a first derivative and a second derivative of the FFT data. The analyzer engine is configured to create a baseline based on statistical calculations of the power levels measured in the RF environment for a predetermined period of time, identify at least one conflict situation by comparing the power distribution in real time or near real time to the baseline of the RF environment, and identify at least one signal based on the first derivative and the second derivative of the FFT data in the at least one conflict situation.


Certain modifications and improvements will occur to those skilled in the art upon a reading of the foregoing description. The above-mentioned examples are provided to serve the purpose of clarifying the aspects of the invention and it will be apparent to one skilled in the art that they do not serve to limit the scope of the invention. All modifications and improvements have been deleted herein for the sake of conciseness and readability but are properly within the scope of the present invention.

Claims
  • 1. A system for automatic signal detection in a radio-frequency (RF) environment, comprising: a multiplicity of sensor devices configured for communication in a network;wherein the multiplicity of sensor devices comprises at least one RF receiver, a generator engine, and an analyzer engine;wherein the at least one RF receiver is configured to measure power levels in the RF environment and generate fast Fourier transform (FFT) data based on power level data;wherein the generator engine is configured to calculate a power distribution by frequency of the RF environment, including a first derivative of the FFT data; andwherein the analyzer engine is configured to create a baseline of the RF environment, identify at least one conflict situation by comparing the power distribution to the baseline of the RF environment, and identify at least one signal based on the first derivative of the FFT data in the at least one conflict situation.
  • 2. The system of claim 1, wherein the analyzer engine is configured to learn and update signal detection parameters based on signal properties with machine learning algorithms.
  • 3. The system of claim 1, wherein the analyzer engine is configured to create a mask representing the RF environment over a certain period of time.
  • 4. The system of claim 3, wherein the mask is an FFT array with an average of maximum power values.
  • 5. The system of claim 3, wherein the analyzer engine is operable to perform trigger analysis by comparing live FFT data against the mask during an analysis time.
  • 6. The system of claim 3, wherein the mask comprises a set of trigger conditions including a db offset, an alarm duration, and a count, wherein the db offset is a db value a signal needs to be above the mask to be considered as a potential alarm, wherein the alarm duration is a time window a potential alarm needs to appear to be considered as an alarm, and wherein the count is the number of times the db offset and the alarm duration need to occur before the alarm is triggered.
  • 7. The system of claim 1, wherein the analyzer engine is operable to identify at least one signal emitting device from which the at least one signal is emitted.
  • 8. The system of claim 7, further comprising at least one camera operable to identify the at least one signal emitting device in tandem with the multiplicity of sensor devices.
  • 9. The system of claim 7, wherein the at least one signal emitting device is an unmanned vehicle.
  • 10. The system of claim 9, wherein the multiplicity of sensor devices further comprises a signal characterization engine configured to provide information related to the unmanned vehicle comprising location information, a direction, an operator name, a drone transmission type, and a media access control (MAC) address.
  • 11. The system of claim 9, wherein the analyzer engine is operable to identify a controller for the unmanned vehicle.
  • 12. The system of claim 9, wherein the analyzer engine is operable to determine inclination and declination data of the unmanned vehicle.
  • 13. The system of claim 1, wherein the multiplicity of sensor devices is operable to capture and process RF data from 40 MHz to 6 GHz.
  • 14. The system of claim 1, wherein the multiplicity of sensor devices further comprises a logic engine, wherein the analyzer engine is operable to send data relating to the at least one conflict situation to the logic engine, and wherein the logic engine is operable to produce at least one alarm signal based on the at least one conflict situation.
  • 15. The system of claim 14, wherein the at least one alarm signal comprises a signal type, an identifier, a device type, and a direction of the at least one signal.
  • 16. The system of claim 14, further comprising at least one user device in network communication with the multiplicity of sensor devices in the network, wherein the at least one user device is operable to display the at least one alarm signal via a graphical user interface (GUI).
  • 17. An apparatus for automatic signal detection in a radio-frequency (RF) environment, comprising: at least one RF receiver, a generator engine, and an analyzer engine;wherein the at least one RF receiver is configured to measure power levels in the RF environment and generate fast Fourier transform (FFT) data based on power level data;wherein the generator engine is configured to calculate a power distribution by frequency of the RF environment, including a first derivative of the FFT data; andwherein the analyzer engine is configured to create a baseline of the RF environment, identify at least one conflict situation by comparing the power distribution to the baseline of the RF environment, and identify at least one signal based on the first derivative of the FFT data in the at least one conflict situation.
  • 18. The apparatus of claim 17, wherein the at least one signal comprises intermittent and bursting signals.
  • 19. A method for automatic signal detection in a radio-frequency (RF) environment, comprising: providing a multiplicity of sensor devices configured for communication in a network, wherein the multiplicity of sensor devices comprises at least one RF receiver, a generator engine, and an analyzer engine;the at least one RF receiver measuring power levels in the RF environment;the analyzer engine creating a baseline of the RF environment;the generator engine calculating a power distribution by frequency of the RF environment, including a first derivative of fast Fourier transform (FFT) data of the RF environment;the analyzer engine identifying at least one conflict situation by comparing the power distribution to the baseline of the RF environment; andthe analyzer engine identifying at least one signal based on the first derivative of the FFT data in the at least one conflict situation.
  • 20. The method of claim 19, further comprising producing at least one alarm signal based on the at least one conflict situation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application relates to and claims priority from the following applications. This application is a continuation of U.S. patent application Ser. No. 17/191,192 filed Mar. 3, 2021, which is a continuation of U.S. patent application Ser. No. 16/545,717 filed Aug. 20, 2019, which claims priority from and the benefit of U.S. Provisional Patent Application No. 62/722,420 filed Aug. 24, 2018. Each of the applications listed above is incorporated herein in its entirety.

US Referenced Citations (481)
Number Name Date Kind
4215345 Robert et al. Jul 1980 A
4501020 Wakeman Feb 1985 A
4638493 Bishop et al. Jan 1987 A
4928106 Ashjaee et al. May 1990 A
5134407 Lorenz et al. Jul 1992 A
5230087 Meyer et al. Jul 1993 A
5293170 Lorenz et al. Mar 1994 A
5343212 Rose et al. Aug 1994 A
5393713 Schwob Feb 1995 A
5506864 Schilling Apr 1996 A
5513385 Tanaka Apr 1996 A
5548809 Lemson Aug 1996 A
5570099 DesJardins Oct 1996 A
5589835 Gildea et al. Dec 1996 A
5612703 Mallinckrodt Mar 1997 A
5831874 Boone et al. Nov 1998 A
5835857 Otten Nov 1998 A
5856803 Pevler Jan 1999 A
5936575 Azzarelli et al. Aug 1999 A
6018312 Haworth Jan 2000 A
6085090 David et al. Jul 2000 A
6115580 Chuprun et al. Sep 2000 A
6134445 Gould et al. Oct 2000 A
6144336 Preston et al. Nov 2000 A
6157619 Ozluturk et al. Dec 2000 A
6191731 McBurney et al. Feb 2001 B1
6249252 Dupray Jun 2001 B1
6286021 Tran et al. Sep 2001 B1
6296612 Mo et al. Oct 2001 B1
6304760 Thomson et al. Oct 2001 B1
6339396 Mayersak Jan 2002 B1
6418131 Snelling et al. Jul 2002 B1
6433671 Nysen Aug 2002 B1
6492945 Counselman, III et al. Dec 2002 B2
6512788 Kuhn et al. Jan 2003 B1
6628231 Mayersak Sep 2003 B2
6677895 Holt Jan 2004 B1
6707910 Valve et al. Mar 2004 B1
6711404 Arpee et al. Mar 2004 B1
6741595 Maher et al. May 2004 B2
6771957 Chitrapu Aug 2004 B2
6785321 Yang et al. Aug 2004 B1
6850557 Gronemeyer Feb 2005 B1
6850735 Sugar et al. Feb 2005 B2
6859831 Gelvin et al. Feb 2005 B1
6861982 Forstrom et al. Mar 2005 B2
6876326 Martorana Apr 2005 B2
6898197 Lavean May 2005 B1
6898235 Carlin et al. May 2005 B1
6904269 Deshpande et al. Jun 2005 B1
6985437 Vogel Jan 2006 B1
7035593 Miller et al. Apr 2006 B2
7043207 Miyazaki May 2006 B2
7049965 Kelliher et al. May 2006 B2
7110756 Diener Sep 2006 B2
7116943 Sugar et al. Oct 2006 B2
7146176 Mchenry Dec 2006 B2
7151938 Weigand Dec 2006 B2
7152025 Lusky et al. Dec 2006 B2
7162207 Kursula et al. Jan 2007 B2
7171161 Miller Jan 2007 B2
7187326 Beadle et al. Mar 2007 B2
7206350 Korobkov et al. Apr 2007 B2
7254191 Sugar et al. Aug 2007 B2
7269151 Diener et al. Sep 2007 B2
7292656 Kloper et al. Nov 2007 B2
7298327 Dupray et al. Nov 2007 B2
7366463 Archer et al. Apr 2008 B1
7408907 Diener Aug 2008 B2
7424268 Diener et al. Sep 2008 B2
7459898 Woodings Dec 2008 B1
7466960 Sugar Dec 2008 B2
7471683 Maher, III et al. Dec 2008 B2
7555262 Brenner Jun 2009 B2
7564816 Mchenry et al. Jul 2009 B2
7595754 Mehta Sep 2009 B2
7606335 Kloper et al. Oct 2009 B2
7606597 Weigand Oct 2009 B2
7620396 Floam et al. Nov 2009 B2
7676192 Wilson Mar 2010 B1
7692532 Fischer et al. Apr 2010 B2
7692573 Funk Apr 2010 B1
7702044 Nallapureddy et al. Apr 2010 B2
7725110 Weigand May 2010 B2
7728755 Jocic Jun 2010 B1
7801490 Scherzer Sep 2010 B1
7835319 Sugar Nov 2010 B2
7865140 Levien et al. Jan 2011 B2
7893875 Smith Feb 2011 B1
7933344 Hassan et al. Apr 2011 B2
7945215 Tang May 2011 B2
7953549 Graham et al. May 2011 B2
7965641 Ben Letaief et al. Jun 2011 B2
8001901 Bass Aug 2011 B2
8006195 Woodings et al. Aug 2011 B1
8023957 Weigand Sep 2011 B2
8026846 Mcfadden et al. Sep 2011 B2
8027249 Mchenry et al. Sep 2011 B2
8027690 Shellhammer Sep 2011 B2
8045660 Gupta Oct 2011 B1
8055204 Livsics et al. Nov 2011 B2
8059694 Junell et al. Nov 2011 B2
8060017 Schlicht et al. Nov 2011 B2
8060035 Haykin Nov 2011 B2
8060104 Chaudhri et al. Nov 2011 B2
8064840 McHenry et al. Nov 2011 B2
8077662 Srinivasan et al. Dec 2011 B2
RE43066 McHenry Jan 2012 E
8094610 Wang et al. Jan 2012 B2
8107391 Wu et al. Jan 2012 B2
8125213 Goguillon et al. Feb 2012 B2
8131239 Walker et al. Mar 2012 B1
8134493 Noble et al. Mar 2012 B2
8151311 Huffman et al. Apr 2012 B2
8155039 Wu et al. Apr 2012 B2
8155649 McHenry et al. Apr 2012 B2
8160839 Woodings et al. Apr 2012 B1
8170577 Singh May 2012 B2
8175539 Diener et al. May 2012 B2
8184653 Dain et al. May 2012 B2
8193981 Hwang et al. Jun 2012 B1
8213868 Du et al. Jul 2012 B2
8224254 Haykin Jul 2012 B2
8233928 Stanforth et al. Jul 2012 B2
8238247 Wu et al. Aug 2012 B2
8249028 Porras et al. Aug 2012 B2
8249631 Sawai Aug 2012 B2
8260207 Srinivasan et al. Sep 2012 B2
8265684 Sawai Sep 2012 B2
8279786 Smith et al. Oct 2012 B1
8280433 Quinn et al. Oct 2012 B2
8289907 Seidel et al. Oct 2012 B2
8290503 Sadek et al. Oct 2012 B2
8295859 Yarkan et al. Oct 2012 B1
8295877 Hui et al. Oct 2012 B2
8305215 Markhovsky et al. Nov 2012 B2
8311483 Tillman et al. Nov 2012 B2
8311509 Feher Nov 2012 B2
8315571 Lindoff et al. Nov 2012 B2
8320910 Bobier Nov 2012 B2
8326240 Kadambe et al. Dec 2012 B1
8326309 Mody et al. Dec 2012 B2
8326313 McHenry et al. Dec 2012 B2
8335204 Samarasooriya et al. Dec 2012 B2
8346273 Weigand Jan 2013 B2
8350970 Birkett et al. Jan 2013 B2
8358723 Hamkins et al. Jan 2013 B1
8364188 Srinivasan et al. Jan 2013 B2
8369305 Diener et al. Feb 2013 B2
8373759 Samarasooriya et al. Feb 2013 B2
8391794 Sawai et al. Mar 2013 B2
8391796 Srinivasan et al. Mar 2013 B2
8401564 Singh Mar 2013 B2
8406776 Jallon Mar 2013 B2
8406780 Mueck Mar 2013 B2
RE44142 Wilson Apr 2013 E
8421676 Moslifeghi Apr 2013 B2
8422453 Abedi Apr 2013 B2
8422958 Du et al. Apr 2013 B2
RE44237 Mchenry May 2013 E
8437700 Mody et al. May 2013 B2
8442445 Mody et al. May 2013 B2
8451751 Challapali et al. May 2013 B2
8463195 Shellhammer Jun 2013 B2
8467353 Proctor Jun 2013 B2
8483155 Banerjea et al. Jul 2013 B1
8494464 Kadambe et al. Jul 2013 B1
8503955 Kang et al. Aug 2013 B2
8504087 Stanforth et al. Aug 2013 B2
8514729 Blackwell Aug 2013 B2
8515473 Mody et al. Aug 2013 B2
8520606 Cleveland Aug 2013 B2
RE44492 Mchenry Sep 2013 E
8526974 Olsson et al. Sep 2013 B2
8532686 Schmidt et al. Sep 2013 B2
8538339 Hu et al. Sep 2013 B2
8548521 Hui et al. Oct 2013 B2
8554264 Gibbons et al. Oct 2013 B1
8559301 Mchenry et al. Oct 2013 B2
8565811 Tan et al. Oct 2013 B2
8599024 Bloy Dec 2013 B2
8718838 Kokkeby et al. May 2014 B2
8761051 Brisebois et al. Jun 2014 B2
8780968 Garcia Jul 2014 B1
8798548 Carbajal Aug 2014 B1
8805291 Garcia et al. Aug 2014 B1
8818283 McHenry et al. Aug 2014 B2
8824536 Garcia et al. Sep 2014 B1
8843155 Burton et al. Sep 2014 B2
8977212 Carbajal Mar 2015 B2
9007262 Witzgall Apr 2015 B1
9078162 Garcia et al. Jul 2015 B2
9143968 Manku et al. Sep 2015 B1
9185591 Carbajal Nov 2015 B2
9288683 Garcia et al. Mar 2016 B2
9412278 Gong et al. Aug 2016 B1
9414237 Garcia et al. Aug 2016 B2
9529360 Melamed et al. Dec 2016 B1
9537586 Carbajal Jan 2017 B2
9658341 Mathews et al. May 2017 B2
9674684 Mendelson Jun 2017 B1
9715009 Parker et al. Jul 2017 B1
9749069 Garcia et al. Aug 2017 B2
9767699 Borghese et al. Sep 2017 B1
9805273 Seeber et al. Oct 2017 B1
9858947 Hearing et al. Jan 2018 B2
9862489 Weinstein et al. Jan 2018 B1
9998243 Garcia et al. Jun 2018 B2
10157548 Priest Dec 2018 B2
10241140 Moinuddin Mar 2019 B2
10251242 Rosen et al. Apr 2019 B1
10408936 Van Voorst Sep 2019 B2
10459020 Dzierwa et al. Oct 2019 B2
10613209 Emami et al. Apr 2020 B2
11035929 Parker et al. Jun 2021 B2
11265652 Kallai et al. Mar 2022 B2
20010020220 Kurosawa Sep 2001 A1
20020044082 Woodington et al. Apr 2002 A1
20020070889 Griffin et al. Jun 2002 A1
20020097184 Mayersak Jul 2002 A1
20020119754 Wakutsu et al. Aug 2002 A1
20020161775 Lasensky et al. Oct 2002 A1
20030013454 Hunzinger Jan 2003 A1
20030087648 Mezhvinsky et al. May 2003 A1
20030104831 Razavilar et al. Jun 2003 A1
20030145328 Rabinowitz et al. Jul 2003 A1
20030198304 Sugar et al. Oct 2003 A1
20030232612 Richards Dec 2003 A1
20040127214 Reddy et al. Jul 2004 A1
20040147254 Reddy et al. Jul 2004 A1
20040171390 Chitrapu Sep 2004 A1
20040203826 Sugar et al. Oct 2004 A1
20040208238 Thomas et al. Oct 2004 A1
20040219885 Sugar et al. Nov 2004 A1
20040233100 Dibble et al. Nov 2004 A1
20050003828 Sugar et al. Jan 2005 A1
20050031051 Rosen Feb 2005 A1
20050096026 Chitrapu et al. May 2005 A1
20050107102 Yoon et al. May 2005 A1
20050176401 Nanda et al. Aug 2005 A1
20050227625 Diener Oct 2005 A1
20050285792 Sugar et al. Dec 2005 A1
20060025118 Chitrapu et al. Feb 2006 A1
20060128311 Tesfai Jun 2006 A1
20060238417 Jendbro et al. Oct 2006 A1
20060258347 Chitrapu Nov 2006 A1
20070076657 Woodings et al. Apr 2007 A1
20070098089 Li et al. May 2007 A1
20070111746 Anderson May 2007 A1
20070149216 Misikangas Jun 2007 A1
20070223419 Ji et al. Sep 2007 A1
20070233409 Boyan et al. Oct 2007 A1
20070293171 Li et al. Dec 2007 A1
20070297541 Mcgehee Dec 2007 A1
20080001735 Tran Jan 2008 A1
20080010040 Mcgehee Jan 2008 A1
20080090563 Chitrapu Apr 2008 A1
20080113634 Gates et al. May 2008 A1
20080123731 Wegener May 2008 A1
20080130519 Bahl et al. Jun 2008 A1
20080180325 Chung et al. Jul 2008 A1
20080186235 Struckman et al. Aug 2008 A1
20080195584 Nath et al. Aug 2008 A1
20080209117 Kajigaya Aug 2008 A1
20080211481 Chen Sep 2008 A1
20080252516 Ho et al. Oct 2008 A1
20090011713 Abusubaih et al. Jan 2009 A1
20090046003 Tung et al. Feb 2009 A1
20090046625 Diener et al. Feb 2009 A1
20090066578 Beadle et al. Mar 2009 A1
20090086993 Kawaguchi et al. Apr 2009 A1
20090111463 Simms et al. Apr 2009 A1
20090143019 Shellhammer Jun 2009 A1
20090149202 Hill et al. Jun 2009 A1
20090190511 Li et al. Jul 2009 A1
20090207950 Tsuruta et al. Aug 2009 A1
20090224957 Chung et al. Sep 2009 A1
20090278733 Haworth Nov 2009 A1
20090282130 Antoniou et al. Nov 2009 A1
20090285173 Koorapaty et al. Nov 2009 A1
20090286563 Ji et al. Nov 2009 A1
20090322510 Berger et al. Dec 2009 A1
20100020707 Woodings Jan 2010 A1
20100056200 Tolonen Mar 2010 A1
20100075704 Mchenry et al. Mar 2010 A1
20100109936 Levy May 2010 A1
20100150122 Berger et al. Jun 2010 A1
20100172443 Shim et al. Jul 2010 A1
20100173586 McHenry Jul 2010 A1
20100176988 Maezawa Jul 2010 A1
20100220011 Heuser Sep 2010 A1
20100255794 Agnew Oct 2010 A1
20100255801 Gunasekara et al. Oct 2010 A1
20100259998 Kwon et al. Oct 2010 A1
20100309317 Wu et al. Dec 2010 A1
20110022342 Pandharipande et al. Jan 2011 A1
20110045781 Shellhammer et al. Feb 2011 A1
20110053604 Kim et al. Mar 2011 A1
20110059747 Lindoff et al. Mar 2011 A1
20110070885 Ruuska et al. Mar 2011 A1
20110074631 Parker Mar 2011 A1
20110077017 Yu et al. Mar 2011 A1
20110087639 Gurney Apr 2011 A1
20110090939 Diener et al. Apr 2011 A1
20110096770 Henry Apr 2011 A1
20110102258 Underbrink et al. May 2011 A1
20110111751 Markhovsky et al. May 2011 A1
20110116484 Henry May 2011 A1
20110117869 Woodings May 2011 A1
20110122855 Henry May 2011 A1
20110129006 Jung et al. Jun 2011 A1
20110131260 Mody Jun 2011 A1
20110183621 Quan et al. Jul 2011 A1
20110183685 Burton et al. Jul 2011 A1
20110185059 Adnani et al. Jul 2011 A1
20110237243 Guvenc et al. Sep 2011 A1
20110241923 Chernukhin Oct 2011 A1
20110273328 Parker Nov 2011 A1
20110286555 Cho et al. Nov 2011 A1
20110287779 Harper Nov 2011 A1
20110299481 Kim et al. Dec 2011 A1
20120014332 Smith et al. Jan 2012 A1
20120032854 Bull et al. Feb 2012 A1
20120039284 Barbieri et al. Feb 2012 A1
20120052869 Lindoff et al. Mar 2012 A1
20120058775 Dupray et al. Mar 2012 A1
20120071188 Wang et al. Mar 2012 A1
20120072986 Livsics et al. Mar 2012 A1
20120077510 Chen et al. Mar 2012 A1
20120081248 Kennedy et al. Apr 2012 A1
20120094681 Freda et al. Apr 2012 A1
20120100810 Oksanen et al. Apr 2012 A1
20120115522 Nama et al. May 2012 A1
20120115525 Kang et al. May 2012 A1
20120120892 Freda et al. May 2012 A1
20120129522 Kim et al. May 2012 A1
20120140236 Babbitt et al. Jun 2012 A1
20120142386 Mody et al. Jun 2012 A1
20120148068 Chandra et al. Jun 2012 A1
20120148069 Bai et al. Jun 2012 A1
20120155217 Dellinger et al. Jun 2012 A1
20120182430 Birkett et al. Jul 2012 A1
20120195269 Kang et al. Aug 2012 A1
20120212628 Wu et al. Aug 2012 A1
20120214511 Vartanian et al. Aug 2012 A1
20120230214 Kozisek et al. Sep 2012 A1
20120246392 Cheon Sep 2012 A1
20120264388 Guo et al. Oct 2012 A1
20120264445 Lee et al. Oct 2012 A1
20120275354 Villain Nov 2012 A1
20120281000 Woodings Nov 2012 A1
20120282942 Uusitalo et al. Nov 2012 A1
20120295575 Nam Nov 2012 A1
20120302190 Mchenry Nov 2012 A1
20120302263 Tinnakomsrisuphap et al. Nov 2012 A1
20120309288 Lu Dec 2012 A1
20120322487 Stanforth Dec 2012 A1
20130005240 Novak et al. Jan 2013 A1
20130005374 Uusitalo et al. Jan 2013 A1
20130012134 Jin et al. Jan 2013 A1
20130017794 Kloper et al. Jan 2013 A1
20130023285 Markhovsky Jan 2013 A1
20130028111 Dain et al. Jan 2013 A1
20130035108 Joslyn et al. Feb 2013 A1
20130035128 Chan et al. Feb 2013 A1
20130045754 Markhovsky et al. Feb 2013 A1
20130052939 Anniballi et al. Feb 2013 A1
20130053054 Lovitt et al. Feb 2013 A1
20130062334 Bilchinsky et al. Mar 2013 A1
20130064197 Novak et al. Mar 2013 A1
20130064328 Adnani et al. Mar 2013 A1
20130070639 Demura et al. Mar 2013 A1
20130090071 Abraham et al. Apr 2013 A1
20130095843 Smith et al. Apr 2013 A1
20130100154 Woodings et al. Apr 2013 A1
20130103684 Yee et al. Apr 2013 A1
20130165051 Li et al. Jun 2013 A9
20130165134 Touag et al. Jun 2013 A1
20130165170 Kang Jun 2013 A1
20130183989 Hasegawa et al. Jul 2013 A1
20130183994 Ringstroem et al. Jul 2013 A1
20130190003 Smith et al. Jul 2013 A1
20130190028 Wang et al. Jul 2013 A1
20130196677 Smith et al. Aug 2013 A1
20130208587 Bala et al. Aug 2013 A1
20130210457 Kummetz Aug 2013 A1
20130210473 Weigand Aug 2013 A1
20130217406 Villardi et al. Aug 2013 A1
20130217408 Difazio et al. Aug 2013 A1
20130217450 Kanj et al. Aug 2013 A1
20130231121 Kwak et al. Sep 2013 A1
20130237212 Khayrallah et al. Sep 2013 A1
20130242792 Woodings Sep 2013 A1
20130242934 Ueda et al. Sep 2013 A1
20130260703 Actis et al. Oct 2013 A1
20130265198 Stroud Oct 2013 A1
20130288734 Mody et al. Oct 2013 A1
20130329690 Kim et al. Dec 2013 A1
20140064723 Adles et al. Mar 2014 A1
20140073261 Hassan et al. Mar 2014 A1
20140086212 Katie et al. Mar 2014 A1
20140163309 Bernhard et al. Jun 2014 A1
20140201367 Trummer et al. Jul 2014 A1
20140206307 Maurer et al. Jul 2014 A1
20140256268 Olgaard Sep 2014 A1
20140269374 Abdelmonem et al. Sep 2014 A1
20140269376 Garcia et al. Sep 2014 A1
20140340684 Edler et al. Nov 2014 A1
20140342675 Massarella et al. Nov 2014 A1
20150072633 Massarella et al. Mar 2015 A1
20150289254 Garcia et al. Oct 2015 A1
20160014713 Kennedy et al. Jan 2016 A1
20160117853 Zhong et al. Apr 2016 A1
20160124071 Baxley et al. May 2016 A1
20160219506 Pratt et al. Jul 2016 A1
20160345135 Garcia et al. Nov 2016 A1
20160374088 Garcia et al. Dec 2016 A1
20170024767 Johnson, Jr. et al. Jan 2017 A1
20170039413 Nadler Feb 2017 A1
20170079007 Carbajal Mar 2017 A1
20170094527 Shattil Mar 2017 A1
20170134631 Zhao et al. May 2017 A1
20170148467 Franklin et al. May 2017 A1
20170237484 Heath Aug 2017 A1
20170238203 Dzierwa Aug 2017 A1
20170243138 Dzierwa Aug 2017 A1
20170243139 Dzierwa Aug 2017 A1
20170250766 Dzierwa et al. Aug 2017 A1
20170261604 Van Voorst Sep 2017 A1
20170261613 Van Voorst Sep 2017 A1
20170261615 Ying Sep 2017 A1
20170289840 Sung et al. Oct 2017 A1
20170290075 Carbajal et al. Oct 2017 A1
20170358103 Shao et al. Dec 2017 A1
20170374572 Kleinbeck et al. Dec 2017 A1
20170374573 Kleinbeck Dec 2017 A1
20180006730 Kuo Jan 2018 A1
20180014217 Kleinbeck et al. Jan 2018 A1
20180024220 Massarella et al. Jan 2018 A1
20180083721 Wada et al. Mar 2018 A1
20180129881 Seeber et al. May 2018 A1
20180211179 Dzierwa Jul 2018 A1
20180294901 Garcia et al. Oct 2018 A1
20180331863 Carbajal Nov 2018 A1
20190004518 Zhou et al. Jan 2019 A1
20190018103 Qian et al. Jan 2019 A1
20190064130 Kanazawa Feb 2019 A1
20190072601 Dzierwa et al. Mar 2019 A1
20190180630 Kleinbeck Jun 2019 A1
20190191313 Dzierwa et al. Jun 2019 A1
20190208112 Kleinbeck Jul 2019 A1
20190208491 Dzierwa et al. Jul 2019 A1
20190215709 Kleinbeck et al. Jul 2019 A1
20190223139 Kleinbeck et al. Jul 2019 A1
20190230539 Dzierwa et al. Jul 2019 A1
20190230540 Carbajal et al. Jul 2019 A1
20190245722 Carbajal Aug 2019 A1
20190246304 Dzierwa et al. Aug 2019 A1
20190253160 Garcia et al. Aug 2019 A1
20190253905 Kleinbeck et al. Aug 2019 A1
20190274059 Kleinbeck et al. Sep 2019 A1
20190360783 Whittaker Nov 2019 A1
20190364533 Kleinbeck et al. Nov 2019 A1
20200066132 Kleinbeck Feb 2020 A1
20200096548 Dzierwa et al. Mar 2020 A1
20200107207 Kleinbeck et al. Apr 2020 A1
20200120266 Kleinbeck Apr 2020 A1
20200128418 Dzierwa et al. Apr 2020 A1
20200162890 Spencer et al. May 2020 A1
20200169892 Dzierwa et al. May 2020 A1
20200184832 Kleinbeck Jun 2020 A1
20200196269 Dzierwa et al. Jun 2020 A1
20200196270 Kleinbeck et al. Jun 2020 A1
20200245167 Kleinbeck et al. Jul 2020 A1
20200260306 Kleinbeck et al. Aug 2020 A1
20200295855 Kleinbeck et al. Sep 2020 A1
20200382961 Shattil et al. Dec 2020 A1
20210082254 Givant Mar 2021 A1
20210084217 Kleinbeck Mar 2021 A1
20210211911 Kleinbeck et al. Jul 2021 A1
20210280039 Kleinbeck Sep 2021 A1
Foreign Referenced Citations (1)
Number Date Country
20140041618 Apr 2014 KR
Non-Patent Literature Citations (8)
Entry
Boll S.F., Suppression of Acoustic Noise in Speech Using Spectral Subtraction, Apr. 1979, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-27, No. 2, (Year: 1979).
David Eppink and Wolf Kuebler, “TIREM/SEM Handbook”, Mar. 1994, IIT Research Institute, p. 1-6, located at http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.paf&AD=ADA296913.
Gabriel Garcia and Daniel Carbajal, U.S. Appl. No. 61/789,758, Provisional Patent Application, filed Mar. 15, 2013.
Gary L. Sugar, System and method for locating wireless devices in an unsynchronized wireless network, U.S. Appl. No. 60/319,737, Provisional Patent Application filed Nov. 27, 2002.
International Search Report and Written Opinion dated Jun. 21, 2018 issued by the International Application Division, Korean Intellectual Property Office as International Searching Authority in connection with International Application No. PCT/US2018/014504 (21 pages).
Mobile Emitter Geolocation and Tracking Using TDOA and FDOA Measurements; Musicki et al.; IEEE Transactions on Signal Processing, vol. 58, No. 3, Mar. 2010 (Year: 2010).
“Noise Figure”, Wikipedia, located at https://en.wikipedia.org/wiki/Noise_figure (Year: 2022).
“A Low-Cost, Near-Real-Time Two-LIAS-Based UWB Emitter Monitoring System”; Wang et al.; IEEE A&E Systems Magazine Nov. 2015 (Year 2015).
Related Publications (1)
Number Date Country
20220262228 A1 Aug 2022 US
Provisional Applications (1)
Number Date Country
62722420 Aug 2018 US
Continuations (2)
Number Date Country
Parent 17191192 Mar 2021 US
Child 17731956 US
Parent 16545717 Aug 2019 US
Child 17191192 US